14535-00 [CLARE]

200-Column Cholesteric LCD Driver; 200列胆甾液晶显示驱动
14535-00
型号: 14535-00
厂家: CLARE    CLARE
描述:

200-Column Cholesteric LCD Driver
200列胆甾液晶显示驱动

接口集成电路 驱动 CD
文件: 总20页 (文件大小:2392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MXED401  
200-Column Cholesteric LCD Driver  
FEATURES:  
OVERVIEW:  
Drives Reflective-type Liquid Crystal  
Displays  
Black-White or Gray-Scale  
Cholesteric LCD (ChLCD) Compatible  
200 Output Channels, Cascadeable  
192-Channel Mode  
Clare introduces the MXED401, targeted  
for the emerging non-volatile reflective LCD  
market, specifically bi-stable and multi-stable  
Cholesteric LCD’s. The MXED401 supports 200  
phase-controlled voltage data outputs. This is  
the first standard product driver for ChLCD display  
panels.  
Token-Based Bi-directional Data  
Transfer  
6-Bit Data to support 64-Level  
Gray-Scale  
±2V to ±7V panel drive  
4mA Minimum Source/Sink at ±7VOutput  
Levels  
2.5V to 5V logic supply  
26 MHz clock frequency  
4mA Minimum Source/Sink at ±7V Output  
Levels  
Gold-Bumped Die @ 60 micron Output Pitch  
FUNCTIONALDESCRIPTION:  
The MXED401 driver functions as a level shifter with a resting state at ground potential. Proper  
operation of the logic enables gray-scale capability. The output is a 128 Counter Clock (CCLK) event  
where each channel is a low resistive switch to external symmetric (with respect to ground) voltage  
supplies. Proper operation of the logic allows gray scale capability. The output is initially low (MV4)  
from one to sixty-four CCLK times, then continuously high (PV4) for sixty-four CCLK times, returning  
low for the balance of the 128 CCLK cycle (before returning to its quiescent value(VSS2)). The data  
driver chip is manufactured in a high voltage (30 V) CMOS process andis available in gold-bumped-  
die form.  
The Token Bit Shift Register is used to control data latch timing for the Temporary Storage Register.  
A token bit (initialized by SRIN input) is transferred sequentially among the 200 possible (internal)  
outputs of the Shift register. This allows data to fill the Temporary Storage Register to in a Right to  
Left fashion. When the Temporary Register is filled its contents may be transferred to the Output  
Storage register via the LAT input. Output phase control is then accomplished by the Pulse Phase  
Shift Logic, data then passes to the High Voltage Translator unit to control the three output switches  
associated with each column output driver.  
14580  
www.clare.com  
January 29, 2003  
MXED401  
FIGURE 1 - MXED401 BLOCK DIAGRAM  
0197 0198 0199  
00  
01  
02  
PV4  
VSS2  
MV4  
HIN=(PV4 – 4.0V)  
XIN=4.75 TO 11.0V)  
HIN  
XIN  
3-LEVEL OUTPUT STAGE  
3
3
1
3
3
3
1
3
1
OUT0  
LOGIC TO FORCE OUTPUT TO VSS2 AND HV TRANSLATOR INTERFACE  
1
1
1
CCLK  
CRB  
INV  
PULSE PHASE SHIFT LOGIC  
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
LAT  
OUTPUT STORAGE REGISTER (6 BITS X 200)  
D(5:0)  
TEMPORARY STORAGE REGISTER (6 BITS X 200)  
SCLK  
SHR  
SEL200  
SRIN  
VDD1  
VSS1  
TOKEN BIT SHIFT REGISTER (1 BIT X 200)  
SLIN  
REN  
5.0 VOLT  
REGULATOR  
PV4 – 4.0V  
REGULATOR  
HEN  
HREF  
TEST  
CIRCUITRY  
REG5V  
www.clare.com  
14580  
2
MXED401  
MXED401 DATA SHEET  
Table of Contents  
FEATURES ....................................................................................................................1  
OVERVIEW ....................................................................................................................1  
FUNCTIONALDESCRIPTION .....................................................................................1  
FIGURE 1 - MXED401 BLOCK DIAGRAM .................................................................2  
TABLE 1 - ABSOLUTE MAXIMUM RATINGS ............................................................4  
TABLE 2 - OPERATING CONDITIONS .......................................................................4  
CIRCUIT DESCRIPTION ..............................................................................................5  
FIGURE 2 - REGULATOR BLOCK DIAGRAM ...........................................................5  
FIGURE 3 - EXAMPLE USING ON-CHIP REGULATOR............................................5  
FIGURE 4 - EXAMPLE USING EXTERNAL BIAS......................................................5  
FIGURE 5 - TYPICAL PIN VOLTAGEWAVEFORMS.................................................6  
FIGURE 6 - HREF BLOCK DIAGRAM ........................................................................7  
FIGURE 7 - EXAMPLE USING ON-CHIP HREF BIAS...............................................7  
FIGURE 8 - EXAMPLE USING EXTERNAL HREF BIAS ..........................................7  
FIGURE 9 - INTERNAL LOGIC DETAILS FOR DATA PATH .....................................8  
FIGURE 10 -...................................................................................................................9  
FIGURE 11 - ...................................................................................................................9  
FIGURE 12 - SIMPLIFIED OUTPUT LOGIC DIAGRAM ......................................... 10  
FIGURE 13 THROUGH 15 - PHASE DETECTOR WAVEFORM EXAMPLES ........11  
ELECTRICAL SPECIFICATIONS ........................................................................12-14  
TABLE 3 - COLUMN DRIVER IC DESIGNATION TABLE ...................................... 15  
TABLE 6 - AC CHARACTERISTICS ........................................................................ 16  
FIGURE 16- OUTPUT WAVEFORMDEFINITION ................................................... 16  
MECHANICAL SPECIFICATIONS ............................................................................ 17  
DIE SPECIFICATIONS............................................................................................... 17  
FIGURE 17 - DIE DIMENSIONAL DRAWING .......................................................... 18  
TABLE 4 - TRUTH TABLE (TOKEN BIT SHIFT REGISTER) ................................. 19  
TABLE 5 - TRUTH TABLE (DATA LATCH) .............................................................. 19  
ORDERING INFORMATION ...................................................................................... 20  
www.clare.com  
14580  
3
MXED401  
ABSOLUTE MAXIMUM RATINGS  
P a r a m e t e r  
M in .  
M a x .  
7 . 0  
U n it  
S u p p l y v o l t a g e V D D 1  
S u p p l y v o l t a g e P V 4  
S u p p l y v o l t a g e M V 4  
X IN i n p u t  
-0.3  
V
-0.3  
9 . 0  
V
-9.0  
+ 0 . 3  
V
-0.3  
1 2 . 0  
V
H IN i n p u t  
P V 4 - 6 . 0  
-0.3  
P V 4 + 0 . 3  
V D D 1 + 0 . 3  
1 5 0  
V
L o g i c i n p u t l e v e l s  
S t o r a g e t e m p e r a t u r e  
V
- 6 5  
C e l s i u s  
OPERATING CONDITIONS  
P a r a m e t e r  
M in .  
2 . 5  
M a x .  
U n it  
S u p p l y v o l t a g e V D D 1  
S u p p l y V o l t a g e P V 4  
S u p p l y V o l t a g e M V 4  
H IN  
5 . 5  
V
V
V
2
7
-7  
-2  
P V 4 - 4 . 2  
4 . 7 5  
- 2 0  
P V 4 - 3 . 8  
X IN  
1 1  
8 0  
V
Te m p e r a t u r e A m b i e n t  
C e l s i u s  
www.clare.com  
14580  
4
MXED401  
CIRCUIT DESCRIPTION  
Voltage Regulator  
This product may be operated from supplies as low as 2.5 Volts. The output drive transistors require  
a voltage of 5.0 volts to 11.0 volts on the XIN pin to assure proper circuit operation. This bias voltage  
may be developed on the chip or provided by the system designer. When XIN is provided externally,  
the REN (Regulator ENable) pin is held low, and the FLYHI/FLYLO pins are left unconnected.  
Systems lacking an available bias may use the on chip voltage regulator. The circuit is enabled by  
forcing REN high (to VDD1). This will cause an on-chip oscillator/charge pump circuit to operate  
continuously and output a somewhat regulated 5 volts at pin REG5V. A capacitor (CFLY=0.1uF) is  
connected between pins FLYHI and FLYLO. A storage capacitor (CHOLD=1.0uF) is required on  
REG5V. The XIN input is then connected to the REG5V output. The charge pump is capable of  
driving 18 XIN loads so generally only one or two circuits are used as regulator sources. In systems  
where more than one regulator circuit is enabled it is forbidden to short their respective HOLD  
capacitors. Enabling the regulator causes an additional DC current of 65uA (130 uA maximum) to  
flow from VDD1 to VSS1.  
FIGURE 2 - REGULATOR BLOCK DIAGRAM  
FIGURE 3 - EXAMPLE USING ON CHIP REGULATOR  
FIGURE 4 - EXAMPLE USING EXTERNAL BIAS  
www.clare.com  
14580  
5
MXED401  
FIGURE 5 - TYPICAL PIN VOLTAGE WAVEFORMS  
HREF Bias Generator  
The output stage requires a reference supply 3.8 to 4.2 volts lower than PV4 into each HIN input.  
This may be provided by the system designer or generated on-chip. When HEN is held high, a bias  
voltage is generated at the HREF output which is (PV4-4.0v). This generated voltage may then be  
used to supply 6 HIN inputs. The HREF output must be stabilized by connecting a 0.1uF capacitor  
between HREF and PV4. A separate stabilizing capacitor is required for each HREF used. It is  
forbidden to connect any HREF pin to another HREF pin. Each enabled HREF output causes an  
additional DC current of 60uA (130 uA maximum) to flow from PV4 to MV4.  
www.clare.com  
14580  
6
MXED401  
FIGURE 6 - HREF BLOCK DIAGRAM  
FIGURE 7 - EXAMPLE USING ON CHIP HREF BIAS  
FIGURE 8 - EXAMPLE USING EXTERNAL HREF BIAS  
www.clare.com  
7
14580  
MXED401  
Data Input Procedure  
A data synchronization bit is entered into the TOKEN bit shift register via the SRIN (or SLIN) on a  
rising edge of SCLK. The token bit travels along the complete shift register path in order to control  
data latching. The internal logic is shown below. Notice the use of the SCLK divider. SCLK frequency  
is halved inside the IC to keep the current consumption to a minimum. The shift logic modifies the  
input signals in a manner that requires input data (DAT5:0) to follow the SRIN synchronization bit by  
2 SCLK rising edges. Initialization of the system is accomplished via the RB input pin. The 6-bit data  
word is passed through the output register when pin LAT is LOW. When pin LAT is HIGH data is  
latched in the output storage register.  
The inputs SHR and SEL200 are set by the user to control SHift-Right (versus shift left) operation  
and SELect 200 output configuration (versus 192 output configuration.). When SEL200 is LOW the  
user ignores the output pads near the edge of the die. That is, ignore outputs O0-O3 and O196-  
O199, use only outputs O4-O195. When SHR is HIGH data is loaded first into the lower number  
outputs first and completes the load at the higher numbered outputs. For example, with SHR high  
and SEL200 low the input data will load into register O4 first and complete the cycle by loading O195  
on the last clock edge.  
FIGURE 9 - INTERNAL LOGIC DETAILS FOR DATA PATH  
www.clare.com  
14580  
8
MXED401  
FIGURE 10 -  
FIGURE 11 -  
www.clare.com  
14580  
9
MXED401  
Phase Logic and Out0  
The circuit has a 7-bit counter that is reset in a synchronous manner via the CRB (Counter-Reset-  
Bar) and CCLK (Counter CLK) pins. The counter is “preset” to zero if the CRB pin is low when the  
CCLK pin rises.  
Each phase detector output is a 128 CCLK event. The INV pin will be assumed low for the purpose  
of this discussion. Upon reset (via CRB) the output will be low. The output is always guaranteed to be  
high continuously for 64 units of the 128 CCLK event. The output is also guaranteed to be low for 64  
units of the 128 CCLK events, however, not usually continuously. The input data indicates which  
event should be completed in order to allow the data to go high. For example, an input data word of  
zero will cause the output to be low until the first rising edge of CCLK, then high for the subsequent  
64 rising edges, then low again for the final 63 clocks. Notice that the output is always initially low for  
at least one CCLK period. A fifty percent (50%) duty cycle is attained when 63 (2F-HEX) is the input  
data; resulting in 64 units of low followed by 64 units of high.  
The INV pin may invert the output from the above discussion. Pin INV must be high in order to  
produce a 64 unit high followed by a 64 unit low pulse train. The OUT0 (OUTput ZERO) pin will  
always command all outputs to zero volts potential (via the VSS2 input) irrespective of the individual  
states of CCLK, CRB or data stored in the output storage register.  
FIGURE 12 - SIMPLIFIED OUTPUT LOGIC DIAGRAM  
www.clare.com  
14580  
10  
MXED401  
FIGURES 13 - 15 - PHASE DETECTOR WAVEFORM EXAMPLES  
www.clare.com  
11  
14580  
MXED401  
DC ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max.  
Unit  
Condition  
0.01  
2.6  
6.6  
Vdd=2.5V Sclk=0MHz  
Vdd=2.5V Sclk=26MHz  
Vdd=3.3V Sclk=50MHz  
Vdd=5.0V Sclk=50MHz  
Logic supply current  
IVDD1  
mA  
10.0  
IDD1 due to REG5V ckt  
PV4 supply current (DC)  
IDDREG  
130  
uA  
uA  
REN=H (no XIN load)  
HEN:L  
IPV4DC1  
60  
PV4 supply current (DC)  
XIN supply current (DC)  
MV4 supply current (DC)  
MV4 supply current(DC)  
PV4 supply current(AC)  
IMV4DC2  
IXINDC  
150  
20  
uA  
uA  
uA  
uA  
uA  
HEN:H  
IPV4DC1  
IPV4DC2  
IPV4AC  
-60  
HEN:L  
-170  
HEN:H  
300  
300  
CCLK=2.5MHz  
CCLK=2.5MHz  
CCLK=2.5MHz  
XIN current(AC)  
IXINAC  
IMV4AC  
VIH  
uA  
uA  
V
MV4 supply current(AC)  
Logic input high voltage  
Logic input low voltage  
Logic output high voltage  
Logic output low voltage  
-450  
VDD1-0.3  
VIL  
0.3  
V
VOH  
VOL  
VDD1-0.5  
V
IOH=1mA  
IOL=-1mA  
0.5  
3
V
Logic input current high  
level  
IIH  
IIL  
3
uA  
uA  
Vinput=VDD1  
Vinput=0V  
Logic input current low  
level  
-3  
-3  
Output voltage high  
Output voltage zero  
VOH  
VOO  
+V4-0.02V  
-0.020V  
Iload=0  
Iload=0  
0.020V  
PV4+-  
0.02V  
Output voltage low  
VOL  
Iload=0  
www.clare.com  
14580  
12  
MXED401  
DCELECTRICALCHARACTERISTICS(CONT.)  
Parameter  
Symbol  
Min  
Max.  
Unit  
Condition  
REG5V fanout  
HREF fanout  
RFO  
HFO  
18  
8
XIN loads  
HIN loads  
Output switch impedance  
high  
ZOH (1)  
ZOO (1)  
ZOL (1)  
PV4-0.2V  
-0.20V  
Iload=-0.2mA (1)  
Output switch impedance  
zero  
-0.2mA>Iload>0.2mA  
(1)  
0.20V  
Output switch impedance  
low  
MV4+-  
0.2V  
Iload=0.2mA (1)  
Output switch current high IOH  
4
4
mA  
mA  
PV4=7,Vout=-7V  
Output switch current sink  
IOOL4  
-4  
-2  
-4  
Vout=4.0V, OUT0=H  
Output switch current  
source  
IOOH4  
IOOL2  
IOOH4  
mA  
mA  
mA  
Vout=-4.0V,OUT0=H  
Vout=2.0V, OUT0=H  
Vout=-2.0V,OUT0=H  
Output switch current sink  
Output switch current  
source  
2
Output switch current low  
IOL  
mA  
MV4=-7,Vout=+7V  
(1) PV4 = 2V, MV4 = -2V  
www.clare.com  
14580  
13  
MXED401  
AC ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
TSPWH  
TSPWL  
TSS  
VDD1=>2.5V VDD1>3.2V  
Unit  
SCLK min pulse width high  
SCLK min pulse width low  
SCLK data setup time  
SCLK data hold time  
15  
15  
15  
15  
8
8
8
8
nS  
nS  
nS  
nS  
TSH  
CCLK min pulse width high  
CCLK min pulse width low  
CCLK -CRB setup time  
CCLK -CRB hold time  
TCPWH  
TCPWL  
TCS  
50  
50  
25  
25  
25  
25  
12  
12  
nS  
nS  
nS  
nS  
TCH  
LAT min pulse width high  
LAT min pulse width low  
LAT fall after SCLK rise time  
TLPWH  
TLPWL  
TSS  
50  
50  
50  
25  
25  
25  
nS  
nS  
nS  
LAT rise before SCLK rise  
time  
TSH  
50  
25  
nS  
www.clare.com  
14580  
14  
MXED401  
COLUMN DRIVER IC DESIGNATION TABLE  
S y m b o l N a m e  
I/O  
Designation  
Function  
O0 to O199  
O
Column Drive Output  
-
Output Gate  
(Asynchronous)  
OUT0  
C R B  
C C L K  
INV  
I
I
I
I
I
H:Vss2 ,  
L:PV4, MV4  
Counter Clear  
Signal(synchronous)  
L & CCLK Rising Edge: Counter Clear  
H: Counter Enable L: disable  
Pulse Phase Shifter  
Counter Clock  
Rising Edge : Count, Max 4MHz  
L: Normal ,H: Invert (see Fig 14&15)  
H : Latched, L: Transparent  
Phase Shift Data Invert  
Signal  
Phase Shift Data Latch  
Strobe  
LAT  
D[5:0]  
S C L K  
I
I
Phase Shift Data  
Token Shift Clock  
D(5) : MSB, D(0):LSB  
Data entered on Rising Edges  
H: Shift Right, Input is SRIN  
L: Shift Left, Input is SLIN  
S H R  
I
I
Data Shift Direction  
Data Output Select 200  
or 192  
H: SRIN to O000, (SHR:H) L: SRIN to  
O004, (SHR:H)  
S E L 2 0 0  
Power Supply For Logic  
System  
V D D 1  
V S S 1  
P V 4  
-
-
-
2.5 To 5.5V  
0V  
Logic Ground  
Power Supply For LC  
Drive  
7 to 2V  
Power Supply For LC  
Drive  
M V 4  
-
-7 to -2V  
SRIN  
SLIN  
HIN  
I/O  
I/O  
I
Data Synchronization bit Input for SHR:H, Output for SHR:L  
Data synchronization bit Input for SHR:L, Output for SHR:H  
High Reference input  
(PV4-4.0V) (see HREF/HIN also)  
HREF source enable  
signal  
H E N  
I
L: HREF not used , H: Enable HREF  
H R E F  
R E N  
O
I
High Reference Output  
Regulator Enable Input  
(PV4-4.0V)Reference output  
Enable:H, Disable:L  
Voltage Regulator flying  
capacitor.  
0.1uF cap to FLYLO when REN:H  
No connect when REN:L  
FLYHI  
-
Voltage Regulator flying 0.1uF cap to FLYHI when REN:H  
FLYLO  
R E G 5 V  
XIN  
-
O
I
capacitor.  
No connect when REN:L  
Regulated 5 volt output  
1. 0uF cap to VSS1 When REN:H  
Translator input bias  
reference  
Bias between +5.0V to +11.0V  
V S S 2  
R B  
-
I
Output Driver Ground  
Master Reset  
0V  
Reset :L , Normal:H  
www.clare.com  
14580  
15  
MXED401  
TABLE 6 - AC CHARACTERISTICS (See Fig. 16)  
Parameter  
Symbol  
Min  
Typ. Max. Unit  
Condition  
Shift Clk Frequency  
Count Clk Frequency  
Rising Time  
26 MHz  
VDD1 = 2.5V  
VDD1=2.5V  
SEE FIG. 16  
SEE FIG. 16  
4
5
5
MHz  
us  
Tr  
-
-
Falling Time  
Tf  
us  
PV4 Driver  
Equivalent output resistance  
PV4Ron  
1.0 Kohm  
Iout=200uA  
Iout=200uA  
MV4 Driver  
Equivalent output resistance  
MV4Ron  
1.0 Kohm  
us  
PV4,MV4 Pulse Width  
Output Delay Time  
TPV4,TMV4  
25  
-
See Section 8  
TBD  
-
1
us  
FIGURE 16 - OUTPUT WAVEFORM DEFINITION  
www.clare.com  
16  
14580  
MXED401  
MECHANICAL SPECIFICATIONS  
DIE SPECIFICATIONS  
Die Dimensions:  
Measured from center of scribe to center of  
"X" Dimension  
"Y" Dimension  
12830 µm  
1760 µm  
scribe  
Measured from center of scribe to center of  
scribe  
Thickness  
635 µm (nominal)  
15±3 µm  
Unthinned (non-back lapped wafer)  
Gold Bump Height  
Die Materials:  
Passivation  
Silicon Nitride (SiN)  
45-75 HV  
Silicon (Si)  
Gold Bump Hardness  
Wafer  
Note: The active surface is sensitive to light. Cover with an opaque material after assembly.  
COORDINATES RELATIVETOORIGIN(0, 0)AT MINIMUM PAD CENTER  
LOCATION  
Corners of Scribe Centers  
Lower Left:  
X = -115µm, Y = -205µm  
X = 12715µm, Y = 1555µm  
Upper Right:  
www.clare.com  
14580  
17  
MXED401  
FIGURE 17 - DIE DIMENSIONAL DRAWING  
www.clare.com  
18  
14580  
MXED401  
TABLE 4 - TRUTH TABLE (TOKEN BIT SHIFT REGISTER)  
INPUT  
Input-Output  
Data to clock synchronization  
SHR  
H
SCLK  
SEL200  
SRIN  
Input  
SLIN  
RisingEdge H  
RisingEdge L  
RisingEdge H  
RisingEdge L  
Output  
Output  
Input  
D(5:0)sequenceO0,O1…O198,O199  
D(5:0)sequenceO4,O5…O194,O195  
D(5:0)sequenceO199,O198…O1,O0  
D(5:0)sequenceO195,O194…O5,O4  
H
Input  
L
Output  
Output  
L
Input  
TABLE 5 - TRUTH TABLE (DATA LATCH)  
LAT  
H
CONDITION  
Latched  
L
Open (Transparent)  
www.clare.com  
14580  
19  
MXED401  
ORDERING INFORMATION  
MXED401  
Ordering Part Number Package  
14501-00  
14526-00  
14535-00  
14539-00  
Gold Bumped Die in Waffle Trays  
Gold Bumped Die in Wafer Form  
TCP (Tape Carrier Package) please consult factory  
BGA (typically for prototyping only)  
For additional information please visit our website at: www.clare.com  
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare’s Standard Terms and Conditions of  
Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability,  
fitness for a particular purpose, or infringement of any intellectual property right.  
The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a person or severe property or environmental  
damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.  
www.clare.com  
14580  
20  

相关型号:

1453821

SENSOR/ACTUATOR CABLE 3POS
PHOENIX

1453889

SENSOR/ACTUATOR CABLE 5POS
PHOENIX

14539-00

200-Column Cholesteric LCD Driver
CLARE

1453960

Circular Connector
PHOENIX

14539B/BEAJC

Multiplexer, 2-Func, 4 Line Input, CMOS, CDIP16,
MOTOROLA

1454

RF/Microwave Termination, 0MHz Min, 26500MHz Max,
APITECH

1454040

Circular Connector
PHOENIX

1454053

Circular Connector
PHOENIX

145406

EIA-232-D/V.28 driver/receiver
NXP

145406

Driver/Receiver(EIA 232-E and CCITT V.28(Formerly RS-232-D)
MOTOROLA

145406

TRIPLE RS-232 DRIVERS/RECEIVERS
TI

1454066

CABLE 4POS M12 PLUG-WIRE 10M
PHOENIX