EP7312_05 [CIRRUS]

High-performance, Low-power, System-on-chip with SDRAM & Enhanced with SDRAM & Enhanced; 高性能,低功耗的系统级芯片, SDRAM和增强与SDRAM和增强
EP7312_05
型号: EP7312_05
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

High-performance, Low-power, System-on-chip with SDRAM & Enhanced with SDRAM & Enhanced
高性能,低功耗的系统级芯片, SDRAM和增强与SDRAM和增强

动态存储器
文件: 总64页 (文件大小:1303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EP7312 Data Sheet  
High-performance,  
Low-power, System-on-chip  
with SDRAM & Enhanced  
Digital Audio Interface  
FEATURES  
®
ARM 720T Processor  
— ARM7TDMI CPU Operating at Speeds of 74 and  
90 MHz  
— 8 kBytes of Four-way Set-associative Cache  
— MMU with 64-entry TLB  
OVERVIEW  
— ThumbCode Support Enabled  
Ultra low power  
The Cirrus Logic EP7312 is designed for ultra-low-power  
— 90 mW at 74 MHz Typical  
portable and line-powered applications such as portable  
consumer entertainment devices, home and car audio juke box  
systems, and general purpose industrial control applications, or  
any device that features the added capability of digital audio  
compression & decompression. The core-logic functionality of  
the device is built around an ARM720T processor with  
8 kBytes of four-way set-associative unified cache and a write  
buffer. Incorporated into the ARM720T is an enhanced  
memory management unit (MMU) which allows for support of  
— 108 mW at 90 MHz Typical  
— <.03 mW in the Standby State  
Advanced Audio Decoder/decompression Capability  
— Supports bit streams with adaptive bit rates.  
— Allows for support of multiple audio decompression  
algorithms (MP3, WMA, AAC, Audible, etc.).  
®
®
sophisticated operating systems like Microsoft Windows  
®
CE and Linux .  
(cont.)  
(cont.)  
BLOCK DIAGRAM  
Digital  
Audio  
Interface  
EPB Bus  
Clocks &  
Tim ers  
ARM720T  
ICE-JTAG  
Power  
Managem ent  
Serial  
Interrupts,  
Interface  
PW M & GPIO  
ARM7TDMI CPU Core  
8 KB  
Cache  
W rite  
Buffer  
Keypad&  
Touch  
Screen I/F  
(2) UARTs  
w/ IrDA  
Boot  
ROM  
Bus  
Bridge  
MMU  
Internal Data Bus  
Mem ory Controller  
SRAM I/F SDRAM I/F  
On-chip SRAM  
48 KB  
LCD  
Controller  
MaverickKeyTM  
MEMORY and STORAGE  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
AUG ‘05  
DS508F1  
http://www.cirrus.com  
EP7312  
High-Performance, Low-Power System on Chip  
FEATURES (cont)  
48 KBytes of On-chip SRAM  
Internal Peripherals  
— Two 16550-compatible UARTs  
— IrDA Interface  
MaverickKey IDs  
— 32-bit unique ID can be used for DRM-compliant 128-  
bit random ID.  
— Two PWM Interfaces  
— Real-time Clock  
Available in 74 and 90 MHz clock speeds.  
LCD controller  
— Two General-purpose 16-bit Timers  
— Interrupt Controller  
— Boot ROM  
— Interfaces directly to a single-scan panel monochrome  
STN LCD.  
— Interfaces to a single-scan panel color STN LCD with  
minimal external glue logic.  
Full JTAG Boundary Scan and Embedded ICE® Support  
Integrated Peripheral Interfaces  
Package  
— 208-Pin LQFP  
— 256-Ball PBGA  
— 204-Ball TFBGA  
— 32-bit SDRAM Interface, Up to 2 External Banks  
— 8/32/16-bit SRAM/FLASH/ROM Interface  
The fully static EP7312 is optimized for low power  
dissipation and is fabricated using a 0.25 micron CMOS  
process.  
— Digital Audio Interface provides glueless interface to  
low-power DACs, ADCs, and CODECs.  
— Two Synchronous Serial Interfaces (SSI1, SSI2)  
— CODEC Sound Interface  
— 8×8 Keypad Scanner  
— 27 General-purpose Input/Output Pins  
— Dedicated LED Flasher Pin from the RTC  
OVERVIEW (cont.)  
The EP7312 is designed for ultra-low-power operation. Its core  
operates at only 2.5 V, while its I/O has an operation range of  
2.5 V–3.3 V. The device has three basic power states:  
operating, idle and standby.  
The EP7312 integrates an interface to enable a direct  
connection to many low cost, low power, high quality audio  
converters. In particular, high quality ADCs, DACs, or  
CODECs such as the Cirrus Logic CS53L32A, CS43L42, and  
CS42L50 are easily added to an EP73xx design via the DAI.  
Some of these devices feature digital bass and treble boost,  
digital volume control and compressor-limiter functions.  
MaverickKey unique hardware programmed IDs are a solution  
to the growing concern over secure web content and  
commerce. With Internet security playing an important role in  
the delivery of digital media such as books or music,  
traditional software methods are quickly becoming unreliable.  
The MaverickKey unique IDs provide OEMs with a method of  
utilizing specific hardware IDs such as those assigned for  
SDMI (Secure Digital Music Initiative) or any other  
authentication mechanism.  
Simply by adding desired memory and peripherals to the  
highly integrated EP7312 completes a low-power system  
solution. All necessary interface logic is integrated on-chip.  
2
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table of Contents  
FEATURES ...........................................................................................................................................1  
OVERVIEW ...........................................................................................................................................1  
Description of the EP7312’s Components, Functionality, and Interfaces ....................................6  
Processor Core - ARM720T ..................................................................................................................................6  
Power Management ..............................................................................................................................................6  
MaverickKey™ Unique ID ......................................................................................................................................6  
Memory Interfaces .................................................................................................................................................6  
Digital Audio Capability .........................................................................................................................................7  
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................7  
Digital Audio Interface (DAI) ..................................................................................................................................7  
CODEC Interface ..................................................................................................................................................8  
SSI2 Interface ........................................................................................................................................................8  
Synchronous Serial Interface ................................................................................................................................8  
LCD Controller .......................................................................................................................................................8  
64-Key Keypad Interface .......................................................................................................................................8  
Interrupt Controller ................................................................................................................................................9  
Real-Time Clock ....................................................................................................................................................9  
PLL and Clocking ..................................................................................................................................................9  
DC-to-DC Converter Interface (PWM) .................................................................................................................10  
Timers .................................................................................................................................................................10  
General Purpose Input/Output (GPIO) ................................................................................................................10  
Hardware Debug Interface ..................................................................................................................................10  
LED Flasher ........................................................................................................................................................10  
Internal Boot ROM ...............................................................................................................................................10  
Packaging ............................................................................................................................................................10  
Pin Multiplexing ...................................................................................................................................................11  
System Design ....................................................................................................................................................12  
ELECTRICAL SPECIFICATIONS ......................................................................................................13  
Absolute Maximum Ratings .................................................................................................................................13  
Recommended Operating Conditions .................................................................................................................13  
DC Characteristics ..............................................................................................................................................13  
Timings ...............................................................................................................................................15  
Timing Diagram Conventions ....................................................................................................................15  
Timing Conditions ......................................................................................................................................15  
SDRAM Interface ................................................................................................................................................16  
SDRAM Load Mode Register Cycle ..........................................................................................................17  
SDRAM Burst Read Cycle .........................................................................................................................18  
SDRAM Burst Write Cycle .........................................................................................................................19  
SDRAM Refresh Cycle ..............................................................................................................................20  
Static Memory .....................................................................................................................................................21  
Static Memory Single Read Cycle .............................................................................................................22  
Static Memory Single Write Cycle .............................................................................................................23  
Static Memory Burst Read Cycle ...............................................................................................................24  
Static Memory Burst Write Cycle ...............................................................................................................25  
SSI1 Interface ......................................................................................................................................................26  
SSI2 Interface ......................................................................................................................................................27  
LCD Interface ......................................................................................................................................................28  
JTAG Interface .....................................................................................................................................................29  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
3
EP7312  
High-Performance, Low-Power System on Chip  
Packages ............................................................................................................................................30  
208-Pin LQFP Package Characteristics ............................................................................................................. 30  
EP7312  
208-Pin LQFP ............................................................................................................................30  
208-Pin LQFP Pin Diagram ................................................................................................................................ 31  
EP7312 ...............................................................................................................................................31  
208-Pin LQFP Numeric Pin Listing ..................................................................................................................... 32  
204-Ball TFBGA Package Characteristics .......................................................................................................... 38  
204-Ball TFBGA Pinout (Top View) ..................................................................................................................... 39  
204-Ball TFBGA Ball Listing ............................................................................................................................... 40  
256-Ball PBGA Package Characteristics ............................................................................................................ 46  
256-Ball PBGA Pinout (Top View) ....................................................................................................................... 48  
256-Ball PBGA Ball Listing ................................................................................................................................. 49  
JTAG Boundary Scan Signal Ordering ............................................................................................................... 54  
CONVENTIONS .................................................................................................................................60  
Acronyms and Abbreviations .............................................................................................................................. 60  
Units of Measurement ......................................................................................................................................... 60  
General Conventions .......................................................................................................................................... 61  
Pin Description Conventions ............................................................................................................................... 61  
Ordering Information .......................................................................................................................62  
Environmental, Manufacturing, & Handling Information ..............................................................62  
Revision History ...............................................................................................................................63  
4
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
List of Figures  
Figure 1. A Fully-Configured EP7312-Based System ...................................................................................................12  
Figure 2. Legend for Timing Diagrams .........................................................................................................................15  
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement ............................................................................17  
Figure 4. SDRAM Burst Read Cycle Timing Measurement ..........................................................................................18  
Figure 5. SDRAM Burst Write Cycle Timing Measurement ..........................................................................................19  
Figure 6. SDRAM Refresh Cycle Timing Measurement ................................................................................................20  
Figure 7. Static Memory Single Read Cycle Timing Measurement ...............................................................................22  
Figure 8. Static Memory Single Write Cycle Timing Measurement ...............................................................................23  
Figure 9. Static Memory Burst Read Cycle Timing Measurement ................................................................................24  
Figure 10. Static Memory Burst Write Cycle Timing Measurement ..............................................................................25  
Figure 11. SSI1 Interface Timing Measurement ...........................................................................................................26  
Figure 12. SSI2 Interface Timing Measurement ...........................................................................................................27  
Figure 13. LCD Controller Timing Measurement ..........................................................................................................28  
Figure 14. JTAG Timing Measurement .........................................................................................................................29  
Figure 15. 208-Pin LQFP Package Outline Drawing ....................................................................................................30  
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................31  
Figure 17. 204-Ball TFBGA Package ............................................................................................................................38  
Figure 18. 256-Ball PBGA Package ..............................................................................................................................46  
List of Tables  
Table 1. Power Management Pin Assignments ..............................................................................................................6  
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6  
Table 3. SDRAM Interface Pin Assignments ..................................................................................................................7  
Table 4. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7  
Table 5. DAI Interface Pin Assignments .........................................................................................................................7  
Table 6. CODEC Interface Pin Assignments ..................................................................................................................8  
Table 7. SSI2 Interface Pin Assignments .......................................................................................................................8  
Table 8. Serial Interface Pin Assignments ......................................................................................................................8  
Table 9. LCD Interface Pin Assignments ........................................................................................................................8  
Table 10. Keypad Interface Pin Assignments .................................................................................................................9  
Table 11. Interrupt Controller Pin Assignments ..............................................................................................................9  
Table 12. Real-Time Clock Pin Assignments ..................................................................................................................9  
Table 13. PLL and Clocking Pin Assignments ................................................................................................................9  
Table 14. DC-to-DC Converter Interface Pin Assignments ...........................................................................................10  
Table 15. General Purpose Input/Output Pin Assignments ..........................................................................................10  
Table 16. Hardware Debug Interface Pin Assignments ................................................................................................10  
Table 17. LED Flasher Pin Assignments ......................................................................................................................10  
Table 18. DAI/SSI2/CODEC Pin Multiplexing ...............................................................................................................11  
Table 19. Pin Multiplexing .............................................................................................................................................11  
Table 20. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................32  
Table 21. 204-Ball TFBGA Ball Listing .........................................................................................................................40  
Table 22. 256-Ball PBGA Ball Listing ...........................................................................................................................49  
Table 23. JTAG Boundary Scan Signal Ordering .........................................................................................................54  
Table 24. Acronyms and Abbreviations ........................................................................................................................60  
Table 25. Unit of Measurement .....................................................................................................................................60  
Table 26. Pin Description Conventions .........................................................................................................................61  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
5
EP7312  
High-Performance, Low-Power System on Chip  
Description of the EP7312’s Components, Functionality, and Interfaces  
The following sections describe the EP7312 in more detail.  
Both a specific 32-bit ID as well as a 128-bit random ID is  
programmed into the EP7312 through the use of laser probing  
technology. These IDs can then be used to match secure  
copyrighted content with the ID of the target device the  
EP7312 is powering, and then deliver the copyrighted  
information over a secure connection. In addition, secure  
transactions can benefit by also matching device IDs to server  
IDs. MaverickKey IDs provide a level of hardware security  
required for today’s Internet appliances.  
Processor Core - ARM720T  
The EP7312 incorporates an ARM 32-bit RISC micro  
controller that controls a wide range of on-chip peripherals.  
The processor utilizes a three-stage pipeline consisting of  
fetch, decode and execute stages. Key features include:  
ARM (32-bit) and Thumb (16-bit compressed) instruction  
sets  
Memory Interfaces  
Enhanced MMU for Microsoft Windows CE and other  
operating systems  
There are two main external memory interfaces. The first one  
is the ROM/SRAM/FLASH-style interface that has  
programmable wait-state timings and includes burst-mode  
capability, with six chip selects decoding six 256 MB sections  
of addressable space. For maximum flexibility, each bank can  
be specified to be 8-, 16-, or 32-bits wide. This allows the use  
of 8-bit-wide boot ROM options to minimize overall system  
cost. The on-chip boot ROM can be used in product  
manufacturing to serially download system code into system  
FLASH memory. To further minimize system memory  
requirements and cost, the ARM Thumb instruction set is  
supported, providing for the use of high-speed 32-bit  
operations in 16-bit op-codes and yielding industry-leading  
code density. shows the Static Memory Interface pin  
assignments.  
8 KB of 4-way set-associative cache.  
Translation Look Aside Buffers with 64 Translated Entries  
Power Management  
The EP7312 is designed for ultra-low-power operation. Its core  
operates at only 2.5 V, while its I/O has an operation range of  
2.5 V–3.3 V. The device has three basic power states:  
• Operating — This state is the full performance state.  
All the clocks and peripheral logic are enabled.  
• Idle — This state is the same as the Operating State,  
except the CPU clock is halted while waiting for an  
event such as a key press.  
• Standby — This state is equivalent to the computer  
being switched off (no display), and the main  
oscillator shut down. An event such as a key press  
can wake-up the processor.  
Table 2. Static Memory Interface Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
Table 1 shows the power management pin assignments.  
nCS[5:0]  
O
O
Chip select out  
Address output  
Table 1. Power Management Pin Assignments  
A[27:0]  
D[31:0]  
I/O Data I/O  
Pin Mnemonic  
I/O  
Pin Description  
nMOE/nSDCAS  
nMWE/nSDWE  
(Note)  
(Note)  
O
O
ROM expansion OP enable  
BATOK  
I
Battery ok input  
ROM expansion write enable  
External power supply sense  
input  
nEXTPWR  
I
Halfword access select  
output  
HALFWORD  
O
nPWRFL  
I
I
Power fail sense input  
WORD  
O
O
Word access select output  
Transfer direction  
nBATCHG  
Battery changed sense input  
WRITE/nSDRAS  
(Note)  
MaverickKey Unique ID  
Note: Pins are multiplexed. See Table 19 on page 11 for  
more information.  
MaverickKey unique hardware programmed IDs are a solution  
to the growing concern over secure web content and  
commerce. With Internet security playing an important role in  
the delivery of digital media such as books or music,  
traditional software methods are quickly becoming unreliable.  
The MaverickKey unique IDs provide OEMs with a method of  
utilizing specific hardware IDs such as those assigned for  
SDMI (Secure Digital Music Initiative) or any other  
authentication mechanism.  
6
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
The second is the programmable 16- or 32-bit-wide SDRAM  
interface that allows direct connection of up to two banks of  
SDRAM, totaling 512 Mb. To assure the lowest possible power  
consumption, the EP7312 supports self-refresh SDRAMs,  
which are placed in a low-power state by the device when it  
enters the low-power Standby State. Table 3 shows the  
SDRAM Interface pin assignments.  
communication interface directly. Table 4 shows the UART pin  
assignments.  
Table 4. Universal Asynchronous Receiver/Transmitters Pin  
Assignments  
Pin Mnemonic  
I/O  
Pin Description  
TXD[1]  
O
I
UART 1 transmit  
Table 3. SDRAM Interface Pin Assignments  
RXD[1]  
CTS  
UART 1 receive  
Pin Mnemonic  
I/O  
Pin Description  
I
UART 1 clear to send  
UART 1 data carrier detect  
UART 1 data set ready  
UART 2 transmit  
DCD  
I
SDCLK  
O
O
O
O
O
SDRAM clock output  
DSR  
I
SDCKE  
SDRAM clock enable output  
SDRAM chip select out  
SDRAM RAS signal output  
SDRAM CAS control signal  
TXD[2]  
RXD[2]  
LEDDRV  
PHDIN  
O
I
nSDCS[1:0]  
UART 2 receive  
WRITE/nSDRAS  
nMOE/nSDCAS  
(Note 2)  
(Note 2)  
O
I
Infrared LED drive output  
Photo diode input  
SDRAM write enable control  
signal  
nMWE/nSDWE  
(Note 2)  
O
A[27:15]/DRA[0:12] (Note 1)  
A[14:13]/DRA[12:14]  
PD[7:6]/SDQM[1:0] (Note 2)  
SDQM[3:2]  
O
O
SDRAM address  
Digital Audio Interface (DAI)  
SDRAM internal bank select  
The EP7312 integrates an interface to enable a direct  
connection to many low cost, low power, high quality audio  
converters. In particular, the DAI can directly interface with  
the CrystalCS43L41/42/43 low-power audio DACs and the  
CrystalCS53L32 low-power ADC. Some of these devices  
feature digital bass and treble boost, digital volume control and  
compressor-limiter functions. Table 5 shows the DAI Interface  
pin assignments.  
I/O SDRAM byte lane mask  
SDRAM byte lane mask  
I/O Data I/O  
O
D[31:0]  
Note: 1. Pins A[27:13] map to DRA[0:14] respectively.  
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to  
balance the load for large memory systems.  
2. Pins are multiplexed. See Table 19 on page 11 for  
more information.  
Table 5. DAI Interface Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
Digital Audio Capability  
SCLK  
O
O
I
Serial bit clock  
The EP7312 uses its powerful 32-bit RISC processing engine  
to implement audio decompression algorithms in software. The  
nature of the on-board RISC processor, and the availability of  
efficient C-compilers and other software development tools,  
ensures that a wide range of audio decompression algorithms  
can easily be ported to and run on the EP7312  
SDOUT  
SDIN  
Serial data out  
Serial data in  
LRCK  
O
I
Sample clock  
MCLKIN  
MCLKOUT  
Master clock input  
Master clock output  
O
Universal Asynchronous  
Receiver/Transmitters (UARTs)  
Note: See Table 18 on page 11 for information on pin  
multiplexes.  
The EP7312 includes two 16550-type UARTs for RS-232  
serial communications, both of which have two 16-byte FIFOs  
for receiving and transmitting data. The UARTs support bit  
rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder  
can be optionally switched into the RX/TX signals to/from  
UART 1 to enable these signals to drive an infrared  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
7
EP7312  
High-Performance, Low-Power System on Chip  
CODEC Interface  
Synchronous Serial Interface  
The EP7312 includes an interface to telephony-type CODECs  
for easy integration into voice-over-IP and other voice  
communications systems. The CODEC interface is  
multiplexed to the same pins as the DAI and SSI2. Table 6  
shows the CODEC Interface Pin Assignments.  
The EP7312 Synchronous Serial Interface has these features:  
ADC (SSI) Interface: Master mode only; SPI and  
Microwire1-compatible (128 kbps operation)  
Selectable serial clock polarity  
Table  
assignments.  
8 shows the Synchronous Serial Interface pin  
Table 6. CODEC Interface Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
Table 8. Serial Interface Pin Assignments  
PCMCLK  
O
O
I
Serial bit clock  
PCMOUT  
PCMIN  
Serial data out  
Serial data in  
Frame sync  
Pin Mnemonic  
I/O  
Pin Description  
ADCLK  
O
I
SSI1 ADC serial clock  
SSI1 ADC serial input  
SSI1 ADC serial output  
SSI1 ADC chip select  
SSI1 ADC sample clock  
PCMSYNC  
O
ADCIN  
ADCOUT  
nADCCS  
SMPCLK  
O
O
O
Note: See Table 18 on page 11 for information on pin  
multiplexes.  
SSI2 Interface  
An additional SPI/Microwire1-compatible interface is  
available for both master and slave mode communications. The  
SSI2 unit shares the same pins as the DAI and CODEC  
interfaces through a multiplexer. The SSI2 Interface has these  
features:  
LCD Controller  
A DMA address generator is provided that fetches video  
display data for the LCD controller from memory. The display  
frame buffer start address is programmable, allowing the LCD  
frame buffer to be in SDRAM, internal SRAM or external  
SRAM. The LCD controller has these features:  
Synchronous clock speeds of up to 512 kHz  
Separate 16 entry TX and RX half-word wide FIFOs  
Half empty/full interrupts for FIFOs  
Interfaces directly to a single-scan panel monochrome STN  
LCD  
Separate RX and TX frame sync signals for asymmetric  
traffic  
Interfaces to a single-scan panel color STN LCD with  
minimal external glue logic  
Table 7 shows the SSI2 Interface pin assignments.  
Panel width size is programmable from 32 to 1024 pixels in  
16-pixel increments  
Table 7. SSI2 Interface Pin Assignments  
Video frame buffer size programmable up to  
128 KB  
Pin Mnemonic  
I/O  
Pin Description  
Bits per pixel of 1, 2, or 4 bits  
SSICLK  
I/O  
O
Serial bit clock  
Table 9 shows the LCD Interface pin assignments.  
SSITXDA  
SSIRXDA  
SSITXFR  
SSIRXFR  
Serial data out  
I
Serial data in  
Table 9. LCD Interface Pin Assignments  
I/O  
I/O  
Transmit frame sync  
Receive frame sync  
Pin Mnemonic  
I/O  
Pin Description  
CL1  
O
O
O
O
O
LCD line clock  
Note: See Table 18 on page 11 for information on pin  
multiplexes.  
CL2  
LCD pixel clock out  
DD[3:0]  
FRM  
M
LCD serial display data bus  
LCD frame synchronization pulse  
LCD AC bias drive  
64-Key Keypad Interface  
Matrix keyboards and keypads can be easily read by the  
EP7312. A dedicated 8-bit column driver output generates  
8
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
strobes for each keyboard column signal. The pins of Port A,  
when configured as inputs, can be selectively OR'ed together  
to provide a keyboard interrupt that is capable of waking the  
system from a STANDBY or IDLE state. The Keypad  
Interface has these features:  
Real-Time Clock  
The EP7312 contains a 32-bit Real Time Clock (RTC) that can  
be written to and read from in the same manner as the timer  
counters. It also contains a 32-bit output match register which  
can be programmed to generate an interrupt.  
Column outputs can be individually set high with the  
remaining bits left at high-impedance  
Driven by an external 32.768 kHz crystal oscillator  
Table 12 shows the Real-Time Clock pin assignments.  
Column outputs can be driven all-low, all-high, or all-high-  
impedance  
Table 12. Real-Time Clock Pin Assignments  
Keyboard interrupt driven by OR'ing together all Port A  
bits  
Pin Mnemonic  
Pin Description  
Keyboard interrupt can be used to wake up the system  
RTCIN  
Real-Time Clock Oscillator Input  
Real-Time Clock Oscillator Output  
Real-Time Clock Oscillator Power  
Real-Time Clock Oscillator Ground  
8×8 keyboard matrix usable with no external logic, extra  
keys can be added with minimal glue logic  
RTCOUT  
VDDRTC  
VSSRTC  
Table 10 shows the Keypad Interface Pin Assignments.  
Table 10. Keypad Interface Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
PLL and Clocking  
COL[7:0]  
O
Keyboard scanner column drive  
The EP7312 processor and peripheral clocks have these  
features:  
Interrupt Controller  
When unexpected events arise during the execution of a  
program (i.e., interrupt or memory fault) an exception is  
usually generated. When these exceptions occur at the same  
time, a fixed priority system determines the order in which  
they are handled. The EP7312 interrupt controller has two  
interrupt types: interrupt request (IRQ) and fast interrupt  
request (FIQ). The interrupt controller has the ability to control  
interrupts from 22 different FIQ and IRQ sources. The  
Interrupt controller has these features:  
Processor and peripheral clocks operate from a single  
3.6864 MHz crystal or external 13 MHz clock  
Programmable clock speeds allow the peripheral bus to run  
at 18 MHz when the processor is set to 18 MHz and at  
36 MHz when the processor is set to 36, 49 or 74 MHz, and  
at 45 MHz when the processor is set to 90 MHz.  
Table 13 shows the PLL and clocking pin assignments.  
Table 13. PLL and Clocking Pin Assignments  
Pin Mnemonic  
Pin Description  
Supports 22 interrupts from a variety of sources (such as  
UARTs, SSI1, and key matrix.)  
MOSCIN  
Main Oscillator Input  
Routes interrupt sources to the ARM720T’s IRQ or FIQ  
(Fast IRQ) inputs  
MOSCOUT  
VDDOSC  
VSSOSC  
Main Oscillator Output  
Main Oscillator Power  
Main Oscillator Ground  
Five dedicated off-chip interrupt lines operate as level  
sensitive interrupts  
Table 11 shows the interrupt controller pin assignments.  
.
Table 11. Interrupt Controller Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
nEINT[2:1]  
I
I
I
I
External interrupt  
EINT[3]  
External interrupt  
nEXTFIQ  
External Fast Interrupt input  
Media change interrupt input  
nMEDCHG/nBROM  
(Note)  
Note: Pins are multiplexed. See Table 19 on page 11 for  
more information.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
9
EP7312  
High-Performance, Low-Power System on Chip  
DC-to-DC Converter Interface (PWM)  
Table 16. Hardware Debug Interface Pin Assignments  
Provides two 96 kHz clock outputs with programmable  
duty ratio (from 1-in-16 to 15-in-16) that can be used to  
drive a positive or negative DC to DC converter  
Pin Mnemonic  
I/O  
Pin Description  
TCLK  
I
I
JTAG clock  
Table 14 shows the DC-to-DC Converter Interface pin  
assignments.  
TDI  
JTAG data input  
TDO  
nTRST  
TMS  
O
I
JTAG data output  
JTAG async reset input  
JTAG mode select  
Table 14. DC-to-DC Converter Interface Pin Assignments  
I
Pin Mnemonic  
I/O  
Pin Description  
DRIVE[1:0]  
I/O  
I
PWM drive output  
PWM feedback input  
LED Flasher  
FB[1:0]  
A dedicated LED flasher module can be used to generate a low  
frequency signal on Port D pin 0 for the purpose of blinking an  
LED without CPU intervention. The LED flasher feature is  
ideal as a visual annunciator in battery powered applications,  
such as a voice mail indicator on a portable phone or an  
appointment reminder on a PDA. Table 17 shows the LED  
Flasher pin assignments.  
Timers  
Internal (RTC) timer  
Two internal 16-bit programmable hardware count-down  
timers  
General Purpose Input/Output (GPIO)  
Software adjustable flash period and duty cycle  
Operates from 32 kHz RTC clock  
Three 8-bit and one 3-bit GPIO ports  
Supports scanning keyboard matrix  
Will continue to flash in IDLE and STANDBY states  
4 mA drive current  
Table 15 shows the GPIO pin assignments.  
Table 17. LED Flasher Pin Assignments  
Table 15. General Purpose Input/Output Pin Assignments  
Pin Mnemonic  
I/O  
Pin Description  
Pin Mnemonic  
I/O  
Pin Description  
PD[0]/LEDFLSH  
(Note)  
O
LED flasher driver  
PA[7:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO port A  
PB[7:0]  
GPIO port B  
GPIO port D  
GPIO port D  
GPIO port D  
GPIO port E  
GPIO port E  
Note: Pins are multiplexed. See Table 19 on page 11 for  
more information.  
PD[0]/LEDFLSH  
PD[5:1]  
(Note)  
(Note)  
Internal Boot ROM  
PD[7:6]/SDQM[1:0]  
The internal 128-byte Boot ROM facilitates download of saved  
code to the on-board SRAM/FLASH.  
PE[1:0]/BOOTSEL[1:0] (Note)  
PE[2]/CLKSEL (Note)  
Packaging  
Note: Pins are multiplexed. See Table 19 on page 11 for  
more information.  
The EP7312 is available in a 208-pin LQFP package, 256-ball  
PBGA package, or a 204-ball TFBGA package.  
Hardware Debug Interface  
Full JTAG boundary scan and Embedded ICE® support  
Table 16 shows the Hardware Debug Interface pin  
assignments.  
10  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 19 shows the pins that have been multiplexed in the  
EP7312.  
Pin Multiplexing  
Table 18 shows the pin multiplexing of the DAI, SSI2 and the  
CODEC. The selection between SSI2 and the CODEC is  
controlled by the state of the SERSEL bit in SYSCON2. The  
choice between the SSI2, CODEC, and the DAI is controlled  
by the DAISEL bit in SYSCON3 (see the EP7312 Users  
Manual for more information).  
Table 19. Pin Multiplexing  
Signal  
Block  
Signal  
Block  
nMOE  
Static Memory  
Static Memory  
Static Memory  
Static Memory  
Static Memory  
GPIO  
nSDCAS  
SDRAM  
nMWE  
nSDWE  
SDRAM  
SDRAM  
SDRAM  
SDRAM  
SDRAM  
Table 18. DAI/SSI2/CODEC Pin Multiplexing  
WRITE  
A[27:15]  
A[14:13]  
PD[7:6]  
nSDRAS  
DRA[0:12]  
DRA[13:14]  
SDQM[1:0]  
Pin  
Mnemonic  
I/O  
DAI  
SSI2  
CODEC  
SSICLK  
I/O  
O
I
SCLK  
SDOUT  
SDIN  
SSICLK  
SSITXDA  
SSIRXDA  
PCMCLK  
PCMOUT  
PCMIN  
SSITXDA  
SSIRXDA  
SSITXFR  
SSIRXFR  
BUZ  
System  
Configuration  
System  
Configuration  
RUN  
CLKEN  
Interrupt  
Controller  
Boot ROM  
select  
I/O  
I
LRCK  
SSITXFR PCMSYNC  
SSIRXFR p/u  
nMEDCHG  
PD[0]  
nBROM  
MCLKIN  
MCLKOUT  
GPIO  
GPIO  
LEDFLSH  
BOOTSEL[1:0]  
LED Flasher  
O
System  
Configuration  
PE[1:0]  
System  
Configuration  
PE[2]  
GPIO  
CLKSEL  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
11  
EP7312  
High-Performance, Low-Power System on Chip  
System Design  
As shown in system block diagram, simply adding desired  
memory and peripherals to the highly integrated EP7312  
completes a low-power system solution. All necessary  
interface logic is integrated on-chip.  
CRYSTAL  
CRYSTAL  
MOSCIN  
RTCIN  
DD[0-3]  
CL1  
LCD  
CL2  
FRM  
M
COL[0-7]  
KEYBOARD  
PA[0-7]  
D[0-31]  
A[0-27]  
PB[0-7]  
nMOE  
WRITE  
PD[0-7]  
DC  
INPUT  
PE[0-2]  
POWER  
SUPPLY UNIT  
SDRAS/  
SDCAS  
AND  
COMPARATORS  
nPOR  
nPWRFL  
BATOK  
nEXTPWR  
nBATCHG  
RUN  
×16  
SDRAM  
×16  
SDRAM  
SDCS[0]  
BATTERY  
SDQM[0-3]  
WAKEUP  
SDCS[1]  
×16  
×16  
SDRAM  
SDRAM  
SDQM[0-3]  
DRIVE[0-1]  
FB[0-1]  
DC-TO-DC  
CONVERTERS  
nCS[0]  
nCS[1]  
SSICLK  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
CODEC/SSI2/  
DAI  
×16  
FLASH  
×16  
FLASH  
×16  
FLASH  
×16  
FLASH  
IR LED AND  
PHOTODIODE  
LEDDRV  
PHDIN  
CS[n]  
WORD  
RXD[[1/2]  
TXD[1/2]  
DSR  
2× RS-232  
TRANSCEIVERS  
EXTERNAL MEMORY-  
MAPPED EXPANSION  
BUFFERS  
CTS  
DCD  
ADCCLK  
nADCCS  
ADCOUT  
ADCIN  
nCS[2]  
nCS[3]  
ADC  
DIGITIZER  
BUFFERS  
AND  
LEDFLSH  
ADDITIONAL I/O  
SMPCLK  
LATCHES  
Figure 1. A Fully-Configured EP7312-Based System  
Note: A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI.  
12  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
DC Core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Pad Input Current  
2.9 V  
3.6 V  
10 mA/pin; 100 mA cumulative  
Storage Temperature, No Power  
–40°C to +125°C  
Recommended Operating Conditions  
DC core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Input / Output Voltage  
2.5 V 0.2 V  
2.3 V - 3.5 V  
O–I/O supply voltage  
Extended -20°C to +70°C; Commercial 0°C to +70°C;  
Industrial -40°C to +85°C  
Operating Temperature  
DC Characteristics  
All characteristics are specified at V  
= 2.5 V, V  
= 3.3 V and V = 0 V over an operating temperature of 0°C to +70°C  
DDIO SS  
DDCORE  
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
0.65 × VDDIO  
VSS 0.3  
VDDIO + 0.3  
0.25 × VDDIO  
VDDIO = 2.5 V  
VDDIO = 2.5 V  
VIH  
CMOS input high voltage  
CMOS input low voltage  
-
-
V
V
VIL  
Schmitt trigger positive going  
threshold  
VT+  
-
-
2.1  
V
Schmitt trigger negative going  
threshold  
VT-  
0.8  
-
-
-
V
V
Vhst  
Schmitt trigger hysteresis  
0.1  
0.4  
VIL to VIH  
CMOS output high voltagea  
Output drive 1a  
Output drive 2a  
VDD – 0.2  
-
-
-
-
-
-
V
V
V
IOH = 0.1 mA  
IOH = 4 mA  
IOH = 12 mA  
VOH  
VOL  
2.5  
2.5  
CMOS output low voltagea  
Output drive 1a  
Output drive 2a  
-
-
-
-
-
-
0.3  
0.5  
0.5  
V
V
V
IOL = –0.1 mA  
IOL = –4 mA  
IOL = –12 mA  
VIN = VDD or GND  
IIN  
Input leakage current  
-
-
-
1.0  
µA  
µA  
Bidirectional 3-state leakage  
currentb c  
VOUT = VDD or GND  
IOZ  
25  
100  
CIN  
Input capacitance  
Output capacitance  
8
8
-
-
10.0  
10.0  
pF  
pF  
COUT  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
13  
EP7312  
High-Performance, Low-Power System on Chip  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
CI/O  
Transceiver capacitance  
8
-
10.0  
pF  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDSTANDBY  
@ 25 C  
-
-
77  
41  
-
-
µA  
µA  
VIL = GND 0.1 V  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDSTANDBY  
@ 70 C  
-
-
-
-
570  
111  
VIL = GND 0.1 V  
Only nPOR, nPWRFAIL,  
nURESET, PE0, PE1, and RTS  
are driven, while all other float,  
VIH = VDD 0.1 V,  
Standby current consumption1  
IDDSTANDBY  
@ 85 C  
-
-
-
-
1693  
163  
µA  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
VIL = GND 0.1 V  
Both oscillators running, CPU  
static, Cache enabled, LCD  
disabled, VIH = VDD 0.1 V, VIL  
Idle current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDidle  
-
-
6
10  
-
-
mA  
at 74 MHz  
= GND 0.1 V  
Both oscillators running, CPU  
static, Cache enabled, LCD  
disabled, VIH = VDD 0.1 V, VIL  
Idle current consumption1  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDDIDLE  
-
-
7
11  
-
-
mA  
V
at 90 MHz  
= GND 0.1 V  
Minimum standby voltage for  
state retention, internal SRAM  
cache, and RTC operation only  
VDDSTANDBY  
Standby supply voltage  
2.0  
-
-
a.  
b.  
c.  
Refer to the strength column in the pin assignment tables for all package types.  
Assumes buffer has no pull-up or pull-down resistors.  
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.  
Note: 1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V  
2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be  
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).  
2) Pull-up current = 50 µA typical at VDD = 3.3 V.  
14  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Timings  
Timing Diagram Conventions  
This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are  
clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.  
C l o c k  
H i g h t o L o w  
H i g h / L o w t o H i g h  
B u s C h a n g e  
B u s V a l i d  
U n d e f i n e d / I n v a l i d  
V a l i d B u s t o T r i s t a t e  
B u s / S i g n a l O m i s s i o n  
Figure 2. Legend for Timing Diagrams  
Timing Conditions  
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at  
V
= 3.1 - 3.5 V and V = 0 V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF. The timing values are  
DDIO  
SS  
referenced to 1/2 V  
.
DD  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
15  
EP7312  
High-Performance, Low-Power System on Chip  
SDRAM Interface  
Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for  
the timings of each of the SDRAM modes.  
Parameter  
Symbol  
tCSa  
Min  
Typ  
Max  
Unit  
SDCLK falling edge to SDCS assert delay time  
SDCLK falling edge to SDCS deassert delay time  
SDCLK falling edge to SDRAS assert delay time  
SDCLK falling edge to SDRAS deassert delay time  
SDCLK falling edge to SDRAS invalid delay time  
SDCLK falling edge to SDCAS assert delay time  
SDCLK falling edge to SDCAS deassert delay time  
SDCLK falling edge to ADDR transition time  
SDCLK falling edge to ADDR invalid delay time  
SDCLK falling edge to SDMWE assert delay time  
SDCLK falling edge to SDMWE deassert delay time  
DATA transition to SDCLK falling edge time  
0
3  
1
2
2
3
1
4
2
0
1
2
1
0
-
4
10  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSd  
tRAa  
tRAd  
3  
2
10  
7
tRAnv  
tCAa  
2  
5  
3  
2  
3  
4  
2
5
tCAd  
3
tADv  
5
tADx  
5
tMWa  
tMWd  
tDAs  
5
4
-
tDAh  
SDCLK falling edge to DATA transition hold time  
SDCLK falling edge to DATA transition delay time  
1
-
-
tDAd  
0
-
15  
16  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
SDRAM Load Mode Register Cycle  
SDCLK  
tCSa  
tCSd  
tRAd  
tCAd  
SDCS  
tRAa  
SDRAS  
tCAa  
SDCAS  
tADv  
tADx  
ADDR  
DATA  
SDQM  
tMWa  
tMWd  
SDMWE  
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
17  
EP7312  
High-Performance, Low-Power System on Chip  
SDRAM Burst Read Cycle  
SDCLK  
tCSa  
tCSa  
tCSd  
tCSd  
SDCS  
SDRAS  
SDCAS  
ADDR  
tRAa  
tRAd  
tRAnv  
tCAa  
tCAd  
tADv  
tADv  
ADRAS  
ADCAS  
tDAs  
tDAs  
tDAs  
tDAs  
D1  
D2  
D3  
D4  
DATA  
tDAh  
tDAh  
tDAh  
tDAh  
SDQM  
[0:3]  
SDMWE  
Figure 4. SDRAM Burst Read Cycle Timing Measurement  
Note: 1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.  
18  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
SDRAM Burst Write Cycle  
SDCLK  
tCSa  
tCSa  
tCSd  
tCSd  
SDCS  
tRAa  
tRAd  
SDRAS  
SDCAS  
tCAa  
tCAd  
tADv  
tADv  
ADDR  
ADCAS  
ADRAS  
tDAd  
tDAd  
tDAd  
tDAd  
DATA  
SDQM  
D1  
D2  
D3  
D4  
0
tMWa  
tMWd  
SDMWE  
Figure 5. SDRAM Burst Write Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
19  
EP7312  
High-Performance, Low-Power System on Chip  
SDRAM Refresh Cycle  
SDCLK  
tCSa  
tCSd  
SDCS  
tRAa  
tRAd  
SDRAS  
tCAd  
tCAa  
SDCAS  
SDATA  
ADDR  
SDQM  
[3:0]  
SDMWE  
Figure 6. SDRAM Refresh Cycle Timing Measurement  
Note:  
1. Timings are shown with CAS latency = 2  
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.  
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal  
20  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Static Memory  
Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the  
values for the timings of each of the Static Memory modes.  
Parameter  
Symbol  
tCSd  
tCSh  
tAd  
Min  
Typ  
Max  
Unit  
EXPCLK rising edge to nCS assert delay time  
EXPCLK falling edge to nCS deassert hold time  
EXPCLK rising edge to A assert delay time  
EXPCLK falling edge to A deassert hold time  
EXPCLK rising edge to nMWE assert delay time  
EXPCLK rising edge to nMWE deassert hold time  
EXPCLK falling edge to nMOE assert delay time  
EXPCLK falling edge to nMOE deassert hold time  
EXPCLK falling edge to HALFWORD deassert delay time  
EXPCLK falling edge to WORD assert delay time  
EXPCLK rising edge to data valid delay time  
EXPCLK falling edge to data invalid delay time  
Data setup to EXPCLK falling edge time  
2
2
4
3
3
3
3
2
2
2
8
6
-
8
7
20  
20  
16  
19  
10  
10  
10  
10  
20  
16  
21  
30  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9
tAh  
10  
6
tMWd  
tMWh  
tMOEd  
tMOEh  
tHWd  
tWDd  
tDv  
6
7
7
8
8
13  
15  
-
tDnv  
tDs  
tDh  
EXPCLK falling edge to data hold time  
-
-
3
tWRd  
tEXs  
EXPCLK rising edge to WRITE assert delay time  
EXPREADY setup to EXPCLK falling edge time  
EXPCLK falling edge to EXPREADY hold time  
5
-
11  
-
23  
0
tEXh  
-
-
0
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
21  
EP7312  
High-Performance, Low-Power System on Chip  
Static Memory Single Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF-  
WORD  
tWDd  
WORD  
tDs  
tDh  
D
tEXs  
tEXh  
EXPRDY  
tWRd  
WRITE  
Figure 7. Static Memory Single Read Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
2. Address, Halfword, Word, and Write hold state until next cycle.  
22  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Static Memory Single Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
tMWd  
tMWh  
nMWE  
nMOE  
tHWd  
HALF-  
WORD  
tWDd  
WORD  
tDv  
D
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 8. Static Memory Single Write Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
3. Address, Data, Halfword, Word, and Write hold state until next cycle.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
23  
EP7312  
High-Performance, Low-Power System on Chip  
Static Memory Burst Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAd  
tAh  
tAh  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDs tDh  
tDs tDh  
tDs tDh  
tDs tDh  
tEXs  
tEXh  
EXPRDY  
WRITE  
tWRd  
Figure 9. Static Memory Burst Read Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to  
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion  
cycles. This improves performance so the SQAEN bit should always be set where possible.  
4. Address, Halfword, Word, and Write hold state until next cycle.  
24  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Static Memory Burst Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAh  
tAh  
tAd  
A
tMWd  
tMWd  
tMWd  
tMWd  
tMWh  
tMWh  
tMWh  
tMWh  
nMWE  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDv  
tDnv  
tDv  
tDnv  
tDv  
tDnv  
tDv  
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 10. Static Memory Burst Write Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at  
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is  
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period  
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
4. Address, Data, Halfword, Word, and Write hold state until next cycle.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
25  
EP7312  
High-Performance, Low-Power System on Chip  
SSI1 Interface  
Parameter  
Symbol  
tCd  
Min  
Max  
Unit  
ADCCLK falling edge to nADCCSS deassert delay time  
ADCIN data setup to ADCCLK rising edge time  
ADCIN data hold from ADCCLK rising edge time  
ADCCLK falling edge to data valid delay time  
ADCCLK falling edge to data invalid delay time  
9
-
10  
15  
14  
13  
3
ms  
ns  
ns  
ns  
ns  
tINs  
tINh  
-
tOvd  
tOd  
7  
2  
ADC  
CLK  
tCd  
nADC  
CSS  
tINs  
tINh  
ADCIN  
tOvd  
tOd  
ADC  
OUT  
Figure 11. SSI1 Interface Timing Measurement  
26  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
SSI2 Interface  
Parameter  
Symbol  
tclk_per  
tclk_high  
tclk_low  
tclkrf  
Min  
Max  
Unit  
SSICLK period (slave mode)  
SSICLK high time  
185  
925  
925  
3
2050  
1025  
1025  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSICLK low time  
SSICLK rise/fall time  
tFRd  
SSICLK rising edge to RX and/or TX frame sync high time  
SSICLK rising edge to RX and/or TX frame sync low time  
SSIRXFR and/or SSITXFR period  
-
3
tFRa  
-
8
tFR_per  
tRXs  
960  
3
990  
7
SSIRXDA setup to SSICLK falling edge time  
SSIRXDA hold from SSICLK falling edge time  
SSICLK rising edge to SSITXDA data valid delay time  
SSITXDA valid time  
tRXh  
3
7
tTXd  
-
2
tTXv  
960  
990  
tclk_per  
tclk_high  
tclk_low  
SSI  
CLK  
tclkrf  
tFR_per  
tFRd  
tFRa  
SSIRXFR/  
SSITXFR  
tRXh  
tRXs  
SSI  
RXDA  
D7  
D2  
D2  
D1  
D1  
D0  
D0  
tTXd  
SSI  
TXDA  
D7  
tTXv  
Figure 12. SSI2 Interface Timing Measurement  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
27  
EP7312  
High-Performance, Low-Power System on Chip  
LCD Interface  
Parameter  
Symbol  
tCL1d  
tCL2d  
tFRMd  
tMd  
Min  
Max  
Unit  
CL[2] falling to CL[1] rising delay time  
CL[1] falling to CL[2] rising delay time  
CL[1] falling to FRM transition time  
CL[1] falling to M transition time  
10  
80  
25  
3,475  
10,425  
20  
ns  
ns  
ns  
ns  
ns  
300  
10  
10  
tDDd  
CL[2] rising to DD (display data) transition time  
20  
CL[2]  
tCL2d  
tCL1d  
CL[1]  
FRM  
tFRMd  
tMd  
M
tDDd  
DD [3:0]  
Figure 13. LCD Controller Timing Measurement  
28  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
JTAG Interface  
Parameter  
Symbol  
tclk_per  
tclk_high  
tclk_low  
tJPs  
Min  
Max  
Units  
TCK clock period  
2
1
1
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock high time  
TCK clock low time  
JTAG port setup time  
JTAG port hold time  
JTAG port clock to output  
-
0
tJPh  
-
3
tJPco  
-
10  
12  
19  
tJPzx  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
-
tJPxz  
-
tclk_per  
tclk_high  
tclk_low  
TCK  
tJPh  
tJPs  
TMS  
TDI  
tJPzx  
tJPco  
tJPxz  
TDO  
Figure 14. JTAG Timing Measurement  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
29  
EP7312  
High-Performance, Low-Power System on Chip  
Packages  
208-Pin LQFP Package Characteristics  
29.60 (1.165)  
30.40 (1.197)  
27.80 (1.094)  
28.20 (1.110)  
0.17 (0.007)  
0.27 (0.011)  
27.80 (1.094)  
28.20 (1.110)  
29.60 (1.165)  
30.40 (1.197)  
EP7312  
208-Pin LQFP  
0.50  
(0.0197)  
BSC  
Pin 1 Indicator  
Pin 208  
Pin 1  
1.35 (0.053)  
1.45 (0.057)  
1.00 (0.039) BSC  
0.45 (0.018)  
0.75 (0.030)  
0.09 (0.004)  
0.20 (0.008)  
0° MIN  
7° MAX  
0.05 (0.002)  
0.15 (0.006)  
1.40 (0.055)  
1.60 (0.063)  
Figure 15. 208-Pin LQFP Package Outline Drawing  
Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.  
2) Drawing above does not reflect exact package pin count.  
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.  
4) For pin locations, please see Figure 16. For pin descriptions see the EP7312 User’s Manual.  
30  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Pin Diagram  
D[25]  
A[25]/DRA[2]  
D[26]  
A[26]/DRA[1]  
D[27]  
A[27]/DRA[0]  
104  
103  
102  
101  
100  
99  
157  
158  
159  
160  
161  
162  
163  
164  
VDDOSC  
MOSCIN  
MOSCOUT  
VSSOSC  
WAKEUP  
nPWRFL  
VSSIO  
98  
D[28]  
97  
A[6]  
D[6]  
A[5]  
D[5]  
VDDIO  
VSSIO  
A[4]  
D[4]  
A[3]  
D[3]  
A[2]  
VSSIO  
D[2]  
A[1]  
D[1]  
A[0]  
D[29]  
96  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
D[30]  
95  
D[31]  
94  
BUZ  
93  
COL[0]  
92  
COL[1]  
91  
TCLK  
90  
VDDIO  
89  
COL[2]  
88  
COL[3]  
87  
COL[4]  
86  
COL[5]  
85  
COL[6]  
84  
COL[7]  
83  
FB[0]  
82  
EP7312  
D[0]  
VSSIO  
81  
VSSCORE  
VDDCORE  
VSSIO  
VDDIO  
CL[2]  
CL[1]  
FRM  
FB[1]  
80  
SMPCLK  
79  
ADCOUT  
78  
208-Pin LQFP  
ADCCLK  
77  
DRIVE[0]  
76  
(Top View)  
DRIVE[1]  
75  
VDDIO  
74  
M
VSSIO  
73  
DD[3]  
DD[2]  
VSSIO  
DD[1]  
DD[0]  
VDDCORE  
72  
VSSCORE  
71  
nADCCS  
70  
ADCIN  
69  
SSIRXFR  
68  
nSDCS[1]  
SSIRXDA  
67  
nSDCS[0]  
SDQM[3]  
SDQM[2]  
VDDIO  
VSSIO  
SDCKE  
SSITXDA  
66  
SSITXFR  
65  
VSSIO  
64  
SSICLK  
63  
PD[0]/LEDFLSH  
62  
PD[1]  
61  
SDCLK  
PD[2]  
60  
nMWE/nSDWE  
nMOE/nSDCAS  
VSSIO  
PD[3]  
59  
TMS  
58  
VDDIO  
57  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
PD[4]  
56  
PD[5]  
55  
PD[6]/SDQM[0]  
54  
PD[7]/SDQM[1]  
53  
nCS[4]  
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram  
Note: 1. N/C should not be grounded but left as no connects.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
31  
EP7312  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Numeric Pin Listing  
Table 20. 208-Pin LQFP Numeric Pin Listing  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
1
2
3
4
5
nCS[5]  
VDDIO  
VSSIO  
1
Low  
O
Chip select 5  
Digital I/O power, 3.3 V  
I/O ground  
Pad Pwr  
Pad Gnd  
EXPCLK  
WORD  
1
1
I
Expansion clock input  
Word access select output  
Low  
Low  
O
Transfer direction / SDRAM  
RAS signal output  
6
7
WRITE/nSDRAS  
RUN/CLKEN  
1
1
O
O
Run output / clock enable  
output  
Low  
8
EXPRDY  
TXD[2]  
RXD[2]  
TDI  
1
1
I
Expansion port ready input  
UART 2 transmit data output  
UART 2 receive data input  
JTAG data input  
9
High  
O
10  
11  
12  
I
with p/u*  
I
VSSIO  
Pad Gnd  
I/O ground  
13  
14  
15  
16  
17  
18  
19  
PB[7]  
PB[6]  
PB[5]  
PB[4]  
PB[3]  
PB[2]  
PB[1]  
1
1
1
1
1
1
1
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO port B  
GPIO port B  
GPIO port B  
GPIO port B  
GPIO port B  
GPIO port B  
GPIO port B  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
20  
21  
22  
PB[0]  
VDDIO  
TDO  
I/O  
Pad Pwr  
O
GPIO port B  
Digital I/O power, 3.3 V  
JTAG data out  
Input  
1
1
1
1
1
1
1
1
1
Input  
23  
24  
25  
26  
27  
28  
29  
30  
PA[7]  
PA[6]  
PA[5]  
PA[4]  
PA[3]  
PA[2]  
PA[1]  
PA[0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO port A  
GPIO port A  
GPIO port A  
GPIO port A  
GPIO port A  
GPIO port A  
GPIO port A  
GPIO port A  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
31  
32  
33  
34  
35  
36  
37  
LEDDRV  
TXD[1]  
VSSIO  
PHDIN  
CTS  
1
1
1
Low  
High  
High  
O
IR LED drive  
UART 1 transmit data out  
I/O ground  
O
Pad Gnd  
I
I
I
I
Photodiode input  
UART 1 clear to send input  
UART 1 receive data input  
UART 1 data carrier detect  
RXD[1]  
DCD  
32  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
38  
39  
40  
41  
42  
43  
44  
DSR  
I
I
I
I
I
I
I
UART 1 data set ready input  
Test mode select input  
Test mode select input  
External interrupt  
nTEST[1]  
nTEST[0]  
EINT[3]  
With p/u*  
With p/u*  
nEINT[2]  
nEINT[1]  
nEXTFIQ  
External interrupt input  
External interrupt input  
External fast interrupt input  
GPIO port E / clock input  
mode select  
45  
46  
PE[2]/CLKSEL  
1
1
1
I/O  
I/O  
Input  
GPIO port E / boot mode  
select  
PE[1]/BOOTSEL[1]  
Input  
GPIO port E / Boot mode  
select  
47  
48  
49  
PE[0]/BOOTSEL[0]  
VSSRTC  
I/O  
RTC Gnd  
O
Input  
Real time clock ground  
Real time clock oscillator  
output  
RTCOUT  
Real time clock oscillator  
input  
50  
RTCIN  
I
51  
52  
VDDRTC  
N/C  
RTC power  
Real time clock power, 2.5 V  
GPIO port D / SDRAM byte  
lane mask  
53  
54  
PD[7]/SDQM[1]  
PD[6]/SDQM[0]  
1
1
Low  
Low  
I/O  
I/O  
GPIO port D / SDRAM byte  
lane mask  
55  
56  
57  
58  
59  
60  
61  
PD[5]  
PD[4]  
VDDIO  
TMS  
1
1
Low  
Low  
I/O  
I/O  
GPIO port D  
GPIO port D  
Pad Pwr  
I
Digital I/O power, 3.3 V  
JTAG mode select  
GPIO port D  
with p/u*  
PD[3]  
PD[2]  
PD[1]  
1
1
1
Low  
Low  
Low  
I/O  
I/O  
GPIO port D  
I/O  
GPIO port D  
GPIO port D / LED blinker  
output  
62  
63  
PD[0]/LEDFLSH  
SSICLK  
1
1
Low  
I/O  
I/O  
DAI/CODEC/SSI2 serial clock  
Input  
64  
65  
VSSIO  
Pad Gnd  
I/O  
I/O ground  
SSITXFR  
1
1
Low  
Low  
DAI/CODEC/SSI2 serial clock  
DAI/CODEC/SSI2 serial data  
output  
66  
SSITXDA  
O
DAI/CODEC/SSI2 serial data  
input  
67  
68  
SSIRXDA  
SSIRXFR  
I
I/O  
DAI/CODEC/SSI2 frame sync  
Input  
69  
70  
71  
72  
73  
74  
ADCIN  
nADCCS  
VSSCORE  
VDDCORE  
VSSIO  
I
SSI1 ADC serial input  
SSI1 ADC chip select  
Core ground  
1
High  
O
Core ground  
Core Pwr  
Pad Gnd  
Pad Pwr  
Core power, 2.5 V  
I/O ground  
VDDIO  
Digital I/O power, 3.3 V  
High /  
Low  
75  
76  
DRIVE[1]  
DRIVE[0]  
2
2
I/O  
I/O  
PWM drive output  
PWM drive output  
High /  
Low  
77  
78  
ADCCLK  
ADCOUT  
1
1
Low  
Low  
O
O
SSI1 ADC serial clock  
SSI1 ADC serial data output  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
33  
EP7312  
High-Performance, Low-Power System on Chip  
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
79  
80  
81  
82  
SMPCLK  
FB[1]  
1
Low  
O
SSI1 ADC sample clock  
PWM feedback input  
I/O ground  
I
VSSIO  
FB[0]  
Pad Gnd  
I
PWM feedback input  
Keyboard scanner column  
drive  
83  
84  
85  
86  
87  
88  
COL[7]  
COL[6]  
COL[5]  
COL[4]  
COL[3]  
COL[2]  
1
1
1
1
1
1
High  
High  
High  
High  
High  
High  
O
O
O
O
O
O
Keyboard scanner column  
drive  
Keyboard scanner column  
drive  
Keyboard scanner column  
drive  
Keyboard scanner column  
drive  
Keyboard scanner column  
drive  
89  
90  
VDDIO  
TCLK  
Pad Pwr  
I
Digital I/O power, 3.3 V  
JTAG clock  
Keyboard scanner column  
drive  
91  
92  
COL[1]  
COL[0]  
1
1
High  
High  
O
O
Keyboard scanner column  
drive  
93  
94  
95  
96  
97  
98  
BUZ  
D[31]  
D[30]  
D[29]  
D[28]  
VSSIO  
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
O
I/O  
Buzzer drive output  
Data I/O  
I/O  
Data I/O  
I/O  
Data I/O  
I/O  
Data I/O  
Pad Gnd  
I/O ground  
System byte address /  
SDRAM address  
99  
A[27]/DRA[0]  
D[27]  
2
1
2
1
2
Low  
Low  
Low  
Low  
Low  
O
I/O  
O
100  
101  
102  
103  
Data I/O  
System byte address /  
SDRAM address  
A[26]/DRA[1]  
D[26]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[25]/DRA[2]  
104  
105  
D[25]  
1
1
Low  
Low  
I/O  
O
Data I/O  
HALFWORD  
Halfword access select output  
System byte address /  
SDRAM address  
106  
A[24]/DRA[3]  
1
Low  
O
107  
108  
109  
VDDIO  
VSSIO  
D[24]  
Pad Pwr  
Pad Gnd  
I/O  
Digital I/O power, 3.3 V  
I/O ground  
1
1
1
1
1
1
1
Low  
Data I/O  
System byte address /  
SDRAM address  
110  
111  
112  
113  
114  
A[23]/DRA[4]  
D[23]  
Low  
Low  
Low  
Low  
Low  
Low  
O
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[22]/DRA[5]  
D[22]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[21]/DRA[6]  
115  
116  
D[21]  
I/O  
Data I/O  
VSSIO  
Pad Gnd  
I/O ground  
System byte address /  
SDRAM address  
117  
A[20]/DRA[7]  
1
Low  
O
34  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
118  
119  
120  
121  
D[20]  
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[19]/DRA[8]  
D[19]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[18]/DRA[9]  
122  
123  
124  
125  
D[18]  
VDDIO  
VSSIO  
nTRST  
I/O  
Pad Pwr  
Pad Gnd  
I
Data I/O  
Digital I/O power, 3.3 V  
I/O ground  
JTAG async reset input  
System byte address /  
SDRAM address  
126  
127  
128  
129  
130  
131  
132  
133  
134  
A[17]/DRA[10]  
D[17]  
1
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
O
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[16]/DRA[11]  
D[16]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[15]/DRA[12]  
D[15]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[14]/DRA[13]  
D[14]  
I/O  
O
Data I/O  
System byte address /  
SDRAM address  
A[13]/DRA[14]  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
D[13]  
A[12]  
D[12]  
A[11]  
VDDIO  
VSSIO  
D[11]  
A[10]  
D[10]  
A[9]  
1
1
1
1
Low  
Low  
Low  
Low  
I/O  
Data I/O  
System byte address  
Data I/O  
O
I/O  
O
System byte address  
Digital I/O power, 3.3 V  
I/O ground  
Pad Pwr  
Pad Gnd  
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
I/O  
Data I/O  
O
System byte address  
Data I/O  
I/O  
O
System byte address  
Data I/O  
D[9]  
I/O  
A[8]  
O
System byte address  
Data I/O  
D[8]  
I/O  
A[7]  
O
System byte address  
I/O ground  
VSSIO  
D[7]  
Pad Gnd  
1
Low  
I/O  
I
Data I/O  
nBATCHG  
Battery changed sense input  
External power supply sense  
input  
152  
nEXTPWR  
I
153  
154  
BATOK  
nPOR  
I
I
Battery OK input  
Schmitt  
Schmitt  
Power-on reset input  
Media change interrupt input /  
internal ROM boot enable  
155  
nMEDCHG/nBROM  
I
156  
157  
158  
159  
160  
nURESET  
VDDOSC  
MOSCIN  
I
User reset input  
Oscillator power in, 2.5 V  
Main oscillator input  
Main oscillator output  
Oscillator Ground  
Oscillator Power  
I
MOSCOUT  
VSSOSC  
O
Oscillator Ground  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
35  
EP7312  
High-Performance, Low-Power System on Chip  
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
WAKEUP  
nPWRFL  
A[6]  
Schmitt  
I
System wake up input  
Power fail sense input  
System byte address  
Data I/O  
I
1
1
1
1
Low  
Low  
Low  
Low  
O
D[6]  
I/O  
A[5]  
Out  
System byte address  
Data I/O  
D[5]  
I/O  
VDDIO  
VSSIO  
A[4]  
Pad Pwr  
Digital I/O power, 3.3 V  
I/O ground  
Pad Gnd  
1
1
2
1
2
Low  
Low  
Low  
Low  
Low  
O
System byte address  
Data I/O  
D[4]  
I/O  
A[3]  
O
System byte address  
Data I/O  
D[3]  
I/O  
A[2]  
O
System byte address  
I/O ground  
VSSIO  
D[2]  
Pad Gnd  
1
2
1
2
1
Low  
Low  
Low  
Low  
Low  
I/O  
Data I/O  
A[1]  
O
System byte address  
Data I/O  
D[1]  
I/O  
O
A[0]  
System byte address  
Data I/O  
D[0]  
I/O  
VSSCORE  
VDDCORE  
VSSIO  
VDDIO  
CL[2]  
CL[1]  
Core ground  
Core Pwr  
Pad ground  
Pad Power  
O
Core ground  
Core power, 2.5 V  
I/O ground  
Digital I/O power, 3.3 V  
LCD pixel clock out  
LCD line clock  
1
1
Low  
Low  
O
LCD frame synchronization  
pulse  
186  
FRM  
1
Low  
O
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
M
1
1
1
Low  
Low  
Low  
O
I/O  
LCD AC bias drive  
LCD serial display data  
LCD serial display data  
I/O ground  
DD[3]  
DD[2]  
I/O  
VSSIO  
DD[1]  
Pad Gnd  
I/O  
1
1
1
1
2
2
Low  
Low  
High  
High  
Low  
Low  
LCD serial display data  
LCD serial display data  
SDRAM chip select 1  
SDRAM chip select 0  
SDRAM byte lane mask  
SDRAM byte lane mask  
Digital I/O power, 3.3 V  
I/O ground  
DD[0]  
I/O  
nSDCS[1]  
nSDCS[0]  
SDQM[3]  
SDQM[2]  
VDDIO  
VSSIO  
SDCKE  
SDCLK  
O
O
I/O  
I/O  
Pad Pwr  
Pad Gnd  
I/O  
2
2
Low  
Low  
SDRAM clock enable output  
SDRAM clock out  
I/O  
ROM, expansion write  
enable/ SDRAM write enable  
control signal  
201  
202  
nMWE/nSDWE  
nMOE/nSDCAS  
1
1
High  
High  
O
O
ROM, expansion OP  
enable/SDRAM CAS control  
signal  
203  
204  
205  
VSSIO  
nCS[0]  
nCS[1]  
Pad Gnd  
I/O ground  
Chip select 0  
Chip select 1  
1
1
High  
High  
O
O
36  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Signal  
Type  
Description  
Strength  
206  
207  
208  
nCS[2]  
nCS[3]  
nCS[4]  
1
1
1
High  
High  
High  
O
O
O
Chip select 2  
Chip select 3  
Chip select 4  
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.  
Strength 1 = 4 ma  
Strength 2 = 12 ma  
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
37  
EP7312  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Package Characteristics  
TOP VIEW  
BOTTOM VIEW  
Ø0.08 M C  
Ø0.15 M C A B  
Ø0.25~0.35(204X)  
A1 CORNER  
A1 CORNER  
1
2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20  
20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
V
W
Y
U
V
W
Y
A
0.65  
12.35  
B
13±0.05  
)
C
0.15(4X  
Substrate Thickness :  
0.36  
Ball Pitch :  
0.65  
0.3  
Ball Diameter :  
Mold Thickness :  
SEATING PLANE  
C
0.53  
Figure 17. 204-Ball TFBGA Package  
38  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
nMWE/ SDQM[2  
A
B
C
D
E
VDDIO EXPCLK nCS[3] nCS[1]  
nSDCS[1] DD[2]  
FRM  
CL[1]  
GNDCORE D[1]  
A[2]  
D[4]  
A[5] nPWRFL MOSCOUT GNDIO  
GNDIO  
GNDIO  
A
B
C
D
E
nSDWE  
]
nMOE/  
nSDCAS  
WORD VDDIO nCS[5] nCS[2]  
RUN/  
SDCKE nSDCS[0] DD[1]  
M
CL[2]  
D[0]  
A[0]  
A[1]  
D[2]  
D[3]  
A[3]  
A[4]  
D[5]  
D[6] WAKEUP MOSCIN  
A[6] GNDOSC VDDOSC  
GNDIO  
GNDIO  
GNDIO nURESET  
EXPRDY VDDIO  
nCS[4] nCS[0] SDCLK SDQM[3] DD[0]  
DD[3]  
VDDCORE  
BATOK  
nPOR  
A[7]  
CLKEN  
PB[7]  
RXD[2] VDDIO  
GNDIO nBATCHG  
WRITE/  
TXD[2]  
nMEDCHG/n  
nEXTPWR  
BROM  
PB[4]  
PB[3]  
PB[1]  
PA[7]  
PA[4]  
PA[1]  
D[9]  
nSDRAS  
F
PB[6]  
PB[2]  
TDO  
TDI  
D[7]  
D[8]  
A[8]  
A[9]  
D[10]  
D[11]  
A[12]  
F
G
H
J
PB[5]  
PB[0]  
PA[6]  
VDDIO  
G
H
J
A[10]  
A[11]  
D[14]  
D[12]  
D[13]  
A[13]/  
DRA[14]  
PA[5]  
PA[2]  
A[14]/  
DRA[13]  
K
L
D[15]  
K
L
A[16]/  
DRA[11]  
TXD[1] LEDDRV PA[3]  
VDDIO  
A[15]/  
D[16]  
A[17]/  
M
N
P
R
RXD[1]  
CTS  
PA[0]  
nTRST  
M
N
P
R
DRA[12] DRA[10]  
A[18]/  
DRA[9]  
DSR nTEST[1] PHDIN  
D[17]  
D[18]  
D[19]  
A[20]/  
DRA[7]  
EINT[3] nEINT[2] DCD  
PE2/  
D[20]  
A[19]/  
DRA[8]  
A[21]/  
DRA6  
nEXTFIQ  
nTEST[0]  
D[22]  
D[23]  
CLKSEL  
PE[1]/  
BOOT  
PE[0]/  
A[22]/  
DRA5  
T
BOOT nEINT[1]  
D[21]  
T
SEL[1] SEL[0]  
HALF  
A[23]/  
DRA4  
U
V
GNDRTC RTCOUT RTCIN  
D[24]  
VDDIO  
VDDIO  
U
V
WORD  
PD[7]/  
SSIRXD  
A
A[26]/  
A[24]/  
DRA3  
VDDRTC GNDIO GNDIO  
GNDIO GNDIO GNDIO  
PD[4] PD[2] SSICLK  
nADCCS  
VDDIO  
ADCCLK COL[7] COL[4] TCLK BUZ  
D[29]  
VDDIO  
D[26]  
SDQM[1]  
DRA[1]  
PD[6]/  
SDQM[0]  
A[27]/  
DRA[0]  
W
TMS  
PD[1] SSITXFR SSIRXFR GNDCORE DRIVE[1] ADCOUT FB[0] COL[5] COL[2] COL[0] D[30]  
D[25]  
W
PD[0]/  
A[25]/  
DRA[2]  
Y
GNDIO GNDIO GNDIO  
PD[5]  
PD[3]  
LED SSITXDA ADCIN VDDCORE DRIVE[0] SMPCLK FB[1] COL[6] COL[3] COL[1] D[31]  
FLSH  
D[28]  
D[27]  
VDDIO  
Y
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
39  
EP7312  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Ball Listing  
The list is ordered by ball location.  
Table 21. 204-Ball TFBGA Ball Listing  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Digital I/O power,  
3.3 V  
A1  
VDDIO  
Pad power  
A2  
EXPCLK  
nCS[3]  
nCS[1]  
1
1
1
1
2
1
1
1
1
I
Expansion clock input  
Chip select 3  
A3  
High  
High  
High  
Low  
High  
Low  
Low  
Low  
O
A4  
O
Chip select 1  
A5  
nMWE/nSDWE  
SDQM[2]  
nSDCS[1]  
DD[2]  
O
ROM, expansion write enable/ SDRAM write enable control signal  
SDRAM byte lane mask  
SDRAM chip select 2  
LCD serial display data  
LCD frame synchronization pulse  
LCD line clock  
A6  
O
A7  
O
A8  
O
A9  
FRM  
O
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
CL[1]  
O
VSSCORE  
D[1]  
Core ground  
Core ground  
1
2
1
1
Low  
Low  
Low  
Low  
I/O  
Data I/O  
A[2]  
O
System byte address  
Data I/O  
D[4]  
I/O  
A[5]  
O
System byte address  
Power fail sense input  
Main oscillator out  
nPWRFL  
MOSCOUT  
VSSIO  
VSSIO  
VSSIO  
WORD  
VDDIO  
nCS[5]  
nCS[2]  
nMOE/nSDCAS  
SDCKE  
nSDCS[0]  
DD[1]  
I
O
Pad ground  
I/O ground  
Pad ground  
I/O ground  
Pad ground  
I/O ground  
1
Low  
O
Word access select output  
Digital I/O power, 3.3 V  
Chip select 5  
B2  
Pad power  
B3  
1
1
1
2
1
1
1
1
1
2
2
Low  
High  
High  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Low  
O
O
B4  
Chip select 2  
B5  
O
ROM, expansion OP enable/SDRAM CAS control signal  
SDRAM clock enable output  
SDRAM chip select 0  
LCD serial display data  
LCD AC bias drive  
B6  
O
B7  
O
B8  
O
B9  
M
O
B10  
B11  
B12  
B13  
CL[2]  
0
LCD pixel clock out  
Data I/O  
D[0]  
I/O  
O
A[1]  
System byte address  
Data I/O  
D[3]  
I/O  
40  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
B14  
A[4]  
1
1
Low  
Low  
O
System byte address  
Data I/O  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
D[6]  
I/O  
WAKEUP  
MOSCIN  
VSSIO  
VSSIO  
Schmitt  
I
System wake up input  
Main oscillator input  
I/O ground  
I
Pad ground  
Pad ground  
I/O ground  
nURESET  
RUN/CLKEN  
EXPRDY  
Schmitt  
I
0
I
User reset input  
1
1
Low  
Run output / clock enable output  
Expansion port ready input  
C2  
Digital I/O power,  
3.3 V  
C3  
VDDIO  
Pad power  
C4  
nCS[4]  
nCS[0]  
SDCLK  
SDQM[3]  
DD[0]  
1
1
2
2
1
1
High  
High  
Low  
Low  
Low  
Low  
O
Chip select 4  
C5  
O
Chip select 0  
C6  
O
SDRAM clock out  
SDRAM byte lane mask  
LCD serial display data  
LCD serial display data  
Digital core power, 2.5 V  
System byte address  
Data I/O  
C7  
O
C8  
O
C9  
DD[3]  
O
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
VDDCORE  
A[0]  
Core power  
2
1
2
1
1
Low  
Low  
Low  
Low  
Low  
O
D[2]  
I/O  
A[3]  
O
System byte address  
Data I/O  
D[5]  
I/O  
A[6]  
O
System byte address  
PLL ground  
VSSOSC  
VDDOSC  
VSSIO  
BATOK  
Oscillator ground  
Oscillator power  
Pad ground  
I
Oscillator power in, 2.5V  
I/O ground  
Battery ok input  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
41  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Schmitt  
1
C20  
nPOR  
PB[7]  
I
I
Power-on reset input  
GPIO port B  
D1  
Input  
D2  
RXD[2]  
VDDIO  
VSSIO  
I
UART 2 receive data input  
Digital I/O power, 3.3V  
I/O ground  
D3  
Pad power  
D18  
D19  
D20  
Pad ground  
nBATCHG  
A[7]  
I
Battery changed sense input  
System byte address  
1
1
Low  
O
E1  
PB[4]  
I
GPIO port B  
Input  
E2  
TXD[2]  
1
1
High  
Low  
O
O
I
UART 2 transmit data output  
E3  
WRITE/nSDRAS  
nMEDCHG/nBROM  
nEXTPWR  
D[9]  
Transfer direction / SDRAM RAS signal output  
Media change interrupt input / internal ROM boot enable  
External power supply sense input  
Data I/O  
E18  
E19  
E20  
I
1
1
Low  
I/O  
F1  
F2  
PB[3]  
PB[6]  
I/O  
I/O  
GPIO port B  
GPIO port B  
Input  
1
Input  
F3  
TDI  
with p/u*  
I
JTAG data input  
Data I/O  
F18  
F19  
F20  
D[7]  
A[8]  
D[10]  
1
1
1
Low  
Low  
Low  
I/O  
O
System byte address  
Data I/O  
I/O  
G1  
PB[1]  
PB[2]  
PB[5]  
D[8]  
1
1
1
1
I/O  
I/O  
I/O  
I/O  
Input  
G2  
GPIO port B  
GPIO port B  
Data I/O  
Input  
G3  
Input  
G18  
Input  
G19  
G20  
A[9]  
1
1
Low  
Low  
O
System byte address  
Data I/O  
D[11]  
I/O  
H1  
PA[7]  
TDO  
PB[0]  
1
1
1
I/O  
O
GPIO port A  
JTAG data out  
GPIO port B  
Input  
H[2]  
H[3]  
Input  
I/O  
Input  
H[18]  
H19  
A[10]  
D[12]  
A[12]  
1
1
1
Low  
Low  
Low  
O
I/O  
O
System byte address  
Data I/O  
H20  
System byte address  
J1  
PA[4]  
1
I/O  
GPIO port A  
Input  
42  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
J2  
PA[5]  
PA[6]  
1
1
I/O  
I/O  
GPIO port A  
GPIO port A  
Input  
J3  
Input  
J18  
J19  
J20  
A[11]  
D[13]  
1
1
1
Low  
Low  
Low  
O
I/O  
O
System byte address  
Data I/O  
A[13]/DRA[14]  
PA[1]  
System byte address / SDRAM address  
GPIO port A  
K1  
K2  
1
1
I/O  
I/O  
Input  
PA[2]  
GPIO port A  
Input  
K3  
VDDIO  
Pad power  
Digital I/O power, 3.3V  
Data I/O  
K18  
K19  
K20  
L1  
D[14]  
1
1
1
1
1
Low  
Low  
Low  
High  
Low  
I/O  
O
A[14]/DRA[13]  
D[15]  
System byte address / SDRAM address  
Data I/O  
I/O  
O
TXD[1]  
UART 1 transmit data out  
IR LED drive  
L2  
LEDDRV  
O
L3  
PA[3]  
1
I/O  
GPIO port A  
Input  
L18  
L19  
L20  
M1  
VDDIO  
D[16]  
Pad power  
Digital I/O power, 3.3V  
1
1
Low  
Low  
I/O  
Data I/O  
A[16]/DRA[11]  
RXD[1]  
CTS  
O
I
System byte address / SDRAM address  
UART 1 receive data input  
UART 1 clear to send input  
M2  
I
M3  
PA[0]  
1
I/O  
GPIO port A  
Input  
M18  
M19  
M20  
N1  
A[15]/DRA[12]  
A[17]/DRA[10]  
nTRST  
1
1
Low  
Low  
O
O
I
System byte address / SDRAM address  
System byte address / SDRAM address  
JTAG async reset input  
UART 1 data set ready input  
Test mode select input  
Photodiode input  
DSR  
I
N2  
nTEST[1]  
PHDIN  
With p/u*  
I
N3  
I
N18  
N19  
N20  
P1  
D[17]  
1
1
1
Low  
Low  
Low  
I/O  
I/O  
O
I
Data I/O  
D[19]  
Data I/O  
A[18]/DRA[9]  
EINT[3]  
System byte address / SDRAM address  
External interrupt  
P2  
nEINT[2]  
DCD  
I
External interrupt input  
UART 1 data carrier detect  
Data I/O  
P3  
I
P18  
P19  
D[18]  
1
1
Low  
Low  
I/O  
O
A[20]/DRA[7]  
System byte address / SDRAM address  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
43  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
P20  
D[20]  
1
Low  
I/O  
I
Data I/O  
R1  
R2  
nEXTFIQ  
External fast interrupt input  
PE[2]/CLKSEL  
1
I/O  
GPIO port E / clock input mode select  
Input  
R3  
nTEST[0]  
A[19]/DRA[8]  
D[22]  
With p/u*  
I
Test mode select input  
R18  
R19  
R20  
1
1
1
Low  
Low  
Low  
O
System byte address / SDRAM address  
Data I/O  
I/O  
O
A[21]/DRA[6]  
System byte address / SDRAM address  
T1  
T2  
PE[1]/BOOTSEL[1]  
PE[0]/BOOTSEL[0]  
1
1
I/O  
I/O  
GPIO port E / boot mode select  
GPIO port E / boot mode select  
Input  
Input  
T3  
nEINT[1]  
D[21]  
I
External interrupt input  
Data I/O  
T18  
T19  
T20  
U1  
1
1
1
Low  
Low  
Low  
I/O  
D[23]  
I/O  
Data I/O  
A[22]/DRA[5]  
VSSRTC  
RTCOUT  
RTCIN  
O
System byte address / SDRAM address  
Real time clock ground  
Real time clock oscillator output  
Real time clock oscillator input  
Halfword access select output  
Data I/O  
RTC ground  
U2  
O
U3  
I/O  
U18  
U19  
U20  
V1  
HALFWORD  
D[24]  
1
1
1
Low  
Low  
Low  
O
I/O  
O
A[23]/DRA[4]  
VDDRTC  
VSSIO  
System byte address / SDRAM address  
Real time clock power, 2.5V  
I/O ground  
RTC power  
Pad ground  
Pad ground  
I/O  
V2  
V3  
VSSIO  
I/O ground  
V4  
PD[7]/SDQM[1]  
PD[4]  
1
1
1
Low  
Low  
Low  
GPIO port D / SDRAM byte lane mask  
GPIO port D  
V5  
I/O  
V6  
PD[2]  
I/O  
GPIO port D  
V7  
SSICLK  
1
I/O  
DAI/CODEC/SSI2 serial clock  
Input  
V8  
SSIRXDA  
nADCCS  
VDDIO  
ADCCLK  
COL[7]  
COL[4]  
TCLK  
I/O  
DAI/CODEC/SSI2 serial data input  
SSI1 ADC chip select  
Digital I/O power, 3.3V  
SSI1 ADC serial clock  
Keyboard scanner column drive  
Keyboard scanner column drive  
JTAG clock  
V9  
1
High  
O
V10  
V11  
V12  
V13  
V14  
V15  
V16  
Pad power  
1
1
1
Low  
High  
High  
O
O
O
I
BUZ  
1
1
Low  
Low  
O
I/O  
Buzzer drive output  
D[29]  
Data I/O  
44  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
V17  
A[26]/DRA[1]  
2
Low  
O
System byte address / SDRAM address  
Digital I/O power,  
3.3 V  
V18  
V19  
VDDIO  
VDDIO  
Pad power  
Digital I/O power,  
3.3 V  
Pad power  
V20  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
A[24]/DRA[3]  
VSSIO  
Low  
O
System byte address / SDRAM address  
I/O ground  
Pad ground  
VSSIO  
Pad ground  
I/O ground  
VSSIO  
Pad ground  
I/O ground  
PD[6]/SDQM[0]  
TMS  
1
Low  
I/O  
I
GPIO port D / SDRAM byte lane mask  
JTAG mode select  
with p/u*  
PD[1]  
1
1
Low  
Low  
I/O  
I/O  
GPIO port D  
SSITXFR  
DAI/CODEC/SSI2 frame sync  
W8  
SSIRXFR  
VSSCORE  
DRIVE[1]  
1
I/O  
Core Ground  
I/O  
DAI/CODEC/SSI2 frame sync  
Core Ground  
Input  
W9  
High /  
Low  
W10  
2
1
PWM drive output  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
ADCOUT  
FB[0]  
Low  
O
SSI1 ADC serial data output  
PWM feedback input  
Keyboard scanner column drive  
Keyboard scanner column drive  
Keyboard scanner column drive  
Data I/O  
I
COL[5]  
COL[2]  
COL[0]  
D[30]  
1
1
1
1
2
1
High  
High  
High  
Low  
Low  
Low  
O
O
O
I/O  
A[27]/DRA[0]  
D[26]  
O
System byte address / SDRAM address  
Data I/O  
I/O  
VDDIO  
D[25]  
Pad power  
Digital I/O power, 3.3V  
Data I/O  
1
Low  
I/O  
VSSIO  
Pad ground  
I/O ground  
Y2  
VSSIO  
Pad ground  
I/O ground  
Y3  
VSSIO  
Pad ground  
I/O ground  
Y4  
PD[5]  
1
1
1
1
Low  
Low  
Low  
Low  
I/O  
GPIO port D  
Y5  
PD[3]  
I/O  
GPIO port D  
Y6  
PD[0]/LEDFLSH  
SSITXDA  
ADCIN  
I/O  
GPIO port D / LED blinker output  
DAI/CODEC/SSI2 serial data output  
SSI1 ADC serial input  
Digital core power, 2.5V  
Y7  
O
Y8  
I
Y9  
VDDCORE  
Core power  
Y10  
DRIVE[0]  
2
I/O  
PWM drive output  
Input  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
45  
EP7312  
High-Performance, Low-Power System on Chip  
Table 21. 204-Ball TFBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
Y11  
SMPCLK  
FB[1]  
1
Low  
O
SSI1 ADC sample clock  
PWM feedback input  
Keyboard scanner column drive  
Keyboard scanner column drive  
Keyboard scanner column drive  
Data I/O  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
I
COL[6]  
COL[3]  
COL[1]  
D[31]  
1
1
1
1
1
1
2
High  
High  
High  
Low  
Low  
Low  
Low  
O
O
O
I/O  
I/O  
D[28]  
Data I/O  
D[27]  
I/O  
Data I/O  
A[25]/DRA[2]  
VDDIO  
O
System byte address / SDRAM address  
Digital I/O power, 3.3V  
Pad power  
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.  
Strength 1 = 4 ma  
Strength 2 = 12 ma  
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.  
256-Ball PBGA Package Characteristics  
Figure 18. 256-Ball PBGA Package  
Note: 1) For pin locations see Table 22.  
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter  
3) Before beginning any new EP7312 design, contact Cirrus Logic for the latest package information.  
46  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
0.85 (0.034)  
±0.05 (.002)  
17.00 (0.669)  
±0.20 (.008)  
0.40 (0.016)  
±0.05 (.002)  
Pin 1 Corner  
15.00 (0.590)  
±0.20 (.008)  
D1  
30° TYP  
Pin 1 Indicator  
17.00 (0.669)  
±0.20 (.008)  
E1  
15.00 (0.590)  
±0.20 (.008)  
2 Layer  
0.36 (0.014)  
±0.09 (0.004)  
TOP VIEW  
SIDE VIEW  
D
17.00 (0.669)  
Pin 1 Corner  
1.00 (0.040)  
1.00 (0.040)  
REF  
E
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1.00 (0.040)  
REF  
A
B
C
D
E
F
G
H
J
1.00 (0.040)  
17.00 (0.669)  
K
L
M
N
P
R
T
0.50  
R
BOTTOM VIEW  
3 Places  
JEDEC #: MO-151  
Ball Diameter: 0.50 mm 0.10 mm  
17 ¥ 17 ¥ 1.61 mm body  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
47  
EP7312  
High-Performance, Low-Power System on Chip  
256-Ball PBGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
VDDIO  
nCS[4]  
nCS[1]  
SDCLK  
SDQM[3]  
DD[1]  
M
VDDIO  
D[0]  
D[2]  
A[3]  
VDDIO  
A[6]  
MOSCOUT VDDOSC  
VSSIO  
A
B
C
D
E
nMOE/  
nSDCAS  
nCS[5]  
VDDIO  
VDDIO  
EXPCLK  
EXPRDY  
PB[7]  
nCS[3]  
VSSIO  
VSSIO  
TDI  
VDDIO  
VSSIO  
nCS[2]  
VSSIO  
nSDCS[1]  
VSSIO  
DD[2]  
VSSIO  
CL[1]  
VDDIO  
CL[2]  
VDDCORE  
VSSIO  
VSSRTC  
A[0]  
D[1]  
VSSIO  
D[4]  
A[2]  
VSSIO  
nPWRFL  
VSSOSC  
VSSRTC  
A[7]  
A[4]  
VDDIO  
MOSCIN  
VSSIO  
BATOK  
A[8]  
A[5]  
WAKEUP  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
nTRST  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
nPOR  
D[7]  
nURESET  
nEXTPWR  
D[8]  
VDDIO  
VDDIO  
WORD  
TXD[2]  
PB[4]  
VSSIO  
VDDIO  
WRITE/  
nSDRAS  
nMWE/  
nSDWE  
nSDCS[0]  
SDQM[2]  
SDCKE  
VSSRTC  
PB[2]  
nMEDCHG/  
nBROM  
RXD[2]  
PB[5]  
nCS[0]  
VSSIO  
FRM  
D[5]  
D[9]  
D[10]  
RUN/  
CLKEN  
F
PB[3]  
VSSIO  
TDO  
DD[3]  
A[1]  
D[6]  
nBATCHG  
A[9]  
D[11]  
D[12]  
D[14]  
D[16]  
VDDIO  
VDDIO  
D[13]  
F
G
H
J
PB[1]  
VDDIO  
PA[5]  
PB[6]  
PA[6]  
VSSCore  
PB[0]  
DD[0]  
D[3]  
VSSRTC  
A[10]  
G
H
J
A[13]/  
DRA[14]  
PA[7]  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
VSSIO  
PD[4]  
PA[4]  
VSSRTC  
VSSRTC  
ADCIN  
VSSRTC  
DRIVE[1]  
ADCCLK  
VDDIO  
ADCOUT  
VSSRTC  
VSSRTC  
COL[4]  
COL[6]  
FB[0]  
A[11]  
A[12]  
D[15]  
A[17]/  
DRA[10]  
A[16]/  
DRA[11]  
A[15]/  
DRA[12]  
A[14]/  
DRA[13]  
PA[3]  
PA[1]  
PA[2]  
PA[0]  
TXD[1]  
EINT[3]  
VSSRTC  
VDDIO  
PD[2]  
CTS  
D[17]  
K
L
LEDDRV  
RXD[1]  
nTEST[0]  
nEXTFIQ  
VSSRTC  
RTCIN  
PHDIN  
DSR  
DCD  
nTEST[1]  
VSSRTC  
TCLK  
D[31]  
D[20]  
VSSRTC  
D[27]  
D[19]  
D[18]  
VDDIO  
K
L
PE[2]/  
CLKSEL  
PD[0]/  
LEDFLSH  
A[22]/  
DRA[5]  
A[21]/  
DRA[6]  
A[18]/  
DRA[9]  
A[19]/  
DRA[8]  
nEINT[1]  
PE[0]/  
BOOTSEL[0]  
A[23]/  
DRA[4]  
A[20]/  
DRA[7]  
M
N
P
R
T
nEINT[2]  
TMS  
PD[5]  
SSITXFR  
SSIRXDA  
VSSIO  
COL[0]  
COL[2]  
VDDIO  
COL[3]  
COL[5]  
VSSIO  
D[26]  
VSSIO  
D[30]  
BUZ  
D[21]  
D[23]  
VDDIO  
M
N
P
R
T
PE[1]/  
BOOTSEL[1]  
VDDIO  
VSSIO  
PD[1]  
PD[3]  
SMPCLK  
VSSIO  
COL[7]  
FB[1]  
D[29]  
HALFWORD  
VDDIO  
D[22]  
D[24]  
VDDIO  
D[25]  
RTCOUT  
VDDIO  
VDDIO  
SSITXDA  
SSICLK  
VSSIO  
VSSIO  
COL[1]  
VDDIO  
A[27]/  
DRA[0]  
A[25]/  
DRA[2]  
A[24]\  
DRA[3]  
nADCCS  
VDDIO  
PD[7]/  
SDQM[1]  
PD[6]/  
SDQM[0]  
A[26]/  
DRA[1]  
VDDRTC  
SSIRXFR VDDCORE DRIVE[0]  
D[28]  
VSSIO  
48  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
256-Ball PBGA Ball Listing  
The list is ordered by ball location.  
Table 22. 256-Ball PBGA Ball Listing  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
A1  
A2  
VDDIO  
nCS[4]  
nCS[1]  
SDCLK  
SDQM[3]  
DD[1]  
Pad power  
Digital I/O power, 3.3 V  
Chip select 4  
1
1
2
2
1
1
High  
High  
Low  
Low  
Low  
Low  
O
A3  
O
Chip select 1  
A4  
O
SDRAM clock out  
SDRAM byte lane mask  
LCD serial display data  
LCD AC bias drive  
Digital I/O power, 3.3 V  
Data I/O  
A5  
O
A6  
O
A7  
M
O
A8  
VDDIO  
D[0]  
Pad power  
A9  
1
1
2
Low  
Low  
Low  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
D[2]  
I/O  
Data I/O  
A[3]  
O
System byte address  
Digital I/O power, 3.3V  
System byte address  
Main oscillator out  
Oscillator power in, 2.5 V  
I/O ground  
VDDIO  
A[6]  
Pad power  
1
Low  
O
MOSCOUT  
VDDOSC  
VSSIO  
nCS[5]  
VDDIO  
nCS[3]  
nMOE/nSDCAS  
VDDIO  
nSDCS[1]  
DD[2]  
O
Oscillator power  
Pad ground  
1
Low  
O
Chip select 5  
B2  
Pad power  
Digital I/O power, 3.3 V  
Chip select 3  
B3  
1
1
High  
High  
O
B4  
O
Pad power  
O
ROM, expansion OP enable/SDRAM CAS control signal  
Digital I/O power, 3.3 V  
SDRAM chip select 1  
LCD serial display data  
LCD line clock  
B5  
B6  
1
1
1
High  
Low  
Low  
B7  
O
B8  
CL[1]  
O
B9  
VDDCORE  
D[1]  
Core power  
I/O  
Digital core power, 2.5V  
Data I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
1
Low  
Low  
Low  
Low  
A[2]  
2
O
System byte address  
System byte address  
System byte address  
System wake up input  
Digital I/O power, 3.3 V  
User reset input  
A[4]  
1
1
O
A[5]  
O
WAKEUP  
VDDIO  
nURESET  
VDDIO  
EXPCLK  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
Schmitt  
I
Pad power  
I
Schmitt  
1
Pad power  
I
Digital I/O power, 3.3V  
Expansion clock input  
I/O ground  
C2  
C3  
Pad ground  
Pad power  
Pad ground  
Pad ground  
Pad ground  
Pad power  
Pad ground  
Pad ground  
Pad ground  
Pad power  
Pad ground  
C4  
Digital I/O power, 3.3 V  
I/O ground  
C5  
C6  
I/O ground  
C7  
I/O ground  
C8  
Digital I/O power, 3.3 V  
I/O ground  
C9  
C10  
C11  
C12  
C13  
I/O ground  
I/O ground  
Digital I/O power, 3.3 V  
I/O ground  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
49  
EP7312  
High-Performance, Low-Power System on Chip  
Table 22. 256-Ball PBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
C14  
C15  
C16  
D1  
VSSIO  
nPOR  
Pad ground  
I/O ground  
Schmitt  
I
Power-on reset input  
External power supply sense input  
nEXTPWR  
WRITE/nSDRAS  
EXPRDY  
VSSIO  
I
1
1
Low  
O
Transfer direction / SDRAM RAS signal output  
Expansion port ready input  
I/O ground  
D2  
I
D3  
Pad ground  
D4  
VDDIO  
Pad power  
Digital I/O power, 3.3V  
Chip select 2  
D5  
nCS[2]  
1
1
1
1
High  
High  
High  
Low  
O
D6  
nMWE/nSDWE  
nSDCS[0]  
CL[2]  
O
ROM, expansion write enable/ SDRAM write enable control signal  
SDRAM chip select 2  
LCD pixel clock out  
D7  
O
D8  
O
D9  
VSSRTC  
D[4]  
Core ground  
Real time clock ground  
Data I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
1
Low  
I/O  
nPWRFL  
MOSCIN  
VDDIO  
I
Power fail sense input  
Main oscillator input  
I
Pad power  
Digital I/O power, 3.3V  
I/O ground  
VSSIO  
Pad ground  
D[7]  
1
1
Low  
Low  
I/O  
I/O  
I
Data I/O  
D[8]  
Data I/O  
RXD[2]  
UART 2 receive data input  
E2  
PB[7]  
1
I
GPIO port B  
Input  
E3  
E4  
TDI  
WORD  
VSSIO  
with p/u*  
1
I
JTAG data input  
Low  
O
Word access select output  
E5  
Pad ground  
I/O ground  
E6  
nCS[0]  
1
2
1
2
1
High  
Low  
Low  
Low  
Low  
O
Chip select 0  
E7  
SDQM[2]  
FRM  
O
SDRAM byte lane mask  
E8  
O
LCD frame synchronization pulse  
E9  
A[0]  
O
System byte address  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
D[5]  
I/O  
Data I/O  
VSSOSC  
VSSIO  
Oscillator ground  
PLL ground  
Pad ground  
I/O ground  
nMEDCHG/nBROM  
VDDIO  
D[9]  
I
Pad power  
I/O  
Media change interrupt input / internal ROM boot enable  
Digital I/O power, 3.3V  
Data I/O  
1
1
Low  
Low  
D[10]  
I/O  
Data I/O  
F1  
F2  
PB[5]  
PB[3]  
1
1
I
I
GPIO port B  
GPIO port B  
Input  
Input  
F3  
F4  
VSSIO  
TXD[2]  
RUN/CLKEN  
VSSIO  
SDCKE  
DD[3]  
Pad ground  
I/O ground  
1
1
High  
Low  
O
UART 2 transmit data output  
Run output / clock enable output  
I/O ground  
F5  
O
F6  
Pad ground  
F7  
2
1
2
1
Low  
Low  
Low  
Low  
O
SDRAM clock enable output  
LCD serial display data  
System byte address  
Data I/O  
F8  
O
F9  
A[1]  
O
F10  
F11  
F12  
D[6]  
I/O  
VSSRTC  
BATOK  
RTC ground  
I
Real time clock ground  
Battery OK input  
50  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 22. 256-Ball PBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
F13  
F14  
F15  
F16  
nBATCHG  
VSSIO  
D[11]  
I
Battery changed sense input  
I/O ground  
Pad ground  
I/O  
1
1
Low  
Data I/O  
VDDIO  
Pad power  
Digital I/O power, 3.3V  
G1  
G2  
G3  
PB[1]  
VDDIO  
TDO  
I
Pad power  
O
GPIO port B  
Input  
Digital I/O power, 3.3V  
JTAG data out  
1
1
1
Input  
G4  
G5  
PB[4]  
PB[6]  
I
I
GPIO port B  
GPIO port B  
Input  
Input  
G6  
G7  
VSSCore  
VSSRTC  
DD[0]  
D[3]  
Core ground  
Core ground  
RTC ground  
Real time clock ground  
LCD serial display data  
Data I/O  
G8  
1
1
Low  
Low  
O
G9  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
VSSRTC  
A[7]  
RTC ground  
Real time clock ground  
System byte address  
System byte address  
System byte address  
I/O ground  
1
1
1
Low  
Low  
Low  
O
A[8]  
O
A[9]  
O
Pad ground  
I/O  
VSSIO  
D[12]  
1
1
Low  
Low  
Data I/O  
D[13]  
I/O  
Data I/O  
H1  
PA[7]  
1
1
I/O  
GPIO port A  
Input  
H2  
H3  
H4  
PA[5]  
VSSIO  
PA[4]  
I/O  
Pad ground  
I/O  
GPIO port A  
I/O ground  
Input  
1
1
1
1
GPIO port A  
Input  
H5  
H6  
H7  
PA[6]  
PB[0]  
PB[2]  
I/O  
I/O  
I/O  
GPIO port A  
GPIO port B  
GPIO port B  
Input  
Input  
Input  
H8  
VSSRTC  
VSSRTC  
A[10]  
RTC ground  
Real time clock ground  
Real time clock ground  
System byte address  
System byte address  
System byte address  
H9  
RTC ground  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
1
1
1
1
Low  
Low  
Low  
Low  
O
A[11]  
O
A[12]  
O
A[13]/DRA[14]  
VSSIO  
O
Pad ground  
I/O  
System byte address / SDRAM address  
I/O ground  
Data I/O  
Data I/O  
D[14]  
1
1
Low  
Low  
D[15]  
I/O  
J1  
PA[3]  
1
1
I/O  
GPIO port A  
Input  
J2  
J3  
J4  
PA[1]  
VSSIO  
PA[2]  
I/O  
Pad ground  
I/O  
GPIO port A  
I/O ground  
Input  
1
GPIO port A  
Input  
J5  
J6  
PA[0]  
1
1
I/O  
O
GPIO port A  
Input  
TXD[1]  
High  
UART 1 transmit data out  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
51  
EP7312  
High-Performance, Low-Power System on Chip  
Table 22. 256-Ball PBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
J7  
J8  
CTS  
VSSRTC  
VSSRTC  
A[17]/DRA[10]  
A[16]/DRA[11]  
A[15]/DRA[12]  
A[14]/DRA[13]  
nTRST  
I
UART 1 clear to send input  
Real time clock ground  
Real time clock ground  
RTC ground  
J9  
RTC ground  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
1
1
1
1
Low  
Low  
Low  
Low  
O
System byte address / SDRAM address  
System byte address / SDRAM address  
System byte address / SDRAM address  
System byte address / SDRAM address  
JTAG async reset input  
Data I/O  
O
O
O
I
D[16]  
1
1
1
Low  
Low  
Low  
I/O  
D[17]  
I/O  
Data I/O  
LEDDRV  
PHDIN  
O
IR LED drive  
K2  
I
Photodiode input  
K3  
VSSIO  
Pad ground  
I/O ground  
K4  
DCD  
I
UART 1 data carrier detect  
Test mode select input  
External interrupt  
K5  
nTEST[1]  
EINT[3]  
VSSRTC  
ADCIN  
With p/u*  
I
K6  
I
K7  
RTC ground  
Real time clock ground  
SSI1 ADC serial input  
Keyboard scanner column drive  
JTAG clock  
K8  
I
K9  
COL[4]  
1
High  
O
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
TCLK  
I
D[20]  
1
1
1
Low  
Low  
Low  
I/O  
Data I/O  
D[19]  
I/O  
Data I/O  
D[18]  
I/O  
Data I/O  
VSSIO  
Pad ground  
I/O ground  
VDDIO  
Pad power  
Digital I/O power, 3.3V  
Digital I/O power, 3.3V  
UART 1 receive data input  
UART 1 data set ready input  
Digital I/O power, 3.3V  
External interrupt input  
VDDIO  
Pad power  
RXD[1]  
I
L2  
DSR  
I
L3  
VDDIO  
Pad power  
I
L4  
nEINT[1]  
L5  
PE[2]/CLKSEL  
1
1
I/O  
GPIO port E / clock input mode select  
Input  
L6  
L7  
VSSRTC  
PD[0]/LEDFLSH  
VSSRTC  
RTC ground  
Real time clock ground  
Low  
I/O  
GPIO port D / LED blinker output  
Real time clock ground  
L8  
Core ground  
L9  
COL[6]  
1
1
High  
Low  
O
Keyboard scanner column drive  
Data I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
D[31]  
I/O  
VSSRTC  
RTC ground  
Real time clock ground  
A[22]/DRA[5]  
A[21]/DRA[6]  
VSSIO  
1
1
Low  
Low  
O
System byte address / SDRAM address  
System byte address / SDRAM address  
I/O ground  
O
Pad ground  
A[18]/DRA[9]  
A[19]/DRA[8]  
nTEST[0]  
nEINT[2]  
1
1
Low  
Low  
O
System byte address / SDRAM address  
System byte address / SDRAM address  
Test mode select input  
O
With p/u*  
I
I
External interrupt input  
VDDIO  
Pad power  
Digital I/O power, 3.3V  
M4  
M5  
PE[0]/BOOTSEL[0]  
TMS  
1
I
I
GPIO port E / Boot mode select  
JTAG mode select  
Input  
with p/u*  
52  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 22. 256-Ball PBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
M6  
M7  
VDDIO  
Pad power  
I/O  
Digital I/O power, 3.3V  
SSITXFR  
1
2
Low  
DAI/CODEC/SSI2 frame sync  
High /  
Low  
M8  
DRIVE[1]  
I/O  
PWM drive output  
M9  
FB[0]  
COL[0]  
I
PWM feedback input  
Keyboard scanner column drive  
Data I/O  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
1
1
High  
Low  
O
D[27]  
I/O  
VSSIO  
Pad ground  
I/O ground  
A[23]/DRA[4]  
VDDIO  
1
Low  
O
System byte address / SDRAM address  
Digital I/O power, 3.3V  
Pad power  
A[20]/DRA[7]  
D[21]  
1
1
Low  
Low  
O
I/O  
I
System byte address / SDRAM address  
Data I/O  
nEXTFIQ  
External fast interrupt input  
N2  
PE[1]/BOOTSEL[1]  
1
I/O  
GPIO port E / boot mode select  
Input  
N3  
N4  
VSSIO  
VDDIO  
PD[5]  
Pad ground  
Pad power  
I/O  
I/O ground  
Digital I/O power, 3.3V  
GPIO port D  
N5  
1
1
Low  
Low  
N6  
PD[2]  
I/O  
GPIO port D  
N7  
SSIRXDA  
ADCCLK  
SMPCLK  
COL[2]  
D[29]  
I/O  
DAI/CODEC/SSI2 serial data input  
SSI1 ADC serial clock  
SSI1 ADC sample clock  
Keyboard scanner column drive  
Data I/O  
N8  
1
1
1
1
1
1
Low  
Low  
High  
Low  
Low  
Low  
O
N9  
O
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
O
I/O  
D[26]  
I/O  
Data I/O  
HALFWORD  
VSSIO  
D[22]  
O
Halfword access select output  
I/O ground  
Pad ground  
I/O  
1
1
Low  
Low  
Data I/O  
D[23]  
I/O  
Data I/O  
VSSRTC  
RTCOUT  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
D[24]  
RTC ground  
O
Real time clock ground  
Real time clock oscillator output  
I/O ground  
P2  
P3  
Pad ground  
Pad ground  
Pad power  
Pad ground  
Pad ground  
Pad power  
Pad ground  
Pad power  
Pad ground  
Pad ground  
Pad power  
Pad ground  
I/O  
P4  
I/O ground  
P5  
Digital I/O power, 3.3V  
I/O ground  
P6  
P7  
I/O ground  
P8  
Digital I/O power, 3.3V  
I/O ground  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
Digital I/O power, 3.3V  
I/O ground  
I/O ground  
Digital I/O power  
I/O ground  
1
Low  
Data I/O  
VDDIO  
RTCIN  
VDDIO  
PD[4]  
Pad power  
I/O  
Digital I/O power, 3.3V  
Real time clock oscillator input  
Digital I/O power, 3.3V  
GPIO port D  
R2  
Pad power  
I/O  
R3  
1
1
Low  
Low  
R4  
PD[1]  
I/O  
GPIO port D  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
53  
EP7312  
High-Performance, Low-Power System on Chip  
Table 22. 256-Ball PBGA Ball Listing (Continued)  
Reset  
State  
Ball Location  
Name  
Type  
Description  
Strength  
R5  
R6  
SSITXDA  
nADCCS  
VDDIO  
1
1
Low  
O
DAI/CODEC/SSI2 serial data output  
SSI1 ADC chip select  
High  
O
R7  
Pad power  
Digital I/O power, 3.3V  
R8  
ADCOUT  
COL[7]  
1
1
1
1
1
2
2
Low  
High  
High  
High  
Low  
Low  
Low  
O
SSI1 ADC serial data output  
Keyboard scanner column drive  
Keyboard scanner column drive  
Keyboard scanner column drive  
Data I/O  
R9  
O
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
COL[3]  
O
COL[1]  
O
D[30]  
I/O  
A[27]/DRA[0]  
A[25]/DRA[2]  
VDDIO  
O
System byte address / SDRAM address  
System byte address / SDRAM address  
Digital I/O power, 3.3V  
O
Pad power  
O
A[24]/DRA[3]  
VDDRTC  
PD[7]/SDQM[1]  
PD[6]/SDQM[0]  
PD[3]  
1
Low  
System byte address / SDRAM address  
Real time clock power, 2.5V  
RTC power  
I/O  
T2  
1
1
1
Low  
Low  
Low  
GPIO port D / SDRAM byte lane mask  
GPIO port D / SDRAM byte lane mask  
GPIO port D  
T3  
I/O  
T4  
I/O  
T5  
SSICLK  
1
1
I/O  
DAI/CODEC/SSI2 serial clock  
Input  
T6  
T7  
T8  
SSIRXFR  
VDDCORE  
DRIVE[0]  
I/O  
Core power  
I/O  
DAI/CODEC/SSI2 frame sync  
Core power, 2.5V  
Input  
High /  
Low  
2
1
PWM drive output  
T9  
FB[1]  
COL[5]  
VDDIO  
BUZ  
I
PWM feedback input  
Keyboard scanner column drive  
Digital I/O power, 3.3V  
Buzzer drive output  
Data I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
High  
O
Pad power  
1
1
2
1
Low  
Low  
Low  
Low  
O
D[28]  
I/O  
O
A[26]/DRA[1]  
D[25]  
System byte address / SDRAM address  
Data I/O  
I/O  
VSSIO  
Pad ground  
I/O ground  
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.  
Strength 1 = 4 ma  
Strength 2 = 12 ma  
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.  
JTAG Boundary Scan Signal Ordering  
Table 23. JTAG Boundary Scan Signal Ordering  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
1
4
5
6
7
B3  
A2  
B1  
E3  
C1  
B1  
C2  
E4  
D1  
F5  
nCS[5]  
EXPCLK  
O
I/O  
O
1
3
WORD  
6
WRITE/nSDRAS  
RUN/CLKEN  
O
8
O
10  
54  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 23. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
8
C2  
E2  
D2  
F3  
D1  
F2  
E1  
F1  
G2  
G1  
H3  
H1  
J3  
D2  
F4  
E1  
E2  
G5  
F1  
G4  
F2  
H7  
G1  
H6  
H1  
H5  
H2  
H4  
J1  
EXPRDY  
TXD2  
I
O
13  
14  
16  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
53  
56  
59  
62  
65  
67  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
9
10  
13  
14  
15  
16  
17  
18  
19  
20  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
RXD2  
PB[7]  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PB[6]  
PB[5]  
PB[4]  
PB[3]  
PB[2]  
PB[1]  
PB[0]  
PA[7]  
PA[6]  
J2  
PA[5]  
J1  
PA[4]  
L3  
PA[3]  
K2  
K1  
M3  
L2  
J4  
PA[2]  
J2  
PA[1]  
J5  
PA[0]  
K1  
J6  
LEDDRV  
TXD1  
L1  
O
N3  
M2  
M1  
P3  
N1  
N2  
R3  
P1  
P2  
T3  
R1  
R2  
K2  
J7  
PHDIN  
CTS  
I
I
L1  
K4  
L2  
K5  
M1  
K6  
M2  
L4  
N1  
L5  
RXD1  
DCD  
I
I
DSR  
I
nTEST1  
nTEST0  
EINT3  
nEINT2  
nEINT1  
nEXTFIQ  
PE[2]/CLKSEL  
I
I
I
I
I
I
I/O  
PE[1]/  
BOOTSEL[1]  
46  
T1  
N2  
I/O  
83  
47  
53  
54  
55  
T2  
V4  
W4  
Y4  
M4  
T2  
T3  
N5  
PE[0]/BOOTSEL0  
PD[7]/SDQM[1]  
PD[6/SDQM[0]]  
PD[5]  
I/O  
I/O  
I/O  
I/O  
86  
89  
92  
95  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
55  
EP7312  
High-Performance, Low-Power System on Chip  
Table 23. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
56  
59  
V5  
Y5  
R3  
T4  
PD[4]  
PD[3]  
I/O  
I/O  
I/O  
I/O  
O
98  
101  
104  
107  
110  
122  
125  
126  
128  
131  
134  
136  
138  
140  
141  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
163  
166  
169  
172  
174  
177  
179  
182  
184  
187  
189  
191  
194  
60  
V6  
N6  
PD[2]  
61  
W6  
R4  
PD[1]  
62  
Y6  
L7  
PD[0]/LEDFLSH  
SSIRXFR  
ADCIN  
68  
W8  
T6  
I/O  
I
69  
Y8  
K8  
70  
V9  
R6  
nADCCS  
DRIVE1  
DRIVE0  
ADCCLK  
ADCOUT  
SMPCLK  
FB1  
O
75  
W10  
Y10  
V11  
W11  
Y11  
Y12  
Y11  
Y12  
Y13  
W13  
V13  
Y14  
W14  
Y15  
W15  
V15  
Y16  
W16  
V16  
Y17  
Y16  
Y18  
V17  
W18  
Y19  
Y20  
U18  
V209  
U19  
U20  
M8  
I/O  
I/O  
O
76  
T8  
77  
N8  
78  
R8  
O
79  
N9  
O
80  
T9  
I
82  
M9  
FB0  
I
83  
R9  
COL7  
O
84  
L9  
COL6  
O
85  
T10  
K9  
COL5  
O
86  
COL4  
O
87  
R10  
N10  
R11  
M10  
T12  
L10  
R12  
N11  
T13  
R13  
M11  
T14  
N12  
R14  
T15  
N13  
R16  
P15  
M13  
COL3  
O
88  
COL2  
O
91  
COL1  
O
92  
COL0  
O
93  
BUZ  
O
94  
D[31]  
I/O  
I/O  
I/O  
I/O  
Out  
I/O  
O
95  
D[30]  
96  
D[29]  
97  
D[28]  
99  
A[27]/DRA[0]  
D[27]  
100  
101  
102  
103  
104  
105  
106  
109  
110  
A[26]/DRA[1]  
D[26]  
I/O  
O
A[25]/DRA[2]  
D[25]  
I/O  
O
HALFWORD  
A[24]/DRA[3]  
D[24]  
O
I/O  
O
A[23]/DRA[4]  
56  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Table 23. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
111  
112  
113  
114  
115  
117  
118  
119  
120  
121  
122  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
141  
142  
143  
144  
145  
146  
147  
148  
150  
151  
152  
153  
154  
155  
T19  
T20  
R19  
R20  
T18  
P19  
P20  
R18  
N19  
N20  
P18  
M19  
N18  
L20  
L19  
M18  
K20  
K19  
K18  
J20  
N16  
L12  
N15  
L13  
M16  
M15  
K11  
L16  
K12  
L15  
K13  
J10  
D[23]  
A[22]/DRA[5]  
D[22]  
I/O  
O
196  
199  
201  
204  
206  
209  
211  
214  
216  
219  
221  
224  
226  
229  
231  
234  
236  
239  
241  
244  
246  
249  
251  
254  
256  
259  
261  
264  
266  
269  
271  
274  
276  
279  
280  
281  
282  
283  
I/O  
O
A[21]/DRA[6]  
D[21]  
I/O  
O
A[20]/DRA[7]  
D[20]  
I/O  
O
A[19]/DRA[8]  
D[19]  
I/O  
O
A[18]/DRA[9]  
D[18]  
I/O  
O
A[17]/DRA[10]  
D[17]  
J16  
I/O  
O
J11  
A[16]/DRA[11]  
D[16]  
J15  
I/O  
O
J12  
A[15]/DRA[12]  
D[15]  
H16  
J13  
I/O  
O
A[14]/DRA[13]  
D[14]  
H15  
H13  
G16  
H12  
G15  
H11  
F15  
H10  
E16  
G13  
E15  
G12  
D16  
G11  
D15  
F13  
C16  
F12  
C15  
E13  
I/O  
O
A[13]/DRA[14]  
D[13]  
J19  
I/O  
O
H20  
H19  
J18  
A[12]  
D[12]  
I/O  
O
A[11]  
G20  
H18  
F20  
G19  
E20  
F19  
G18  
D20  
F18  
D19  
E19  
C19  
C20  
E18  
D[11]  
I/O  
O
A[10]  
D[10]  
I/O  
O
A[9]  
D[9]  
I/O  
O
A[8]  
D[8]  
I/O  
O
A[7]  
D[7]  
I/O  
I
nBATCHG  
nEXTPWR  
BATOK  
I
I
nPOR  
I
nMEDCHG/nBROM  
I
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
57  
EP7312  
High-Performance, Low-Power System on Chip  
Table 23. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
156  
161  
162  
163  
164  
165  
166  
169  
170  
171  
172  
173  
175  
176  
177  
178  
179  
184  
185  
186  
187  
188  
189  
191  
192  
193  
194  
195  
196  
199  
200  
201  
202  
204  
205  
206  
207  
208  
B20  
B16  
A16  
C15  
B15  
A15  
C14  
B14  
A14  
C13  
B13  
A13  
C12  
B12  
A12  
C11  
B11  
B10  
A10  
A9  
B16  
B14  
D11  
A13  
F10  
B13  
E10  
B12  
D10  
A11  
G9  
B11  
A10  
F9  
nURESET  
WAKEUP  
nPWRFL  
A[6]  
I
284  
285  
286  
287  
289  
292  
294  
297  
299  
302  
304  
307  
309  
312  
314  
317  
319  
322  
324  
326  
328  
330  
333  
336  
339  
342  
344  
346  
349  
352  
355  
358  
360  
362  
364  
366  
368  
370  
I
I
O
D[6]  
I/O  
O
A[5]  
D[5]  
I/O  
O
A[4]  
D[4]  
I/O  
O
A[3]  
D[3]  
I/O  
O
A[2]  
D[2]  
I/O  
O
A[1]  
B10  
E9  
D[1]  
I/O  
O
A[0]  
A9  
D[0]  
I/O  
O
D8  
CL2  
B8  
CL1  
O
E8  
FRM  
O
B9  
A7  
M
O
C9  
F8  
DD[3]  
O
A8  
B7  
DD[2]  
O
B8  
A6  
DD[1]  
O
C8  
G8  
B6  
DD[0]  
O
A7  
nSDCS[1]  
nSDCS[0]  
SDQM[3]  
SDQM[2]  
SDCKE  
SDCLK  
nMWE/nSDWE  
nMOE/nSDCAS  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
nCS[4]  
O
B7  
D7  
O
C7  
A5  
I/O  
I/O  
I/O  
I/O  
O
A6  
E7  
B6  
F7  
C6  
A4  
A5  
D6  
B5  
B4  
O
C5  
E6  
O
A4  
A3  
O
B4  
D5  
O
A3  
B3  
O
C4  
A2  
O
58  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
1) See EP7312 Users’ Manual for pin naming / functionality.  
2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
59  
EP7312  
High-Performance, Low-Power System on Chip  
Table 24. Acronyms and Abbreviations (Continued)  
CONVENTIONS  
Acronym/  
Definition  
This section presents acronyms, abbreviations, units of  
measurement, and conventions used in this data sheet.  
Abbreviation  
TAP  
TLB  
test access port  
Acronyms and Abbreviations  
translation lookaside buffer  
Table 24 lists abbreviations and acronyms used in this data  
sheet.  
UART  
universal asynchronous receiver  
Table 24. Acronyms and Abbreviations  
Units of Measurement  
Acronym/  
Definition  
Table 25. Unit of Measurement  
Abbreviation  
Symbol  
Unit of Measure  
A/D  
analog-to-digital  
degree Celsius  
°C  
fs  
ADC  
CODEC  
D/A  
analog-to-digital converter  
coder / decoder  
sample frequency  
hertz (cycle per second)  
kilobits per second  
kilobyte (1,024 bytes)  
kilohertz  
Hz  
digital-to-analog  
kbps  
KB  
DMA  
EPB  
FCS  
FIFO  
FIQ  
direct-memory access  
embedded peripheral bus  
frame check sequence  
first in / first out  
kHz  
kΩ  
kilo Ohm  
Mbps  
MB  
MBps  
MHz  
µA  
megabits (1,048,576 bits) per second  
megabyte (1,048,576 bytes)  
megabytes per second  
megahertz (1,000 kilohertz)  
microampere  
fast interrupt request  
general purpose I/O  
in circuit test  
GPIO  
ICT  
IR  
infrared  
IRQ  
standard interrupt request  
Infrared Data Association  
Joint Test Action Group  
liquid crystal display  
light-emitting diode  
µF  
microfarad  
IrDA  
JTAG  
LCD  
LED  
LQFP  
LSB  
MIPS  
MMU  
MSB  
PBGA  
PCB  
PDA  
PLL  
µW  
µs  
microwatt  
microsecond (1,000 nanoseconds)  
milliampere  
mA  
mW  
ms  
milliwatt  
low profile quad flat pack  
least significant bit  
millisecond (1,000 microseconds)  
nanosecond  
ns  
millions of instructions per second  
memory management unit  
most significant bit  
V
volt  
W
watt  
plastic ball grid array  
printed circuit board  
personal digital assistant  
phase locked loop  
p/u  
pull-up resistor  
RISC  
RTC  
SIR  
reduced instruction set computer  
Real-Time Clock  
slow (9600–115.2 kbps) infrared  
static random access memory  
synchronous serial interface  
SRAM  
SSI  
60  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
General Conventions  
Hexadecimal numbers are presented with all letters in  
uppercase and a lowercase “h” appended or with a 0x at the  
beginning. For example, 0x14 and 03CAh are hexadecimal  
numbers. Binary numbers are enclosed in single quotation  
marks when in text (for example, ‘11’ designates a binary  
number). Numbers not indicated by an “h”, 0x or quotation  
marks are decimal.  
Registers are referred to by acronym, with bits listed in  
brackets separated by a colon (:) (for example, CODR[7:0]),  
and are described in the EP7312 Users Manual. The use of  
“TBD” indicates values that are “to be determined,” “n/a”  
designates “not available,” and “n/c” indicates a pin that is a  
“no connect.”  
Pin Description Conventions  
Abbreviations used for signal directions are listed in Table 26.  
Table 26. Pin Description Conventions  
Abbreviation  
Direction  
I
Input  
O
I/O  
Output  
Input or Output  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
61  
EP7312  
High-Performance, Low-Power System on Chip  
Ordering Information  
Model  
EP7312-CB  
Temperature  
Package  
0 to +70 °C  
EP7312-CB-90 (90 MHz)  
EP7312-IB  
256-pin PBGA, 17mm X 17mm  
-40 to +85 °C.  
0 to +70 °C  
EP7312-IB-90 (90 MHz)  
EP7312-CR  
EP7312-CR-90 (90 MHz)  
EP7312-IR  
204-pin TFBGA, 13mm X 13mm  
-40 to +85 °C.  
0 to +70 °C  
EP7312-IR-90 (90 MHz)  
EP7312-CV  
EP7312-CV-90 (90 MHz)  
EP7312-IV  
208-pin LQFP.  
-40 to +85 °C.  
0 to +70 °C  
EP7312-IV-90 (90 MHz)  
EP7312-CVZ (Lead Free)  
Environmental, Manufacturing, & Handling Information  
Model Number  
EP7312-CB  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
EP7312-CB-90 (90 MHz)  
EP7312-IB  
EP7312-IB-90 (90 MHz)  
EP7312-CR  
EP7312-CR-90 (90 MHz)  
EP7312-IR  
225 °C  
3
7 Days  
EP7312-IR-90 (90 MHz)  
EP7312-CV  
EP7312-CV-90 (90 MHz)  
EP7312-IV  
EP7312-IV-90 (90 MHz)  
EP7312-CVZ (Lead Free)  
260 °C  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
62  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  
EP7312  
High-Performance, Low-Power System on Chip  
Revision History  
Revision  
PP5  
Date  
Changes  
JAN 2004  
AUG 2005  
Preliminary release. Updated SDRAM timing.  
Updated ordering information. Added MSL data.  
F1  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
SPI is a trademark of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
LINUX is a registered trademark of Linus Torvalds.  
Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.  
DS508F1  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
63  
EP7312  
High-Performance, Low-Power System on Chip  
64  
©Copyright Cirrus Logic, Inc. 2005  
(All Rights Reserved)  
DS508F1  

相关型号:

EP7A

EP Core
YUXIANG

EP7_1

EP cores and accessories
FERROXCUBE

EP80579

Intel® EP80579 Integrated Processor Product Line
INTEL

EP8076-1

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-10

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-2

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-3

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-4

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-5

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-6

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-7

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA

EP8076-8

16 Pin DIP 3 Bit Programmable TTL Delay Lines
PCA