EP7309-IV-C [CIRRUS]

HIGH PERFORMANCE LOW POWER SYSTEM ON CHIP ENHANCED DIGITAL AUDIO INTERFACE; 高性能,低功耗片上系统增强型数字音频接口
EP7309-IV-C
型号: EP7309-IV-C
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

HIGH PERFORMANCE LOW POWER SYSTEM ON CHIP ENHANCED DIGITAL AUDIO INTERFACE
高性能,低功耗片上系统增强型数字音频接口

微控制器和处理器 外围集成电路 时钟
文件: 总46页 (文件大小:1825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EP7309 Data Sheet  
FEATURES  
I ARM720T Processor  
High-Performance,  
Low-Power System on Chip  
Enhanced  
— ARM7TDMI CPU  
— 8 KB of four-way set-associative cache  
— MMU with 64-entry TLB  
Digital Audio Interface  
— Thumb code support enabled  
I Ultra low power  
OVERVIEW  
— 90 mW at 74 MHz typical  
The Maverick™ EP7309 is designed for ultra-low-power  
applications such as digital music players, internet  
appliances, smart cellular phones or any hand-held  
device that features the added capability of digital audio  
decompression. The core-logic functionality of the device  
is built around an ARM720T processor with 8 KB of four-  
way set-associative unified cache and a write buffer.  
Incorporated into the ARM720T is an enhanced memory  
management unit (MMU) which allows for support of  
sophisticated operating systems like Microsoft®  
Windows® CE and Linux®.  
— 30 mW at 18 MHz typical  
— 10 mW in the Idle State  
— <1 mW in the Standby State  
I Advanced audio decoder/decompression capability  
— Supports bit streams with adaptive bit rates  
— Allows for support of multiple audio  
decompression algorithms (MP3, WMA, AAC,  
ADPCM, Audible, etc.)  
(cont.)  
(cont.)  
BLOCK DIAGRAM  
Digital  
Audio  
Interface  
EPB Bus  
Clocks &  
Timers  
ICE-JTAG  
ARM720T  
Power  
Management  
Serial  
Interface  
Interrupts,  
PWM & GPIO  
ARM7TDMI CPU Core  
8 KB  
Cache  
Write  
Buffer  
Keypad&  
Touch  
Screen I/F  
(2) UARTs  
w/ IrDA  
Boot  
ROM  
Bus  
Bridge  
MMU  
Internal Data Bus  
SRAM &  
FLASH I/F  
On-chip SRAM  
48 KB  
LCD  
Controller  
MaverickKeyTM  
MEMORY AND STORAGE  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
June ’01  
DS507PP1  
P.O. Box 17847, Austin, Texas 78760  
(512) 445 7222 FAX: (512) 445 7581  
http://www.cirrus.com  
1
EP7309  
High-Performance, Low-Power System on Chip  
FEATURES (cont)  
I Dynamically programmable clock speeds of 18, 36, 49,  
and 74 MHz  
I 48 KB of on-chip SRAM  
— 8×8 Keypad Scanner  
— 27 General Purpose Input/Output pins  
— Dedicated LED flasher pin from the RTC  
I Internal Peripherals  
Two 16550 compatible UARTs  
— IrDA Interface  
I MaverickKey IDs  
— 32-bit unique ID can be used for SDMI compliance  
— 128-bit random ID  
Two PWM Interfaces  
— Real-time Clock  
Two general purpose 16-bit timers  
— Interrupt Controller  
— Boot ROM  
I LCD controller  
— Interfaces directly to a single-scan panel  
monochrome STN LCD  
— Interfaces to a single-scan panel color STN LCD  
with minimal external glue logic  
I Full JTAG boundary scan and Embedded ICE  
I Package  
support  
— 208-Pin LQFP  
I Integrated Peripheral Interfaces  
— 256-Ball PBGA  
— 8/32/16-bit SRAM/FLASH/ROM Interface  
— 204-Ball TFBGA  
— Digital Audio Interface providing glueless  
I The fully static EP7309 is optimized for low power  
dissipation and is fabricated on a 0.25 micron CMOS  
process  
interface to low-power DACs, ADCs and CODECs  
Two Synchronous Serial Interfaces (SSI1, SSI2)  
— CODEC Sound Interface  
OVERVIEW (cont.)  
The EP7309 is designed for ultra-low-power operation.  
Its core operates at only 2.5 V, while its I/O has an  
operation range of 2.5 V–3.3 V. The device has three basic  
power states: operating, idle and standby.  
The EP7309 integrates an interface to enable a direct  
connection to many low cost, low power, high quality  
audio converters. In particular, the DAI can directly  
interface with the Crystal‚ CS43L41/42/43 low-power  
audio DACs and the Crystal‚ CS53L32 low-power ADC.  
Some of these devices feature digital bass and treble  
boost, digital volume control and compressor-limiter  
functions.  
MaverickKey unique hardware programmed IDs are a  
solution to the growing concern over secure web content  
and commerce. With Internet security playing an  
important role in the delivery of digital media such as  
books or music, traditional software methods are quickly  
becoming unreliable. The MaverickKey unique IDs  
provide OEMs with a method of utilizing specific  
hardware IDs such as those assigned for SDMI (Secure  
Digital Music Initiative) or any other authentication  
mechanism.  
Simply by adding desired memory and peripherals to the  
highly integrated EP7309 completes a low-power system  
solution. All necessary interface logic is integrated on-  
chip.  
Contacting Cirrus Logic Support  
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:  
http://www.cirrus.com/corporate/contacts  
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information de-  
scribes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this  
document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied).  
No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property  
of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval  
system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from  
any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, stored in a retrieval  
system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore,  
no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus  
Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some  
jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.  
2
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Digital Music Initiative) or any other authentication  
mechanism.  
Processor Core - ARM720T  
The EP7309 incorporates an ARM 32-bit RISC  
microcontroller that controls a wide range of on-chip  
peripherals. The processor utilizes a three-stage pipeline  
consisting of fetch, decode and execute stages. Key  
features include:  
Both a specific 32-bit ID as well as a 128-bit random ID is  
programmed into the EP7309 through the use of laser  
probing technology. These IDs can then be used to match  
secure copyrighted content with the ID of the target  
device the EP7309 is powering, and then deliver the  
copyrighted information over a secure connection. In  
addition, secure transactions can benefit by also  
matching device IDs to server IDs. MaverickKey IDs  
provide a level of hardware security required for todays  
Internet appliances.  
ARM (32-bit) and Thumb (16-bit compressed)  
instruction sets  
Enhanced MMU for Microsoft Windows CE and other  
operating systems  
8 KB of 4-way set-associative cache.  
Translation Look Aside Buffers with 64 Translated  
Memory Interfaces  
Entries  
The EP7309 is equiped with a ROM/SRAM/FLASH-  
style interface that has programmable wait-state timings  
and includes burst-mode capability, with six chip selects  
decoding six 256 MB sections of addressable space. For  
maximum flexibility, each bank can be specified to be 8-,  
16-, or 32-bits wide. This allows the use of 8-bit-wide  
boot ROM options to minimize overall system cost. The  
on-chip boot ROM can be used in product manufacturing  
to serially download system code into system FLASH  
memory. To further minimize system memory  
requirements and cost, the ARM Thumb instruction set is  
supported, providing for the use of high-speed 32-bit  
operations in 16-bit op-codes and yielding industry-  
leading code density.  
Power Management  
The EP7309 is designed for ultra-low-power operation.  
Its core operates at only 2.5 V, while its I/O has an  
operation range of 2.5 V3.3 V allowing the device to  
achieve a performance level equivalent to 60 MIPS. The  
device has three basic power states:  
Operating This state is the full performance  
state. All the clocks and peripheral logic are  
enabled.  
Idle This state is the same as the Operating  
State, except the CPU clock is halted while  
waiting for an event such as a key press.  
Standby This state is equivalent to the  
computer being switched off (no display), and  
the main oscillator shut down. An event such as  
a key press can wake-up the processor.  
Pin Mnemonic  
I/O  
Pin Description  
nCS[5:0]  
O
O
Chip select out  
Address output  
A[27:0]  
D[31:0]  
nMOE  
nMWE  
I/O Data I/O  
Pin Mnemonic  
I/O  
Pin Description  
O
O
ROM expansion OP enable  
BATOK  
I
Battery ok input  
ROM expansion write enable  
External power supply sense  
input  
Halfword access select  
output  
nEXTPWR  
I
HALFWORD  
O
nPWRFL  
I
I
Power fail sense input  
WORD  
WRITE  
O
O
Word access select output  
Transfer direction  
nBATCHG  
Battery changed sense input  
Table A. Power Management Pin Assignments  
Table B. Static Memory Interface Pin Assignments  
MaverickKeyUnique ID  
Digital Audio Capability  
MaverickKey unique hardware programmed IDs are a  
solution to the growing concern over secure web content  
and commerce. With Internet security playing an  
important role in the delivery of digital media such as  
books or music, traditional software methods are quickly  
becoming unreliable. The MaverickKey unique IDs  
provide OEMs with a method of utilizing specific  
hardware IDs such as those assigned for SDMI (Secure  
The EP7309 uses its powerful 32-bit RISC processing  
engine to implement audio decompression algorithms in  
software. The nature of the on-board RISC processor, and  
the availability of efficient C-compilers and other  
software development tools, ensures that a wide range of  
audio decompression algorithms can easily be ported to  
and run on the EP7309  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
3
EP7309  
High-Performance, Low-Power System on Chip  
Universal Asynchronous  
CODEC Interface  
Receiver/Transmitters (UARTs)  
The EP7309 includes an interface to telephony-type  
CODECs for easy integration into voice-over-IP and  
other voice communications systems. The CODEC  
interface is multiplexed to the same pins as the DAI and  
SSI2.  
The EP7309 includes two 16550-type UARTs for RS-232  
serial communications, both of which have two 16-byte  
FIFOs for receiving and transmitting data. The UARTs  
support bit rates up to 115.2 kbps. An IrDA SIR protocol  
encoder/decoder can be optionally switched into the  
RX/TX signals to/from UART 1 to enable these signals  
to drive an infrared communication interface directly.  
Pin Mnemonic  
I/O  
Pin Description  
PCMCLK  
O
O
I
Serial bit clock  
PCMOUT  
PCMIN  
Serial data out  
Serial data in  
Frame sync  
Pin Mnemonic  
I/O  
Pin Description  
TXD[1]  
O
I
UART 1 transmit  
PCMSYNC  
O
RXD[1]  
CTS  
UART 1 receive  
Table E. CODEC Interface Pin Assignments  
I
UART 1 clear to send  
UART 1 data carrier detect  
UART 1 data set ready  
UART 2 transmit  
DCD  
I
Note: See Table Q on page 7 for information on pin  
multiplexes.  
DSR  
I
TXD[2]  
RXD[2]  
LEDDRV  
PHDIN  
O
I
SSI2 Interface  
UART 2 receive  
An additional SPI/Microwire1-compatible interface is  
available for both master and slave mode  
communications. The SSI2 unit shares the same pins as  
the DAI and CODEC interfaces through a multiplexer.  
O
I
Infrared LED drive output  
Photo diode input  
Table C. Universal Asynchronous Receiver/Transmitters Pin  
Assignments  
Synchronous clock speeds of up to 512 kHz  
Separate 16 entry TX and RX half-word wide FIFOs  
Half empty/full interrupts for FIFOs  
Digital Audio Interface (DAI)  
The EP7309 integrates an interface to enable a direct  
connection to many low cost, low power, high quality  
audio converters. In particular, the DAI can directly  
interface with the CrystalCS43L41/42/43 low-power  
audio DACs and the CrystalCS53L32 low-power ADC.  
Some of these devices feature digital bass and treble  
boost, digital volume control and compressor-limiter  
functions.  
Separate RX and TX frame sync signals for  
asymmetric traffic  
Pin Mnemonic  
I/O  
Pin Description  
SSICLK  
I/O  
O
Serial bit clock  
SSITXDA  
SSIRXDA  
SSITXFR  
SSIRXFR  
Serial data out  
I
Serial data in  
Pin Mnemonic  
I/O  
Pin Description  
I/O  
I/O  
Transmit frame sync  
Receive frame sync  
SCLK  
O
O
I
Serial bit clock  
SDOUT  
SDIN  
Serial data out  
Serial data in  
Table F. SSI2 Interface Pin Assignments  
Note: See Table Q on page 7 for information on pin  
multiplexes.  
LRCK  
O
I
Sample clock  
MCLKIN  
MCLKOUT  
Master clock input  
Master clock output  
O
Table D. DAI Interface Pin Assignments  
Note: See Table Q on page 7 for information on pin  
multiplexes.  
4
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Column outputs can be individually set high with the  
remaining bits left at high-impedance  
Column outputs can be driven all-low, all-high, or all-  
high-impedance  
Keyboard interrupt driven by OR'ing together all Port  
Synchronous Serial Interface  
ADC (SSI) Interface: Master mode only; SPI and  
Microwire1-compatible (128 kbps operation)  
Selectable serial clock polarity  
A bits  
Keyboard interrupt can be used to wake up the  
Pin Mnemonic  
I/O  
Pin Description  
system  
ADCLK  
O
I
SSI1 ADC serial clock  
SSI1 ADC serial input  
SSI1 ADC serial output  
SSI1 ADC chip select  
SSI1 ADC sample clock  
8×8 keyboard matrix usable with no external logic,  
ADCIN  
extra keys can be added with minimal glue logic  
ADCOUT  
nADCCS  
SMPCLK  
O
O
O
Pin Mnemonic  
I/O  
Pin Description  
COL[7:0]  
O
Keyboard scanner column drive  
Table G. Serial Interface Pin Assignments  
Table I. Keypad Interface Pin Assignments  
LCD Controller  
Interrupt Controller  
A DMA address generator is provided that fetches video  
display data for the LCD controller from memory. The  
display frame buffer start address is programmable,  
allowing the LCD frame buffer to be in SDRAM, internal  
SRAM or external SRAM.  
When unexpected events arise during the execution of a  
program (i.e., interrupt or memory fault) an exception is  
usually generated. When these exceptions occur at the  
same time, a fixed priority system determines the order  
in which they are handled. The EP7309 interrupt  
controller has two interrupt types: interrupt request  
(IRQ) and fast interrupt request (FIQ). The interrupt  
controller has the ability to control interrupts from 22  
different FIQ and IRQ sources.  
Interfaces directly to a single-scan panel monochrome  
STN LCD  
Interfaces to a single-scan panel color STN LCD with  
minimal external glue logic  
Panel width size is programmable from 32 to 1024  
Supports 22 interrupts from a variety of sources (such  
pixels in 16-pixel increments  
as UARTs, SSI1, and key matrix.)  
Video frame buffer size programmable up to  
Routes interrupt sources to the ARM720Ts IRQ or  
128 KB  
FIQ (Fast IRQ) inputs  
Bits per pixel of 1, 2, or 4 bits  
Five dedicated off-chip interrupt lines operate as level  
sensitive interrupts  
Pin Mnemonic  
I/O  
Pin Description  
.
Pin Mnemonic  
I/O  
Pin Description  
CL1  
O
O
O
O
O
LCD line clock  
nEINT[2:1]  
I
I
I
I
External interrupt  
CL2  
LCD pixel clock out  
EINT[3]  
External interrupt  
DD[3:0]  
FRM  
M
LCD serial display data bus  
LCD frame synchronization pulse  
LCD AC bias drive  
nEXTFIQ  
External Fast Interrupt input  
Media change interrupt input  
nMEDCHG/nBROM  
(Note)  
Table J. Interrupt Controller Pin Assignments  
Table H. LCD Interface Pin Assignments  
Note: Pins are multiplexed. See Table R on page 7 for more  
information.  
64-Keypad Interface  
Matrix keyboards and keypads can be easily read by the  
Real-Time Clock  
EP7309.  
A dedicated 8-bit column driver output  
generates strobes for each keyboard column signal. The  
pins of Port A, when configured as inputs, can be  
selectively OR'ed together to provide a keyboard  
interrupt that is capable of waking the system from a  
STANDBY or IDLE state.  
The EP7309 contains a 32-bit Real Time Clock (RTC) that  
can be written to and read from in the same manner as  
the timer counters. It also contains a 32-bit output match  
register which can be programmed to generate an  
interrupt.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
5
EP7309  
High-Performance, Low-Power System on Chip  
Driven byan external 32.768 kHz crystal oscillator  
Pin Mnemonic  
I/O  
Pin Description  
PA[7:0]  
I
I
GPIO port A  
Pin Mnemonic  
Pin Description  
PB[7:0]  
GPIO port B  
GPIO port D  
GPIO port D  
GPIO port D  
GPIO port E  
GPIO port E  
RTCIN  
Real-Time Clock Oscillator Input  
Real-Time Clock Oscillator Output  
Real-Time Clock Oscillator Power  
Real-Time Clock Oscillator Ground  
PD[0]/LEDFLSH  
PD[5:1]  
(Note)  
(Note)  
I/O  
I/O  
I/O  
I
RTCOUT  
VDDRTC  
VSSRTC  
PD[7:6]/SDQM[1:0]  
PE[1:0]/BOOTSEL[1:0] (Note)  
PE[2]/CLKSEL (Note)  
Table K. Real-Time Clock Pin Assignments  
I
Table N. General Purpose Input/Output Pin Assignments  
PLL and Clocking  
Processor and Peripheral Clocks operate from a single  
Note: Pins are multiplexed. See Table R on page 7 for more  
information.  
3.6864 MHz crystal or external 13 MHz clock  
Programmable clock speeds allow the peripheral bus  
to run at 18 MHz when the processor is set to 18 MHz  
and at 36 MHz when the processor is set to 36, 49 or  
74 MHz  
Hardware debug Interface  
Full JTAG boundary scan and Embedded ICE  
support  
Pin Mnemonic  
Pin Description  
Pin Mnemonic  
I/O  
Pin Description  
MOSCIN  
Main Oscillator Input  
TCLK  
I
I
JTAG clock  
MOSCOUT  
VDDOSC  
VSSOSC  
Main Oscillator Output  
Main Oscillator Power  
Main Oscillator Ground  
TDI  
JTAG data input  
TDO  
nTRST  
TMS  
O
I
JTAG data output  
JTAG async reset input  
JTAG mode select  
Table L. PLL and Clocking Pin Assignments  
I
Table O. Hardware Debug Interface Pin Assignments  
DC-to-DC converter interface (PWM)  
Provides two 96 kHz clock outputs with  
programmable duty ratio (from 1-in-16 to 15-in-16)  
that can be used to drive a positive or negative DC to  
DC converter  
LED Flasher  
A dedicated LED flasher module can be used to generate  
a low frequency signal on Port D pin 0 for the purpose of  
blinking an LED without CPU intervention. The LED  
flasher feature is ideal as a visual annunciator in battery  
powered applications, such as a voice mail indicator on a  
portable phone or an appointment reminder on a PDA.  
Pin Mnemonic  
I/O  
Pin Description  
DRIVE[1:0]  
FB[1:0]  
I/O  
I
PWM drive output  
PWM feedback input  
Software adjustable flash period and duty cycle  
Operates from 32 kHz RTC clock  
Will continue to flash in IDLE and STANDBY states  
4 mA drive current  
Table M. DC-to-DC Converter Interface Pin Assignments  
Timers  
Internal (RTC) timer  
Two internal 16-bit programmable hardware count-  
Pin Mnemonic  
I/O  
Pin Description  
down timers  
PD[0]/LEDFLSH  
(Note)  
O
LED flasher driver  
General Purpose Input/Output (GPIO)  
Table P. LED Flasher Pin Assignments  
Three 8-bit and one 3-bit GPIO ports  
Supports scanning keyboard matrix  
Note: Pins are multiplexed. See Table R on page 7 for more  
information.  
6
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Internal Boot ROM  
Pin  
Mnemonic  
I/O  
DAI  
SSI2  
CODEC  
The internal 128 byte Boot ROM facilitates download of  
saved code to the on-board SRAM/FLASH.  
SSITXFR  
I/O  
I
LRCK  
MCLKIN  
MCLKOUT  
SSITXFR PCMSYNC  
SSIRXFR p/u  
SSIRXFR  
BUZ  
Packaging  
O
The EP7309 is available in a 208-pin LQFP package, 256-  
ball PBGA package or a 204-ball TFBGA package.  
Table Q. DAI/SSI2/CODEC Pin Multiplexing  
Pin Multiplexing  
The following table shows the pins that have been  
multiplexed in the EP7309.  
The following table shows the pin multiplexing of the  
DAI, SSI2 and the CODEC. The selection between SSI2  
and the CODEC is controlled by the state of the SERSEL  
bit in SYSCON2. The choice between the SSI2, CODEC,  
and the DAI is controlled by the DAISEL bit in SYSCON3  
(see the EP7309 Users Manual for more information).  
Signal  
Block  
Signal  
Block  
System  
Configuration  
System  
Configuration  
RUN  
CLKEN  
Interrupt  
Controller  
Boot ROM  
select  
nMEDCHG  
PD[0]  
nBROM  
Pin  
Mnemonic  
I/O  
DAI  
SSI2  
CODEC  
GPIO  
GPIO  
LEDFLSH  
BOOTSEL[1:0]  
LED Flasher  
System  
Configuration  
PE[1:0]  
SSICLK  
I/O  
O
I
SCLK  
SDOUT  
SDIN  
SSICLK  
SSITXDA  
SSIRXDA  
PCMCLK  
PCMOUT  
PCMIN  
SSITXDA  
SSIRXDA  
System  
Configuration  
PE[2]  
GPIO  
CLKSEL  
Table R. Pin Multiplexing  
Table Q. DAI/SSI2/CODEC Pin Multiplexing  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
7
EP7309  
High-Performance, Low-Power System on Chip  
System Design  
As shown in system block diagram, simply adding  
desired memory and peripherals to the highly integrated  
EP7309 completes a low-power system solution. All  
necessary interface logic is integrated on-chip.  
DD[0-3]  
CRYSTAL  
CRYSTAL  
MOSCIN  
RTCIN  
CL1  
LCD  
CL2  
FRM  
M
COL[0-7]  
KEYBOARD  
PA[0-7]  
nCS[4]  
PB0  
EXPCLK  
PB[0-7]  
PD[0-7]  
DC  
INPUT  
D[0-31]  
A[0-27]  
PE[0-2]  
POWER  
SUPPLY UNIT  
PC CARD  
SOCKET  
PC CARD  
CONTROLLER  
AND  
COMPARATORS  
nPOR  
nPWRFL  
BATOK  
nMOE  
WRITE  
nEXTPWR  
nBATCHG  
RUN  
BATTERY  
WAKEUP  
DRIVE[0-1]  
FB[0-1]  
DC-TO-DC  
CONVERTERS  
nCS[0]  
nCS[1]  
×16  
FLASH  
×16  
FLASH  
SSICLK  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
CODEC/SSI2/  
DAI  
×16  
FLASH  
×16  
FLASH  
IR LED AND  
PHOTODIODE  
LEDDRV  
PHDIN  
CS[n]  
WORD  
RXD1/2  
TXD1/2  
DSR  
2× RS-232  
TRANSCEIVERS  
EXTERNAL MEMORY-  
MAPPED EXPANSION  
BUFFERS  
CTS  
DCD  
ADCCLK  
nADCCS  
ADCOUT  
ADCIN  
nCS[2]  
nCS[3]  
ADC  
DIGITIZER  
BUFFERS  
AND  
LATCHES  
LEDFLSH  
ADDITIONAL I/O  
SMPCLK  
Figure 1. A Maximum EP7309 Based System  
Note: A system can only use one of the following peripheral  
interfaces at any given time: SSI2,CODEC or DAI.  
8
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
DC Core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Pad Input Current  
2.9 V  
3.6 V  
10 mA/pin; 100 mA cumulative  
Storage Temperature, No Power  
40°C to +125°C  
Recommended Operating Conditions  
DC core, PLL, and RTC Supply Voltage  
DC I/O Supply Voltage (Pad Ring)  
DC Input / Output Voltage  
2.5 V 0.2 V  
2.3 V - 3.6 V  
OI/O supply voltage  
Extended -20°C to +70°C; Commercial 0°C to +70°C;  
Industrial -40°C to +85°C  
Operating Temperature  
DC Characteristics  
All characteristics are specified at VDD = 2.5 V and VSS = 0 V over an operating temperature of 0°C to +70°C for all  
frequencies of operation. The current consumption figures relate to typical conditions at 2.5 V, 18.432 MHz operation  
with the PLL switched on.”  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
0.65 × V  
V
+ 0.3  
V
V
= 2.5 V  
VIH  
VIL  
CMOS input high voltage  
CMOS input low voltage  
V
V
DDIO  
DDIO  
DDIO  
0.25 × V  
= 2.5 V  
-0.3  
DDIO  
DDIO  
Schmitt trigger positive going  
threshold  
VT+  
1.6 (Typ)  
2.0  
V
Schmitt trigger negative going  
threshold  
VT-  
0.8  
0.1  
1.2 (Typ)  
0.4  
V
V
Vhst  
Schmitt trigger hysteresis  
VIL to VIH  
a
CMOS output high voltage  
V
0.2  
V
V
V
IOH = 0.1 mA  
IOH = 4 mA  
IOH = 12 mA  
DD  
a
VOH  
VOL  
2.5  
2.5  
Output drive 1  
a
Output drive 2  
a
CMOS output low voltage  
0.3  
0.5  
0.5  
V
V
V
IOL = 0.1 mA  
IOL = 4 mA  
IOL = 12 mA  
a
Output drive 1  
a
Output drive 2  
VIN = V or GND  
IIN  
1.0  
100  
10.0  
µA  
µA  
pF  
Input leakage current  
DD  
Bidirectional 3-state leakage  
VOUT = V or GND  
IOZ  
CIN  
25  
8
DD  
b c  
current  
Input capacitance  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
9
EP7309  
High-Performance, Low-Power System on Chip  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
COUT  
CI/O  
Output capacitance  
8
8
10.0  
10.0  
pF  
pF  
Transceiver capacitance  
Only 32 kHz oscillator running,  
Cache disabled, all other I/O  
Standby current consumption  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
IDD  
TBD  
TBD  
300  
4.2  
µA  
standby  
static, VIH = V  
0.1 V,  
DD  
VIL = GND 0.1 V  
Both oscillators running, CPU  
static, Cache disabled, LCD  
Idle current consumption  
Core, Osc, RTC @2.5 V  
I/O @ 2.5 V  
IDD  
refresh active, VIH = V  
0.1 V,  
TBD  
TBD  
mA  
idle  
DD  
VIL = GND 0.1 V  
At 13 MHz  
Operating current consumption  
Core, Osc, RTC @2.5 V  
I/O @ 3.3 V  
All system active, running typical  
program, cache disabled, and  
LCD inactive  
IDD  
TBD  
TBD  
mA  
V
operatin  
Minimum standby voltage for  
state retention and RTC  
operation only  
V
Standby supply voltage  
See Table S on page 23.  
TBD  
DDstandby  
a.  
b.  
c.  
Assumes buffer has no pull-up or pull-down resistors.  
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.  
Note: 1) All power dissipation values can be derived from taking the particular IDD current and multiplying by 2.5 V.  
2) The RTC of the EP7309 should be brought up at room temperature. This is required because the RTC OSC will NOT function  
properly if it is brought up at –40°C. Once operational, it will continue to operate down to –20°C extended and 0°C  
commercial.  
3) A typical design will provide 3.3 V to the I/O supply (i.e., V IO), and 2.5 V to the remaining logic. This is to allow the I/O to be  
DD  
compatible with 3.3 V powered external logic.  
4) Pull-up current = 50 µA typical at V = 3.3 V.  
DD  
10  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Timings  
Timing Diagram Conventions  
This data sheet contains one or more timing diagrams. The following key explains the components used in these  
diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached  
unless specifically stated.  
Clock  
High to Low  
High/Low to High  
Bus Change  
Bus Valid  
Undefined/Invalid  
Valid Bus to Tristate  
Bus/Signal Omission  
Timing Conditions  
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are  
specified at VDD = 2.3 - 2.7 V and VSS = 0 V over an operating temperature of 0°C to +70°C. Those characteristics  
marked with a # will be significantly different for 13 MHz mode because the EXPCLK is provided as an input rather  
than generated internally. These timings are estimated at present. The timing values are referenced to 1/2 VDD  
.
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
11  
EP7309  
High-Performance, Low-Power System on Chip  
Static Memory  
Figure 2 through Figure 5 define the timings associated with all phases of the Static Memory. The following table  
contains the values for the timings of each of the Static Memory modes.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
t
EXPCLK rising edge to nCS assert delay time  
EXPCLK falling edge to nCS deassert hold time  
EXPCLK rising edge to A assert delay time  
EXPCLK falling edge to A deassert hold time  
EXPCLK rising edge to nMWE assert delay time  
EXPCLK rising edge to nMWE deassert hold time  
EXPCLK falling edge to nMOE assert delay time  
EXPCLK falling edge to nMOE deassert hold time  
EXPCLK falling edge to HALFWORD deassert delay time  
EXPCLK falling edge to WORD assert delay time  
EXPCLK rising edge to data valid delay time  
EXPCLK falling edge to data invalid delay time  
Data setup to EXPCLK falling edge time  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
8
4
4
8
4
4
4
4
4
4
20  
8
-
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSd  
t
CSh  
t
Ad  
t
Ah  
t
MWd  
t
MWh  
t
MOEd  
t
MOEh  
t
HWd  
t
WDd  
t
Dv  
t
Dnv  
t
Ds  
t
EXPCLK falling edge to data hold time  
-
Dh  
t
EXPCLK rising edge to WRITE assert delay time  
EXPREADY setup to EXPCLK falling edge time  
EXPCLK falling edge to EXPREADY hold time  
8
-
WRd  
t
EXs  
t
-
EXh  
12  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Static Memory Single Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
tDs  
tDh  
D
tEXs  
tEXh  
EXPRDY  
tWRd  
WRITE  
Figure 2. Static Memory Single Read Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and  
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on  
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where  
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
13  
EP7309  
High-Performance, Low-Power System on Chip  
Static Memory Single Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAd  
A
tMWd  
tMWh  
nMWE  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
tDv  
D
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 3. Static Memory Single Write Cycle Timing Measurement  
Note: 1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and  
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on  
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where  
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
14  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Static Memory Burst Read Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAd  
tAh  
tAh  
A
nMWE  
tMOEd  
tMOEh  
nMOE  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDs tDh  
tDs tDh  
tDs tDh  
tDs tDh  
tEXs  
tEXh  
EXPRDY  
WRITE  
tWRd  
Figure 4. Static Memory Burst Read Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and  
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on  
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where  
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to  
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion  
cycles. This improves performance so the SQAEN bit should always be set where possible.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
15  
EP7309  
High-Performance, Low-Power System on Chip  
Static Memory Burst Write Cycle  
EXPCLK  
tCSd  
tCSh  
nCS  
tAh  
tAh  
tAh  
tAd  
A
nMWE  
nMOE  
tMWd  
tMWd  
tMWd  
tMWd  
tMWh  
tMWh  
tMWh  
tMWh  
tHWd  
HALF  
WORD  
tWDd  
WORD  
D
tDv  
tDnv  
tDv tDnv  
tDv tDnv  
tDv  
tEXs  
tEXh  
EXPRDY  
WRITE  
Figure 5. Static Memory Burst Write Cycle Timing Measurement  
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive  
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.  
2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and  
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on  
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where  
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.  
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with  
valid timing under zero wait state conditions.  
16  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
SSI1 Interface  
Parameter  
Symbol  
Min  
Max  
Unit  
t
ADCCLK falling edge to nADCCSS deassert delay time  
ADCIN data setup to ADCCLK rising edge time  
ADCIN data hold from ADCCLK rising edge time  
ADCCLK falling edge to data valid delay time  
ADCCLK falling edge to data invalid delay time  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
Cd  
t
INs  
t
INh  
t
Ovd  
t
Od  
ADC  
CLK  
tCd  
nADC  
CSS  
tINs  
tINh  
ADCIN  
tOvd  
tOd  
ADC  
OUT  
Figure 6. SSI1 Interface Timing Measurement  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
17  
EP7309  
High-Performance, Low-Power System on Chip  
SSI2 Interface  
Parameter  
Symbol  
Min  
Max  
Unit  
t
SSICLK period (slave mode)  
0
512  
1025  
1025  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk_per  
t
SSICLK high time  
925  
925  
clk_high  
t
SSICLK low time  
clk_low  
t
SSICLK rise/fall time  
clkrf  
t
SSICLK rising edge to RX and/or TX frame sync high time  
SSICLK rising edge to RX and/or TX frame sync low time  
SSIRXFR and/or SSITXFR period  
SSIRXDA setup to SSICLK falling edge time  
SSIRXDA hold from SSICLK falling edge time  
SSICLK rising edge to SSITXDA data valid delay time  
SSITXDA valid time  
528  
448  
FRd  
t
FRa  
t
750  
30  
FR_per  
t
RXs  
t
40  
RXh  
t
80  
TXd  
t
TXv  
tclk_per  
tclk_high  
tclk_low  
SSI  
CLK  
tclkrf  
tFR_per  
tFRd  
tFRa  
SSIRXFR/  
SSITXFR  
tRXh  
tRXs  
SSI  
RXDA  
D7  
D2  
D2  
D1  
D1  
D0  
D0  
tTXd  
SSI  
TXDA  
D7  
tTXv  
Figure 7. SSI2 Interface Timing Measurement  
18  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
LCD Interface  
Parameter  
Symbol  
Min  
Max  
Unit  
t
CL[1] falling to CL[2] falling time  
LCD CL[2] low time  
200  
80  
6,950  
3,475  
3,475  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
t
clk_low  
t
LCD CL[2] high time  
80  
clk_high  
t
CL[2] falling to CL[1] rising delay time  
CL[1] falling to CL[2] rising delay time  
LCD CL[1] high time  
0
CL1d  
t
80  
3,475  
3,475  
10,425  
20  
CL2d  
t
80  
CL2h  
t
CL[1] falling to FRM transition time  
CL[1] falling to M transition time  
CL[2] rising to DD (display data) transition time  
300  
10  
10  
FRMd  
t
Md  
t
20  
DDd  
tclk  
tclk_low  
tclk_high  
CL[2]  
tCL1d  
tCL2d  
tCL2h  
CL[1]  
FRM  
tFRMd  
tMd  
M
tDDd  
DD [3:0]  
Figure 8. LCD Controller Timing Measurement  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
19  
EP7309  
High-Performance, Low-Power System on Chip  
JTAG  
Parameter  
Symbol  
Min  
Max  
Units  
t
TCK clock period  
100  
50  
50  
20  
45  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk_per  
t
TCK clock high time  
clk_high  
t
TCK clock low time  
-
clk_low  
t
JTAG port setup time  
-
JPs  
t
JTAG port hold time  
-
JPh  
t
JTAG port clock to output  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
25  
25  
25  
JPco  
t
-
JPzx  
t
-
JPxz  
tclk_per  
tclk_high  
tclk_low  
TCK  
tJPh  
tJPs  
TMS  
TDI  
tJPzx  
tJPco  
tJPxz  
TDO  
Figure 9. JTAG Timing Measurement  
20  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Packages  
208-Pin LQFP Package Characteristics  
208-Pin LQFP Package Specifications  
29.60 (1.165)  
30.40 (1.197)  
27.80 (1.094)  
28.20 (1.110)  
0.17 (0.007)  
0.27 (0.011)  
27.80 (1.094)  
28.20 (1.110)  
29.60 (1.165)  
30.40 (1.197)  
EP7309  
208-Pin LQFP  
0.50  
(0.0197)  
BSC  
Pin 1 Indicator  
Pin 208  
Pin 1  
1.35 (0.053)  
1.45 (0.057)  
1.00 (0.039) BSC  
0.45 (0.018)  
0.75 (0.030)  
0.09 (0.004)  
0.20 (0.008)  
0° MIN  
7° MAX  
0.05 (0.002)  
0.15 (0.006)  
1.40 (0.055)  
1.60 (0.063)  
Figure 10. 208-Pin LQFP Package Outline Drawing  
Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.  
2) Drawing above does not reflect exact package pin count.  
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.  
4) For pin locations, please see Figure 11. For pin descriptions see the EP7309 Users Manual.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
21  
EP7309  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Pin Diagram  
D[25]  
A[25]  
D[26]  
A[26]  
D[27]  
A[27]  
VSSIO  
D[28]  
D[29]  
D[30]  
D[31]  
BUZ  
COL[0]  
COL[1]  
TCLK  
VDDIO  
COL[2]  
COL[3]  
COL[4]  
COL[5]  
COL[6]  
COL[7]  
FB[0]  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
157  
158  
159  
160  
161  
162  
163  
VDDOSC  
MOSCIN  
MOSCOUT  
VSSOSC  
WAKEUP  
nPWRFL  
A[6]  
164  
D[6]  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
A[5]  
D[5]  
VDDIO  
VSSIO  
A[4]  
D[4]  
A[3]  
D[3]  
A[2]  
VSSIO  
D[2]  
A[1]  
D[1]  
A[0]  
D[0]  
VSSCORE  
VDDCORE  
VSSIO  
VDDIO  
CL[2]  
CL[1]  
FRM  
EP7309  
VSSIO  
FB[1]  
SMPCLK  
ADCOUT  
ADCCLK  
DRIVE[0]  
DRIVE[1]  
VDDIO  
VSSIO  
VDDCORE  
VSSCORE  
nADCCS  
ADCIN  
SSIRXFR  
SSIRXDA  
SSITXDA  
SSITXFR  
VSSIO  
SSICLK  
PD[0]/LEDFLSH  
PD[1]  
PD[2]  
PD[3]  
TMS  
VDDIO  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
208-Pin LQFP  
(Top View)  
M
DD[3]  
DD[2]  
VSSIO  
DD[1]  
DD[0]  
N/C  
N/C  
N/C  
N/C  
VDDIO  
VSSIO  
N/C  
N/C  
nMWE  
nMOE  
VSSIO  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
nCS[4]  
Figure 11. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram  
Note: 1. N/C should not be grounded but left as no connects.  
2. Pin differences between the EP7212 and the EP7309 are bolded.  
22  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
208-Pin LQFP Numeric Pin Listing  
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)  
Reset  
Table S. 208-Pin LQFP Numeric Pin Listing  
Pin  
Pin  
No.  
Signal  
Type  
Strength  
Reset  
State  
State  
Signal  
Type  
Strength  
No.  
38  
39  
40  
41  
42  
43  
44  
45  
DSR  
nTEST[1]  
nTEST[0]  
EINT[3]  
I
1
nCS[5]  
VDDIO  
VSSIO  
EXPCLK  
WORD  
WRITE  
RUN/CLKEN  
EXPRDY  
TXD[2]  
RXD[2]  
TDI  
O
1
High  
I
With p/u*  
With p/u*  
2
Pad Pwr  
I
3
Pad Gnd  
I
4
I/O  
1
1
1
1
1
1
nEINT[2]  
I
I
5
Out  
Low  
Low  
Low  
nEINT[1]  
6
Out  
nEXTFIQ  
PE[2]/CLKSEL  
I
7
O
I/O  
1
1
Input  
Input  
8
I
PE[1]/  
BOOTSEL[1]  
46  
47  
I/O  
I/O  
9
O
High  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I
PE[0]/  
BOOTSEL[0]  
1
Input  
I
with p/u*  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
VSSRTC  
RTCOUT  
RTCIN  
RTC Gnd  
VSSIO  
PB[7]  
Pad Gnd  
O
I/O  
1
1
1
1
1
1
1
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
I
PB[6]  
I/O  
VDDRTC  
N/C  
RTC power  
PB[5]  
I/O  
PB[4]  
I/O  
PD[7]  
I/O  
1
1
1
1
Low  
Low  
Low  
Low  
PB[3]  
I/O  
PD[6]  
I/O  
PB[2]  
I/O  
PD[5]  
I/O  
PB[1]/PRDY2  
PB[0]/PRDY1  
VDDIO  
TDO  
I/O  
PD[4]  
I/O  
I/O  
VDDIO  
Pad Pwr  
Pad Pwr  
TMS  
I
with p/u*  
O
1
1
1
1
1
1
1
1
1
1
1
1
Three state  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Low  
PD[3]  
I/O  
1
1
1
1
1
Low  
Low  
Low  
Low  
Input  
PA[7]  
I/O  
PD[2]  
I/O  
PA[6]  
I/O  
PD[1]  
I/O  
PA[5]  
I/O  
PD[0]/LEDFLSH  
SSICLK  
VSSIO  
I/O  
PA[4]  
I/O  
I/O  
PA[3]  
I/O  
Pad Gnd  
PA[2]  
I/O  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
ADCIN  
I/O  
1
1
Low  
Low  
PA[1]  
I/O  
O
PA[0]  
I/O  
I
LEDDRV  
TXD[1]  
VSSIO  
PHDIN  
CTS  
O
I/O  
I
Input  
High  
O
High  
Pad Gnd  
High  
nADCCS  
VSSCORE  
VDDCORE  
VSSIO  
O
1
I
I
I
I
Core Gnd  
Core Pwr  
Pad Gnd  
RXD[1]  
DCD  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
23  
EP7309  
High-Performance, Low-Power System on Chip  
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)  
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)  
Pin  
No.  
Reset  
State  
Pin  
No.  
Reset  
State  
Signal  
Type  
Strength  
Signal  
Type  
Strength  
74  
75  
VDDIO  
Pad Pwr  
I/O  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
D[23]  
A[22]  
D[22]  
A[21]  
D[21]  
VSSIO  
A[20]  
D[20]  
A[19]  
D[19]  
A[18]  
D[18]  
VDDIO  
VSSIO  
nTRST  
A[17]  
D[17]  
A[16]  
D[16]  
A[15]  
D[15]  
A[14]  
D[14]  
A[13]  
D[13]  
A[12]  
D[12]  
A[11]  
VDDIO  
VSSIO  
D[11]  
A[10]  
D[10]  
A[9]  
I/O  
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
High /  
Low  
O
DRIVE[1]  
2
2
I/O  
High /  
Low  
76  
DRIVE[0]  
I/O  
O
I/O  
77  
78  
ADCCLK  
ADCOUT  
SMPCLK  
FB[1]  
O
1
1
1
Low  
Low  
Low  
Pad Gnd  
O
O
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
79  
O
I/O  
80  
I
O
81  
VSSIO  
FB[0]  
Pad Gnd  
I/O  
82  
I
O
83  
COL[7]  
COL[6]  
COL[5]  
COL[4]  
COL[3]  
COL[2]  
VDDIO  
TCLK  
O
1
1
1
1
1
1
High  
High  
High  
High  
High  
High  
I/O  
84  
O
Pad Pwr  
85  
O
Pad Gnd  
86  
O
I
O
87  
O
1
1
1
1
1
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
88  
O
I/O  
O
89  
Pad Pwr  
90  
I
I/O  
O
91  
COL[1]  
COL[0]  
BUZ  
O
1
1
1
1
1
1
1
High  
High  
Low  
Low  
Low  
Low  
Low  
92  
O
I/O  
O
93  
O
94  
D[31]  
I/O  
I/O  
O
95  
D[30]  
I/O  
96  
D[29]  
I/O  
I/O  
O
97  
D[28]  
I/O  
98  
VSSIO  
A[27]  
Pad Gnd  
I/O  
O
99  
O
2
1
2
1
2
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
D[27]  
I/O  
Pad Pwr  
Pad Gnd  
I/O  
O
A[26]  
O
D[26]  
I/O  
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
A[25]  
O
D[25]  
I/O  
I/O  
O
HALFWORD  
A[24]  
O
O
D[9]  
I/O  
O
VDDIO  
VSSIO  
D[24]  
Pad Pwr  
Pad Gnd  
I/O  
A[8]  
D[8]  
I/O  
O
1
1
Low  
Low  
A[7]  
A[23]  
O
24  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)  
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)  
Reset  
Pin  
No.  
Reset  
State  
Pin  
No.  
Signal  
Type  
Strength  
Signal  
Type  
Strength  
State  
149  
150  
151  
152  
153  
154  
VSSIO  
D[7]  
Pad Gnd  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
M
O
1
1
1
Low  
Low  
Low  
I/O  
1
Low  
DD[3]  
DD[2]  
VSSIO  
DD[1]  
DD[0]  
N/C  
I/O  
nBATCHG  
nEXTPWR  
BATOK  
nPOR  
I
I
I
I
I/O  
Pad Gnd  
I/O  
1
1
1
1
2
2
Low  
Low  
High  
High  
Low  
Low  
Schmitt  
Schmitt  
I/O  
nMEDCHG/  
nBROM  
O
155  
I
N/C  
O
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
nURESET  
VDDOSC  
MOSCIN  
MOSCOUT  
VSSOSC  
WAKEUP  
nPWRFL  
A[6]  
I
N/C  
I/O  
Osc Pwr  
N/C  
I/O  
Osc  
VDDIO  
VSSIO  
N/C  
Pad Pwr  
Osc  
Pad Gnd  
Osc Gnd  
I/O  
2
2
1
1
Low  
Low  
High  
High  
I
Schmitt  
N/C  
I/O  
I
nMWE  
nMOE  
VSSIO  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
nCS[4]  
O
O
1
1
1
1
Low  
Low  
Low  
Low  
O
D[6]  
I/O  
Pad Gnd  
A[5]  
Out  
O
O
O
O
O
1
1
1
1
1
High  
High  
High  
High  
High  
D[5]  
I/O  
VDDIO  
VSSIO  
A[4]  
Pad Pwr  
Pad Gnd  
O
1
1
2
1
2
Low  
Low  
Low  
Low  
Low  
D[4]  
I/O  
A[3]  
O
*With p/umeans with internal pull-up on the pin.  
D[3]  
I/O  
A[2]  
O
VSSIO  
D[2]  
Pad Gnd  
I/O  
1
2
1
2
1
Low  
Low  
Low  
Low  
Low  
A[1]  
O
D[1]  
I/O  
O
A[0]  
D[0]  
I/O  
VSS CORE  
VDD CORE  
VSSIO  
VDDIO  
CL[2]  
Core Gnd  
Core Pwr  
Pad Gnd  
Pad Pwr  
O
1
1
1
Low  
Low  
Low  
CL[1]  
O
FRM  
O
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
25  
EP7309  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Package Characteristics  
204-Ball TFBGA Package Specifications  
TOP VIEW  
BOTTOM VIEW  
Ø0.08 M  
C
Ø0.15 M C A B  
Ø0.25~0.35(204X)  
A1 CORNER  
A1 CORNER  
1
2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20  
20 19 18 17 16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
V
W
Y
U
V
W
Y
A
0.65  
12.35  
B
13 0.05  
C
0.15(4X)  
Substrate Thickness :  
0.36  
Ball Pitch :  
0.65  
0.3  
Ball Diameter :  
Mold Thickness :  
SEATING PLANE  
C
0.53  
Figure 12. 204-Ball TFBGA Package  
26  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
204-Ball TFBGA Pinout (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A2  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
VDDR EXPCLK nCS3 nCS1 nMWE N/C  
N/C  
DD2  
FRM  
CL1  
GNDD  
D1  
D4  
A5 nPWRFLMOSCOUT GNDR  
GNDR  
GNDR  
A
WORD  
VDDR  
nCS5 nCS2 nMOE  
N/C  
N/C  
N/C  
N/C  
DD1  
DD0  
M
CL2  
D0  
A0  
A1  
D2  
D3  
A3  
A4  
D5  
D6 WAKEUP MOSCIN  
GNDR  
GNDR  
GNDR nURESET B  
RUN/  
CLKEN  
EXPRDY VDDR nCS4 nCS0  
DD3  
VDDD  
A6  
GNDO  
VDDO  
BATOK  
nPOR  
A7  
C
D
E
F
PB7  
PB4  
PB3  
PB1  
PA7  
PA4  
PA1  
RXD2  
VDDR  
GNDR nBATCHG  
nMEDCHG  
nEXTPWR  
/nBROM  
TXD2 WRITE  
D9  
PB6  
PB2  
TDO  
PA5  
PA2  
TDI  
PB5  
D7  
D8  
A8  
D10  
D11  
A12  
A13  
D15  
A16  
nTRST  
A18  
D20  
A21  
G
H
J
A9  
G
H
J
PB0  
A10  
A11  
D14  
VDDR  
A15  
D17  
D18  
A19  
D12  
D13  
A14  
D16  
A17  
D19  
A20  
D22  
PA6  
K
L
VDDR  
K
L
TXD1 LEDDRV PA3  
M
N
P
RXD1  
DSR  
CTS  
PA0  
M
N
P
R
nTEST1 PHDIN  
EINT3 nEINT2  
PE2/  
DCD  
R nEXTFIQ  
nTEST0  
CLKSEL  
PE1/  
PE0/  
T
BOOT  
SEL1  
BOOT nEINT1  
SEL0  
D21  
D23  
A22  
T
HALF  
WORD  
U
V
GNDC RTCOUT RTCIN  
D24  
A23  
A24  
D25  
U
V
VDDC  
GNDR  
GNDR GNDR PD7  
PD4  
TMS  
PD2  
SSICLK SSIRXDAnADCCS VDDR ADCCLK COL7 COL4 TCLK BUZ  
D29  
D30  
A26  
A27  
VDDR  
D26  
VDDR  
VDDR  
W
GNDR GNDR PD6  
GNDR GNDR PD5  
PD1 SSITXFR SSIRXFR GNDD1 DRIVE1 ADCOUT FB0 COL5 COL2 COL0  
W
PD0/  
Y
GNDR  
PD3  
LED SSITXDA ADCIN VDD1 DRIVE0 SMPLCK FB1 COL6 COL3 COL1  
D31  
D28  
D27  
A25  
VDDR  
Y
FLSH  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
27  
EP7309  
High-Performance, Low-Power System on Chip  
TFBGA Ball List  
Table T. 204-Ball TFBGA Ball List (Continued)  
Table T. 204-Ball TFBGA Ball List  
Die Pad  
Bond Pad Package Ball  
Signal  
Die Pad  
Bond Pad Package Ball  
Signal  
U2.38  
U2.39  
U2.40  
U2.41  
U2.42  
U2.43  
U2.44  
U2.45  
U2.46  
U2.47  
U2.48  
U2.49  
U2.50  
U2.51  
U2.53  
U2.54  
U2.55  
U2.56  
U2.57  
U2.58  
U2.59  
U2.60  
U2.61  
U2.62  
U2.63  
U2.64  
U2.65  
U2.66  
U2.67  
U2.68  
U2.69  
U2.70  
U2.71  
U2.72  
U2.73  
U2.74  
U2.75  
U2.76  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
N1  
N2  
R3  
P1  
DSR  
nTEST1  
nTEST0  
EINT3  
U2.1  
U2.2  
1
B3  
Y20  
B18  
A2  
B1  
E3  
C1  
C2  
E2  
D2  
F3  
nCS5  
VDDR  
GNDR  
EXPCLK  
WORD  
WRITE  
RUN/CLKEN  
EXPRDY  
TXD2  
RXD2  
TDI  
2
U2.3  
3
U2.4  
4
P2  
nEINT2  
nEINT1  
nEXTFIQ  
PE2/CLKSEL  
PE1/BOOTSEL1  
PE0/BOOTSEL0  
GNDC  
U2.5  
5
T3  
U2.6  
6
R1  
R2  
T1  
U2.7  
7
U2.8  
8
U2.9  
9
T2  
U2.10  
U2.11  
U2.12  
U2.13  
U2.14  
U2.15  
U2.16  
U2.17  
U2.18  
U2.19  
U2.20  
U2.21  
U2.22  
U2.23  
U2.24  
U2.25  
U2.26  
U2.27  
U2.28  
U2.29  
U2.30  
U2.31  
U2.32  
U2.33  
U2.34  
U2.35  
U2.36  
U2.37  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
U1  
U2  
U3  
V1  
RTCOUT  
RTCIN  
B18  
D1  
F2  
GNDR  
PB7  
VDDC  
PB6  
V4  
PD7  
G3  
E1  
F1  
PB5  
W4  
Y4  
PD6  
PB4  
PD5  
PB3  
V5  
PD4  
G2  
G1  
H3  
Y20  
H2  
H1  
J3  
PB2  
L18  
W5  
Y5  
VDDR  
PB1  
TMS  
PB0  
PD3  
VDDR  
TDO  
V6  
PD2  
W6  
Y6  
PD1  
PA7  
PD0/LEDFLSH  
SSICLK  
GNDR  
PA6  
V7  
J2  
PA5  
D18  
W7  
Y7  
J1  
PA4  
SSITXFR  
SSITXDA  
SSIRXDA  
SSIRXFR  
ADCIN  
L3  
PA3  
K2  
K1  
M3  
L2  
PA2  
V8  
PA1  
W8  
Y8  
PA0  
LEDDRV  
TXD1  
GNDR  
PHDIN  
CTS  
V9  
nADCCS  
GNDD1  
VDD1  
L1  
W9  
Y9  
B18  
N3  
M2  
M1  
P3  
W3  
V10  
L18  
W10  
GNDR  
VDDR  
RXD1  
DCD  
VDDR  
DRIVE1  
28  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table T. 204-Ball TFBGA Ball List (Continued)  
Table T. 204-Ball TFBGA Ball List (Continued)  
Die Pad  
Bond Pad Package Ball  
Signal  
Die Pad  
Bond Pad Package Ball  
Signal  
U2.77  
U2.78  
U2.79  
U2.80  
U2.81  
U2.82  
U2.83  
U2.84  
U2.85  
U2.86  
U2.87  
U2.88  
U2.89  
U2.90  
U2.91  
U2.92  
U2.93  
U2.94  
U2.95  
U2.96  
U2.97  
U2.98  
U2.99  
U2.100  
U2.101  
U2.102  
U2.103  
U2.104  
U2.105  
U2.106  
U2.107  
U2.108  
U2.109  
U2.110  
U2.111  
U2.112  
U2.113  
U2.114  
U2.115  
76  
77  
Y10  
V11  
W11  
Y11  
Y12  
Y3  
DRIVE0  
ADCCLK  
ADCOUT  
SMPLCK  
FB1  
U2.116  
U2.117  
U2.118  
U2.119  
U2.120  
U2.121  
U2.122  
U2.123  
U2.124  
U2.125  
U2.126  
U2.127  
U2.128  
U2.129  
U2.130  
U2.131  
U2.132  
U2.133  
U2.134  
U2.135  
U2.136  
U2.137  
U2.138  
U2.139  
U2.140  
U2.141  
U2.142  
U2.143  
U2.144  
U2.145  
U2.146  
U2.147  
U2.148  
U2.149  
U2.150  
U2.151  
U2.152  
U2.153  
U2.154  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
T18  
Y3  
D21  
GNDR  
A20  
78  
P19  
P20  
R18  
N19  
N20  
P18  
A1  
79  
D20  
80  
A19  
81  
GNDR  
FB0  
D19  
82  
W12  
V12  
Y13  
W13  
V13  
Y14  
W14  
A1  
A18  
83  
COL7  
COL6  
COL5  
COL4  
COL3  
COL2  
VDDR  
TCLK  
COL1  
COL0  
BUZ  
D18  
84  
VDDR  
GNDR  
nTRST  
A17  
85  
Y3  
86  
M20  
M19  
N18  
L20  
L19  
M18  
K20  
K19  
K18  
J20  
J19  
H20  
H19  
J18  
K3  
87  
88  
D17  
89  
A16  
90  
V14  
Y15  
W15  
V15  
Y16  
W16  
V16  
Y17  
Y3  
D16  
91  
A15  
92  
D15  
93  
A14  
94  
D31  
D14  
95  
D30  
A13  
96  
D29  
D13  
97  
D28  
A12  
98  
GNDR  
A27  
D12  
99  
W17  
Y18  
V17  
W18  
Y19  
W20  
U18  
V20  
A1  
A11  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
D27  
VDDR  
GNDR  
D11  
A26  
Y3  
D26  
G20  
H18  
F20  
G19  
E20  
F19  
G18  
D20  
Y3  
A25  
A10  
D25  
D10  
HALFWORD  
A24  
A9  
D9  
VDDR  
GNDR  
D24  
A8  
Y3  
D8  
U19  
U20  
T19  
T20  
R19  
R20  
A7  
A23  
GNDR  
D7  
D23  
F18  
D19  
E19  
C19  
A22  
nBATCHG  
nEXTPWR  
BATOK  
D22  
A21  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
29  
EP7309  
High-Performance, Low-Power System on Chip  
Table T. 204-Ball TFBGA Ball List (Continued)  
Table T. 204-Ball TFBGA Ball List (Continued)  
Die Pad  
Bond Pad Package Ball  
Signal  
Die Pad  
Bond Pad Package Ball  
Signal  
U2.155  
U2.156  
U2.157  
U2.158  
U2.159  
U2.160  
U2.161  
U2.162  
U2.163  
U2.164  
U2.165  
U2.166  
U2.167  
U2.168  
U2.169  
U2.170  
U2.171  
U2.172  
U2.173  
U2.174  
U2.175  
U2.176  
U2.177  
U2.178  
U2.179  
U2.180  
U2.181  
U2.182  
U2.183  
U2.184  
U2.185  
U2.186  
U2.187  
U2.188  
U2.189  
U2.190  
U2.191  
U2.192  
U2.193  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
C20  
E18  
B20  
C17  
B17  
A17  
C16  
B16  
A16  
C15  
B15  
A15  
C14  
A1  
nPOR  
nMEDCHG/nBROM  
nURESET  
VDDO  
MOSCIN  
MOSCOUT  
GNDO  
WAKEUP  
nPWRFL  
A6  
U2.194  
U2.195  
U2.196  
U2.197  
U2.198  
U2.199  
U2.200  
U2.201  
U2.202  
U2.203  
U2.204  
U2.205  
U2.206  
U2.207  
U2.208  
U2.209  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
A7  
B7  
N/C  
N/C  
C7  
N/C  
A6  
N/C  
V18  
B18  
B6  
VDDR  
GNDR  
N/C  
C6  
N/C  
A5  
nMWE  
nMOE  
GNDR  
nCS0  
nCS1  
nCS2  
nCS3  
nCS4  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
B5  
D6  
B18  
C5  
A5  
D5  
A4  
VDDR  
GNDR  
A4  
B4  
Y3  
A3  
B14  
A14  
C13  
B13  
A13  
Y3  
C4  
D4  
A1  
A3  
B2  
D3  
C3  
A2  
D3  
GNDR  
D2  
K3  
C12  
B12  
A12  
C11  
B11  
A11  
C10  
Y3  
L18  
V18  
V19  
W19  
Y20  
A18  
A19  
A20  
B18  
B19  
C18  
D18  
V2  
A1  
D1  
A0  
D0  
GNDD  
VDDD  
GNDR  
VDDR  
CL2  
Y20  
B10  
A10  
A9  
CL1  
FRM  
B9  
M
C9  
DD3  
V3  
A8  
DD2  
W1  
W2  
W3  
Y3  
GNDR  
DD1  
B8  
C8  
DD0  
30  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table T. 204-Ball TFBGA Ball List (Continued)  
Die Pad  
Bond Pad Package Ball  
Signal  
Y1  
Y2  
Y3  
GNDR  
GNDR  
GNDR  
256-Ball PBGA Package Characteristics  
256-Ball PBGA Package Specifications  
Figure 13. 256-Ball PBGA Package  
Note: 1) For pin locations see Table U.  
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter  
3) Before beginning any new EP7309 design, contact Cirrus Logic for the latest package information.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
31  
EP7309  
High-Performance, Low-Power System on Chip  
0.85 (0.034)  
0.05 (.002)  
17.00 (0.669)  
0.20 (.008)  
0.40 (0.016)  
0.05 (.002)  
Pin 1 Corner  
(0.590)  
15.00  
0.20 (.008)  
D1  
30° TYP  
Pin 1 Indicator  
17.00 (0.669)  
0.20 (.008)  
E1  
15.00 (0.590)  
0.20 (.008)  
2 Layer  
0.36 (0.014)  
0.09 (0.004)  
TOP VIEW  
SIDE VIEW  
D
17.00 (0.669)  
Pin 1 Corner  
1.00 (0.040)  
1.00 (0.040)  
REF  
E
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1.00 (0.040)  
A
B
C
D
E
F
REF  
G
H
J
1.00 (0.040)  
17.00 (0.669)  
K
L
M
N
P
R
T
0.50  
BOTTOM VIEW  
R
3 Places  
JEDEC #: MO-151  
Ball Diameter: 0.50 mm 0.10 mm  
17 ¥ 17 ¥ 1.61 mm body  
32  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
256-Ball PBGA Pinout (Top View))  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
VDDIO  
nCS[4]  
nCS[1]  
N/C  
N/C  
DD[1]  
M
VDDIO  
D[0]  
D[2]  
A[3]  
VDDIO  
A[6]  
MOSCOUT VDDOSC VSSIO  
WAKEUP VDDIO nURESET  
A
B
nCS[5]  
VDDIO  
WRITE  
RXD[2]  
PB[5]  
VDDIO  
EXPCLK  
EXPRDY  
PB[7]  
nCS[3]  
VSSIO  
VSSIO  
TDI  
nMOE  
VDDIO  
VDDIO  
WORD  
TXD[2]  
PB[4]  
VDDIO  
VSSIO  
nCS[2]  
VSSIO  
N/C  
DD[2]  
VSSIO  
N/C  
CL[1]  
VDDIO  
CL[2]  
FRM  
VDDCORE  
VSSIO  
VSSRTC  
A[0]  
D[1]  
VSSIO  
D[4]  
A[2]  
A[4]  
A[5]  
VSSIO  
nMWE  
nCS[0]  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
nTRST  
VSSIO  
VSSIO  
VDDIO  
nPOR nEXTPWR C  
nPWRFL MOSCIN  
D[7]  
D[9]  
D[8]  
D[10]  
D
E
F
nMEDCHG/  
nBROM  
N/C  
D[5]  
VSSOSC  
VSSRTC  
A[7]  
VSSIO  
BATOK  
A[8]  
RUN/  
CLKEN  
PB[3]  
VSSIO  
TDO  
N/C  
DD[3]  
DD[0]  
A[1]  
D[6]  
nBATCHG  
A[9]  
D[11]  
D[12]  
D[14]  
D[16]  
VDDIO  
A[18]  
A[20]  
D[22]  
D[24]  
VDDIO  
D[25]  
VDDIO  
D[13]  
G
H
J
PB[1]  
VDDIO  
PA[5]  
PB[6]  
PA[6]  
PA[0]  
VSSRTC VSSRTC  
D[3]  
VSSRTC  
A[10]  
G
H
J
PA[7]  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
VSSIO  
PD[4]  
PA[4]  
PB[0]  
PB[2]  
CTS  
VSSRTC VSSRTC  
VSSRTC VSSRTC  
A[11]  
A[12]  
A[15]  
D[19]  
A[22]  
VSSIO  
D[26]  
VSSIO  
D[30]  
BUZ  
A[13]  
D[15]  
PA[3]  
PA[1]  
PA[2]  
TXD[1]  
A[17]  
A[16]  
A[14]  
D[17]  
K
L
LEDDRV  
RXD[1]  
PHDIN  
DSR  
DCD  
nTEST[1] EINT[3]  
VSSRTC  
ADCIN  
COL[4]  
COL[6]  
FB[0]  
TCLK  
D[31]  
D[20]  
D[18]  
A[21]  
VDDIO  
A[19]  
K
L
PE[2]/  
PD[0]/  
LEDFLSH  
nEINT[1]  
VSSRTC  
CLKSEL  
VSSRTC  
VSSRTC  
D[27]  
PE[0]/  
BOOTSEL[0]  
M
N
P
R
T
nTEST[0] nEINT[2]  
TMS  
PD[5]  
VDDIO  
VDDIO  
PD[2]  
SSITXFR DRIVE[1]  
COL[0]  
COL[2]  
VDDIO  
COL[3]  
COL[5]  
A[23]  
D[21]  
M
N
P
R
T
PE[1]/  
nEXTFIQ  
VDDIO  
VSSIO  
PD[1]  
SSIRXDA ADCCLK SMPCLK  
D[29]  
HALFWORD VSSIO  
D[23]  
BOOTSEL[1]  
VSSRTC RTCOUT  
VSSIO  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
COL[7]  
FB[1]  
VSSIO  
COL[1]  
VDDIO  
VDDIO  
A[27]  
VSSIO  
A[25]  
VDDIO  
A[24]  
RTCIN  
VDDIO  
PD[7]  
SSITXDA nADCCS  
ADCOUT  
VDDRTC  
PD[6]  
PD[3]  
SSICLK SSIRXFR VDDCORE DRIVE[0]  
D[28]  
A[26]  
VSSIO  
256-Ball PBGA Ball Listing  
The list is ordered by ball location.  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Table U. 256-Ball PBGA Ball Listing  
Ball Location  
Name  
Type  
Description  
Ball Location  
Name  
VDDIO  
Type  
Description  
A12  
A13  
A14  
VDDIO  
A[6]  
Pad power Digital I/O power, 3.3V  
A1  
A2  
Pad power Digital I/O power, 3.3V  
O
O
System byte address  
Main oscillator out  
nCS[4]  
nCS[1]  
N/C  
O
O
O
O
O
O
Chip select out  
MOSCOUT  
A3  
Chip select out  
Oscillator  
power  
A15  
VDDOSC  
Oscillator power in, 2.5V  
A4  
A5  
N/C  
A16  
B1  
B2  
B3  
B4  
B5  
B6  
VSSIO  
nCS[5]  
VDDIO  
nCS[3]  
nMOE  
VDDIO  
N/C  
Pad ground I/O ground  
A6  
DD[1]  
M
LCD serial display data  
LCD AC bias drive  
O
Chip select out  
A7  
Pad power I/O ground  
A8  
VDDIO  
D[0]  
Pad power Digital I/O power, 3.3V  
O
O
Chip select out  
ROM, expansion OP enable  
A9  
I/O  
I/O  
O
Data I/O  
A10  
A11  
D[2]  
Data I/O  
Pad power Digital I/O power, 3.3V  
O
A[3]  
System byte address  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
33  
EP7309  
High-Performance, Low-Power System on Chip  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Ball Location  
Name  
Type  
Description  
LCD serial display data  
LCD line clock  
Ball Location  
Name  
Type  
Description  
B7  
B8  
DD[2]  
CL[1]  
O
O
E7  
E8  
N/C  
FRM  
A[0]  
D[5]  
O
O
LCD frame synchronization pulse  
System byte address  
Data I/O  
B9  
VDDCORE  
D[1]  
Core power Digital core power, 2.5V  
E9  
O
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
O
O
O
I
Data I/O  
E10  
I/O  
A[2]  
System byte address  
System byte address  
System byte address  
System wake up input  
Oscillator  
ground  
E11  
E12  
E13  
VSSOSC  
VSSIO  
PLL ground  
A[4]  
Pad ground I/O ground  
A[5]  
Media change interrupt input / internal  
rom boot enable  
nMEDCHG/nBROM  
I
WAKEUP  
VDDIO  
nURESET  
VDDIO  
EXPCLK  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
nPOR  
Pad power Digital I/O power, 3.3V  
User reset input  
Pad power Digital I/O power, 3.3V  
Expansion clock input  
E14  
E15  
E16  
F1  
VDDIO  
D[9]  
Pad power Digital I/O power, 3.3V  
I
I/O  
Data I/O  
D[10]  
I/O  
Data I/O  
C2  
I
PB[5]  
I
I
GPIO port B  
GPIO port B  
C3  
Pad ground I/O ground  
F2  
PB[3]  
C4  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
F3  
VSSIO  
TXD[2]  
RUN/CLKEN  
VSSIO  
N/C  
Pad ground I/O ground  
C5  
F4  
O
O
UART 2 transmit data output  
Run output / clock enable output  
C6  
Pad ground I/O ground  
F5  
C7  
Pad ground I/O ground  
F6  
Pad ground I/O ground  
O
C8  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
F7  
C9  
F8  
DD[3]  
O
O
LCD serial display data  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
Pad ground I/O ground  
F9  
A[1]  
System byte address  
Data I/O  
Pad ground I/O ground  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
D[6]  
I/O  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
VSSRTC  
BATOK  
nBATCHG  
VSSIO  
D[11]  
RTC ground Real time clock ground  
I
I
Battery ok input  
Pad ground I/O ground  
Battery changed sense input  
I
I
Power-on reset input  
Pad ground I/O ground  
I/O Data I/O  
Pad power Digital I/O power, 3.3V  
nEXTPWR  
WRITE  
EXPRDY  
VSSIO  
VDDIO  
nCS[2]  
nMWE  
N/C  
External power supply sense input  
Transfer direction  
O
I
VDDIO  
D2  
Expansion port ready input  
GPIO port B / CL-PS6700 interface  
signal  
G1  
PB[1]/PRDY[2]  
I
D3  
Pad ground I/O ground  
G2  
G3  
VDDIO  
TDO  
Pad power Digital I/O power, 3.3V  
D4  
Pad power Digital I/O power, 3.3V  
O
I
JTAG data out  
GPIO port B  
GPIO port B  
D5  
O
O
O
O
Chip select out  
G4  
PB[4]  
PB[6]  
VSSRTC  
VSSRTC  
DD[0]  
D[3]  
D6  
ROM, expansion write enable  
G5  
I
D7  
G6  
Core ground Real time clock ground  
RTC ground Real time clock ground  
D8  
CL[2]  
LCD pixel clock out  
G7  
D9  
VSSRTC  
D[4]  
Core ground Real time clock ground  
G8  
O
LCD serial display data  
Data I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
Data I/O  
G9  
I/O  
nPWRFL  
MOSCIN  
VDDIO  
VSSIO  
D[7]  
I
I
Power fail sense input  
Main oscillator input  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
VSSRTC  
A[7]  
RTC ground Real time clock ground  
O
O
O
System byte address  
System byte address  
System byte address  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
A[8]  
A[9]  
I/O  
Data I/O  
VSSIO  
D[12]  
Pad ground I/O ground  
D[8]  
I/O  
Data I/O  
I/O  
Data I/O  
RXD[2]  
PB[7]  
I
I
UART 2 receive data input  
GPIO port B  
D[13]  
I/O  
Data I/O  
E2  
PA[7]  
I
I
GPIO port A  
GPIO port A  
E3  
TDI  
I
JTAG data input  
Word access select output  
H2  
PA[5]  
E4  
WORD  
VSSIO  
nCS[0]  
O
H3  
VSSIO  
PA[4]  
Pad ground I/O ground  
E5  
Pad ground I/O ground  
Chip select out  
H4  
I
I
GPIO port A  
GPIO port A  
E6  
O
H5  
PA[6]  
34  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Ball Location  
Name  
Type  
Description  
Ball Location  
Name  
Type  
Description  
GPIO port B / CL-PS6700 interface  
signal  
L6  
L7  
VSSRTC  
PD[0]/LEDFLSH  
VSSRTC  
COL[6]  
RTC ground Real time clock ground  
H6  
PB[0]/PRDY[1]  
I
I
I/O  
GPIO port D / LED blinker output  
H7  
H8  
PB[2]  
VSSRTC  
VSSRTC  
A[10]  
GPIO port B  
L8  
Core ground Real time clock ground  
RTC ground Real time clock ground  
RTC ground Real time clock ground  
L9  
O
Keyboard scanner column drive  
Data I/O  
H9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
D[31]  
I/O  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
O
O
O
O
System byte address  
System byte address  
System byte address  
System byte address  
VSSRTC  
A[22]  
RTC ground Real time clock ground  
A[11]  
O
O
System byte address  
System byte address  
A[12]  
A[21]  
A[13]  
VSSIO  
Pad ground I/O ground  
VSSIO  
D[14]  
Pad ground I/O ground  
A[18]  
O
O
I
System byte address  
I/O  
Data I/O  
A[19]  
System byte address  
Test mode select input  
External interrupt input  
D[15]  
I/O  
Data I/O  
nTEST[0]  
nEINT[2]  
VDDIO  
PA[3]  
I
I
GPIO port A  
GPIO port A  
I
J2  
PA[1]  
Pad power Digital I/O power, 3.3V  
GPIO port E / Boot mode select  
JTAG mode select  
Pad power Digital I/O power, 3.3V  
J3  
VSSIO  
PA[2]  
Pad ground I/O ground  
PE[0]/BOOTSEL[0]  
TMS  
I
J4  
I
I
GPIO port A  
I
J5  
PA[0]  
GPIO port A  
VDDIO  
J6  
TXD[1]  
CTS  
O
I
UART 1 transmit data out  
UART 1 clear to send input  
SSITXFR  
DRIVE[1]  
FB[0]  
I/O  
I/O  
I
DAI/CODEC/SSI2 frame sync  
PWM drive output  
J7  
J8  
VSSRTC  
VSSRTC  
A[17]  
RTC ground Real time clock ground  
RTC ground Real time clock ground  
PWM feedback input  
Keyboard scanner column drive  
Data I/O  
J9  
COL[0]  
O
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
O
O
O
O
I
System byte address  
System byte address  
System byte address  
System byte address  
JTAG async reset input  
Data I/O  
D[27]  
I/O  
A[16]  
VSSIO  
Pad ground I/O ground  
A[15]  
A[23]  
O
System byte address  
A[14]  
VDDIO  
Pad power Digital I/O power, 3.3V  
nTRST  
D[16]  
A[20]  
O
I/O  
I
System byte address  
Data I/O  
I/O  
I/O  
O
I
D[21]  
D[17]  
Data I/O  
nEXTFIQ  
PE[1]/BOOTSEL[1]  
VSSIO  
External fast interrupt input  
GPIO port E / boot mode select  
LEDDRV  
PHDIN  
VSSIO  
DCD  
IR LED drivet  
N2  
I
K2  
Photodiode input  
N3  
Pad ground I/O ground  
K3  
Pad ground I/O ground  
N4  
VDDIO  
Pad power Digital I/O power, 3.3V  
K4  
I
I
I
UART 1 data carrier detect  
N5  
PD[5]  
I/O  
I/O  
I/O  
O
GPIO port D  
K5  
nTEST[1]  
EINT[3]  
VSSRTC  
ADCIN  
COL[4]  
TCLK  
Test mode select input  
External interrupt  
N6  
PD[2]  
GPIO port D  
K6  
N7  
SSIRXDA  
ADCCLK  
SMPCLK  
COL[2]  
DAI/CODEC/SSI2 serial data input  
SSI1 ADC serial clock  
SSI1 ADC sample clock  
Keyboard scanner column drive  
Data I/O  
K7  
RTC ground Real time clock ground  
N8  
K8  
I
SSI1 ADC serial input  
Keyboard scanner column drive  
JTAG clock  
N9  
O
K9  
O
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
O
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
I
D[29]  
I/O  
I/O  
O
D[20]  
I/O  
I/O  
I/O  
Data I/O  
D[26]  
Data I/O  
D[19]  
Data I/O  
HALFWORD  
VSSIO  
Halfword access select output  
D[18]  
Data I/O  
Pad ground I/O ground  
VSSIO  
VDDIO  
VDDIO  
RXD[1]  
DSR  
Pad ground I/O ground  
D[22]  
I/O  
I/O  
Data I/O  
Data I/O  
Pad power Digital I/O power, 3.3V  
Pad power Digital I/O power, 3.3V  
D[23]  
VSSRTC  
RTCOUT  
VSSIO  
RTC ground Real time clock ground  
I
I
UART 1 receive data input  
UART 1 data set ready input  
P2  
O
Real time clock oscillator output  
L2  
P3  
Pad ground I/O ground  
Pad ground I/O ground  
Pad power Digital I/O power, 3.3V  
L3  
VDDIO  
nEINT[1]  
PE[2]/CLKSEL  
Pad power Digital I/O power, 3.3V  
P4  
VSSIO  
L4  
I
I
External interrupt input  
P5  
VDDIO  
L5  
GPIO port E / clock input mode select  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
35  
EP7309  
High-Performance, Low-Power System on Chip  
Table U. 256-Ball PBGA Ball Listing (Continued)  
Ball Location  
Name  
Type  
Description  
P6  
P7  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
VDDIO  
VSSIO  
VSSIO  
VDDIO  
VSSIO  
D[24]  
Pad ground I/O ground  
Pad ground I/O ground  
P8  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
Pad power Digital I/O power, 3.3V  
Pad ground I/O ground  
Pad ground I/O ground  
Pad power Digital I/O power  
Pad ground I/O ground  
I/O  
Data I/O  
VDDIO  
RTCIN  
VDDIO  
PD[4]  
Pad power Digital I/O power, 3.3V  
I/O  
Real time clock oscillator input  
R2  
Pad power Digital I/O power, 3.3V  
R3  
I/O  
I/O  
O
GPIO port D  
R4  
PD[1]  
GPIO port D  
R5  
SSITXDA  
nADCCS  
VDDIO  
ADCOUT  
COL[7]  
COL[3]  
COL[1]  
D[30]  
DAI/CODEC/SSI2 serial data output  
SSI1 ADC chip select  
R6  
O
R7  
Pad power Digital I/O power, 3.3V  
R8  
O
O
SSI1 ADC serial data output  
Keyboard scanner column drive  
Keyboard scanner column drive  
Keyboard scanner column drive  
Data I/O  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
O
O
I/O  
O
A[27]  
System byte address  
A[25]  
O
System byte address  
VDDIO  
A[24]  
Pad power Digital I/O power, 3.3V  
System byte address  
RTC power Real time clock power, 2.5V  
O
VDDRTC  
PD[7]  
T2  
I/O  
I/O  
I/O  
I/O  
GPIO port D  
T3  
PD[6]  
GPIO port D  
T4  
PD[3]  
GPIO port D  
T5  
SSICLK  
SSIRXFR  
VDDCORE  
DRIVE[0]  
FB[1]  
DAI/CODEC/SSI2 serial clock  
DAI/CODEC/SSI2 frame sync  
T6  
T7  
Core power Core power, 2.5V  
T8  
I/O  
I
PWM drive output  
T9  
PWM feedback input  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
COL[5]  
VDDIO  
BUZ  
O
Keyboard scanner column drive  
Pad power Digital I/O power, 3.3V  
O
I/O  
O
Buzzer drive output  
Data I/O  
D[28]  
A[26]  
System byte address  
Data I/O  
D[25]  
I/O  
VSSIO  
Pad ground I/O ground  
36  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
JTAG Boundary Scan Signal Ordering  
Table V. JTAG Boundary Scan Signal Ordering  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
1
B3  
A2  
B1  
E3  
C1  
C2  
E2  
D2  
F3  
D1  
F2  
G3  
E1  
F1  
G2  
G1  
H3  
H1  
J3  
B1  
C2  
E4  
D1  
F5  
D2  
F4  
E1  
E2  
G5  
F1  
G4  
F2  
H7  
G1  
H6  
H1  
H5  
H2  
H4  
J1  
nCS[5]  
EXPCLK  
WORD  
WRITE  
RUN/CLKEN  
EXPRDY  
TXD2  
O
I/O  
O
1
4
3
5
6
6
O
8
7
O
10  
13  
14  
16  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
53  
56  
59  
62  
65  
67  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
8
I
9
O
10  
13  
14  
15  
16  
17  
18  
19  
20  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
RXD2  
I
PB[7]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PB[6]  
PB[5]  
PB[4]  
PB[3]  
PB[2]  
PB[1]/PRDY2  
PB[0]/PRDY1  
PA[7]  
PA[6]  
PA[5]  
J2  
PA[4]  
J1  
PA[3]  
L3  
J4  
PA[2]  
K2  
K1  
M3  
L2  
J2  
PA[1]  
J5  
PA[0]  
K1  
J6  
LEDDRV  
TXD1  
O
L1  
K2  
J7  
PHDIN  
CTS  
I
N3  
M2  
M1  
P3  
N1  
N2  
R3  
P1  
P2  
I
L1  
K4  
L2  
K5  
M1  
K6  
M2  
L4  
RXD1  
I
DCD  
I
DSR  
I
nTEST1  
nTEST0  
EINT3  
nEINT2  
nEINT1  
I
I
I
I
I
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
37  
EP7309  
High-Performance, Low-Power System on Chip  
Table V. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
44  
45  
46  
47  
53  
54  
55  
56  
59  
60  
61  
62  
68  
69  
70  
75  
76  
77  
78  
79  
80  
82  
83  
84  
85  
86  
87  
88  
91  
92  
93  
94  
95  
96  
97  
99  
100  
101  
T3  
R1  
N1  
L5  
nEXTFIQ  
PE[2]/CLKSEL  
PE[1]/BOOTSEL1  
PE[0]/BOOTSEL0  
PD[7]  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
79  
80  
R2  
N2  
83  
T1  
M4  
T2  
86  
T2  
89  
V4  
T3  
PD[6]  
92  
W4  
Y4  
N5  
PD[5]  
95  
R3  
PD[4]  
98  
V5  
T4  
PD[3]  
101  
104  
107  
110  
122  
125  
126  
128  
131  
134  
136  
138  
140  
141  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
163  
166  
169  
172  
174  
177  
W5  
Y5  
N6  
PD[2]  
R4  
PD[1]  
V6  
L7  
PD[0]/LEDFLSH  
SSIRXFR  
ADCIN  
nADCCS  
DRIVE1  
DRIVE0  
ADCCLK  
ADCOUT  
SMPCLK  
FB1  
W6  
Y6  
T6  
I/O  
I
K8  
W8  
Y8  
R6  
O
M8  
T8  
I/O  
I/O  
O
V9  
W10  
Y10  
V11  
W11  
Y11  
Y12  
W12  
V12  
Y13  
W13  
V13  
Y14  
W14  
A1  
N8  
R8  
O
N9  
O
T9  
I
M9  
R9  
FB0  
I
COL7  
O
L9  
COL6  
O
T10  
K9  
COL5  
O
COL4  
O
R10  
N10  
R11  
M10  
T12  
L10  
R12  
N11  
T13  
R13  
M11  
T14  
COL3  
O
COL2  
O
COL1  
O
COL0  
O
BUZ  
O
V14  
Y15  
W15  
V15  
Y16  
W16  
V16  
D[31]  
I/O  
I/O  
I/O  
I/O  
Out  
I/O  
O
D[30]  
D[29]  
D[28]  
A[27]  
D[27]  
A[26]  
38  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table V. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
102  
103  
104  
105  
106  
109  
110  
111  
112  
113  
114  
115  
117  
118  
119  
120  
121  
122  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
141  
142  
143  
144  
145  
146  
147  
Y17  
W17  
Y18  
V17  
W18  
Y19  
W20  
U18  
V20  
U19  
U20  
T19  
T20  
R19  
R20  
T18  
P19  
P20  
R18  
N19  
N20  
P18  
M19  
N18  
L20  
L19  
M18  
K20  
K19  
K18  
J20  
J19  
H20  
H19  
J18  
K3  
N12  
R14  
T15  
N13  
R16  
P15  
M13  
N16  
L12  
N15  
L13  
M16  
M15  
K11  
L16  
K12  
L15  
K13  
J10  
D[26]  
A[25]  
D[25]  
HALFWORD  
A[24]  
D[24]  
A[23]  
D[23]  
A[22]  
D[22]  
A[21]  
D[21]  
A[20]  
D[20]  
A[19]  
D[19]  
A[18]  
D[18]  
A[17]  
D[17]  
A[16]  
D[16]  
A[15]  
D[15]  
A[14]  
D[14]  
A[13]  
D[13]  
A[12]  
D[12]  
A[11]  
D[11]  
A[10]  
D[10]  
A[9]  
I/O  
O
179  
182  
184  
187  
189  
191  
194  
196  
199  
201  
204  
206  
209  
211  
214  
216  
219  
221  
224  
226  
229  
231  
234  
236  
239  
241  
244  
246  
249  
251  
254  
256  
259  
261  
264  
266  
269  
271  
I/O  
O
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
J16  
I/O  
O
J11  
J15  
I/O  
O
J12  
H16  
J13  
I/O  
O
H15  
H13  
G16  
H12  
G15  
H11  
F15  
H10  
E16  
G13  
E15  
G12  
D16  
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
D[9]  
I/O  
O
Y3  
A[8]  
G20  
D[8]  
I/O  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
39  
EP7309  
High-Performance, Low-Power System on Chip  
Table V. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
148  
150  
151  
152  
153  
154  
155  
156  
161  
162  
163  
164  
165  
166  
169  
170  
171  
172  
173  
175  
176  
177  
178  
179  
184  
185  
186  
187  
188  
189  
191  
192  
193  
194  
195  
196  
199  
200  
H18  
F20  
G19  
E20  
F19  
G18  
D20  
F18  
D19  
E19  
C19  
C20  
E18  
B20  
B16  
A16  
C15  
B15  
A15  
C14  
B14  
A14  
C13  
B13  
A13  
C12  
B12  
A12  
C11  
B11  
B10  
A10  
A9  
G11  
D15  
F13  
C16  
F12  
C15  
E13  
B16  
B14  
D11  
A13  
F10  
B13  
E10  
B12  
D10  
A11  
G9  
A[7]  
D[7]  
O
I/O  
I
274  
276  
279  
280  
281  
282  
283  
284  
285  
286  
287  
289  
292  
294  
297  
299  
302  
304  
307  
309  
312  
314  
317  
319  
322  
324  
326  
328  
330  
333  
336  
339  
342  
344  
346  
349  
352  
355  
nBATCHG  
nEXTPWR  
BATOK  
nPOR  
nMEDCHG/nBROM  
nURESET  
WAKEUP  
nPWRFL  
A[6]  
I
I
I
I
I
I
I
O
D[6]  
I/O  
O
A[5]  
D[5]  
I/O  
O
A[4]  
D[4]  
I/O  
O
A[3]  
D[3]  
I/O  
O
B11  
A10  
F9  
A[2]  
D[2]  
I/O  
O
A[1]  
B10  
E9  
D[1]  
I/O  
O
A[0]  
A9  
D[0]  
I/O  
O
D8  
CL2  
B8  
CL1  
O
E8  
FRM  
O
A7  
M
O
F8  
DD[3]  
DD[2]  
DD[1]  
DD[0]  
N/C  
I/O  
I/O  
I/O  
I/O  
O
B7  
A6  
G8  
B6  
B9  
D7  
N/C  
O
C9  
A5  
N/C  
I/O  
I/O  
I/O  
I/O  
A8  
E7  
N/C  
B8  
F7  
N/C  
C8  
A4  
N/C  
40  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
Table V. JTAG Boundary Scan Signal Ordering (Continued)  
LQFP  
Pin No.  
TFBGA PBGA  
Signal  
Type  
Position  
Ball  
Ball  
201  
202  
204  
205  
206  
207  
208  
A7  
B7  
C7  
A6  
B6  
C6  
A5  
D6  
B4  
E6  
A3  
D5  
B3  
A2  
nMWE  
nMOE  
nCS[0]  
nCS[1]  
nCS[2]  
nCS[3]  
nCS[4]  
O
O
O
O
O
O
O
358  
360  
362  
364  
366  
368  
370  
1) See EP7309 UsersManual for pin naming / functionality.  
2) For each pad, the JTAG connection ordering is input,  
output, then enable as applicable.  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
41  
EP7309  
High-Performance, Low-Power System on Chip  
Table W. Acronyms and Abbreviations (Continued)  
CONVENTIONS  
This section presents acronyms, abbreviations, units of  
measurement, and conventions used in this data sheet.  
Acronym/  
Definition  
Abbreviation  
TAP  
TLB  
test access port  
Acronyms and Abbreviations  
translation lookaside buffer  
Table W lists abbreviations and acronyms used in this  
data sheet.  
UART  
universal asynchronous receiver  
Table W. Acronyms and Abbreviations  
Units of Measurement  
Acronym/  
Definition  
Table X. Unit of Measurement  
Abbreviation  
Symbol  
Unit of Measure  
A/D  
analog-to-digital  
degree Celsius  
°C  
fs  
ADC  
CODEC  
D/A  
analog-to-digital converter  
coder / decoder  
sample frequency  
hertz (cycle per second)  
kilobits per second  
kilobyte (1,024 bytes)  
kilohertz  
Hz  
digital-to-analog  
kbps  
KB  
DMA  
EPB  
FCS  
FIFO  
FIQ  
direct-memory access  
embedded peripheral bus  
frame check sequence  
first in / first out  
kHz  
kΩ  
kilohm  
Mbps  
MB  
MBps  
MHz  
µA  
megabits (1,048,576 bits) per second  
megabyte (1,048,576 bytes)  
megabytes per second  
megahertz (1,000 kilohertz)  
microampere  
fast interrupt request  
general purpose I/O  
in circuit test  
GPIO  
ICT  
IR  
infrared  
IRQ  
standard interrupt request  
Infrared Data Association  
Joint Test Action Group  
liquid crystal display  
light-emitting diode  
µF  
microfarad  
IrDA  
JTAG  
LCD  
LED  
LQFP  
LSB  
MIPS  
MMU  
MSB  
PBGA  
PCB  
PDA  
PLL  
µW  
µs  
microwatt  
microsecond (1,000 nanoseconds)  
milliampere  
mA  
mW  
ms  
milliwatt  
low profile quad flat pack  
least significant bit  
millisecond (1,000 microseconds)  
nanosecond  
ns  
millions of instructions per second  
memory management unit  
most significant bit  
V
volt  
W
watt  
plastic ball grid array  
printed circuit board  
personal digital assistant  
phase locked loop  
p/u  
pull-up resistor  
RISC  
RTC  
SIR  
reduced instruction set computer  
Real-Time Clock  
slow (9600115.2 kbps) infrared  
static random access memory  
synchronous serial interface  
SRAM  
SSI  
42  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
EP7309  
High-Performance, Low-Power System on Chip  
General Conventions  
Pin Description Conventions  
Hexadecimal numbers are presented with all letters in  
uppercase and a lowercase happended or with a 0x at  
the beginning. For example, 0x14 and 03CAh are  
hexadecimal numbers. Binary numbers are enclosed in  
single quotation marks when in text (for example, 11’  
designates a binary number). Numbers not indicated by  
an h, 0x or quotation marks are decimal.  
Abbreviations used for signal directions are listed in  
Table Y.  
Table Y. Pin Description Conventions  
Abbreviation  
Direction  
I
Input  
O
I/O  
Output  
Registers are referred to by acronym, with bits listed in  
Input or Output  
brackets separated by  
a colon (:) (for example,  
CODR[7:0]), and are described in the EP7309 Users  
Manual. The use of TBDindicates values that are to  
be determined,” “n/adesignates not available,and  
n/cindicates a pin that is a no connect.”  
DS507PP1  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
43  
EP7309  
High-Performance, Low-Power System on Chip  
ORDERING INFORMATION  
The order number for the device is:  
EP7309 CV C  
Revision  
Package Type:  
V = Low Profile Quad Flat Pack  
B = Plastic Ball Grid Array (17 mm x 17 mm)  
R = Reduced Ball Grid Array (13 mm x 13 mm)  
Temperature Range:  
Part Number C = Commercial  
E = Extended Operating Version  
I = Industrial Operating Version  
Product Line:  
Embedded Processor  
Note: Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at  
http://cirrus.com/corporate/contacts to find contact information for your local sales representative.  
44  
Copyright 2001 Cirrus Logic (All Rights Reserved)  
DS507PP1  
• Notes •  

相关型号:

EP7309-IVZ

Multifunction Peripheral, CMOS, PQFP208, LEAD FREE, LQFP-208
CIRRUS

EP7309_05

High-performance, Low-power, System-on-chip with Enhanced Digital Audio Interface
CIRRUS

EP7311

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-CB

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-CB-90

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-CB-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-CR

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-CR-90

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-CR-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-CV

High-performance, Low-power, System-on-chip with SDRAM & Enhanced Digital Audio Interface
CIRRUS

EP7311-CV-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS

EP7311-EB-C

HIGH-PERFORMANCE, LOW-POWER SYSTEM-ON-CHIP WITH SDRAM AND ENHANCED DIGITAL AUDIO INTERFACE
CIRRUS