SA56_07 [CIRRUS]

PULSE WIDTH MODULATION AMPLIFIER; 脉冲宽度调制放大器
SA56_07
型号: SA56_07
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

PULSE WIDTH MODULATION AMPLIFIER
脉冲宽度调制放大器

放大器 脉冲
文件: 总7页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-4&ꢀ8*%5)ꢀ.0%6-"5*0/ꢀ".1-*'*&3  
SA56  
M
I C R O T E C H N O L O G Y  
)551ꢀꢁꢁ888ꢂ"1&9.*$305&$)ꢂ$0.ꢃꢃꢃꢄꢅꢆꢆꢇꢃꢈꢉꢊꢋ"1&9ꢃꢃꢃꢄꢅꢆꢆꢇꢃꢈꢉꢊꢋꢌꢍꢎꢏ  
FEATURES  
• DELIVERS UP TO 5A CONTINUOUS OUTPUT  
• OPERATES AT SUPPLY VOLTAGES UP TO 60V  
• NO “SHOOT-THROUGH” CURRENT  
• THERMAL SHUTDOWN (OUTPUTS OFF) AT 160°C  
• SHORTED LOAD PROTECTION (to VS or PGND or SHORTED  
LOAD)  
• NO BOOTSTRAP CAPACITORS REQUIRED  
• PROGRAMMABLE ONBOARD PWM  
APPLICATIONS  
• DC BRUSH-TYPE MOTOR DRIVES  
• POSITION AND VELOCITY SERVOMECHANISMS  
• FACTORY AUTOMATION ROBOTS  
• NUMERICALLY CONTROLLED MACHINERY  
• COMPUTER PRINTERS AND PLOTTERS  
23 PIN SIP  
PACkAGE STYLE EX  
DESCRIPTION  
TheSA56isa5-amperePWMAmplifierdesignedformotion  
controlapplications.Thedeviceisbuiltusingamulti-technology  
processthatcombinesbipolarandCMOScontrolcircuitrywith  
DMOS power devices in a single monolithic structure. Ideal  
for driving DC and stepper motors, the SA56 accommodates  
peak output currents up to 10 amperes. An innovative circuit  
thatfacilitateslow-losssensingoftheoutputcurrenthasbeen  
implemented. An on-board PWM oscillator and comparator  
are used to convert an analog signal into PWM direction of  
rotation and magnitude for motor control applications. TTL or  
CMOSdigitalinputsallowdirectexternalcontrolin2-quadrant  
or 4-quadrant modes.  
FIGURE 1. BLOCK DIAGRAM  
7%%  
ꢀ7  
74  
ꢁꢂꢃ7  
ꢌꢊꢀꢊꢅꢉꢊꢈꢃ  
ꢅꢋꢊꢅꢌ  
ꢅꢈ  
ꢅꢆ  
ꢅꢇ  
ꢅꢂ  
$
18.  
18.  
%*4"#-&  
%*3  
2ꢅ  
2ꢈ  
2ꢋ  
2ꢌ  
ꢈꢅꢊꢈꢈ  
ꢈꢊꢋ  
$POUSPMꢄMPHJD  
BOE  
18.ꢄ(FOFSBUPS  
"
#
(BUFꢄ%SJWFꢄ  
BOEꢄ  
$POUSPMꢄ  
065  
*
4&/  
065  
ꢅꢀ  
ꢅꢅ  
73&'  
'"6-5  
5-*.  
4$  
4"ꢀꢂ  
1VMTFꢄ8JEUIꢄ.PEVMBUJPO  
"NQMJGJFS  
ꢉꢊꢅꢃ  
ꢅꢊꢈꢋ  
1(/%  
4*((/%  
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL prodlit@apexmicrotech.com  
1
ABSOLUTE MAXIMUM RATINGS  
SPECIFICATIONS  
SA56  
SUPPLY VOLTAGE, VDD  
SUPPLY VOLTAGE, VS  
5.5V  
60V  
ABSOLUTE MAXIMUM RATINGS  
PEAK OUTPUT CURRENT (100mS)  
CONTINUOUS OUTPUT CURRENT  
POWER DISSIPATION  
10A  
5A  
125W  
POWER DISSIPATION (TA = 25°C, Free Air)  
JUNCTION TEMPERATURE, TJ(MAX)  
ESD SUSCEPTIBILITY (Logic Pins Only)  
STORAGE TEMPERATURE, TSTG  
LEAD TEMPERATURE (Soldering, 10 sec.)  
JUNCTION TEMPERATURE, TJ  
10W  
150°C  
1500V  
–40°C to +150°C  
300°C  
–40°C to +150°C  
SPECIFICATIONS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VS  
12  
60  
5.5  
0.6  
V
V
VDD  
4.5  
SWITCH ON RESISTANCE, RDS(ON)  
N-Channel  
SWITCH ON RESISTANCE, RDS(ON)  
P-Channel  
CLAMP DIODE FORWARD DROP, VCLAMP  
LOGIC LOW INPUT VOLTAGE, VIL  
Output Current = 5A  
Output Current = 5A  
Clamp Current = 5A  
0.23  
0.27  
1.43  
0.6  
V
V
-0.5  
0.8  
LOGIC LOW INPUT CURRENT, IIL  
LOGIC HIGH INPUT VOLTAGE, VIH  
VIN = –0.1V  
VIN = 5.5V  
-10  
2
+10  
VDD  
µA  
V
LOGIC HIGH INPUT CURRENT, IIH  
CURRENT SENSE OUTPUT  
-10  
180  
.79  
10  
300  
1.32  
±5  
±8  
±8  
µA  
µA  
mA  
%
%
%
I
OUT = 1A  
OUT = 5A  
240  
1.0  
±1  
I
CURRENT SENSE LINEARITY ERROR  
1A ≤ IOUT ≤ 5A  
100 mA ≤ IOUT ≤ 5A  
5A ≤ IOUT ≤ 10A (Peak Currents only)  
SHUTDOWN TEMPERATURE, TJSD  
QUIESCENT SUPPLY CURRENT, IS  
QUIESCENT SUPPLY CURRENT, IDD  
OUTPUT TURN-ON DELAY TIME, tDon  
OUTPUT TURN-ON SWITCHING TIME, ton  
OUTPUT TURN-OFF DELAY TIMES, tDoff  
Outputs Turn OFF  
No Load, FSW = 100kHz 50% DUC  
No Load, FSW = 100kHz 50% DUC  
No Load  
No Load  
No Load  
160  
26  
6
200  
41  
272  
46  
°C  
mA  
mA  
ns  
ns  
ns  
50  
15  
OUTPUT TURN-OFF SWITCHING TIME, toff No Load  
ns  
MINIMUM INPUT PULSE WIDTH, tp  
(DIGITAL MODE)  
No Load  
140  
ns  
REFERENCE VOLTAGE  
IREF = 1mA  
2.3  
1
2.5  
2.7  
1
V
mA  
V
Vref OUTPUT CURRENT (Vref 2.5V), IREF  
Source Only, No current sink capability  
Load Current = 400µA  
ANALOG INPUT RANGE FOR  
FULL MODULATION  
4
HIGH CURRENT SHUTDOWN RESPONSE Output shorted  
(No bypass capacitor at SCin pin)  
250  
800  
ns  
THERMAL  
RESISTANCE, Junction to Case  
RESISTANCE, Junction to Air  
TEMPERATURE RANGE, Case  
Full Temperature Range  
Full Temperature Range  
1
°C/W  
°C/W  
°C  
12.21  
-40  
125  
NOTE: These specifications apply for VS = 50V and VDD = 5V at 25°C, unless otherwise specified.  
2APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739  
TYPICAL  
PERFORMANCE GRAPHS  
SA56  
ꢁ7ꢀ4VQQMZꢀ$VSSFOUꢀꢂ*%%ꢃꢀWTꢀ4VQQMZꢀ7PMUBHFꢀꢂ74ꢃ  
4VQQMZꢀ$VSSFOUꢀꢂ*4ꢃꢀWTꢀ4VQQMZꢀ7PMUBHFꢀꢂ74ꢃ  
ꢀ4VQQMZꢀ$VSSFOUꢀꢂ*4ꢃꢀWTꢀ'SFRVFODZꢀ  
ꢅꢊꢆ  
ꢊꢏ  
ꢈꢅꢇꢈ  
ꢊꢆ  
ꢊꢋ  
ꢊꢄ  
ꢅꢊꢋ  
ꢅꢊꢄ  
ꢅꢄꢇ  
ꢅꢄꢏ  
ꢅꢄꢆ  
ꢅꢄꢋ  
ꢈꢅꢇ  
ꢈꢅꢐꢈ  
ꢈꢅꢐ  
ꢈꢅꢏꢈ  
!ꢀꢋꢌꢀL)[ꢀꢈꢄꢍꢀ%6$  
!ꢀꢋꢌꢀL)[ꢀꢈꢄꢍꢀ%6$  
ꢈꢅꢏ  
ꢊꢄ ꢋꢄ ꢌꢄ ꢆꢄ ꢈꢄ ꢏꢄ ꢐꢄ  
74ꢁꢀꢂ7ꢃ  
ꢊꢄ ꢋꢄ ꢌꢄ ꢆꢄ ꢈꢄ ꢏꢄ ꢐꢄ  
74ꢁꢀꢂ7ꢃ  
ꢈꢄ ꢊꢄꢄ ꢊꢈꢄ ꢋꢄꢄ ꢋꢈꢄ ꢌꢄꢄ ꢌꢈꢄ  
'SFRVFODZꢁꢀꢂL)[ꢃ  
ꢀꢁ7ꢀ4VQQMZꢀ$VSSFOUꢀꢂ*%%ꢃꢀWTꢀ'SFRVFODZ  
4VQQMZꢀ$VSSFOUꢀꢂ74ꢃꢀWTꢀ5FNQFSBUVSF  
ꢋꢄ  
ꢁ7ꢀ4VQQMZꢀ$VSSFOUꢀꢂ7%%ꢃꢀWTꢀ5FNQFSBUVSF  
ꢅꢄꢄꢏꢊꢈ  
74ꢀꢎꢊꢋ7  
ꢅꢄꢄꢏꢊꢄ  
ꢅꢄꢄꢏꢄꢈ  
ꢅꢄꢄꢏꢄꢄ  
ꢅꢄꢄꢈꢉꢈ  
ꢅꢄꢄꢈꢉꢄ  
74ꢀꢎꢀꢏꢄ7  
ꢊꢈ  
ꢏꢅꢈ  
74ꢀꢎꢀꢈꢄ7  
74ꢀꢎꢀꢈꢄ7  
74ꢀꢎꢀꢊꢋ7  
ꢊꢄ  
74ꢀꢎꢀꢏꢄ7  
ꢈꢅꢈ  
!ꢀꢋꢌꢀL)[ꢀꢈꢄꢀꢍꢀ%6$  
!ꢀꢋꢌꢀL)[ꢀꢈꢄꢀꢍꢀ%6$  
7%%ꢀꢎꢀꢈꢀ7  
7%%ꢀꢎꢀꢈ7  
ꢑꢈꢄ  
ꢈꢄ  
ꢊꢄꢄ  
ꢈꢄ ꢊꢄꢄ ꢊꢈꢄ ꢋꢄꢄ ꢋꢈꢄ ꢌꢄꢄ ꢌꢈꢄ  
'SFRVFODZꢁꢀꢂL)[ꢃ  
ꢑꢈꢄ  
ꢈꢄ  
ꢊꢄꢄ  
5FNQFSBUVSFꢁꢀꢂž$ꢃ  
5FNQFSBUVSFꢁꢀꢂž$ꢃ  
%6$ꢀWTꢀ"OBMPHꢀ*OQVU  
$18.ꢀWTꢀ'48ꢀBUꢀ7BSZJOHꢀ5FNQFSBUVSFT  
'SFRVFODZꢀWTꢀ$18.  
ꢊꢄꢄ  
ꢉꢄ  
ꢇꢄ  
ꢐꢄ  
ꢏꢄ  
ꢈꢄ  
ꢆꢄ  
ꢌꢄ  
ꢋꢄ  
ꢊꢄ  
ꢊ.  
ꢊꢄꢄ,  
ꢊꢄ,  
ꢊ,  
ꢊ.  
'48ꢀ!ꢀꢇꢈž$  
"065  
'48ꢀ!ꢀꢈꢄž$  
ꢊꢄꢄ,  
ꢊꢄ,  
ꢊ,  
'
48ꢀ!ꢀꢑꢋꢈž$  
#065  
7%%ꢀꢎꢀꢈ7ꢁꢀ74ꢀꢎꢀꢈꢄ7  
ꢊ,  
ꢊꢄꢄ  
ꢊꢄ,  
ꢊꢄꢄ  
ꢊ,  
ꢊꢄ,  
"OBMPHꢀ*OQVUꢁꢀꢂ7ꢃ  
$18.ꢁꢀꢂQ'ꢃ  
$18.ꢁꢀꢂQ'ꢃ  
-PBEꢀ$VSSFOUꢀWTꢀ5PUBMꢀ0Oꢀ3FTJTUBODF  
.BYJNVNꢀ%VUZꢀ$ZDMFꢀGPS  
$MBNQꢀ%JPEFꢀ'PSXBSEꢀ7PMUBHFꢀ%SPQ  
-JOFBSꢀ0QFSBUJPOꢀJOꢀ"OBMPHꢀ.PEFꢀ  
ꢄꢅꢈꢋꢈ  
ꢊꢄꢄ  
ꢆꢅꢈ  
ꢄꢅꢈꢋ  
ꢄꢅꢈꢊꢈ  
ꢄꢅꢈꢊ  
/PꢀMPBE  
ꢉꢄ  
ꢌꢅꢈ  
řꢀꢈ"ꢀ-PBE  
ꢇꢄ  
ꢋꢅꢈ  
ꢄꢅꢈꢄꢈ  
ꢄꢅꢈ  
ꢐꢄ  
ꢊꢅꢈ  
ꢄꢅꢆꢉꢈ  
ꢏꢄ  
ꢄꢅꢆꢉ  
ꢄꢅꢈ  
74ꢀꢎꢀꢏꢄ7ꢀ7%%ꢀꢎꢀꢈ7ꢀ  
ꢈꢄ  
ꢂ1ꢀBOEꢀ/ꢀ$IBOꢃꢀBUꢀꢊꢄꢄꢍꢀ%6$  
ꢄꢅꢆꢇꢈ  
ꢊꢄꢄ,  
'SFRVFODZꢁꢀꢂL)[ꢃ  
ꢋꢄꢄ,  
ꢌꢄꢄ, ꢆꢄꢄ,  
ꢄꢅꢈ  
ꢊꢅꢈ  
%JPEFꢀ'PSXBSEꢀ7PMUBHFꢁꢀ7'ꢀꢂ7ꢃ  
-PBEꢀ$VSSFOUꢁꢀꢂ"ꢃ  
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL prodlit@apexmicrotech.com  
3
TYPICAL  
PERFORMANCE GRAPHS  
SA56  
*
-0"%ꢀWTꢀ3%40/  
*-0"%ꢀWTꢀ3%40/  
*
-0"%ꢀWTꢀ*4&/4&  
0.5  
ꢏꢁꢄ  
ꢏꢁꢂꢄ  
ꢏꢁꢂ  
ꢈꢁꢀ  
RDSON = 125°C  
3%40/ꢋꢒꢋꢈꢀꢄ°C  
0.45  
0.4  
ꢈꢏꢏꢑꢋ%6$ꢋꢌ*4&/4&ꢋ"ꢍ  
0.35  
0.3  
ꢏꢁꢉꢄ  
ꢏꢁꢉ  
ꢏꢁꢃ  
ꢏꢁꢅ  
ꢏꢁꢂ  
ꢏꢁꢀ  
0.25  
0.2  
ꢏꢁꢀꢄ  
ꢏꢁꢀ  
RDSON = -25°C  
RDSON = 0°C  
ꢏꢑꢋ%6$ꢋꢌ*4&/4&ꢋ#ꢍ  
3%40/ꢋꢒꢋꢃꢄ°C  
RDSON = 50°C  
RDSON = 85°C  
0.15  
0.1  
ꢏꢁꢈꢄ  
ꢏꢁꢈ  
3%40/ꢋꢒꢋꢄꢏ°C  
3%40/ꢋꢒꢋꢏ°C  
3%40/ꢋꢒꢋꢎꢀꢄ°C  
ꢈꢏꢏꢑꢋ%6$ꢋGPSꢋ1ꢋ$IBOOFM  
0.05  
0
ꢏꢁꢏꢄ  
ꢈꢏꢏꢑꢋ%6$ꢋGPSꢋ/ꢋ$IBOOFM  
0
1
2
3
4
5
*-0"%ꢊꢋꢌ"ꢍ  
*
-0"%ꢋꢌ"ꢍ  
*-0"%ꢊꢋꢌ"ꢍ  
*
-0"%ꢁ*4&/4&ꢀ3"5*0ꢀWTꢀ*-0"%  
*
-0"%ꢁ*4&/4&ꢀWTꢀ*-0"%  
*4&/4&ꢀWTꢀ*-0"%  
ꢂꢃꢏꢏ  
ꢂꢅꢏꢏ  
ꢂꢂꢏꢏ  
ꢂꢀꢏꢏ  
ꢂꢏꢏꢏ  
ꢉꢃꢏꢏ  
ꢉꢅꢏꢏ  
ꢂꢆꢏꢏ  
ꢂꢅꢏꢏ  
ꢂꢄꢏꢏ  
ꢂꢂꢏꢏ  
ꢂꢉꢏꢏ  
ꢂꢀꢏꢏ  
ꢂꢈꢏꢏ  
ꢂꢏꢏꢏ  
ꢉꢇꢏꢏ  
ꢉꢃꢏꢏ  
ꢈꢁꢀ  
ꢎꢀꢄž$  
ꢏž$  
ꢈꢀꢄž$  
ꢃꢄž$  
ꢏꢑꢋ%6$ꢋꢌ*4&/4&ꢋ#ꢍ  
ꢄꢏž$  
ꢃꢄž$  
ꢄꢏž$  
ꢏꢁꢃ  
ꢏꢁꢅ  
ꢏꢁꢂ  
ꢏꢁꢀ  
ꢏž$  
ꢈꢏꢏꢑꢋ%6$ꢋꢌ*4&/4&ꢋ"ꢍ  
ꢈꢀꢄž$  
ꢎꢀꢄž$  
7BSZJOHꢋ5FNQFSBUVSFT  
!ꢋꢏꢑꢋ%6$ꢊꢋ*4&/4&ꢋ#  
!ꢋꢏꢑꢋ%6$ꢊꢋ*4&/4&ꢋ#  
*
*-0"%ꢋꢌ"ꢍ  
*
-0"%ꢊꢋꢌ"ꢍ  
-0"%ꢊꢋꢌ"ꢍ  
*
-0"%ꢁ*4&/4&ꢀ3"5*0ꢀWTꢀ*-0"%  
73&'ꢀWTꢀ5&.1&3"563&  
*
4&/4&ꢀWTꢀ*-0"%  
ꢈꢁꢀ  
ꢄꢏꢏꢏ  
ꢂꢇꢏꢏ  
ꢂꢃꢏꢏ  
ꢂꢆꢏꢏ  
ꢂꢅꢏꢏ  
ꢂꢄꢏꢏ  
ꢂꢂꢏꢏ  
ꢂꢉꢏꢏ  
ꢂꢀꢏꢏ  
ꢂꢈꢏꢏ  
ꢂꢏꢏꢏ  
ꢀꢁꢂꢇꢄ  
ꢀꢁꢂꢇꢂ  
ꢀꢁꢂꢇꢉ  
ꢀꢁꢂꢇꢀ  
ꢀꢁꢂꢇꢈ  
ꢀꢁꢂꢇ  
ꢈꢀꢄž$  
ꢃꢄž$  
ꢎꢀꢄž$  
ꢏž$  
ꢃꢄž$  
ꢄꢏž$  
ꢏꢁꢃ  
ꢏꢁꢅ  
ꢏꢁꢂ  
ꢏꢁꢀ  
ꢄꢏž$  
ꢀꢁꢂꢃꢇ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢃꢆ  
ꢀꢁꢂꢃꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢂ  
ꢏž$  
ꢎꢀꢄž$  
ꢈꢀꢄž$  
7BSZJOHꢋ5FNQFSBUVSFT  
!ꢋꢈꢏꢏꢑꢋ%6$ꢊꢋ*4&/4&ꢋ"  
ꢈꢏꢏꢑꢋ%6$ꢋꢌ*4&/4&ꢋ"ꢍ  
ꢎꢂꢏ ꢎꢀꢏ  
ꢀꢏ ꢂꢏ ꢅꢏ ꢃꢏ ꢈꢏꢏ  
5FNQFSBUVSFꢊꢋꢌž$ꢍ  
*-0"%ꢊꢋꢌ"ꢍ  
*-0"%ꢊꢋꢌ"ꢍ  
4APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739  
OPERATING  
CONSIDERATIONS  
SA56  
GENERAL  
Please read "SA56 Design Ideas" that covers the various  
SA56 applications in considerable detail. Also see Application  
Note1"GeneralOperatingConsiderations"whichcoversstabil-  
ity, power supplies, heat sinking, mounting, and specification  
interpretation. Visit www.apexmicrotech.com for design tools  
that help automate tasks such as calculations for stability,  
internal power dissipation, current limit, heat sink selection,  
Apex's complete Application Notes library, Technical Seminar  
Workbook and Evaluation Kits.  
be logic low. When a junction temperature  
exceeds approximately 160°C this pin will  
change to logic high and the output will be  
latched off. Grounding this pin disables over  
temperature protection. This pin should be  
left open if over temperature protection is  
desired but the flag is not used.  
Current Sense output and programmable  
current limit. A current proportional to the  
output current is sourced by this pin. Typi-  
cally this pin is connected to a resistor for  
programmable current limit or transconduc-  
tance operation.  
8
ISEN  
GROUND PINS  
The two SIGGND pins, 9 & 10, are for input signal grounds.  
Pins 1 and 23, PGND, are power grounds. The PGND & SIGGND  
pins are connected at one point inside the IC. It is also recom-  
mendedtheuserconnectbothpinsatasinglepointontheboard  
in a way that no current flows through that connection.  
9,10 SIGGND  
Groundconnectionforallinternaldigitaland  
low-current analog circuitry.  
11  
FAULT  
This pin latches high whenever the four  
MOSFETs have been placed in the tristate  
condition which occurs when either the  
high-current or the thermal protection has  
engaged.  
An external timing capacitor is connected to  
this pin to set the frequency of the internal  
oscillator and ramp generator for analog  
control mode. The capacitor value (pF)  
= 4.05x107/FSW, where FSW = the desired  
switching frequency. This pin is grounded  
for digital control mode.  
POWER SUPPLY BYPASSING  
BypasscapacitorstopowersupplyterminalsVS andVDD must  
be connected physically close to the pins to prevent erratic,  
low-efficiency operation and excessive ringing at the outputs.  
Electrolytic capacitors, at least 10 μF per output ampere are  
requiredforsuppressingVS toPGND noise.Highqualityceramic  
capacitors (X7R) 1 μF or greater should also be used. Only ca-  
pacitorsratedforswitchingapplicationsshouldbeconsidered.  
The bypass capacitors must be located as close to the power  
supply pins as possible. Due to the very fast switching times  
of the outputs, the inductance of 1 inch of circuit trace could  
cause noticeable degradation in performance. The bypassing  
requirements of VDD are less stringent, but still necessary. A  
0.1 μF to 0.47 μF capacitor connected directly between the  
VDD and SIGGND pins will suffice.  
12  
CPWM  
13,14 VDD  
5V supply for input logic and low voltage  
analog circuitry.  
15  
16  
VREF  
DIR  
Reference voltage. Can be used at low cur-  
rent for biasing analog loop circuits.  
Direction of rotation control; In 2 quadrant,  
digital control, determines the active output  
FETs.Thispinshouldbegroundedinanalog  
control mode.  
CMOS/TTL input for digital PWM control, or  
1-4V analog input for duty cycle control in  
analog control mode.  
PIN DESCRIPTIONS  
Pin # Name  
1,23 PGND  
Description  
Powerhighcurrentgroundreturnpathofthe  
motor.  
Half bridge output B  
High voltage supply  
17  
18  
PWM  
2,3  
BOUT  
DISABLE Following a fault, pulling the DISABLE pin  
HIGH and then LOW will reset a latched  
fault condition. (When pulled HIGH, all four  
outputMOSFETsaredisabled. AlogicLOW  
on this pin allows the four output FETs to  
function normally.) When the DISABLE and  
FAULT pins are tied to a microcontroller, the  
FAULT pin will generate an interrupt in the  
microcontroller, so that the interrupt, can in  
turn, generate a pulse on the DISABLE pin.  
When a fault occurs, the SA56 fault circuitry  
will be reset.  
4,5, VS  
19,20  
6
SC  
Theshort-circuitprotectioncircuitswillsense  
a direct short from either output (AOUT or  
BOUT) to PGND or VS – as well as across the  
load. If the high-current protection circuit  
engagesitwillplaceallfourMOSFETsinthe  
tristate state (high-impedance output). The  
SC output, pin 6, will go HIGH though not  
latch, thereby denoting that this protection  
feature has been triggered.  
7
TLIM  
Temperature limit, CMOS. This pin can be  
used as a flag for an over-temperature con-  
dition. Under normal operation this pin will  
21,22 AOUT  
Half bridge output A  
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL prodlit@apexmicrotech.com  
5
OPERATING  
CONSIDERATIONS  
SA56  
MODES OF OPERATION  
The following chart shows the 3 modes of operation.  
Mode  
CPWM  
PWM  
DIR  
AOUT  
BOUT  
pin 12  
pin 17  
pin 16  
pins 21, 23  
pins 2, 3  
2 Quadrant – Analog Mode  
Connect ca-  
pacitor to set  
frequency  
Analog control  
voltage  
Low (SIGGND  
)
Control voltage  
greater than VREF  
(AOUT – BOUT)< 0  
average  
Control voltage  
:
greater than VREF  
(BOUT – AOUT)> 0  
average  
:
(1 – 4V)  
voltage  
voltage  
2 Quadrant – Digital Mode  
SIGGND  
SIGGND  
SIGGND  
Modulation In  
Modulation In  
High (VDD  
)
High (VS)  
PWM  
PWM  
High (VS)  
DIR  
Low (SIGGND  
)
4 Quadrant – Digital Mode  
High (VDD  
)
Modulated In  
DIR  
4-QUADRANT - ANALOG MODE  
2-QUADRANT - DIGITAL MODE  
The SA56 can operate in 4-quadrant mode with analog or  
digital inputs. In the analog mode, the capacitor from CPWM to  
SIGGND sets the frequency of an internal triangular ramp sig-  
nal. See Figure 2. An analog voltage applied to the PWM pin  
is compared to a 2.5 volt reference within the SA56 thereby  
governing the duty cycle of the output. Note that the analog  
pin DIR pin 16 is connected to signal ground (SIGGND).  
Two-quadrant operation of the FETs is realized by driving  
PWM pin 17 of the SA56 with a digital PWM signal supplied  
by a microcontroller or DSP, as depicted in Figure 3. When  
using a digital modulation signal, connect the CPWM pin to  
SIGGND to disable the internal oscillator and its companion  
ramp generator.  
A digital PWM signal applied to the PWM pin controls the  
output duty cycle at one output pin while the other output pin is  
held "HIGH". The input at the DIR pin (VDD or SIGGND) governs  
the output behavior. If DIR is a logic HIGH, the AOUT output  
will be held high and the BOUT output will be switched as the  
complement of the PWM input signal. The average output at  
AOUT will always be greater than at BOUT. Whereas if DIR is a  
logic LOW, the BOUT output will be held "HIGH" and the AOUT  
output will be switched.  
74  
7%%ꢄ  
$ꢋ  
$ꢊꢄ  
$ꢉꢄ  
$ꢂꢄ  
ꢅꢄ  
4$  
ꢇꢄ  
5-*.ꢄ  
ꢂꢊꢁꢂꢋꢄ  
7%%ꢄ  
ꢂꢅꢄ  
ꢂꢆꢄ  
ꢂꢂꢄ  
ꢋꢁꢈꢁꢂꢀꢁꢉꢃꢄ  
%*3ꢄ  
74ꢄ  
.PUPS  
%*4"#-&ꢄ  
ꢉꢂꢁꢉꢉ  
ꢉꢁꢊ  
"
#
065  
'"6-5ꢄ  
18.ꢄ  
73&'  
4"ꢀꢁ  
065  
"OBMPHꢄ$POUSPM  
7PMUBHFꢄꢌꢂꢍꢋ7ꢎ  
ꢂꢇꢄ  
ꢂꢈꢄ  
ꢂꢉꢄ  
Operating in two-quadrant mode reduces switching noise  
and power dissipation, but limits the ability to control the motor  
at very low speed.  
ꢀꢁꢂꢃ  
4*((/%  
1(/%  
ꢂꢁꢄꢉꢊ  
$
18.ꢄ  
*
4&/ꢄ  
ꢆꢄ  
74  
7%%ꢄ  
34&/4&ꢄ  
$ꢋ  
$ꢊꢄ  
$ꢉꢄ  
$ꢂꢄ  
ꢅꢄ  
4$  
ꢇꢄ  
5-*.ꢄ  
ꢂꢊꢁꢂꢋꢄ  
7%%ꢄ  
'*(63&ꢂꢃꢄꢄꢄꢋm26"%3"/5ꢄ"/"-0(ꢄ01&3"5*0/  
ꢂꢅꢄ  
ꢂꢆꢄ  
ꢋꢁꢈꢁꢂꢀꢁꢉꢃꢄ  
%*3ꢄ  
7%%ꢄPSꢄ4*((/%  
74ꢄ  
.PUPS  
%*4"#-&ꢄ  
ꢉꢂꢁꢉꢉ  
ꢉꢁꢊ  
OPERATING WITH DIGITAL INPUTS  
"
#
065  
ꢂꢂꢄ  
ꢂꢇꢄ  
ꢂꢈꢄ  
ꢂꢉꢄ  
'"6-5ꢄ  
18.ꢄ  
73&'  
4"ꢀꢁ  
065  
Two and 4-quadrant operation are possible with the SA56  
whendrivenwithadigitalPWMsignalfromamicrocontrolleror  
DSP. When using a digital modulation signal, tie the CPWM pin  
to SIGGND to disable the internal oscillator and ramp generator.  
When operating in the digital mode, pulse widths should be no  
less than 100 ns and the switching frequency should remain  
less than 500 kHz. This will allow enough time for the output  
MOSFETs to reach their full on and off states before receiving  
a command to reverse state.  
ꢀꢁꢂꢃ  
+
4*((/%  
1(/%  
ꢂꢁꢄꢉꢊ  
$
18.ꢄ  
*
4&/ꢄ  
ꢆꢄ  
34&/4&ꢄ  
'*(63&ꢂꢃꢄꢄꢄꢉꢌ26"%3"/5ꢄmꢄ%*(*5"-ꢄ.0%&  
6APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739  
OPERATING  
CONSIDERATIONS  
SA56  
Short-circuitprotectionTheshort-circuitprotectioncircuits  
will sense a direct short from either output (AOUT or BOUT) to  
PGND or VS – as well as across the load. If the high-current  
protection circuit engages, it will place all four MOSFETs in  
the tristate state (high-impedance output). The SC output, pin  
6, will go HIGH though not latch, thereby denoting that this  
protection feature has been triggered.  
Over-current protection – When the current on the high side  
goes above 10 amperes peak, the over-current circuit tristates  
so that the four MOSFETs go into a latched fault condition.  
Thermal protection – The thermal protection circuits will en-  
gage if the temperature of any of the four MOSFETs reaches  
approximately 160°C. If this occurs, the FAULT output pin will  
go HIGH. If the thermal protection circuit engages, it will place  
allfourMOSFETsinthetristatestate(high-impedanceoutput).  
The TLIM output which is normally LOW will go HIGH, though  
not latch, thereby denoting which of the protection features  
has been triggered.  
4 QUADRANT DIGITAL MODE  
During four-quadrant operation a single digital PWM input  
includesmagnitudeanddirectioninformation.ThedigitalPWM  
input signal is applied to the DIR pin, as shown in Figure 4,  
and the PWM pin is tied HIGH to VDD. Both pairs of output  
MOSFETs will switch in a locked, complementary fashion.  
With a 50% duty cycle the average voltage of outputs  
AOUT and BOUT will be the same, which is half of VS so that the  
average differential voltage over each period applied to the  
load will therefore be zero.  
Four-quadrant operation allows for smooth transitions  
through zero current for low-speed applications. However,  
powerdissipationisslightlyhigherthanintwo-quadrantopera-  
tion since all four output MOSFETs must switch every cycle.  
74  
7%%ꢄ  
$ꢋ  
$ꢊꢄ  
$ꢉꢄ  
$ꢂꢄ  
ꢅꢄ  
4$  
ꢇꢄ  
5-*.ꢄ  
ꢂꢊꢁꢂꢋꢄ  
7%%ꢄ  
ꢂꢅꢄ  
ꢂꢆꢄ  
ꢋꢁꢈꢁꢂꢀꢁꢉꢃꢄ  
%*3ꢄ  
74ꢄ  
+
PROGRAMMABLE CURRENT LIMIT  
.PUPS  
%*4"#-&ꢄ  
ꢉꢂꢁꢉꢉ  
ꢉꢁꢊ  
"
#
065  
The ISEN pin sources a current proportional to the forward  
output current of the active P channel output MOSFET. The  
proportionalityisapproximately200microamperesperampere  
of output current. Note that the ISEN output is blocked during  
the switching transitions when current spikes are likely to be  
significant.  
ꢂꢂꢄ  
ꢂꢇꢄ  
ꢂꢈꢄ  
ꢂꢉꢄ  
'"6-5ꢄ  
18.ꢄ  
73&'  
4"ꢀꢁ  
065  
7%%  
ꢀꢁꢂꢃ  
4*((/%  
1(/%  
ꢂꢁꢄꢉꢊ  
$
18.ꢄ  
*
4&/ꢄ  
ꢆꢄ  
34&/4&ꢄ  
To create a programmable current limit, connect a resistor  
from ISEN to SIGGND. If the voltage across this resistor exceeds  
an internally-generated 2.75V threshold, all four output MOS-  
FETs will be turned off for the remainder of the switching cycle.  
A 2.7k-Ohm resistor will set the current limit at approximately  
5 amperes.  
'*(63&ꢂꢃꢄꢄꢄꢋꢌ26"%3"/5ꢄmꢄ%*(*5"-ꢄ.0%&  
BRAkING – DIGITAL MODE  
Under digital control, the SA56 can rapidly decelerate the  
motor by shunting the winding currents through the output  
MOSFETs. Logic LOW on the PWM input both A and B out-  
puts high. The motor winding current circulates through the on  
resistance of the MOSFETs quickly slowing the motor.  
The winding current can be monitored with the ISEN pin  
during the braking of the motor. However, the current during  
braking circulates in the normal forward direction through one  
output MOSFET and is in the reverse in the other MOSFET.  
The current sense feature can measure only forward currents.  
The logic input on the DIR pin dictates which output MOSFET  
is used for sensing the forward current during braking.  
The ISEN output can also be used for maintaining a current  
control loop in torque motor applications.  
CURRENT SENSE LINEARITY CALCULATION  
The current sense linearity is specified in the table on page  
2 and is calculated using the method described below:  
a) Define a straight line (y = mx + b) joining the two end data  
points where, m is the slope and b is the offset or zero  
crossover. Calculate the slope m and offset c using the  
extreme data points. Assume ISENSE in the y axis and ILOAD  
in the x axis.  
b) Calculate linear ISEN (or ideal ISENSE value, ISIDEAL) using  
the straight line equation derived in step (a) for the ILOAD  
data points.  
c) Determine deviation from linear ISEN (step (b) and actual  
measured ISENSE value (ISACTUAL) as shown below:  
PROTECTION CIRCUITS  
The most severe condition for any power device is a direct,  
hard-wired ("screwdriver") short from an output to ground.  
Whiletheshort-circuitprotectionwilllatchtheoutputMOSFETs  
within 500 ns (typical), the die and package may be required to  
dissipate up to 500 Watts of power until the protection circuits  
are activated.  
*4*%&"-ꢀmꢀ*4"$56"-  
-JOFBSJUZꢀ&SSPSꢀꢁꢂꢃꢀꢄ  
Yꢀꢅꢆꢆ  
*4*%&"-  
Thisenergycanbedestructive, particularlyathigheroperat-  
ingvoltages,sosoundthermaldesigniscriticaliffaulttolerance  
is to be established in the design. The VS and PGND pins may  
become very hot during this period of high current.  
Thermal and short-circuit protection are included in the  
SA56 to prevent damage in the event that faults occur as  
described below:  
ThisdataIsheeOtThasbeen LcarefullyOcheckOedandIisbelieveLdtobereliab(le,h0owever0, nore0sponsibAilityis5assu)med8for3possibleiOnacDcuracies(or2om)ission0s.A6ll specificatiAonsLarerosubjiect topchangeiwithoeutno.tice.  
SA56U REV A FEBRUARY 2007 © 2007 Apex Microtechnology Corp.  
7

相关型号:

SA57

Switching Amplifier
CIRRUS

SA57-IHZ

Switching Amplifier
CIRRUS

SA57000-25D

CapFREE 150 mA, low-noise, low dropout regulator with thermal protection
NXP

SA57000-25D,115

SA57000-25D
NXP

SA57000-25UK

IC VREG 2.5 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PBGA5, WL-CSP-5, Fixed Positive Single Output LDO Regulator
NXP

SA57000-28D

CapFREE 150 mA, low-noise, low dropout regulator with thermal protection
NXP

SA57000-28D-G

IC VREG 2.8 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOT-680-1, SO-5, Fixed Positive Single Output LDO Regulator
NXP

SA57000-28UK

IC VREG 2.8 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PBGA5, WL-CSP-5, Fixed Positive Single Output LDO Regulator
NXP

SA57000-29D

IC VREG 2.9 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOT-680-1, SO-5, Fixed Positive Single Output LDO Regulator
NXP

SA57000-29UK

IC VREG 2.9 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PBGA5, WL-CSP-5, Fixed Positive Single Output LDO Regulator
NXP

SA57000-30D

CapFREE 150 mA, low-noise, low dropout regulator with thermal protection
NXP

SA57000-30D,115

SA57000-XX - CapFREE (tm) 150 mA, low noise, low dropout regulator with thermal protection SOP 5-Pin
NXP