CPC7583BD [CLARE]

Line Card Access Switch; 线卡接入交换机
CPC7583BD
型号: CPC7583BD
厂家: CLARE    CLARE
描述:

Line Card Access Switch
线卡接入交换机

文件: 总16页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CPC7583  
Line Card Access Switch  
Features  
Description  
Small 28 pin surface mount SOIC package  
The CPC7583 is a monolithic solid state switch in a 28 pin  
surface mount SOIC package. It provides the necessary  
functions to replace three 2-Form-C electromechanical re-  
lays on analog line cards found in Central Office, Access  
and PBX equipment. The device contains solid state  
switches for tip and ring line break, ring injection/ring re-  
turn, line test access, test in access and ringing generator  
testing. The CPC7583 requires only a +5V supply and of-  
fers “break-before-make” or “make-before-break” switch  
operation using simple logic level input control. The  
CPC7583 has 4 versions. The CPC7583BA and the  
CPC7583BC contain the integrated protection SCR while  
the CPC7583BC and the CPC7583BD contain an extra  
logic state which is detailed in later sections.  
Monolithic IC reliability  
Low matched RDSON  
Eliminates the need for zero cross switching  
Flexible switch timing to transition from ringing mode to  
idle/talk mode  
Clean, bounce free switching  
Tertiary protection consisting of integrated current  
limiting, thermal shutdown and SLIC protection  
5V operation with power consumption <10mW  
Intelligent battery monitor  
Latched logic level inputs, no drive circuitry  
Pin to pin compatible to the Lucent 7583 family  
Ordering Information  
Applications  
Part #  
Description  
Central office (CO)  
Digital Loop Carrier (DLC)  
PBX Systems  
CPC7583BA  
CPC7583BB  
CPC7583BC  
10 Pole with protection SCR  
10 Pole without protection SCR  
10 Pole extra logic state with  
protection SCR  
10 Pole extra logic state without  
protection SCR  
Digitally Added Main Line (DAML)  
Hybrid Fiber Coax (HFC)  
Fiber in the Loop (FITL)  
Pair Gain System  
CPC7583BD  
CPC7583BATR Tape and Reel Version  
CPC7583BBTR Tape and Reel Version  
CPC7583BCTR Tape and Reel Version  
CPC7583BDTR Tape and Reel Version  
Channel Banks  
Block Diagram  
CPC7583BA  
DS-CPC7583-RE  
1
www.clare.com  
CPC7583  
Absolute Maximum Ratings are stress ratings. Functional op-  
eration of the device at these or any other conditions beyond  
those indicated in the operational sections of this data sheet is  
not implied. Exposure of the device to the absolute maximum  
ratings for extended period may degrade the device and effect  
its reliability.  
Parameter  
Min  
-40  
-40  
5
Max  
+110  
+150  
95  
Units  
˚C  
˚C  
%
˚C  
Operating Temperature Range  
Storage Temperature Range  
Relative Humidity Range  
Pin Soldering Temperature  
(t=10 s max)  
-
+260  
+5V Power Supply  
Battery Supply  
Logic Input Voltage  
Logic Input to Switch Output Isolation  
Switch Isolation (SW1, SW2, SW3,  
SW5, SW6, SW7, SW9,SW10)  
Switch Isolation (SW4)  
Switch Isolation (SW8)  
-
-
-
-
-
7
-85  
7
330  
330  
V
V
V
V
V
-
-
480  
235  
V
V
Electrical Characteristics TA = -40oC to +85oC (unless otherwise specified)  
Minimum and maximum values are production testing requirements. Typical values are characteristic of the device and are the result  
of engineering evaluations. Typical values are provided for information purposes only and are not part of the testing requirements.  
Power Supply Specifications  
Supply  
Min  
+4.5  
-19  
Typ  
+5.0  
-
Max  
+5.5  
-72  
Unit  
V
V
ESD Rating (HBM Model)  
VDD  
VBAT  
1000  
1
1 VBAT is used only as a reference for internal protection circuitry.  
If VBAT rises above -10V, the device will enter an all off state and will remain in the all off state until the battery voltage drops below -15V.  
Table 1. Break Switch, SW1 and SW2  
PARAMETERS  
CONDITIONS  
SYMBOL  
Isw  
MIN  
TYP  
0.1  
0.3  
0.1  
MAX  
UNITS  
µA  
Off-state Leakage Current:  
o
+25 C  
Vsw (differential)= -320V to Gnd  
Vsw (differential)= -60V to +260V  
Vsw (differential)= -330V to Gnd  
Vsw (differential)= -60V to +270V  
Vsw (differential)= -310V to Gnd  
Vsw (differential)= -60V to +250V  
-
-
-
1
1
1
o
+85 C  
Isw  
µA  
o
-40 C  
Isw  
µA  
RDS (SW1,SW2):  
ON  
o
+25 C  
TLINE= +/-10 mA, +/-40mA, TBAT= -2V  
TLINE= +/-10 mA, +/-40mA, TBAT= -2V  
TLINE= +/-10 mA, +/-40mA, TBAT= -2V  
Per ON-resistance Test Condition of  
SW1, SW2  
V  
V  
V  
-
-
-
-
14.5  
20.5  
10.5  
0.15  
-
28  
-
o
+85 C  
o
-40 C  
RDS Match  
ON  
Magnitude  
RON SW1-RONSW2  
0.8  
DC Current Limit:  
o
+25 C  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Break switches in ON state, ringing  
access switches OFF, apply +/- 1000V  
at 10/1000µs pulse, appropriate  
secondary protection in place.  
Isw  
Isw  
Isw  
Isw  
-
80  
-
225  
150  
400  
2.5  
-
-
mA  
mA  
mA  
A
o
+85 C  
o
-40 C  
425  
-
Dynamic Current Limit:  
(t=<0.5µs)  
-
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (TLINE, RLINE) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
-
-
0.1  
0.3  
0.1  
200  
1
1
1
-
µA  
µA  
Logic Inputs = Gnd  
Vsw (TLINE, RLINE) = +/-330V  
Logic Inputs = Gnd  
Vsw (TLINE, RLINE) = +/-310V  
Logic Inputs = Gnd  
-
o
+85 C  
o
-40 C  
µA  
dv/dt Sensitivity1  
1 Applied voltage is 100 Vp-p square wave at 100Hz.  
V/µs  
Rev. E  
2
www.clare.com  
CPC7583  
Table 2. Ring Return Switch, SW3  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current  
o
+25 C  
Vsw (differential)= -320V to Gnd  
Vsw (differential)= -60V to +260V  
Vsw (differential)= -330V to Gnd  
Vsw (differential)= -60V to +270V  
Vsw (differential)= -310V to Gnd  
Vsw (differential)= -60V to +250V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
o
+85 C  
o
-40 C  
DC Current Limit  
o
+25 C  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Break switches in ON state, Ringing  
access switches OFF, Apply +/- 1000V  
at 10/1000µs pulse, Appropriate  
secondary protection in place.  
Isw  
Isw  
Isw  
Isw  
-
-
-
-
120  
80  
210  
2.5  
-
-
-
-
mA  
mA  
mA  
A
o
+85 C  
o
-40 C  
Dynamic Current Limit:  
(t=<0.5µs)  
RDSON  
+25˚C  
+85˚C  
-40˚C  
Isw (on) = +/-0mA, +/-10mA  
Isw (on) = +/-0mA, +/-10mA  
Isw (on) = +/-0mA, +/-10mA  
V  
V  
V  
-
-
-
60  
85  
45  
-
100  
-
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (TRING, TLINE) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
Vsw (TRING, TLINE) = +/-330V  
Logic Inputs = Gnd  
o
+85 C  
o
-40 C  
Vsw (TRING, TLINE) = +/-310V  
Logic Inputs = Gnd  
Table 3. Ringing Access Switch, SW4  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current  
o
+25 C  
Vsw (differential)= -255V to +210V  
Vswitch (differential)= +255V to -210V  
Vsw (differential)= -270V to +210V  
Vsw (differential)= +270V to -210V  
Vsw (differential)= -245V to +210V  
Vsw (differential)= +245V to -210V  
Isw (on) = +/- 1mA  
Isw  
Isw  
Isw  
-
-
-
-
.05  
0.1  
.05  
1
1
1
µA  
µA  
µA  
o
+85 C  
o
-40 C  
ON Voltage  
Ring Generator Current  
During Ring  
-
-
1.5  
0.1  
3
0.25  
V
mA  
Vcc = 5V, INTESTin = 0  
I
R
INTESTout = 0  
Surge Current  
Release Current  
ON-resistance  
-
-
-
-
-
-
-
-
2
-
12  
A
µA  
450  
8.5  
Isw (on) = +/-70mA, +/-80mA  
V  
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (RRING, RLINE) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
.05  
0.1  
.05  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
Vsw (RRING, RLINE) = +/-330V  
Logic Inputs = Gnd  
o
+85 C  
o
-40 C  
Vsw (RRING, RLINE) = +/-310V  
Logic Inputs = Gnd  
Rev. E  
3
www.clare.com  
CPC7583  
Table 4. Loop Access Switches, SW5 and SW6  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current:  
o
+25 C  
Vsw (differential) = -320V to +Gnd  
Vsw (differential) = -60V to +260V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
o
+85 C  
Vsw (differential) = -330V to Gnd  
Vsw (differential) = -60V to +270V  
o
-40 C  
Vsw (differential) = -310V to +Gnd  
Vsw (differential) = -60V to +250V  
RDS  
ON  
:
o
+25 C  
Isw (on) = +/-5mA, +/-10mA  
Isw (on) = +/-5mA, +/-10mA  
Isw (on) = +/-5mA, +/-10mA  
V  
V  
V  
-
-
-
35  
50  
26  
-
70  
-
o
+85 C  
o
-40 C  
DC Current Limit:  
o
+25 C  
Vsw (on) = +/-10V  
Vsw (on) = +/-10V  
Vsw (on) = +/-10V  
Isw  
Isw  
Isw  
140  
100  
210  
-
-
250  
mA  
mA  
mA  
o
+85 C  
80  
-
o
-40 C  
Dynamic Current LImit  
(t=<0.5µs)  
Break switches in ON state; ringing  
access switches OFF; apply +/-1000V at  
10/1000µs pulse; appropriate secondary  
protection in place.  
Isw  
-
2.5  
-
A
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (TTESTout, TLINE, RTESTout, RLINE) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
o
+85 C  
Vsw (TTESTout, TLINE, RTESTout, RLINE) = +/-330V  
Logic Inputs = Gnd  
o
-40 C  
Vsw (TTESTout, TLINE, RTESTout, RLINE) = +/-310V  
Logic Inputs = Gnd  
Table 5. Ringing Test Return Switch SW7  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current:  
o
+25 C  
Vsw (differential)= -320V to Gnd  
Vsw (differential)= -60V to +260V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
o
+85 C  
Vsw (differential)= -330V to Gnd  
Vsw (differential)= -60V to +270V  
o
-40 C  
Vsw (differential)= -310 to Gnd  
Vsw (differential)= -60V to +250V  
RDSON  
+25˚C  
+85˚C  
-40˚C  
Isw (on) = +/-0mA, +/-10mA  
Isw (on) = +/-0mA, +/-10mA  
Isw (on) = +/-0mA, +/-10mA  
V  
V  
V  
-
-
-
60  
85  
45  
-
100  
-
DC Current Limit  
o
+25 C  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Vsw (on) = +/- 10V  
Isw  
Isw  
Isw  
-
-
-
120  
80  
210  
-
-
-
mA  
mA  
mA  
o
+85 C  
o
-40 C  
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (TRING, TTESTin) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
o
+85 C  
Vsw (TRING, TTESTin) = +/-330V  
Logic Inputs = Gnd  
o
-40 C  
Vsw (TRING, TTESTin) = +/-310V  
Logic Inputs = Gnd  
Rev. E  
4
www.clare.com  
CPC7583  
Table 6. Ringing Test Switch SW8  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current:  
o
+25 C  
Vsw (differential)= -60V to +175V  
Vsw (differential)= +60V to -175V  
Vsw (differential)= -60V to +175V  
Vsw (differential)= +60V to -175V  
Vsw (differential)= -60V to +175V  
Vsw (differential)= +60V to -175V  
Isw  
Isw  
Isw  
-
-
-
.05  
0.1  
.05  
1
1
1
µA  
µA  
µA  
o
+85 C  
o
-40 C  
ON-resistance  
ON- voltage  
Release Current  
Isw (on) = +/-70 mA, +/-80mA  
Isw (on) = +/-1mA  
-
V  
-
-
-
-
-
6
0.75  
450  
20  
1.5  
-
V
µA  
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (RRING, RTESTin) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
.05  
0.1  
.05  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
Vsw (RRING, RTESTin) = +/-330V  
Logic Inputs = Gnd  
o
+85 C  
o
-40 C  
Vsw (RRING, RTESTin) = +/-310V  
Logic Inputs = Gnd  
* Choice of secondary protector and series current-limit resistor should ensure these ratings are not exceeded.  
Table 7. Test in Switches, SW9 and SW10  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Off-state Leakage Current:  
o
+25 C  
Vsw (differential)= -320V to Gnd  
Vsw (differential)= -60V to +260V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
o
+85 C  
Vsw (differential)= -330V to Gnd  
Vsw (differential)= -60V to +270V  
o
-40 C  
Vsw (differential)= -310V to Gnd  
Vsw (differential)= -60V to +250V  
RDS  
ON  
+25 C  
:
o
Isw(on) = +/-5 mA, +/-10mA  
Isw(on) = +/-5 mA, +/-10mA  
Isw(on) = +/-5 mA, +/-10mA  
V  
V  
V  
-
-
-
35  
50  
26  
-
70  
-
o
+85 C  
o
-40 C  
DC Current Limit:  
o
+25 C  
Vsw (On) = +/-10V  
Vsw (On) = +/-10V  
Vsw (On) = +/-10V  
Isw  
Isw  
Isw  
-
80  
-
160  
110  
210  
-
-
mA  
mA  
mA  
o
+85 C  
o
-40 C  
250  
Logic Input to Switch Output Isolation:  
o
+25 C  
Vsw (TTESTin, RTESTin) = +/-320V  
Isw  
Isw  
Isw  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
Logic Inputs = Gnd  
o
+85 C  
Vsw (TTESTin, RTESTin) = +/-330V  
Logic Inputs = Gnd  
o
-40 C  
Vsw (TTESTin, RTESTin) = +/-310V  
Logic Inputs = Gnd  
Rev. E  
5
www.clare.com  
CPC7583  
Table 8. Additional Electrical Characteristics  
PARAMETERS  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Digital Input Characteristics  
Input Low Voltage  
Input High Voltage  
-
-
-
-
-
3.5  
-
-
-
0.1  
1.5  
-
1
V
V
µA  
Input Leakage Current (High)  
V
V
V
V
= 5.5V, V  
= 5V  
= 5.5V, V  
= 0V  
= -75V,  
= -75V,  
I
I
DD  
log  
DD  
log  
BAT  
log  
Input Leakage Current (Low)  
-
0.1  
1
µA  
BAT  
log  
Power Requirements  
Power Dissipation  
V
= 5V, V = -48V,  
BAT  
DD  
Idle/Talk State or All Off State  
I
, I  
-
-
5.0  
6.0  
7.5  
10  
mW  
mW  
DD BAT  
Ringing State or Test State  
I
DD  
V
V
Current  
V
= 5V,  
DD  
DD  
Idle/Talk State or All Off State  
Ringing State or Test State  
V
I
I
-
-
1.0  
1.2  
1.5  
1.9  
mA  
mA  
DD  
DD  
Current  
= -48V,  
BAT  
BAT  
Idle/Talk State or All Off State  
Ringing State or Test State  
I
I
-
-
4
4
10  
10  
µA  
µA  
BAT  
BAT  
Temperature Shutdown Requirements1  
Shutdown Activation Temperature  
Shutdown Circuit Hysteresis  
o
o
-
-
-
-
110  
10  
125  
-
150  
25  
C
C
1 Temperature shutdown flag (TSD) will be high during normal operation and low during temperature shutdown state.  
Table 9. Make-Before-Break Operation (Ringing to Idle/Talk Transition)  
Ring  
Ring  
Break Return Access  
Switches Switch  
All Other  
Test  
Switches  
Switch  
4
Ring  
Testin  
Testout TSD  
State  
Timing  
1 & 2  
3
5V  
0V  
0V  
0V  
0V  
0V  
Float Ringing  
-
Open  
Closed  
Closed  
Open  
Closed  
Closed  
Open  
Open  
Float Make-before-break SW4 waiting for next zero current  
crossing to turn off. Maximum  
time is half of ringing. In this  
transition state, current that is  
limited to the dc break switch  
current limit value will be sourced  
from the ring node of the SLIC  
0V  
0V  
0V  
Float  
Idle / Talk  
Zero cross current has occurred  
Closed  
Open  
Open  
Open  
Rev. E  
6
www.clare.com  
CPC7583  
Table 10. Break-Before-Make Operation (Ringing to Idle/Talk Transition)  
Ring  
Ring  
Break Return Access  
Switches Switch  
All Other  
Access  
Switches  
Open  
Open  
Switch  
4
Closed  
Closed  
Ring  
5V  
5V  
Testin  
0V  
0V  
Testout TSD  
State  
Ringing  
All Off  
Timing  
-
1 & 2  
Open  
Open  
3
0V  
5V  
Float  
Float  
Closed  
Open  
Hold this state for </= 25ms.  
SW4 waiting for zero current to  
turn off.  
5V  
0V  
0V  
0V  
5V  
0V  
Float  
Float  
All Off  
Zero current has occurred.  
SW4 has opened.  
Release Break Switches  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Idle/Talk  
Closed  
Alternate “Break-Before-Make” Operation  
Note that the break-before-make operation can also be achieved using TSD as an input. In lines 2 & 3 of Table 10, instead of using the  
logic input pins to force the “all off” state, force TSD to ground. This will override the logic inputs and also force the all off state. Hold  
this state for 25 ms. During this 25 ms all off state, toggle the inputs from the 10 (ringing state) to 00 (idle/talk state). After 25 ms,  
release TSD to return switch control to the input pins which will set the idle talk state.  
When using the CPC7583 in this mode, forcing TSD to ground will override the INPUT pins and force an all off state. Setting TSD to  
+5V will allow switch control via the logic INPUT pins. However, setting TSD to +5V will also disable the thermal shutdown mecha-  
nism. This is not recommended. Therefore, to allow switch control via the logic INPUT pins, allow TSD to float.  
Thus when using TSD as an input, the two recommended states are 0 (overrides logic input pins and forces all off state) and float  
(allows switch control via logic input pins and thermal shutdown mechanism is active). This may require use of an open collector  
buffer.  
Table 11. Electrical Specifications, Protection Circuitry  
PARAMETER  
CONDITIONS  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Parameters Related to Diodes  
(in Diode Bridge)  
Voltage Drop @ Continuous  
Current (50/60 Hz)  
Voltage Drop @ Surge  
Current  
Apply +/-dc current limit of break  
switches  
Apply +/-dynamic current limit of  
break swithces  
Forward  
Voltage  
Forward  
Voltage  
-
-
2.8  
5
3.5  
-
V
V
Parameters Related to  
Protection SCR1  
Surge Current  
Trigger Current (25˚C)  
Hold Current (25˚C)  
Trigger Current (85˚C)  
Hold Current (85˚C)  
Gate Trigger Voltage  
Reverse Leakage Current  
ON State Voltage1  
-
-
-
-
-
-
-
-
-
-
60  
110  
35  
70  
-
-
-3  
-5  
*
-
-
-
A
mA  
mA  
mA  
mA  
V
µA  
V
V
ITRIG  
IHOLD  
ITRIG  
IHOLD  
-
-
60  
VBAT - 4  
-
Trigger Current  
VBAT - 2  
1.0  
V
-
-
-
-
BAT  
0.5A t = 0.5 ms  
2.0A t = 0.5 ms  
V
-
-
on  
-
1 Only for the CPC7583BA and CPC7583BC.  
* Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.  
Rev. E  
7
www.clare.com  
CPC7583  
Table 12. Truth Table for the CPC7583BA and CPC7583BB  
INring  
INtestin  
INtestout  
TSD  
TESTin  
Switches  
Break  
Switches  
RingTest  
Switches  
Ring  
Switches  
TESTout  
Switches  
0V  
0V  
0V  
5V  
5V  
0V  
5V  
5V  
0V  
0V  
5V  
0V  
5V  
5V  
0V  
5V  
0V  
5V  
0V  
0V  
0V  
5V  
5V  
5V  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
0V2  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off3  
On4  
Off5  
Off6  
Off7  
On8  
Off9  
Off9  
Off9  
Don’t  
Care  
1
Don’t  
Care  
Don’t  
Care  
If TSD = 5V, the thermal shutdown mechanism is disabled.  
If TSD if floating, the thermal shutdown mechanism is active.  
Forcing TSD to ground overrides the logic input pins and forces an all off state.  
Idle/Talk State.  
2
3
4
5
6
7
8
TESTout state.  
TESTin state.  
Power Ringing State.  
Ringing generator test state.  
Simultaneous TESTout and TESTin state.  
All OFF State  
9
A parallel in/parallel out data latch is integrated into the CPC7583. Operation of the data latch is controlled by the logic level input pin  
LATCH. The data input to the latch is the INPUT pin of the CPC7583 and the output of the data latch is an internal node used for state  
control.  
When the LATCH control pin is at logic 0, the data latch is transparent and data control signals flow directly from INPUT, through the data  
latch to state control. Any changes in INPUT will be reflected in the state of the switches.  
When the LATCH control pin is at logic 1, the data latch is active; the CPC7583 will no longer react to changes at the INPUT control pin. The  
state of the switches is now latched; that is, the state of the switches will remain as they were when the LATCH input transitioned from logic  
0 to logic 1. The switches will not respond to changes in INPUT as long as LATCH is held high.  
Note that the Tsd input is not tied to the data latch. Tsd is not affected by the LATCH input. Tsd input will override state control via INPUT  
and LATCH.  
Rev. E  
8
www.clare.com  
CPC7583  
Table 13. Truth Table for the CPC7583BC and CPC7583BD  
INring  
INtestin  
INtestout  
TSD  
TESTin  
Switches  
Break  
Switches  
RingTest  
Switches  
Ring  
Switches  
TESTout  
Switches  
0V  
0V  
0V  
5V  
5V  
0V  
5V  
5V  
0V  
0V  
5V  
0V  
5V  
5V  
0V  
5V  
0V  
5V  
0V  
0V  
0V  
5V  
5V  
5V  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
5V/Float1  
0V2  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off3  
On4  
Off5  
Off6  
Off7  
On8  
Off9  
On10  
Off9  
Don’t  
Care  
1
Don’t  
Care  
Don’t  
Care  
If TSD = 5V, the thermal shutdown mechanism is disabled.  
If TSD if floating, the thermal shutdown mechanism is active.  
Forcing TSD to ground overrides the logic input pins and forces an all off state.  
Idle/Talk State.  
TESTout state.  
2
3
4
5
6
7
8
9
TESTin state.  
Power Ringing State.  
Ringing generator test state.  
Simultaneous TESTout and TESTin state.  
All OFF State  
10 Simultaneous TESTout - Ring Test state.  
A parallel in/parallel out data latch is integrated into the CPC7583. Operation of the data latch is controlled by the logic level input pin  
LATCH. The data input to the latch is the INPUT pin of the CPC7583 and the output of the data latch is an internal node used for state  
control.  
When the LATCH control pin is at logic 0, the data latch is transparent and data control signals flow directly from INPUT, through the data  
latch to state control. Any changes in INPUT will be reflected in the state of the switches.  
When the LATCH control pin is at logic 1, the data latch is active; the CPC7583 will no longer react to changes at the INPUT control pin. The  
state of the switches is now latched; that is, the state of the switches will remain as they were when the LATCH input transitioned from logic  
0 to logic 1. The switches will not respond to changes in INPUT as long as LATCH is held high.  
Note that the Tsd input is not tied to the data latch. Tsd is not affected by the LATCH input. Tsd input will override state control via INPUT  
and LATCH.  
Rev. E  
9
www.clare.com  
CPC7583  
Package Pinout  
CPC7583  
VBAT  
FGND  
1
SOG  
1
Symbol  
FGND  
NC  
Description  
Fault ground.  
28  
SCR and  
TRIP CKT  
2
27 NC  
26 NC  
NC  
2
No Connection.  
NC  
3
4
5
3
NC  
No Connection.  
NC  
R
25  
24  
23  
22  
NC  
4
NC  
No Connection.  
SW9  
SW10  
TTESTin  
5
TTESTin  
TBAT  
Test (in) access on TIP.  
Connect to TIP on SLIC side.  
Connect to TIP on line side.  
TBAT  
RBAT  
6
7
6
SW1  
SW7  
SW2  
RLINE  
TLINE  
TRING  
7
TLINE  
8
21 NC  
SW8  
8
TRING  
NC  
Connect to return ground for ringing generator.  
No connection.  
SW3  
R
NC  
9
20  
RING  
9
SW4  
TTESTout  
RTESTout  
10  
19  
18  
17  
SW5  
SW6  
10  
11  
12  
13  
TTESTout  
NC  
Test (out) access on TIP.  
No connection.  
NC 11  
LATCH  
INTESTin  
VDD  
12  
Control  
Logic  
VDD  
5V supply  
INRING  
16  
15  
13  
TSD  
Temperature shutdown pin. Can be used as a logic  
level input or an output. See Tables 9, 10, 12 and13 for  
more details. As an output, will read 5V when the  
device is in its operational mod and 0V in the thermal  
shutdown mode. To disable the thermal shutdown mode  
mechanism, tie this pin to 5V (not recommended).  
TSD  
DGND  
14  
INTESTout  
* Only the CPC7583BA and CPC7583BC  
contain the protection SCR  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DGND  
Digital ground  
INTESTout  
INRING  
INTESTin  
LATCH  
RTESTout  
RRING  
NC  
Logic level switch input control.  
Logic level switch input control.  
Logic level switch input control.  
Data input control, active-high, transparent low.  
Test (out) access on RING.  
Connect to ringing generator.  
No connection.  
RLINE  
RBAT  
Connect to RING on line side.  
Connect to RING on SLIC side.  
Test (in) access on RING.  
No connection.  
RTESTin  
NC  
NC  
No connection.  
NC  
No connection  
VBAT  
Battery voltage. Used as a reference for protection circuit.  
Rev. E  
10  
www.clare.com  
CPC7583  
state contacts, use of a foldback or crowbar type sec-  
ondary protector is recommended. With proper selection  
of the secondary protector, a line card using the CPC7583  
will meet all relevant ITU, LSSGR, FCC or UL protection  
requirements.  
Functional Description  
Introduction  
The CPC7583 has eight distinct states. Please consult the  
truth tables in table 12 and 13 for version differences.  
The CPC7583 operates from a +5V supply only. This gives  
the device extremely low idle and active power dissipation  
and allows use with virtually any range of battery voltage.  
A battery voltage is also used by the CP7583 as a refer-  
ence for the integrated protection circuit. In the event of a  
loss of battery voltage, the CPC7583 will enter an all off”  
state.  
Idle/talk state (line break switches SW1, and SW2  
closed). All other switches open.  
Ringing state, (ringing switches SW3, SW4 closed).  
All other switches open.  
Loop access (loop access switches SW5, SW6  
closed). All other switches open.  
Switch Timing  
Ring generator test state (SW7, SW8 closed). All  
The CPC7583 provides, when switching from the ringing  
state to the idle/talk state, the ability to control the timing  
when the ringing access switches SW3 and SW4 are re-  
leased relative to the state of the line break switches SW1  
and SW2 using simple logic level input. This is referred to  
as a make before breakor break before makeopera-  
tion. When the line break switch contacts (SW1, SW2) are  
closed (or made) before the ringing access switch contact  
(SW3, SW4) is opened (or broken), this is referred to a  
make-before-breakoperation. Break-before-make opera-  
tion occurs when the ringing access contact (SW3, SW4)  
is opened (broken) before the line break switch contacts  
(SW1, SW2) are closed (made). With the CPC7583 the  
make before breakand break before makeoperations  
can easily be selected by applying logic level inputs to  
INTESTout, INRING and INTESTin of the device.  
other switches open.  
SLIC test state Testin switches closed (SW9, SW10).  
Simultaneous Loop and SLIC access state. (SW9,  
SW10, SW5 and SW6 closed). All other switches open.  
Simultaneous test out and ring test (SW5, SW6,  
SW7, SW8 closed).All other switches open on the BC”  
abd BDversion.  
All Off state (all switches open).  
The CPC7583 offers break-before-make and make-before-  
break switching with simple logic level input control. Solid  
state switch construction means no impulse noise is gen-  
erated when switching during ring cadence or ring trip, thus  
eliminating the need for external zero crossswitching cir-  
cuitry. State control is via logic level input so no additional  
driver circuitry is required. The line break switches SW1  
and SW2 are linear switches that have exceptionally low  
RDSON and excellent matching characteristics. The ring-  
ing access switch SW4 has a breakdown voltage rating of  
>480V which is sufficiently high, with proper protection, to  
prevent breakdown in the presence of a transient fault con-  
dition. (i.e., passing the transient on to the ring generator)  
The logic sequences for either mode of operation are given  
in Tables 9 and 10. Logic states and explanations are given  
in Tables 12 and 13.  
Break-before make operation can also be achieved using  
pin 13 (TSD) as an input. In table 10 lines 2 and 3 it is  
possible to induce the switches to all offby grounding pin  
13 (TSD) instead of apply logic input to the pins. This has  
the effect of overriding the logic inputs and forcing the de-  
vice to the all offstate. Hold this input state for 25ms.  
During this hold period, toggle the inputs from the ringing  
state to the idle/talk state. After the 25ms release pin 13  
(TSD) to return the switch control to the input INTESTout, INRING,  
INTESTin and reset the device to the idle/talk state.  
Integrated into the CPC7583 is a diode bridge clamping  
circuit, current limiting and thermal shutdown mechanism  
to provide protection to the SLIC device during a fault con-  
dition. Positive and negative surges are reduced by the  
current limiting circuitry and steered to ground via diodes.  
Power cross transients are also reduced by the current lim-  
iting and thermal shutdown circuits.  
Setting pin 13 (TSD) to +5V will allow switch control using  
the logic inputs. This setting, however, will also disable the  
thermal shutdown circuit and is therefore not recommended.  
When using logic controls via the input pins (INTESTout, INRING  
and INTESTin), pin 13 (TSD) should be allowed to float. As a  
result the two recommended states when using pin 13  
To protect the CPC7583 from an overvoltage fault condi-  
tion, use of a secondary protector is required. The sec-  
ondary protector must limit the voltage seen at the tip and  
ring terminals to a level below the max breakdown volt-  
age of the switches. To minimize the stress on the solid-  
Rev. E  
11  
www.clare.com  
CPC7583  
(TSD) as a control are 0 which forces the device to the all  
off stateor float which allow logic inputs to remain active.  
This may require use of an open collector buffer.  
less negative the SCR on voltage, the SCR will not crow-  
bar, however it will conduct fault currents to ground.  
For power induction or power cross fault conditions, the  
positive cycle of the transient is clamped to the diode drop  
above ground and the fault current directed to ground. The  
negative cycle of the transient will cause the SCR to con-  
duct when the voltage exceeds the battery reference volt-  
age by two to four volts, steering the current to ground.  
Ring Access Switch Zero Cross Current Turn Off  
After the application of a logic input to turn SW4 off, the  
ring access switch is designed to delay the change in state  
until the next zero crossing. Once on, the switch requires a  
zero current cross to turn off and therefore should not be  
used to switch a pure DC signal. The switch will remain in  
the on state no matter what logic input until the next zero  
crossing. These switching characteristics will reduce and  
possibly eliminate overall system impulse noise normally  
associated with ringing access switches. The attributes of  
ringing access switch may make it possible to eliminate  
the need for a zero cross switching scheme. A minimum  
impedance of 300in series with the ring generator is  
recommended.  
Current Limiting function  
If a lightning strike transient occurs when the device in the  
talk/idle state, the current is passed along the line to the  
integrated protection circuitry and limited by the dynamic  
current limit response of break switches SW1 and SW2.  
When a 1000V 10x1000 pulse (LSSGR lightning) is ap-  
plied to the line though a properly clamped external pro-  
tector, the current seen at pins 6 (TBAT) and pin 23 (RBAT) will  
be a pulse with a typical magnitude and duration of 2.5A  
and < 0.5ms.  
Power Supplies  
If a power cross fault occurs with device in the talk/idle  
state, the current is passed though the break switches SW1  
and SW2 on to the integrated protection circuit and is lim-  
ited by the dynamic DC current limit response of the two  
break switches. The DC current limit, specified over tem-  
perature, is between 80mA and 400mA and the circuitry  
has a negative temperature coefficient. As a result, if the  
device is subjected to extended heating due to power cross  
Both a +5V supply and battery voltage are connected to  
the CPC7583. CPC7583 switch state control is powered  
exclusively by the +5V supply. As a result, the CPC7583  
exhibits extremely low power dissipation during both active  
and idle states.  
Battery Voltage Monitor  
The CPC7583 also uses the voltage reference to monitor  
battery voltage. If battery voltage is lost, the CPC7583 will  
immediately enter the all offstate and remain in this state  
until the battery voltage is restored. The device will also  
enter the all offstate if the battery voltage rises above –  
10V and will remain there until the battery voltage drops  
below 15V. This battery monitor feature draws a small  
current from the battery (<1µA) and will add slightly to the  
devices overall power dissipation.  
fault, the measured current at pin 6 (TBAT) and pin 23 (RBAT  
)
will decrease as the device temperature increases. If the  
device temperature rises sufficiently, the temperature shut-  
down mechanism will activate and the device will default to  
the all offstate.  
Temperature Shutdown  
The thermal shutdown mechanism will activate when the  
device temperature reaches a minimum of 110ϒC placing  
the device in the all offstate regardless of logic input.  
During this thermal shutdown mode, pin 13 (TSD) will read  
Protection  
0V. Normal output of TSD is +V .  
DD  
Diode Bridge/SCR  
The CPC7583 uses a combination of current limited break  
switches, a diode bridge/SCR clamping circuit and a ther-  
mal shutdown mechanism to protect the SLIC device or  
other associated circuitry from damage during line tran-  
sient events such as lightning. During a positive transient  
condition, the fault current is conducted through the diode  
bridge and to ground. During a negative transient of two or  
four volts more negative than the battery, the SCR con-  
ducts and faults are shunted to ground via the SCR and  
diode bridge.  
If presented with a short duration transient such as a light-  
ning event, the thermal shutdown feature will not typically  
activate. But in an extended power cross transient, the  
device temperature will rise and the thermal shutdown will  
activate forcing the switches to an all offstate. At this  
point the current measured at pin 6 (TBAT) and pin 23 (RBAT  
)
will drop to zero. Once the device enters thermal shut-  
down it will remain in the all offstate until the temperature  
of the device drops below the activation level of the ther-  
mal shutdown circuit. This will return the device to the state  
prior to thermal shutdown. If the transient has not passed,  
current will flow at the value allowed by the dynamic DC  
current limiting of the switches and heating will begin again,  
reactivating the thermal shutdown mechanism. This cycle  
Also, in order for the SCR to crowbar or foldback, the on  
voltage (see Table 11) of the SCR must be less negative  
than the battery reference voltage. If the battery voltage is  
Rev. E  
12  
www.clare.com  
CPC7583  
of entering and exiting the thermal shutdown mode will  
continue as long as the fault condition persists. If the mag-  
nitude of the fault condition is great enough, the external  
secondary protector could activate and shunt all current to  
ground.  
The thermal shutdown mechanism of the CPC7583 can  
be disable by applying +VDD to pin 13 (TSD)  
External Protection Elements  
The CPC7583 requires only one overvoltage secondary pro-  
tector on the loop side of the device. The integrated protec-  
tion feature described above negates the need for protection  
on the line side. The purpose of the secondary protector is to  
limit voltage transients to levels that do not exceed the break-  
down voltage or input-output isolation barrier of the CPC7583.  
A foldback or crowbar type protector is recommended to mini-  
mize stresses on the device.  
Consult Clares app note, AN-100, Designing Surge and  
Power Fault Protection Circuits for Solid State Subscriber  
Line Interfacesfor equations related to the specifications  
of external secondary protectors, fused resistors, and PTCs.  
Data Latch  
The CPC7583 has an integrated data latch. The latch op-  
eration is controlled by logic level input pin 18 (LATCH).  
The data input of the latch is pin 15 (INTESTout), pin 16 (INRING  
)
and pin 17 (INTESTin) of the device while the output of the  
data latch is an internal node used for state control. When  
LATCH control pin is at logic 0, the data latch is transpar-  
ent and data control signals flow directly through to state  
control. A change in input will be reflected in a change is  
switch state. When LATCH control pin is at logic 1, the  
data latch is now active and a change in input control will  
not affect switch state. The switches will remain in the po-  
sition they were in when the LATCH changed from logic 0  
to logic 1 and will not respond to changes in input as long  
as the latch is at logic 1. In addition, TSD input is not tied  
to the data latch. Therefore, TSD is not affected by the  
LATCH input and TSD input will override state control via  
pin 15 (INTESTout), pin 16 (INRING) and pin 17 (INTESTin) and  
the LATCH.  
Rev. E  
13  
www.clare.com  
CPC7583  
Mechanical Dimensions  
28 Pin SOIC  
18.034+/-.127  
(.710+/-.005)  
10.312+/-.051  
(.406+/-.003)  
.330 x 45oMAX  
(.013 x 45oMAX)  
7.468+/-.127  
(.294+/-.005)  
3o- 7o  
.250 Typ  
(.010 Typ)  
.813+/-.102  
(.032+/-.004)  
2.54+/-.127  
(.100+/-.005)  
1.27 Typ  
(.050 Typ)  
Dimensions  
mm  
(Inches)  
Rev. E  
14  
www.clare.com  
CPC7583  
Notes:  
Rev. E  
15  
www.clare.com  
Worldwide Sales Offices  
CLARE LOCATIONS  
EUROPE  
ASIA PACIFIC  
Clare Headquarters  
78 Cherry Hill Drive  
Beverly, MA 01915  
Tel: 1-978-524-6700  
Fax: 1-978-524-4900  
Toll Free: 1-800-27-CLARE  
European Headquarters  
CP Clare nv  
Bampslaan 17  
B-3500 Hasselt (Belgium)  
Tel: 32-11-300868  
Fax: 32-11-300890  
Asian Headquarters  
Clare  
Room N1016, Chia-Hsin, Bldg II,  
10F, No. 96, Sec. 2  
Chung Shan North Road  
Taipei, Taiwan R.O.C.  
Tel: 886-2-2523-6368  
Fax: 886-2-2523-6369  
Clare Micronix Division  
145 Columbia  
Aliso Viejo, CA 92656-1490  
Tel: 1-949-831-4622  
Fax: 1-949-831-4628  
France  
Clare France Sales  
Lead Rep  
99 route de Versailles  
91160 Champlan  
France  
Clare Switch Division  
4315 N. Earth city Expressway  
Earth City, MO 63045  
Tel: 1-314-770-1832  
Tel: 33 1 69 79 93 50  
Fax: 33 1 69 79 93 59  
Germany  
Fax: 1-314-770-1812  
Clare Germany Sales  
ActiveComp Electronic GmbH  
Mitterstrasse 12  
SALES OFFICES  
AMERICAS  
85077 Manching  
Germany  
Tel: 49 8459 3214 10  
Fax: 49 8459 3214 29  
Americas Headquarters  
Clare  
78 Cherry Hill Drive  
Beverly, MA 01915  
Tel: 1-978-524-6700  
Fax: 1-978-524-4900  
Toll Free: 1-800-27-CLARE  
Italy  
C.L.A.R.E.s.a.s.  
Via C. Colombo 10/A  
I-20066 Melzo (Milano)  
Tel: 39-02-95737160  
Fax: 39-02-95738829  
Eastern Region  
Clare  
P.O. Box 856  
Mahwah, NJ 07430  
Tel: 1-201-236-0101  
Fax: 1-201-236-8685  
Toll Free: 1-800-27-CLARE  
Sweden  
Clare Sales  
Comptronic AB  
Box 167  
S-16329 Spånga  
Tel: 46-862-10370  
Fax: 46-862-10371  
http://www.clare.com  
Central Region  
United Kingdom  
Clare UK Sales  
Marco Polo House  
Cook Way  
Bindon Road  
Taunton  
Clare Canada Ltd.  
3425 Harvester Road, Suite 202  
Burlington, Ontario L7N 3N1  
Tel: 1-905-333-9066  
Fax: 1-905-333-1824  
Clare cannot assume responsibility for use of any circuitry other  
than circuitry entirely embodied in this Clare product. No circuit  
patent licenses nor indemnity are expressed or implied. Clare  
reserves the right to change the specification and circuitry, with-  
out notice at any time. The products described in this document  
are not intended for use in medical implantation or other direct  
life support applications where malfunction may result in direct  
UK-Somerset TA2 6BG  
Tel: 44-1-823 352541  
Fax: 44-1-823 352797  
Western Region  
Clare  
1852 West 11th Street, #348  
Tracy, CA 95376  
physical harm, injury or death to a person.  
Tel: 1-209-832-4367  
Fax: 1-209-832-4732  
Toll Free: 1-800-27-CLARE  
Canada  
Clare Canada Ltd.  
Specification: DS-CPC7583-RE  
© Copyright 2001, Clare, Inc.  
All rights reserved. Printed in USA.  
8/1/01  
3425 Harvester Road, Suite 202  
Burlington, Ontario L7N 3N1  
Tel: 1-905-333-9066  
Fax: 1-905-333-1824  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY