CS44800-DQZ [CIRRUS]

8-Channel Digital Amplifier Controller; 8通道数字放大器控制器
CS44800-DQZ
型号: CS44800-DQZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

8-Channel Digital Amplifier Controller
8通道数字放大器控制器

消费电路 商用集成电路 音频放大器 视频放大器 控制器
文件: 总81页 (文件大小:702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS44800  
8-Channel Digital Amplifier Controller  
Features  
! > 100 dB Dynamic Range - System Level  
! < 0.03% THD+N @ 1 W - System Level  
! 32 kHz to 192 kHz Sample Rates  
! PWM PopGuard® for Single-Ended Mode  
! Eliminates AM Frequency Interference  
! Programmable Load Compensation Filters  
! Support for up to 40 kHz Audio Bandwidth  
! Digital Volume Control with Soft Ramp  
! Internal Oscillator Circuit Supports 24.576 MHz  
to 54 MHz Crystals  
! Integrated Sample Rate Converter (SRC)  
+24 to -127 dB in 0.25 dB Steps  
Eliminates Clock Jitter Effects  
Input Sample Rate Independent Operation  
! Per Channel Programmable Peak Detect and  
Limiter  
! Power Supply Rejection Realtime Feedback  
! SPI and I²C Host Control Interfaces  
! Spread Spectrum Modulation - Reduces  
! Separate 2.5 V to 5.0 V Serial Port and Host  
Modulation Energy  
Control Port Supplies  
PSR_RESET  
PS_SYNC  
Power  
Supply  
Rejection  
PSR_EN  
PSR_MCLK  
PSR_SYNC  
PSR_DATA  
PWM  
Clock  
Control  
XTI  
XTO  
PWMOUTA1+  
PWMOUTA1-  
PWMOUTB1+  
PWMOUTB1-  
Multibit  
Σ∆  
SYS_CLK  
Volume  
/ Limiter  
PWM  
Conversion  
Auto Fs  
Detect  
Modulator  
DAI_MCLK  
DAI_SCLK  
DAI_LRCK  
DAI_SDIN1  
DAI_SDIN2  
DAI_SDIN3  
DAI_SDIN4  
PWMOUTA2+  
PWMOUTA2-  
PWMOUTB2+  
PWMOUTB2-  
Multibit  
Σ∆  
Modulator  
Volume  
/ Limiter  
PWM  
Conversion  
DAI  
Serial  
Port  
SRC  
PWMOUTA3+  
PWMOUTA3-  
PWMOUTB3+  
PWMOUTB3-  
Multibit  
Σ∆  
Modulator  
Volume  
/ Limiter  
PWM  
Conversion  
PWMOUTA4+  
PWMOUTA4-  
PWMOUTB4+  
PWMOUTB4-  
Multibit  
Σ∆  
Modulator  
Volume  
/ Limiter  
PWM  
Conversion  
MUTE  
SCL/CCLK  
SDA/CDOUT  
AD1/CDIN  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
PWM  
Backend  
Control/  
Status  
SPI/I2C Host  
Control Port  
AD0/CS  
RST  
INT  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
Copyright © Cirrus Logic, Inc. 2005  
MAY '05  
DS632PP1  
(All Rights Reserved)  
http://www.cirrus.com  
CS44800  
General Description  
The CS44800 is a multi-channel digital-to-PWM Class D audio system controller including interpolation, sample rate  
conversion, half- and full-bridge PWM driver outputs, and power supply rejection feedback in a 64-pin LQFP pack-  
age.The architecture uses a direct-to-digital approach that maintains digital signal integrity to the final output filter,  
minimizing analog interference effects which negatively affect system performance.  
The CS44800 integrates on-chip digital volume control, peak detect with limiter, de-emphasis, and 7 GPIO’s, allow-  
ing easy interfacing to many commonly available power stages. The PWM amplifier can achieve greater than 90%  
efficiency. This efficiency provides for smaller device package, less heat sink requirements, and smaller power  
supplies.  
The CS44800 is ideal for audio systems requiring wide dynamic range, negligible distortion and low noise, such as  
A/V receivers, DVD receivers, digital speaker and automotive audio systems.  
ORDERING INFORMATION  
Pb-Free  
Temp Range Container  
Order#  
Product  
CS44800  
Description  
Package  
8-Channel Digital Amplifier  
Controller  
LQFP  
YES  
-10° to +70°C  
Rail  
CS44800-CQZ  
8-Channel Digital Amplifier  
Controller  
LQFP  
YES  
-10° to +70°C  
Tape and  
Reel  
CS44800-CQZR  
CS44800-DQZ  
CS44800-DQZR  
CDB44800  
CS44800  
8-Channel Digital Amplifier  
Controller  
LQFP  
YES  
-40° to +85°C  
Rail  
CS44800  
8-Channel Digital Amplifier  
Controller  
LQFP  
YES  
-40° to +85°C  
Tape and  
Reel  
CS44800  
CS44600/800 Evaluation  
Board  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CDB44800  
8x50 W Half-Bridge  
Reference Design Board  
CRD44800  
CRD44800  
8x60 W Full-Bridge  
Reference Design Board  
CRD44800-ST-FB  
CRD44600-PH-FB  
CRD44800-ST-FB  
CRD44600-PH-FB  
2x100 W Full-Bridge  
Reference Design Board  
2
DS632PP1  
CS44800  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 8  
SPECIFIED OPERATING CONDITIONS ...................................................................................... 8  
ABSOLUTE MAXIMUM RATINGS ................................................................................................. 8  
DC ELECTRICAL CHARACTERISTICS ........................................................................................ 9  
DIGITAL INTERFACE CHARACTERISTICS ................................................................................. 9  
PWM OUTPUT PERFORMANCE CHARACTERISTICS ............................................................. 10  
PWM FILTER CHARACTERISTICS ............................................................................................ 11  
SWITCHING CHARACTERISTICS - XTI ..................................................................................... 11  
SWITCHING CHARACTERISTICS - SYS_CLK .......................................................................... 12  
SWITCHING CHARACTERISTICS - PWMOUTA1-B4 ................................................................ 12  
SWITCHING CHARACTERISTICS - PS_SYNC .......................................................................... 12  
SWITCHING CHARACTERISTICS - DAI INTERFACE ............................................................... 13  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ...................................... 14  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ..................................... 15  
2. PIN DESCRIPTIONS ............................................................................................................. 16  
2.1 I/O Pin Characteristics .................................................................................................. 20  
3. TYPICAL CONNECTION DIAGRAMS  
....................................................................... 21  
4. APPLICATIONS ..................................................................................................................... 23  
4.1 Overview .......................................................................................................................... 23  
4.2 Feature Set Summary ..................................................................................................... 23  
4.3 Clock Generation ............................................................................................................. 24  
4.3.1 FsIn Domain Clocking ......................................................................................... 25  
4.3.2 FsOut Domain Clocking ...................................................................................... 25  
4.4 FsIn Clock Domain Modules ............................................................................................ 27  
4.4.1 Digital Audio Input Port ....................................................................................... 27  
4.4.2 Auto Rate Detect ................................................................................................. 31  
4.4.3 De-Emphasis ...................................................................................................... 31  
4.5 FsOut Clock Domain Modules ......................................................................................... 32  
4.5.1 Sample Rate Converter ...................................................................................... 32  
4.5.2 Load Compensation Filter ................................................................................... 32  
4.5.3 Digital Volume and Mute Control ........................................................................ 32  
4.5.4 Peak Detect / Limiter ........................................................................................... 33  
4.5.5 PWM Engines ..................................................................................................... 33  
4.5.6 Interpolation Filter ............................................................................................... 34  
4.5.7 Quantizer ............................................................................................................ 34  
4.5.8 Modulator ............................................................................................................ 34  
4.5.9 PWM Outputs ...................................................................................................... 34  
4.5.10 Power Supply Rejection (PSR) Real-Time Feedback ....................................... 35  
4.6 Control Port Description and Timing ................................................................................ 36  
4.6.1 SPI Mode ............................................................................................................ 36  
4.6.2 I²C Mode ............................................................................................................. 37  
4.6.3 GPIOs ................................................................................................................. 38  
4.6.4 Host Interrupt ...................................................................................................... 38  
5. POWER SUPPLY, GROUNDING, AND PCB LAYOUT ......................................................... 39  
5.1 Reset and Power-Up ....................................................................................................... 42  
5.1.1 PWM PopGuard® Transient Control ................................................................... 42  
5.1.2 Recommended Power-Up Sequence ................................................................. 42  
5.1.3 Recommended PSR Calibration Sequence ....................................................... 43  
5.1.4 Recommended Power-Down Sequence ............................................................. 44  
6. REGISTER QUICK REFERENCE .......................................................................................... 45  
7. REGISTER DESCRIPTION .................................................................................................... 49  
7.1 Memory Address Pointer (MAP) ...................................................................................... 49  
DS632PP1  
3
CS44800  
7.1.1 Increment (INCR) ................................................................................................ 49  
7.1.2 Memory Address Pointer (MAPx) ....................................................................... 49  
7.2 CS44800 I.D. and Revision Register (address 01h) (Read Only) ................................... 49  
7.2.1 Chip I.D. (Chip_IDx) ............................................................................................ 49  
7.2.2 Chip Revision (Rev_IDx) ..................................................................................... 49  
7.3 Clock Configuration and Power Control (address 02h) ................................................... 50  
7.3.1 Enable SYS_CLK Output (EN_SYS_CLK) ......................................................... 50  
7.3.2 SYS_CLK Clock Divider Settings (SYS_CLK_DIV[1:0]) ..................................... 50  
7.3.3 PWM Master Clock Divider Settings (PWM_MCLK_DIV[1:0]) ............................ 50  
7.3.4 Power Down XTAL (PDN_XTAL) ........................................................................ 50  
7.3.5 Power Down Output Mode (PDN_OUTPUT_MODE) ......................................... 51  
7.3.6 Power Down (PDN) ............................................................................................. 51  
7.4 PWM Channel Power Down Control (address 03h) ........................................................ 51  
7.4.1 Power Down PWM Channels (PDN_PWMB4:PDN_PWMA1) ............................ 51  
7.5 Misc. Configuration (address 04h) ................................................................................... 52  
7.5.1 Digital Interface Format (DIFX) ........................................................................... 52  
7.5.2 AM Frequency Hopping (AM_FREQ_HOP) ........................................................ 52  
7.5.3 Freeze Controls (FREEZE) ................................................................................. 52  
7.5.4 De-Emphasis Control (DEM[1:0]) ....................................................................... 53  
7.6 Ramp Configuration (address 05h) ................................................................................. 53  
7.6.1 Ramp-Up/Down Setting (RAMP[1:0]) ................................................................ 53  
7.6.2 Ramp Speed (RAMP_SPD[1:0]) ......................................................................... 53  
7.7 Volume Control Configuration (address 06h) .................................................................. 54  
7.7.1 Single Volume Control (SNGVOL) ...................................................................... 54  
7.7.2 Soft Ramp and Zero Cross Control (SZC[1:0]) ................................................... 54  
7.7.3 Enable 50% Duty Cycle for Mute Condition (MUTE_50/50) ............................... 54  
7.7.4 Soft Ramp-Down on Interface Error (SRD_ERR) .............................................. 55  
7.7.5 Soft Ramp-Up on Recovered Interface Error (SRU_ERR) ................................. 55  
7.7.6 Auto-Mute (AMUTE) ........................................................................................... 55  
7.8 Master Volume Control - Integer (address 07h) .............................................................. 56  
7.8.1 Master Volume Control - Integer (MSTR_IVOL[7:0]) .......................................... 56  
7.9 Master Volume Control - Fraction (address 08h) ............................................................. 56  
7.9.1 Master Volume Control - Fraction (MSTR_FVOL[1:0]) ....................................... 56  
7.10 Channel XX Volume Control - Integer (addresses 09h - 10h) ....................................... 58  
7.10.1 Channel Volume Control - Integer (CHXx_IVOL[7:0]) ...................................... 58  
7.11 Channel XX Volume Control1 - Fraction (address 11h) .............................................. 58  
7.12 Channel XX Volume Control2 - Fraction (address 12h) ................................................ 58  
7.12.1 Channel Volume Control - Fraction (CHXX_FVOL[1:0]) ................................... 58  
7.13 Channel Mute (address 13h) ......................................................................................... 59  
7.13.1 Independent Channel Mute (CHXX_MUTE) ..................................................... 59  
7.14 Channel Invert (address 14h) ........................................................................................ 59  
7.14.1 Invert Signal Polarity (CHXX_INV) .................................................................... 59  
7.15 Peak Limiter Control Register (address 15h) ............................................................... 60  
7.15.1 Peak Signal Limit All Channels (LIMIT_ALL) .................................................... 60  
7.15.2 Peak Signal Limiter Enable (LIMIT_EN) ........................................................... 60  
7.16 Limiter Attack Rate (address 16h) ................................................................................ 60  
7.16.1 Attack Rate (ARATE[7:0]) ................................................................................. 60  
7.17 Limiter Release Rate (address 17h) ........................................................................... 61  
7.17.1 Release Rate (RRATE[7:0]) .............................................................................. 61  
7.18 Chnl XX Load Compensation Filter - Coarse Adjust  
(addresses 18h, 1Ah, 1Ch, 1Eh, 20h, 22h, 24h, 26h) ................................................. 61  
7.18.1 Channel Compensation Filter - Coarse Adjust (CHXX_CORS[5:0]) ................. 61  
7.19 Chnl XX Load Compensation Filter - Fine Adjust  
(addresses 19h, 1Bh, 1Dh, 1Fh, 21h, 23h, 25h, 27h) .................................................. 62  
4
DS632PP1  
CS44800  
7.19.1 Channel Compensation Filter - Fine Adjust (CHXX_FINE[5:0]) ........................ 62  
7.20 Interrupt Mode Control (address 28h) ........................................................................... 62  
7.20.1 Interrupt Pin Control (INT1/INT0) ...................................................................... 62  
7.20.2 Overflow Level/Edge Select (OVFL_L/E) .......................................................... 63  
7.21 Interrupt Mask (address 29h) ........................................................................................ 63  
7.22 Interrupt Status (address 2Ah) (Read Only) ................................................................. 63  
7.22.1 SRC Unlock Interrupt (SRC_UNLOCK) ............................................................ 63  
7.22.2 SRC Lock Interrupt (SRC_LOCK) ..................................................................... 64  
7.22.3 Ramp-Up Complete Interrupt (RMPUP_DONE) ............................................... 64  
7.22.4 Ramp-Down Complete Interrupt (RMPDN_DONE) .......................................... 64  
7.22.5 Mute Complete Interrupt (Mute_DONE) ........................................................... 64  
7.22.6 Channel Over Flow Interrupt (OVFL_INT) ........................................................ 64  
7.22.7 GPIO Interrupt Condition (GPIO_INT) .............................................................. 64  
7.23 Channel Over Flow Status (address 2Bh) (Read Only) ................................................. 65  
7.23.1 ChXX_OVFL ..................................................................................................... 65  
7.24 GPIO Pin In/Out (address 2Ch) ..................................................................................... 65  
7.24.1 GPIO In/Out Selection (GPIOX_I/O) ................................................................. 65  
7.25 GPIO Pin Polarity/Type (address 2Dh) .......................................................................... 65  
7.25.1 GPIO Polarity/Type Selection (GPIOX_P/T) ..................................................... 65  
7.26 GPIO Pin Level/Edge Trigger (address 2Eh) ................................................................. 66  
7.26.1 GPIO Level/Edge Input Sensitive (GPIOX_L/E) ............................................... 66  
7.27 GPIO Status Register (address 2Fh) ............................................................................. 66  
7.27.1 GPIO Pin Status (GPIOX_STATUS) ................................................................. 66  
7.28 GPIO Interrupt Mask Register (address 30h) ................................................................ 67  
7.28.1 GPIO Pin Interrupt Mask (M_GPIOX) ............................................................... 67  
7.29 PWM Configuration Register (address 31h) ................................................................. 67  
7.29.1 Over Sample Rate Selection (OSRATE) .......................................................... 67  
7.29.2 Channels A1 and B1 Output Configuration (A1/B1_OUT_CNFG) .................... 67  
7.29.3 Channels A2 and B2 Output Configuration (A2/B2_OUT_CNFG) .................... 67  
7.29.4 Channel A3 Output Configuration (A3_OUT_CNFG) ....................................... 68  
7.29.5 Channel B3 Output Configuration (B3_OUT_CNFG) ....................................... 68  
7.29.6 Channels A4 and B4 Output Configuration (A4/B4_OUT_CNFG) .................... 68  
7.30 PWM Minimum Pulse Width Register (address 32h) .................................................... 68  
7.30.1 Disable PWMOUTXX - Signal (DISABLE_PWMOUTXX-) ................................ 68  
7.30.2 Minimum PWM Output Pulse Settings (MIN_PULSE[4:0]) ............................... 69  
7.31 PWMOUT Delay Register (address 33h) ...................................................................... 69  
7.31.1 Differential Signal Delay (DIFF_DLY[2:0]) ........................................................ 69  
7.31.2 Channel Delay Settings (CHNL_DLY[4:0]) ...................................................... 69  
7.32 PSR and Power Supply Configuration (address 34h) .................................................... 72  
7.32.1 Power Supply Rejection Enable (PSR_EN) ...................................................... 72  
7.32.2 Power Supply Rejection Reset (PSR_RESET) ................................................. 73  
7.32.3 Power Supply Rejection Feedback Enable (FEEDBACK_EN) ......................... 73  
7.32.4 Power Supply Sync Clock Divider Settings (PS_SYNC_DIV[2:0]) ................... 73  
7.33 Decimator Shift/Scale (addresses 35h, 36h, 37h) ......................................................... 73  
7.33.1 Decimator Shift (DEC_SHIFT[2:0]) ................................................................... 73  
7.33.2 Decimator Scale (DEC_SCALE[18:0]) .............................................................. 74  
7.34 Decimator Outd (addresses 3Bh, 3Ch, 3Dh) ................................................................. 74  
7.34.1 Decimator Outd (DEC_OUTD[23:0]) ................................................................. 74  
8. PARAMETER DEFINITIONS .................................................................................................. 75  
9. REFERENCES ........................................................................................................................ 77  
10. PACKAGE DIMENSIONS  
........................................................................................... 78  
11. THERMAL CHARACTERISTICS ......................................................................................... 79  
12. REVISION HISTORY ............................................................................................................ 80  
DS632PP1  
5
CS44800  
LIST OF FIGURES  
Figure 1. Performance Characteristics Evaluation Active Filter Circuit......................................... 10  
Figure 2. XTI Timings.................................................................................................................... 11  
Figure 3. SYS_CLK Timings ......................................................................................................... 12  
Figure 4. PWMOUTxx Timings ..................................................................................................... 12  
Figure 5. PS_SYNC Timings......................................................................................................... 12  
Figure 6. Serial Audio Interface Timing......................................................................................... 13  
Figure 7. Serial Audio Interface Timing - TDM Mode.................................................................... 13  
Figure 8. Control Port Timing - I²C Format.................................................................................... 14  
Figure 9. Control Port Timing - SPI Format................................................................................... 15  
Figure 10. CS44800 Pinout Diagram ............................................................................................ 16  
Figure 11. Typical Full-Bridge Connection Diagram ..................................................................... 21  
Figure 12. Typical Half-Bridge Connection Diagram..................................................................... 22  
Figure 13. CS44800 Data Flow Diagram (Single Channel Shown) .............................................. 24  
Figure 14. Fundamental Mode Crystal Configuration ................................................................... 25  
Figure 15. 3rd Overtone Crystal Configuration ............................................................................. 26  
Figure 16. CS44800 Internal Clock Generation ............................................................................ 26  
Figure 17. I²S Serial Audio Formats.............................................................................................. 28  
Figure 18. Left-Justified Serial Audio Formats.............................................................................. 28  
Figure 19. Right-Justified Serial Audio Formats............................................................................ 29  
Figure 20. One Line Mode #1 Serial Audio Format....................................................................... 29  
Figure 21. One Line Mode #2 Serial Audio Format....................................................................... 30  
Figure 22. TDM Mode Serial Audio Format .................................................................................. 30  
Figure 23. De-Emphasis Curve..................................................................................................... 31  
Figure 24. Control Port Timing in SPI Mode ................................................................................. 36  
Figure 25. Control Port Timing, I²C Slave Mode Write.................................................................. 37  
Figure 26. Control Port Timing, I²C Slave Mode Read.................................................................. 37  
Figure 27. Recommended CS44800 Power Supply Decoupling Layout....................................... 39  
Figure 28. Recommended CS44800 Crystal Circuit Layout ......................................................... 40  
Figure 29. Recommended PSR Circuit Layout ............................................................................. 41  
Figure 30. PSR Calibration Sequence .......................................................................................... 44  
Figure 31. PWM Output Delay ...................................................................................................... 71  
Figure 32. 64-Pin LQFP Package Drawing................................................................................... 78  
6
DS632PP1  
CS44800  
LIST OF TABLES  
Table 1. Common DAI_MCLK Frequencies.................................................................................. 25  
Table 2. DAI Serial Audio Port Channel Allocations ..................................................................... 27  
Table 3. Load Compensation Example Settings........................................................................... 32  
Table 4. Typical PWM Switch Rate Settings................................................................................. 34  
Table 5. Digital Audio Interface Formats....................................................................................... 52  
Table 6. Master Integer Volume Settings...................................................................................... 56  
Table 7. Master Fractional Volume Settings ................................................................................. 57  
Table 8. Channel Integer Volume Settings ................................................................................... 58  
Table 9. Channel Fractional Volume Settings............................................................................... 59  
Table 10. Limiter Attack Rate Settings.......................................................................................... 61  
Table 11. Limiter Release Rate Settings....................................................................................... 61  
Table 12. Channel Load Compensation Filter Coarse Adjust....................................................... 62  
Table 13. Channel Load Compensation Filter Fine Adjust............................................................ 62  
Table 14. PWM Minimum Pulse Width Settings............................................................................ 69  
Table 15. Differential Signal Delay Settings.................................................................................. 69  
Table 16. Channel Delay Settings................................................................................................. 70  
Table 17. Power Supply Sync Clock Divider Settings................................................................... 73  
Table 18. Decimator Shift/Scale Coefficient Calculation Examples.............................................. 74  
Table 19. Revision History ............................................................................................................ 80  
DS632PP1  
7
CS44800  
1. CHARACTERISTICS AND SPECIFICATIONS  
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical  
performance characteristics and specifications are derived from measurements taken at nominal supply voltages  
and T = 25°C.)  
A
SPECIFIED OPERATING CONDITIONS  
(GND = 0 V, all voltages with respect to ground)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Digital  
2.5 V  
VD  
2.37  
2.5  
2.63  
V
XTAL (Note 1)  
2.5 V  
3.3 V  
5.0 V  
VDX  
2.37  
3.14  
4.75  
2.5  
3.3  
5.0  
2.63  
3.47  
5.25  
V
V
V
PWM Interface  
3.3 V  
5.0 V  
VDP  
VLS  
3.14  
4.75  
3.3  
5.0  
3.47  
5.25  
V
V
Serial Audio Interface2.5 V  
Control Interface  
3.3 V  
5.0 V  
2.37  
3.14  
4.75  
2.5  
3.3  
5.0  
2.63  
3.47  
5.25  
V
V
V
2.5 V  
3.3 V  
5.0 V  
VLC  
2.37  
3.14  
4.75  
2.5  
3.3  
5.0  
2.63  
3.47  
5.25  
V
V
V
Ambient Operating Temperature  
Commercial  
Automotive  
-CQZ  
-DQZ  
T
-10  
-40  
-
-
+70  
+85  
°C  
°C  
A
Notes:  
1. When using external crystal, VDX = 3.14 V(min). When using clock signal input, VDX = 2.37 V(min).  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
Digital  
XTAL  
PWM Interface  
Serial Audio Interface  
Control Interface  
VD  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.5  
6.0  
6.0  
6.0  
6.0  
V
V
V
V
V
VDX  
VDP  
VLS  
VLC  
Input Current  
(Note 2)  
I
-
±10  
mA  
in  
Digital Input Voltage  
(Note 3)  
PWM Interface V  
Serial Audio Interface  
Control Interface  
-0.3  
-0.3  
-0.3  
VDP+0.4  
VLS+0.4  
VLC+0.4  
V
V
V
IND-PWM  
V
V
IND-S  
IND-C  
Ambient Operating Temperature  
(power applied)  
-CQ  
-DQ  
T
-20  
-50  
+85  
+95  
°C  
°C  
A
Storage Temperature  
T
-65  
+150  
°C  
stg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
2. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-up.  
3. The maximum over/under voltage is limited by the input current.  
8
DS632PP1  
CS44800  
DC ELECTRICAL CHARACTERISTICS  
(GND = 0 V, all voltages with respect to ground; DAI_MCLK = 12.288 MHz, XTAL = 24.576 MHz, PWM Switch  
Rate = 384 kHz unless otherwise specified.)  
Parameter  
Normal Operation (Note 4)  
Power Supply Current (Note 5)  
Symbol Min  
Typ  
Max Units  
VD = 2.5 V  
VDX = 3.3 V  
VDP = 3.3 V  
I
-
-
-
-
-
150  
2
1.2  
150  
250  
-
-
-
-
-
mA  
mA  
mA  
µA  
D
I
I
DX  
DP  
VLS = 3.3 V  
VLC = 3.3 V (Note 6)  
I
I
LS  
LC  
µA  
Power Dissipation  
VD=2.5 V, VDX = VDP = VLS = VLC = 3.3 V  
-
387  
500  
mW  
Power Supply Rejection Ratio (Note 7)  
(1 kHz) PSRR  
(60 Hz)  
-
-
15  
40  
-
-
dB  
dB  
Power-Down Mode (Note 8)  
Power Supply Current  
All Supplies except VDX (Note 9)  
I
-
80  
-
µA  
pd  
4. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input.  
5. Current consumption increases with increasing XTAL clock rates and PWM switch rates. Variance be-  
tween DAI clock rates is negligible.  
6.  
I
measured with no external loading on the SDA pin.  
LC  
7. Valid with PSRR function enabled and the recommended external ADC (CS4461) and filtering.  
8. Power down mode is defined as RST pin = LOW with all clock and data lines held static.  
9. When RST pin = LOW, the internal oscillator is active to provide a valid clock for the SYS_CLK output.  
DIGITAL INTERFACE CHARACTERISTICS  
(GND = 0 V, all voltages with respect to ground)  
Parameters (Note 10)  
Symbol  
Min  
Typ  
Max  
Units  
High-Level Input Voltage  
XTAL  
PWM Interface  
Serial Audio Interface  
Control Interface  
0.7xVDX  
0.7xVDP  
0.7xVLS  
0.7xVLC  
-
-
-
-
-
-
-
-
V
V
V
V
V
IH  
Low-Level Input Voltage  
XTAL  
PWM Interface  
Serial Audio Interface  
Control Interface  
-
-
-
-
-
-
-
-
0.2xVDX  
0.2xVDP  
0.2xVLS  
0.2xVLC  
V
V
V
V
V
IL  
High-Level Output Voltage at I = -2 mA  
PWM Interface  
Serial Audio Interface  
Control Interface  
VDP-1.0  
VLS-1.0  
VLC-1.0  
-
-
-
-
-
-
V
V
V
o
V
OH  
Low-Level Output Voltage at I = 2 mA  
PWM Interface  
Serial Audio Interface  
Control Interface  
-
-
-
-
-
-
0.45  
0.45  
0.45  
V
V
V
o
V
I
OL  
Input Leakage Current  
Input Capacitance  
-
-
-
-
±10  
8
µA  
pF  
in  
10. Serial Port  
signals  
include:  
SYS_CLK, DAI_MCLK, DAI_SCLK, DAI_LRCK, DAI_SDIN1-4  
Control Port signals include: SCL/CCLK, SDA/CDOUT, AD0/CS, AD1/CDIN, INT, RST, MUTE  
PWM signals include: PWMOUTA1-B4, PSR_MCLK, PSR_SYNC, PSR_DATA, PS_SYNC, GPIO[6:0]  
DS632PP1  
9
CS44800  
PWM OUTPUT PERFORMANCE CHARACTERISTICS  
(Logic “0” = GND = 0 V; Logic “1” = VLS = VLC; VD = 2.5 V; DAI_MCLK = 12.288 MHz; XTAL= 24.576 MHz; PWM  
Switch Rate = 384 kHz; Fs = 32 kHz to 192 kHz; Measurement bandwidth is 10 Hz to 20 kHz unless otherwise  
specified; Performance measurements taken with a full-scale 997 Hz.)  
Parameter  
Dynamic Performance (Note 11)  
24-Bits  
Symbol  
Min  
Typ  
Max  
Unit  
A-Weighted  
unweighted  
unweighted  
102  
99  
-
108  
105  
96  
-
-
-
dB  
dB  
dB  
16-Bits  
Total Harmonic Distortion + Noise (Note 11)  
24-Bits  
0 dB THD+N  
-20 dB  
-60 dB  
-
-
-
-90  
-77  
-45  
-85  
-
-
dB  
dB  
dB  
Idle Channel Noise / Signal-to-Noise Ratio  
Interchannel Isolation  
-
-
110  
100  
-
-
dB  
dB  
(1 kHz)  
11. Performance characteristics measured using filter shown in Figure 1.  
-
PWMOUTxx+  
-
+
-
Analog  
Output  
+
+
-
PWMOUTxx-  
+
Figure 1. Performance Characteristics Evaluation Active Filter Circuit  
10  
DS632PP1  
CS44800  
PWM FILTER CHARACTERISTICS  
(Logic “0” = GND = 0 V; Logic “1” = VLS = VLC; VD = 2.5 V; DAI_MCLK = 12.288 MHz; XTAL = 24.576 MHz; PWM  
Switch Rate = 384 kHz; Fs = 32 kHz to 192 kHz; Measurement bandwidth is 10 Hz to 20 kHz unless otherwise  
specified.)  
Parameter  
Digital Filter Response (Note 12)  
Passband  
Min  
Typ  
Max  
Unit  
OSRATE = 0b  
to -0.01 dB corner  
to -3 dB corner  
to -0.01 dB corner  
to -3 dB corner  
0
0
0
0
-
-
-
-
1.6  
24.0  
3.3  
kHz  
kHz  
kHz  
kHz  
OSRATE = 1b (Note 13)  
44.5  
Frequency Response  
10 Hz to 20 kHz  
10 Hz to 40 kHz  
OSRATE = 0b  
OSRATE = 1b (Note 13)  
Group Delay  
De-emphasis Error  
(Relative to 1 kHz)  
-0.8  
-1.2  
-
-
+0.02  
+0.02  
dB  
dB  
ms  
dB  
dB  
dB  
(Note 14)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
±0.23  
±0.14  
±0.09  
12. Filter response is not production tested but is characterized and guaranteed by design.  
13. XTAL = 49.152 MHz; PWM Switch Rate = 768 kHz; Fs = 96 kHz to 192 kHz.  
14. The equation for the group delay through the sample rate converter with OSRATE = 0b is (8.5 / Fsi) + (10  
/ Fso) ± (4.5 / Fsi). The equation for the group delay through the sample rate converter with OSRATE = 1b  
is (8.5 / Fsi) + (20 / Fso) ± (4.5 / Fsi).  
SWITCHING CHARACTERISTICS - XTI  
(VD = 2.5 V, VDP = VLC = VLS = 3.3 V, VDX = 2.5 V to 5.0 V; Inputs: Logic 0 = GND, Logic 1 = VDX)  
Parameter  
Symbol  
Min  
18.518  
8.34  
Typ  
---  
Max  
40.69  
22.38  
22.38  
55  
Unit  
ns  
XTI period  
t
clki  
XTI high time  
XTI low time  
XTI Duty Cycle  
t
---  
ns  
clkih  
t
8.34  
---  
ns  
clkil  
45  
50  
---  
%
External Crystal operating frequency  
24.576  
54  
MHz  
XTI  
tclkih  
tclkil  
tclki  
Figure 2. XTI Timings  
DS632PP1  
11  
CS44800  
SWITCHING CHARACTERISTICS - SYS_CLK  
(VD = 2.5 V, VDP = VLC = VDX = 3.3 V, VLS = 2.5 V to 5.0 V, Cload = 50 pF)  
Parameter  
Symbol  
Min  
18.518  
45  
Typ  
---  
Max  
---  
Unit  
ns  
SYS_CLK Period  
t
sclki  
SYS_CLK Duty Cycle  
50  
55  
%
SYS_CLK  
tsclki  
Figure 3. SYS_CLK Timings  
SWITCHING CHARACTERISTICS - PWMOUTA1-B4  
(VD = 2.5 V, VLS = VLC = VDX = 3.3 V, VDP = 3.3 V to 5.0 V unless otherwise specified, Cload = 10 pF)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
PWMOUTxx Period  
t
2.60  
-
1.18  
µs  
pwm  
Rise Time of PWMOUTxx  
VDP = 5.0 V  
VDP = 3.3 V  
t
-
-
1.6  
2.1  
-
-
ns  
ns  
r
Fall Time of PWMOUTxx  
VDP = 5.0 V  
VDP = 3.3 V  
t
-
-
1.1  
1.4  
-
-
ns  
ns  
f
tr  
tf  
PWMOUTxx  
tpwm  
Figure 4. PWMOUTxx Timings  
SWITCHING CHARACTERISTICS - PS_SYNC  
(VD = 2.5 V, VLS = VLC = VDX = 3.3 V, VDP = 3.3 V to 5.0 V, Cload = 20 pF)  
Parameter  
Symbol  
Min  
592.576  
45  
Typ  
---  
Max  
---  
Unit  
ns  
PS_SYNC Period  
t
psclki  
PS_SYNC Duty Cycle  
50  
55  
%
PS_SYNC  
tpsclki  
Figure 5. PS_SYNC Timings  
12  
DS632PP1  
CS44800  
SWITCHING CHARACTERISTICS - DAI INTERFACE  
(VD = 2.5 V, VDX = VDP = VLC = 3.3 V, VLS = 2.5 V to 5.0 V; Inputs: Logic 0 = GND, Logic 1 = VLS.)  
Parameters  
Symbol  
Min  
1
Max  
Units  
ms  
%
RST pin Low Pulse Width  
DAI_MCLK Duty Cycle  
DAI_SCLK Duty Cycle  
DAI_LRCK Duty Cycle  
DAI Sample Rate  
(Note 15)  
(Note 16)  
-
60  
55  
55  
192  
-
40  
45  
45  
32  
10  
10  
20  
20  
25  
25  
%
%
(Note 17)  
F
kHz  
ns  
s
DAI_SDIN Setup Time Before DAI_SCLK Rising Edge  
DAI_SDIN Hold Time After DAI_SCLK Rising Edge  
DAI_SCLK High Time  
t
ds  
dh  
t
-
ns  
t
t
-
ns  
sckh  
DAI_SCLK Low Time  
t
-
ns  
sckl  
lrcks  
lrckd  
DAI_LRCK Setup Time Before DAI_SCLK Rising Edge  
DAI_SCLK Rising Edge Before DAI_LRCK Edge  
-
ns  
t
-
ns  
15. After powering up, the CS44800, RST should be held low until after the power supplies and clocks are set-  
tled.  
16. See Table 1 on page 26 for suggested MCLK frequencies.  
17. Max DAI sample rate is 96 kHz for One Line and TDM modes of operation.  
DAI_LRCK  
(input)  
DAI_LRCK  
t
t
t
sckh  
t
lrckd  
lrcks  
sckl  
t
t
lrckd  
t
t
sckh  
t
lrcks  
lrcks  
sckl  
DAI_SCLK  
DAI_SDINx  
DAI_SCLK  
(input)  
t
t
ds  
dh  
DAI_SDIN1  
MSB  
MSB-1  
t
t
dh  
ds  
Figure 6. Serial Audio Interface Timing  
Figure 7. Serial Audio Interface Timing - TDM Mode  
DS632PP1  
13  
CS44800  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT  
(VD = 2.5 V, VDX = VDP = VLS = 3.3 V; VLC = 2.5 V to 5.0 V; Inputs: Logic 0 = GND, Logic 1 = VLC, C = 30 pF)  
L
Parameter  
Symbol  
Min  
-
Max  
Unit  
kHz  
µs  
SCL Clock Frequency  
f
100  
scl  
Bus Free Time between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
t
4.7  
4.0  
4.7  
4.0  
4.7  
10  
250  
-
-
buf  
t
t
-
µs  
hdst  
t
-
µs  
low  
Clock High Time  
-
µs  
high  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
t
-
µs  
sust  
(Note 18)  
t
-
-
ns  
hdd  
t
ns  
sud  
t
1000  
300  
-
ns  
r
Fall Time SCL and SDA  
t
-
ns  
f
Setup Time for Stop Condition  
t
4.7  
µs  
susp  
18. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
f
Repeated  
Stop  
t
Start  
Stop  
Start  
SDA  
SCL  
t
t
t
t
buf  
t
high  
hdst  
f
susp  
hdst  
t
t
t
t
t
sust  
sud  
r
hdd  
low  
Figure 8. Control Port Timing - I²C Format  
14  
DS632PP1  
CS44800  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT  
(VD = 2.5 V, VDP = VLS = 3.3 V; VLC = 2.5 V to 5.0 V; Inputs: Logic 0 = GND, Logic 1 = VLC, C = 30 pF)  
L
Parameter  
Symbol  
Min  
0
Typ  
Max  
6.0  
-
Units  
MHz  
µs  
CCLK Clock Frequency  
f
t
-
-
-
-
-
-
-
-
-
-
-
-
sck  
CS High Time between Transmissions  
CS Falling to CCLK Edge  
CCLK Low Time  
1.0  
20  
66  
66  
40  
15  
-
csh  
t
-
ns  
css  
t
-
ns  
scl  
CCLK High Time  
t
-
ns  
sch  
dsu  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
CCLK Falling to CDOUT Stable  
Rise Time of CDOUT  
t
-
ns  
(Note 19)  
t
t
-
ns  
dh  
50  
25  
25  
100  
100  
ns  
pd  
t
-
ns  
r1  
Fall Time of CDOUT  
t
-
ns  
f1  
r2  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
(Note 20)  
(Note 20)  
t
-
ns  
t
-
ns  
f2  
19. Data must be held for sufficient time to bridge the transition time of CCLK.  
20. For f <1 MHz.  
sck  
CS  
t
t
scl  
sch  
t
t
csh  
css  
CCLK  
t
t
r2  
f2  
CDIN  
t
dsu  
t
dh  
t
pd  
CDOUT  
Figure 9. Control Port Timing - SPI Format  
DS632PP1  
15  
CS44800  
2. PIN DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
GND  
PSR_EN  
PS_SYNC  
GND  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GND  
PWMOUTA3+  
PWMOUTA3-  
VDP  
XTI  
PWMOUTB3+  
PWMOUTB3-  
GND  
XTO  
VDX  
SYS_CLK  
DAI_MCLK  
PWMOUTA4+  
PWMOUTA4-  
VDP  
CS44800  
DAI_SCLK 10  
DAI_LRCK 11  
DAI_SDIN1 12  
DAI_SDIN2 13  
DAI_SDIN3 14  
DAI_SDIN4 15  
VLS 16  
PWMOUTB4+  
PWMOUTB4-  
GND  
GPIO0  
GPIO1  
GPIO2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 10. CS44800 Pinout Diagram  
16  
DS632PP1  
CS44800  
Pin Name  
Pin #  
Pin Description  
Power Supply Synchronization Clock (Output) - The PWM synchronized clock to the  
switch mode power supply.  
PS_SYNC  
3
Crystal Oscillator Input (Input) - Crystal Oscillator input or accepts an external clock  
input signal that is used to drive the internal PWM core logic.  
XTI  
5
6
XTO  
Crystal Oscillator Output (Output) - Crystal Oscillator output.  
External System Clock (Output) - Clock output. This pin provides a divided down clock  
derived from the XTI input.  
SYS_CLK  
DAI_MCLK  
DAI_SCLK  
8
9
Digital Audio Input Master Clock (Input) - Master audio clock.  
Digital Audio Input Serial Clock (Input) - Serial clock for the Digital Audio Input Inter-  
face. The clock frequency is a multiple of the Left/Right Clock running at Fs.  
10  
Digital Audio Input Left/Right Clock (Input) - Determines which channel, Left or Right,  
DAI_LRCK  
11 is currently active on the serial audio data line. The rate is determined by the sampling fre-  
quency Fs.  
DAI_SDIN1  
DAI_SDIN2  
DAI_SDIN3  
DAI_SDIN4  
12  
13  
14  
15  
Digital Audio Input Serial Data (Input) - Input for two’s complement serial audio data.  
Mute (Input) - The device will perform a hard mute on all channels. All internal registers  
are not reset to their default settings.  
MUTE  
20  
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an  
21 external pull-up resistor to the logic interface voltage in I²C mode as shown in the Typical  
Connection Diagram.  
SCL/CCLK  
Serial Control Data (Input/Output) - SDA is a data I/O line in I²C mode and requires an  
22 external pull-up resistor to the logic interface voltage, as shown in the Typical Connection  
Diagram.; CDOUT is the output data line for the control port interface in SPI mode.  
SDA/CDOUT  
Address Bit 1 (I²C)/Serial Control Data (SPI) (Input) - AD1 is a chip address pin in I²C  
mode.;CDIN is the input data line for the control port interface in SPI mode.  
AD1/CDIN  
AD0/CS  
23  
Address Bit 0 (I²C)/Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in  
I²C mode; CS is the chip select signal in SPI mode.  
24  
Interrupt Request (Output) - CMOS or open-drain interrupt request output. This pin is  
25 driven to the configured active state to indicate that the PWM Controller has status data  
that should be read by the host.  
INT  
Reset (Input) - The device enters a low power mode and all internal registers are reset to  
their default settings when low.  
RST  
26  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
29 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
GPIO6  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
30 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
GPIO5  
GPIO4  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
31 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
DS632PP1  
17  
CS44800  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
32 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
33 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
34 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
General Purpose Input, Output (Input/Output) - This pin is configured as an input follow-  
35 ing a RST condition. It can be configured as a general purpose input or output which can  
be individually controlled by the Host Controller.  
Power Supply Rejection Master Clock (Output) - Master audio clock for external PSR  
ADC (CS4461).  
PSR_MCLK  
PSR_DATAL  
PSR_SYNC  
PSR_RESET  
PSR_EN  
49  
Power Supply Rejection Input Serial Data (Input) - Input for serial audio data from  
external PSR ADC (CS4461).  
50  
Power Supply Rejection Sync Clock (Input) - Synchronization signal for external PSR  
ADC (CS4461).  
51  
Power Supply Rejection Reset (Output) - The reset pin for the external Power Supply  
Rejection circuitry.  
52  
Power Supply Rejection Enable (Output) - The enable pin for the external Power Supply  
Rejection circuitry.  
2
PWMOUTA1+  
PWMOUTA1-  
PWMOUTB1+  
PWMOUTB1-  
PWMOUTA2+  
PWMOUTA2-  
PWMOUTB2+  
PWMOUTB2-  
PWMOUTA3+  
PWMOUTA3-  
PWMOUTB3+  
PWMOUTB3-  
PWMOUTA4+  
PWMOUTA4-  
PWMOUTB4+  
PWMOUTB4-  
64  
63  
61  
60  
58  
57  
55  
54  
47  
PWM Output (Output) - PWM control signals for the Class D amplifier backend.  
46  
44  
43  
41  
40  
38  
37  
VDX  
VD  
7
Crystal Power (Input) - Positive power supply for the Crystal section.  
19, 27 Digital Power (Input) - Positive power supply for the digital section.  
Host Interface Power (Input) - Determines the required signal level for the digital  
input/output signals for the host interface.  
VLC  
VLS  
VDP  
17  
Digital Audio Interface Power (Input) - Determines the required signal level for the digital  
input signals for the digital audio interface.  
16  
39, 45, PWM Interface Power (Input) - Determines the required signal level for the digital  
56, 62 input/output signals for the PWM and GPIO interface.  
18  
DS632PP1  
CS44800  
1, 4,  
18, 28,  
GND  
36, 42, Digital Ground (Input) - Ground reference for digital circuits.  
48, 53,  
59  
DS632PP1  
19  
CS44800  
2.1  
I/O Pin Characteristics  
Power  
Signal Name  
Rail  
I/O  
Driver  
Receiver  
RST  
VLC Input  
VLC Input  
-
-
2.5 V and 3.3/5.0 V TTL Compatible.  
SCL/CCLK  
2.5 V and 3.3/5.0 V TTL Compatible, with Hysteresis.  
Input /  
VLC  
2.5-5.0 V,  
Output CMOS/Open Drain  
SDA/CDOUT  
2.5 V and 3.3/5.0 V TTL Compatible, with Hysteresis.  
AD0/CS  
VLC Input  
-
-
2.5 V and 3.3/5.0 V TTL Compatible, Internal pull-up.  
2.5 V and 3.3/5.0 V TTL Compatible, Internal pull-up.  
AD1/CDIN  
VLC Input  
2.5-5.0 V,  
CMOS/Open Drain  
INT  
VLC Output  
-
MUTE  
VLC Input  
VLS Input  
VLS Input  
VLS Input  
VLS Input  
-
-
-
-
-
2.5 V and 3.3/5.0 V TTL Compatible.  
2.5 V and 3.3/5.0 V TTL Compatible.  
2.5 V and 3.3/5.0 V TTL Compatible.  
2.5 V and 3.3/5.0 V TTL Compatible.  
2.5 V and 3.3/5.0 V TTL Compatible.  
-
DAI_SDINx  
DAI_SCLK  
DAI_LRCK  
DAI_MCLK  
SYS_CLK  
XTI  
VLS Output 2.5-5.0 V, CMOS  
VDX Input  
-
2.5 V and 3.3/5.0 V TTL Compatible, Internal pull-down.  
-
XTO  
VDX Output  
-
Input /  
VDP  
3.3/5.0 V,  
GPIOx  
3.3/5.0 V TTL Compatible.  
Output CMOS/Open Drain  
VDP Output 3.3/5.0 V, CMOS  
VDP Output 3.3/5.0 V, CMOS  
VDP Output 3.3/5.0 V, CMOS  
PWMOUTAx+/-  
PWMOUTBx+/-  
PSR_MCLK  
PSR_SYNC  
PSR_DATA  
PSR_EN  
-
-
-
VDP Input  
VDP Input  
-
-
3.3/5.0 V TTL Compatible, Internal pull-up.  
3.3/5.0 V TTL Compatible, Internal pull-up.  
VDP Output 3.3/5.0 V, CMOS  
VDP Output 3.3/5.0 V, CMOS  
VDP Output 3.3/5.0 V, CMOS  
-
-
-
PSR_RESET  
PS_SYNC  
20  
DS632PP1  
CS44800  
3. TYPICAL CONNECTION DIAGRAMS  
+3.3 V to +5.0 V  
10 µF  
VDP  
PWMOUTA1+  
PWM IN1  
CONTROL  
OUT1  
PWMOUTA1-  
GPIO1  
Front Left  
VD  
VD  
+2.5 V  
STATUS  
+
0.1 µF  
0.1 µF  
0.01 µF  
0.01 µF  
10 µF  
PWMOUTB1+  
PWMOUTB1-  
PWM IN2  
OUT2  
Front Right  
STATUS  
CONTROL  
CS44800  
GPIO0  
PWMOUTA2+  
PWMOUTA2-  
GPIO2  
PWM IN3  
OUT3  
Surr. Left  
+3.3 V to  
+5.0 V  
STATUS  
CONTROL  
VDX  
0.01 µF  
0.1 µF  
PWMOUTB2+  
PWMOUTB2-  
PWM IN4  
OUT4  
XTI  
XTO  
24.576 MHz  
to 54 MHz  
Surr. Right  
XTAL  
STATUS  
CONTROL  
PWMOUTA3+  
PWMOUTA3-  
GPIO4  
PWM IN5  
OUT5  
+2.5 V to  
+5.0 V  
Center  
VLS  
STATUS  
CONTROL  
0.01 µF  
0.1 µF  
PWMOUTB3+  
PWMOUTB3-  
GPIO5  
PWM IN6  
OUT6  
SYS_CLK  
Subwoofer  
STATUS  
CONTROL  
DAI_MCLK  
DAI_SCLK  
DAI_LRCK  
Digital  
Audio  
Processor  
GPIO3  
PWMOUTA4+  
PWMOUTA4-  
GPIO6  
PWM IN7  
OUT7  
DAI_SDIN1  
Rear Left  
STATUS  
CONTROL  
DAI_SDIN2  
DAI_SDIN3  
PWMOUTB4+  
PWMOUTB4-  
PWM IN8  
OUT8  
Rear Right  
STATUS  
CONTROL  
MUTE  
INT  
RST  
SCL/CCLK  
Power Supply Sync Clock  
Micro-  
Controller  
PS_SYNC  
SDA/CDOUT  
AD1/CDIN  
AD0/CS  
PSR_MCLK  
PSR_SYNC  
PSR_DATA  
PSR_EN  
Power Supply Rail  
CS4461  
ADC  
PSR_RESET  
+2.5 V  
to +5.0 V  
VLC  
See  
Note  
0.1 µF  
Optional  
Note: Resistors are required for  
I²C control port operation  
GND  
Figure 11. Typical Full-Bridge Connection Diagram  
DS632PP1  
21  
CS44800  
+3.3 V to +5.0 V  
10 µF  
VDP  
PWMOUTA1+  
PWM IN1 OUT1  
PWMOUTA1-  
VD  
VD  
+2.5 V  
+
0.1 µF  
0.1 µF  
0.01 µF  
0.01 µF  
Front Left  
10 µF  
PWMOUTB1+  
PWMOUTB1-  
PWM IN2 OUT2  
Front Right  
CONTROL  
STATUS  
GPIO2  
CS44800  
PWMOUTA2+  
PWMOUTA2-  
PWM IN1 OUT1  
PWM IN2 OUT2  
+3.3 V to  
+5.0 V  
VDX  
0.01 µF  
Surr. Left  
0.1 µF  
PWMOUTB2+  
PWMOUTB2-  
XTI  
XTO  
24.576 MHz  
to 54 MHz  
Surr. Right  
XTAL  
GPIO3  
CONTROL  
STATUS  
GPIO0  
PWMOUTA3+  
PWMOUTA3-  
+2.5 V to  
+5.0 V  
PWM IN1 OUT1  
PWM IN2 OUT2  
VLS  
0.01 µF  
0.1 µF  
Center  
PWMOUTB3+  
PWMOUTB3-  
SYS_CLK  
Subwoofer  
DAI_MCLK  
DAI_SCLK  
DAI_LRCK  
GPIO4  
CONTROL  
STATUS  
Digital  
Audio  
Processor  
DAI_SDIN1  
PWMOUTA4+  
PWMOUTA4-  
PWM IN1 OUT1  
PWM IN2 OUT2  
DAI_SDIN2  
DAI_SDIN3  
Rear Left  
PWMOUTB4+  
PWMOUTB4-  
Rear Right  
GPIO5  
MUTE  
INT  
CONTROL  
STATUS  
RST  
SCL/CCLK  
GPIO1  
Micro-  
Controller  
Power Supply Sync Clock  
SDA/CDOUT  
AD1/CDIN  
AD0/CS  
PS_SYNC  
PSR_MCLK  
PSR_SYNC  
PSR_DATA  
PSR_EN  
Power Supply Rail  
CS4461  
ADC  
+2.5 V  
VLC  
to +5.0 V  
See  
Note  
PSR_RESET  
0.1 µF  
Optional  
Note: Resistors are required for  
I²C control port operation  
GND  
Figure 12. Typical Half-Bridge Connection Diagram  
22  
DS632PP1  
CS44800  
4. APPLICATIONS  
4.1  
Overview  
The CS44800 is a multi-channel digital-to-PWM Class D audio system controller including interpolation,  
sample rate conversion, half- and full-bridge PWM driver outputs, and power supply rejection feedback in a  
64-pin LQFP package. The architecture uses a direct-to-digital approach that maintains digital signal integ-  
rity to the final output filter, minimizing analog interference effects which negatively affect system perfor-  
mance.  
The CS44800 integrates on-chip sample rate conversion, digital volume control, peak detect with volume  
limiter, de-emphasis, programmable interrupt conditions, and the ability to change the PWM switch rate to  
eliminate AM frequency interference. The CS44800 also has a programmable load compensation filter,  
which allows the speaker load to vary while the output filter remains fixed, maintaining a flat frequency re-  
®
sponse. For single-ended half-bridge applications PWM Popguard reduces the transient pops and clicks  
and realtime power supply feedback reduces noise coupling from the power supply. The PWM amplifier can  
achieve greater than 90% efficiency. This efficiency provides for a smaller device package, less heat sink  
requirements, and smaller power supplies.  
The CS44800 is ideal for audio systems requiring wide dynamic range, negligible distortion, and low noise  
such as A/V receivers, DVD receivers, digital speaker, and automotive audio systems.  
4.2  
Feature Set Summary  
Core Features  
2.5 V digital core voltage, VD.  
VLC voltage pin for host interface logic levels between 2.5 V and 5.0 V.  
VLS voltage pin for digital audio interface logic levels between 2.5 V and 5.0 V.  
VDP voltage pin for PWM backend interface logic levels between 3.3 V and 5.0 V.  
VDX voltage pin for clock input signals between 2.5 V and 5.0 V.  
Clocking  
Minimum of 128Fs DAI_MCLK for DAI serial interface.  
DAI interface uses automatic detection of LRCK/MCLK ratio to configure internal DAI/SRC clocks.  
All PWM Processing clocks generated internally via:  
An external crystal - 24.576 MHz to 54 MHz, or  
XTI input pin capable of supporting a clock signal at the VDX voltage level.  
Programmable divide of XTI by 1, 2, 4, 8 for SYS_CLK output.  
Programmable divide of XTI by 32, 64, 128, 256 for PS_SYNC (power supply synchronization signal).  
Digital Audio Playback  
Supports 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz and 192 kHz sample frequencies.  
High performance sample rate converter.  
16, 20 and 24 bit audio sample lengths.  
De-emphasis for 32 kHz, 44.1 kHz, 48 kHz.  
DS632PP1  
23  
CS44800  
Digital volume control with soft ramp.  
Individual channel volume gain, attenuation and mute capability; +24 to -127 dB in 0.25 dB steps.  
Master volume attenuation; +24 to -127 dB in 0.25 dB steps.  
Peak Detect and Volume Limiter with programmable attack and release rates.  
Signal-clipping interrupt indicator.  
Additional Features  
Contains a two-stage digital output filter for speaker impedance compensation.  
Provides 7 programmable GPIO pins with interrupt generation for easily interfacing to a variety of com-  
monly available power state parts. Interrupts can be masked.  
Selectable over-sample rate for increased audio bandwidth.  
Power supply clock output, PS_SYNC, with programmable divider  
FsIn FsOut  
Master  
Volume  
1, 1.5, 2,  
3, 4, 6, 8  
128Fs  
Channel  
Volume  
PSR  
Feedback  
LIMITER  
Σ
Over Sample  
(OSRATE)  
Ratio Detect  
PEAK  
DETECT  
DAI_MCLK  
DAI_LRCK  
Delay  
Delay  
PWM_OUT+  
PWM_OUT-  
Multibit  
Σ∆  
Modulator  
2-pole Load  
Compensation  
Filter  
Digital Audio  
Input Port  
De-  
Emphasis  
SRC  
mute  
PWM Engine  
x2  
DAI_SCLK  
DAI_SDINx  
SRC_MCLK (128Fs)  
MOD_MCLK  
PWM_MCLK  
XTO  
XTI  
XTAL /  
CLKIN  
1,1.5,  
2,4  
2.25  
Clock Control  
SYS_CLK  
1,2,4,8  
Over Sample  
(OSRATE)  
AM Freq. Hop  
(AM_FREQ_HOP)  
Figure 13. CS44800 Data Flow Diagram (Single Channel Shown)  
4.3  
Clock Generation  
The sources for internal clock generation for the PWM processing are as follows:  
FsIn Domain:  
DAI_MCLK, minimum 128Fs  
FsOut Domain:  
rd  
XTI/XTO (Fundamental or 3 overtone crystal), or  
Clock signal on XTI (VDX is used to set logic voltage level)  
24  
DS632PP1  
CS44800  
4.3.1  
FsIn Domain Clocking  
Common DAI_MCLK frequencies and sample rates are shown in Table 1.  
Mode  
(sample-rate range)  
Sample  
Rate  
DAI_MCLK (MHz)  
(kHz)  
DAI_MCLK/LRCK Ratio −>  
256x  
8.1920  
11.2896  
12.2880  
128x  
384x  
12.2880  
16.9344  
18.4320  
192x  
512x  
768x  
1024x  
32.7680  
45.1584  
49.1520  
512x  
32  
44.1  
48  
16.3840  
22.5792  
24.5760  
256x  
24.5760  
33.8688  
36.8640  
384x  
Single Speed  
(4 to 50 kHz)  
DAI_MCLK/LRCK Ratio −>  
64  
88.2  
96  
8.1920  
11.2896  
12.2880  
64x  
12.2880  
16.9344  
18.4320  
96x  
16.3840  
22.5792  
24.5760  
128x  
24.5760  
33.8688  
36.8640  
192x  
32.7680  
45.1584  
49.1520  
256x  
Double Speed  
(50 to 100 kHz)  
DAI_MCLK/LRCK Ratio −>  
176.4  
192  
n/a  
n/a  
n/a  
n/a  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Quad Speed  
(100 to 200 kHz)  
Table 1. Common DAI_MCLK Frequencies  
4.3.2  
FsOut Domain Clocking  
To ensure the highest quality conversion of PWM signals, the CS44800 is capable of operating from a  
rd  
fundamental mode or 3 overtone crystal, or a clock signal attached to XTI, at a frequency of 24.576 MHz  
to 54 MHz. If XTI is being directly driven by a clock signal, XTO can be left floating or tied to ground  
through a pull-down resistor and the internal oscillator should be powered down using the PDN_XTAL bit  
in register 02h.  
XTI  
Y1  
C1  
XTO  
C2  
Figure 14. Fundamental Mode Crystal Configuration  
DS632PP1  
25  
CS44800  
XTI  
Y1  
C1  
C2  
XTO  
L1  
C3  
Figure 15. 3rd Overtone Crystal Configuration  
Appropriate clock dividers for each functional block and a programmable divider to support an output for  
switched-mode power supply synchronization are provided. The clock generation for the CS44800 is  
shown in the Figure 16.  
XTO  
XTI  
PWM Master  
Clock Divider  
PWM_MCLK  
MOD_MCLK  
System Clock  
Divider  
PWM Modulator  
Clock Divider  
SYS_CLK  
PS_SYNC  
Sample Rate Converter  
Clock Divider  
Power Supply  
Sync. Divider  
SRC_MCLK  
Figure 16. CS44800 Internal Clock Generation  
26  
DS632PP1  
CS44800  
4.4  
FsIn Clock Domain Modules  
4.4.1  
Digital Audio Input Port  
The CS44800 interfaces to an external Digital Audio Processor via the Digital Audio Input serial port, the  
DAI serial port. The DAI port has 4 stereo data inputs with support for I²S, left-justified and right-justified  
formats. The DAI port operates in slave operation only, where DAI_LRCK, DAI_SCLK and DAI_MCLK are  
always inputs. The signal DAI_LRCK must be equal to the sample rate, Fs and must be synchronously  
derived from the supplied master clock, DAI_MCLK. The serial bit clock, DAI_SCLK, is used to sample  
the data bits and must be synchronously derived from the master clock.  
DAI_SDIN1, DAI_SDIN2, DAI_SDIN3, and DAI_SDIN4 are the serial data input pins supplying the asso-  
ciated internal PWM channel modulators. The serial data interface format selection (left-justified, right-jus-  
tified, I²S, one line mode, or TDM) for the DAI serial port data input pins is configured using the appropriate  
bits in the register “Misc. Configuration (address 04h)” on page 52. The serial audio data is presented in  
2's complement binary form with the MSB first in all formats.  
When operated in One Line Data Mode, 6 channels of PWM data are input on DAI_SDIN1 and two addi-  
tional PWM channels on DAI_SDIN4. In TDM mode, all 8 channels are multiplexed onto the DAI_SDIN1  
data line. Table 2 outlines the serial port channel allocations.  
Serial Data Inputs  
DAI_SDIN1  
Data mode  
Normal (I²S,LJ,RJ)  
One Line #1 or #2  
TDM  
Channel Assignments  
PWMOUTA1(left channel)/PWMOUTB1(right channel)  
PWMOUTA1/A2/A3/B1/B2/B3  
PWMOUTA1/A2/A3/A4/B1/B2/B3/B4  
DAI_SDIN2  
DAI_SDIN3  
DAI_SDIN4  
Normal (I²S,LJ,RJ)  
One Line #1 or #2  
TDM  
Normal (I²S,LJ,RJ)  
One Line #1 or #2  
TDM  
Normal (I²S,LJ,RJ)  
One Line #1 or #2  
TDM  
PWMOUTA2(left channel)/PWMOUTB2(right channel)  
not used  
not used  
PWMOUTA3(left channel)/PWMOUTB3(right channel)  
not used  
not used  
PWMOUTA4(left channel)/PWMOUTB4(right channel)  
PWMOUTA4/B4  
not used  
Table 2. DAI Serial Audio Port Channel Allocations  
The DAI digital audio serial ports support 6 formats with varying bit depths from 16 to 24 as shown in Fig-  
ure 17, Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22. These formats are selected using the  
configuration bits in the “Misc. Configuration (address 04h)” on page 52.  
DS632PP1  
27  
CS44800  
4.4.1.1 I²S Data Format  
For I²S, data is received most significant bit first, one DAI_SCLK delay after the transition of DAI_LRCK,  
and is valid on the rising edge of DAI_SCLK. For the I²S format, the left channel data is presented when  
DAI_LRCK is low; the right channel data is presented when DAI_LRCK is high.  
Left Channel  
Right Channel  
DAI_LRCK  
DAI_SCLK  
MSB  
+5 +4 +3 +2 +1  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
-1  
-2 -3 -4 -5  
-1 -2 -3 -4  
DAI_SDINx  
I²S Mode, Data Valid on Rising Edge of DAI_SCLK  
Bits/Sample  
16  
SCLK Rates  
32, 48, 64, 128, 256 Fs  
48, 64, 128, 256 Fs  
18 to 24  
Figure 17. I²S Serial Audio Formats  
4.4.1.2 Left-Justified Data Format  
For left-justified format, data is received most significant bit first on the first DAI_SCLK after a DAI_LRCK  
transition and is valid on the rising edge of DAI_SCLK. For the left-justified format, the left channel data  
is presented when DAI_LRCK is high and the right channel data is presented when DAI_LRCK is low.  
DAI_LRCK  
Left Channel  
Right Channel  
DAI_SCLK  
DAI_SDINx  
MSB  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
+5 +4 +3 +2 +1  
-1 -2 -3 -4  
Left-Justified Mode, Data Valid on Rising Edge of DAI_SCLK  
Bits/Sample  
16  
SCLK Rate(s)  
32, 48, 64, 128, 256 Fs  
48, 64, 128, 256 Fs  
18 to 24  
Figure 18. Left-Justified Serial Audio Formats  
28  
DS632PP1  
CS44800  
4.4.1.3 Right-Justified Data Format  
In the right-justified format, data is received most significant bit first and with the least significant bit pre-  
sented on the last DAI_SCLK before the DAI_LRCK transition and is valid on the rising edge of  
DAI_SCLK. For the right-justified format, the left channel data is presented when DAI_LRCK is high and  
the right channel data is presented when DAI_LRCK is low. Either 16 bits per sample or 24 bits per sam-  
ple are supported.  
Right Channel  
DAI_LRCK  
DAI_SCLK  
Left Channel  
9
8
7
6
5
4
3
2
1
0
9
15 14 13 12 11 10  
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
DAI_SDINx  
Right-Justified Mode, Data Valid on Rising Edge of DAI_SCLK  
Bits/Sample  
SCLK Rate(s)  
16  
24  
32, 48, 64, 128, 256 Fs  
48, 64, 128, 256 Fs  
Figure 19. Right-Justified Serial Audio Formats  
4.4.1.4 One Line Mode #1  
In One Line mode #1 format, data is received most significant bit first on the first DAI_SCLK after a  
DAI_LRCK transition and is valid on the rising edge of DAI_SCLK. DAI_SCLK must operate at a 128Fs  
rate. DAI_LRCK identifies the start of a new frame and is equal to the sample period. DAI_LRCK is sam-  
pled as valid on the same clock edge as the most significant bit of the first data sample and must be held  
high for 64 DAI_SCLK periods. Each time slot is 20 bits wide, with the valid data sample left-justified within  
the time slot. Valid data lengths are 16, 18, or 20 bits. Valid samples rates for this mode are 32 kHz to  
96 kHz.  
64 clks  
64 clks  
Right Channels  
DAI_LRCK  
Left Channels  
DAI_SCLK  
DAI_SDIN1  
MSB  
PWMOUTA1  
20 clks  
LSB MSB  
LSB MSB  
LSB  
PWMOUTA3  
20 clks  
MSB  
PWMOUTB1  
20 clks  
LSB MSB  
LSB MSB  
LSB  
PWMOUTB3  
20 clks  
MSB  
MSB  
PWMOUTA2  
20 clks  
PWMOUTB2  
20 clks  
DAI_SDIN4  
MSB  
LSB  
MSB  
LSB  
PWMOUTA4  
20 clks  
PWMOUTB4  
20 clks  
Figure 20. One Line Mode #1 Serial Audio Format  
DS632PP1  
29  
CS44800  
4.4.1.5 One Line Mode #2  
In One Line mode #2 format, data is received most significant bit first on the first DAI_SCLK after a  
DAI_LRCK transition and is valid on the rising edge of DAI_SCLK. DAI_SCLK must operate at a 256 Fs  
rate. DAI_LRCK identifies the start of a new frame and is equal to the sample period. DAI_LRCK is sam-  
pled as valid on the same clock edge as the most significant bit of the first data sample and must be held  
high for 128 DAI_SCLK periods. Each time slot is 24 bits wide, with the valid data sample left-justified with-  
in the time slot. Valid data lengths are 16, 18, 20, or 24 bits. Valid samples rates for this mode are 32 kHz  
to 96 kHz.  
128 clks  
128 clks  
DAI_LRCK  
Left Channels  
Right Channels  
DAI_SCLK  
DAI_SDIN1  
MSB  
PWMOUTA1  
24 clks  
LSB MSB  
LSB MSB  
LSB  
PWMOUTA3  
24 clks  
MSB  
PWMOUTB1  
24 clks  
LSB MSB  
LSB MSB  
LSB  
PWMOUTB3  
24 clks  
MSB  
MSB  
PWMOUTA2  
24 clks  
PWMOUTB2  
24 clks  
DAI_SDIN4  
MSB  
LSB  
MSB  
LSB  
PWMOUTA4  
24 clks  
PWMOUTB4  
24 clks  
Figure 21. One Line Mode #2 Serial Audio Format  
4.4.1.6 TDM Mode  
In TDM mode format, data is received most significant bit first on the first DAI_SCLK after a DAI_LRCK  
transition and is valid on the rising edge of DAI_SCLK. DAI_SCLK must operate at a 256 Fs rate.  
DAI_LRCK identifies the start of a new frame and is equal to the sample period. DAI_LRCK is sampled  
as valid on the proceeding clock edge as the most significant bit of the first data sample and must be held  
valid for at least 1 DAI_SCLK period. Each time slot is 32 bits wide, with the valid data sample left-justified  
within the time slot. Valid data lengths are 16, 18, 20, 24 or 32 bits. Valid samples rates for this mode are  
32 kHz to 96 kHz.  
256 clks  
DAI_LRCK  
DAI_SCLK  
DAI_SDIN1  
LSB MSB  
PWMOUTA1  
32 clks  
LSB MSB  
PWMOUTA2  
32 clks  
LSB MSB  
PWMOUTA3  
32 clks  
LSB MSB  
PWMOUTA4  
32 clks  
LSB MSB  
PWMOUTB1  
32 clks  
LSB MSB  
PWMOUTB2  
32 clks  
LSB MSB  
PWMOUTB3  
32 clks  
LSB MSB  
LSB  
PWMOUTB4  
32 clks  
Figure 22. TDM Mode Serial Audio Format  
30  
DS632PP1  
CS44800  
4.4.2  
4.4.3  
Auto Rate Detect  
The CS44800 will automatically determine the incoming sample rate, DAI_LRCK, to master clock,  
DAI_MCLK, ratio and configure the appropriate internal clock divider such that the sample rate convertor  
receives the required clock rate. A minimum DAI_MCLK rate of 128Fs is required for proper operation.  
The supported DAI_MCLK to DAI_LRCK ratios are shown in Table 1 on page 26.  
De-Emphasis  
The CS44800 includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accom-  
modate older audio recordings that utilize pre-emphasis equalization as a means of noise reduction.  
Figure 23 shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale pro-  
portionally with changes in sample rate, Fs. The required de-emphasis filter for 32 kHz, 44.1 kHz, or  
48 kHz is selected via the de-emphasis control bits in “Misc. Configuration (address 04h)” on page 52.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 23. De-Emphasis Curve  
DS632PP1  
31  
CS44800  
4.5  
FsOut Clock Domain Modules  
4.5.1  
Sample Rate Converter  
One of the characteristics of a PWM amplifier is that the frequency content of out-of-band noise generated  
by the modulator is dependent on the PWM switching frequency. The power stage external LC and snub-  
ber filter component values are based on this switching frequency. To accommodate input sample rates  
ranging from 32 kHz to 192 kHz the CS44800 utilizes a Sample Rate Converter (SRC) and several clock-  
ing modes that keep the PWM switching frequency fixed.  
The SRC supports a range of sample rate conversion to upsample rates from 32 kHz to 192 kHz to a fixed  
FsOut sample rate. This is typically 384 kHz for most audio applications. The SRC also allows the PWM  
modulator output to be independent of the input clock jitter since the output of the SRC is clocked from a  
very stable crystal or oscillator. This results in very low jitter PWM output and higher dynamic range.  
4.5.2  
Load Compensation Filter  
To accommodate varying speaker impedances, the CS44800 incorporates a 2-pole load compensation  
filter to adjust the effective frequency response of the on-card L/C de-modulation filter. The frequency re-  
sponse of the 2-pole inductor/capacitor filter used on the board to filter out the high-frequency PWM  
switching clock is highly dependant on the resistive load (speaker) attached.  
If the L/C filter implemented was designed for a low impedance load (4 speaker), but an 8 speaker  
was attached, the frequency response would have a large peaking near the resonant frequency of the  
L/C. The peaking usually starts at around 15 kHz, with about a +4 dB of gain at around 20 kHz. This phe-  
nomenon will cause the system to not meet the frequency response requirements as specified by Dolby  
Labs.  
By using the programmable 2-pole load compensation filter, the overall frequency response of the system  
can be modified to cut the amount of peaking. The 2 poles of the filter are independently configurable and  
are concatenated to form the overall filter response. The first filter is defined as a coarse setting. This filter  
should be programmed to provide most of the attenuation of the peaking. The second filter, defined as the  
fine adjust, is used to achieve incremental improvements to the overall frequency response. Table 3  
shows example register settings based on an output filter that has been designed for a 4 load imped-  
ance. See “Channel Compensation Filter - Coarse Adjust (CHXX_CORS[5:0])” on page 62 and “Channel  
Compensation Filter - Fine Adjust (CHXX_FINE[5:0])” on page 63.  
Load Impedance  
Coarse Filter Setting  
-1.2 dB  
Fine Filter Setting  
6 Ω  
8 Ω  
16 Ω  
0 dB  
0 dB  
0 dB  
-1.8 dB  
-3.4 dB  
Table 3. Load Compensation Example Settings  
4.5.3  
Digital Volume and Mute Control  
The CS44800 provides two levels of volume control. A Master Volume Control Register is used to set the  
volume level across all PWM channels. The register value, which selects a volume range of +24 dB to -  
127 dB in 0.25 dB steps, is used to control the overall volume setting of all the amplifier channels. Volume  
control changes are programmable to ramp in increments of 0.125 dB at a variable rate controlled by the  
SZC[1:0] bits in “Volume Control Configuration (address 06h)” on page 55.  
Each PWM channel’s output level is controlled via a Channel Volume Control register operating over the  
range of +24 dB to -127 dB attenuation with 0.25 dB resolution. See “Channel XX Volume Control - Inte-  
32  
DS632PP1  
CS44800  
ger (addresses 09h - 10h)” on page 58. Volume control changes are programmable to ramp in increments  
of 0.125 dB at a variable rate controlled by the SZC[1:0] bits.  
Each PWM channel output can be independently muted via mute control bits in the register “Channel Mute  
(address 13h)” on page 60.  
When enabled, each CHXX_MUTE bit attenuates the corresponding PWM channel to its maximum value  
(-127 dB). When the CHXX_MUTE bit is disabled, the corresponding PWM channel returns to the atten-  
uation level set in the Volume Control register. The attenuation is ramped up and down at the rate spec-  
ified by the SZC[1:0] bits.  
4.5.4  
4.5.5  
Peak Detect / Limiter  
The CS44800 has the ability to limit the maximum signal amplitude to prevent clipping. The “Peak Limiter  
Control Register (address 15h)” on page 60 is used to configure the peak detect and limiter engines’ op-  
eration. Peak Signal Limiting is performed by digital attenuation. The attack rate is determined by the “Lim-  
iter Attack Rate (address 16h)” on page 61. The release rate is determined by the “Limiter Release Rate  
(address 17h)” on page 61.  
PWM Engines  
There are four stereo PWM Engines: PWM_ENG_1, PWM_ENG_2, PWM_ENG_3 and PWM_ENG_4.  
Each PWM can handle one stereo pair and connects to a driver or a pair of drivers, depending on the  
output configuration. Each PWM Engine receives the master clock, PWM_MCLK, from the Clock Control  
block, and the associated channel data and audio sample timings from the Sample Rate Converter.  
The “PWM Configuration Register (address 31h)” on page 68 is used to configure the PWM engines’ op-  
eration. This register controls the parameters of the PWM engines and can only be changed while the  
PWM engines are in the power down state.  
Features:  
Up to 8 channel support  
64 Quantization levels  
PSRR compensation feedback  
Programmable Over Sampling - interpolate times 2 (2x) or filter by-pass. By-pass is intended for  
384 kHz (single-speed) PWM switch rate support. The interpolate 2x filter is used to upsample the data  
to support a PWM switch rate of 768 kHz (double speed mode). This enables the output frequency re-  
sponse to extend past 20 kHz when the DAI sample rate is 96 kHz or 192 kHz.  
Programmable registers to move PWM edges for delay adjustment. This lowers the overall noise con-  
tribution by allowing each PWM edge to switch at different times.  
Programmable Modulation Setup  
– Min/Max PWM pulse width allowed  
– Programmable Modulation index.  
The table below shows the available settings for the PWM Engine for a 384 kHz/768 kHz or  
421.875 kHz/843.75 kHz PWM Fswitch rate verses the supported Fsin sample rates using the SRC with  
a maximum PWM_MCLK of 49.152 MHz/54 MHz.  
DS632PP1  
33  
CS44800  
PWM  
Required XTAL  
Fsout (kHz)  
using SRC  
Fsin (kHz)  
Quant Level OSRATE Switch Rate or SYS_CLK  
(kHz)  
384  
768  
421.875  
843.75  
(MHz)  
24.576  
49.152  
27.000  
54.000  
32, 44.1, 48, 88.2, 96,  
176.4, 192  
32, 44.1, 48, 88.2, 96,  
176.4, 192  
64  
64  
64  
64  
1
2
1
2
384  
421.875  
Table 4. Typical PWM Switch Rate Settings  
4.5.6  
4.5.7  
Interpolation Filter  
The times 2 (2x) interpolation filter is part of the Quantizer and is used to up sample the data to support  
a higher PWM switch rate. The interpolator is controlled by the OSRATE bit in the “PWM Configuration  
Register (address 31h)” on page 68 and employs digital filtering to provide high quality interpolation.  
Quantizer  
The quantizer takes the input audio data at a typical 384 kHz or 768 kHz rate (depending on whether the  
2x Interpolator is on or not) from the Interpolator as input. When PSRR is enabled, the quantizer takes the  
input from PSRR Decimator and uses it to correct for power_supply noise. It also provides protection  
through min/max pulse limiting hardware to generate outputs that wouldn’t violate minimum pulse widths  
required at the PWM drivers. Its stereo outputs are running at the PWM switch rate.  
4.5.8  
4.5.9  
Modulator  
Each output from the Quantizer goes to the Modulator. The Modulator takes the parallel input data at a  
384 kHz or 768 kHz, depending on the setting of the OSRATE bit, and changes the parallel data to serial,  
one-bit outputs. The result is modulated pulses at the selected switch rate with 64 level resolution. The  
modulator maintains low frequency audio signals, allowing the output to reproduce all low frequency audio  
content down to 0 Hz.  
PWM Outputs  
The Modulators outputs are followed by the PWM Configuration block. These signals are routed through  
delay control blocks where they generate two outputs each. These final outputs are modulated pulses run-  
ning at the PWM switch rate as determined by the settings shown in Table 4.  
Circuitry in the PWM Configuration block guarantees, that no pulses shorter than the minimum pulse are  
generated. The minimum pulse width is configured using the MIN_PULSE[4:0] bits in the “PWM Minimum  
Pulse Width Register (address 32h)” on page 69.  
The PWM Configuration block also provides the PWM output signal delay mechanism. Adjusting the out-  
puts’ delays allows for managing the switching noise between channels, as well as differential signal  
noise. The “PWMOUT Delay Register (address 33h)” on page 70 specify the delay amount for each PWM  
Output. The delay is measured in periods of PWM_MCLK.  
34  
DS632PP1  
CS44800  
4.5.10 Power Supply Rejection (PSR) Real-Time Feedback  
Inherent to most Class D power amplifier solutions is the requirement for a clean and well-regulated high  
voltage power supply. Any noise or tones present on the power rail will couple through each channel’s  
power MOSFET output device. These spurious distortion components on the output signal consist of dis-  
crete tones, which can be audible from the speaker, and tones that modulate around the audio signal be-  
ing played.  
To remove the requirement for a well-regulated power supply, and therefore reduce overall system costs,  
the rejection of harmonic distortion from the power supply and tones coupled onto the power rail is ac-  
complished by the patented power supply rejection realtime feedback. By using the CS4461 and associ-  
ated attenuation circuitry, the scaled AC and DC components of the power supply rail are fed back into  
the PWM modulator. All delays through the feedback path have been minimized such that the noise can-  
cellation is accomplished in real-time allowing for substantial noise rejection within the output audio signal.  
See “Typical Connection Diagrams” on page 22 for examples on how to connect the external ADC  
(CS4461) to the CS44800 for PSR feedback, “Recommended PSR Calibration Sequence” on page 44,  
and the CS4461 datasheet.  
DS632PP1  
35  
CS44800  
4.6  
Control Port Description and Timing  
The control port is used to access the registers, allowing the CS44800 to be configured for the desired op-  
erational modes and formats. The operation of the control port may be completely asynchronous with re-  
spect to the audio sample rates. However, to avoid potential interference problems, the control port pins  
should remain static if no operation is required.  
The control port has 2 modes: SPI and I²C, with the CS44800 acting as a slave device. SPI mode is selected  
if there is a high to low transition on the AD0/CS pin, after the RST pin has been brought high. I²C mode is  
selected by connecting the AD0/CS pin through a resistor to VLC or GND, thereby permanently selecting  
the desired AD0 bit address state.  
4.6.1  
SPI Mode  
In SPI mode, CS is the CS44800 chip select signal, CCLK is the control port bit clock (input into the  
CS44800 from the microcontroller), CDIN is the input data line from the microcontroller, CDOUT is the  
output data line to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling  
edge.  
Figure 24 shows the operation of the control port in SPI mode. To write to a register, bring CS low. The  
first seven bits on CDIN form the chip address and must be 1001111. The eighth bit is a read/write indi-  
cator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP),  
which is set to the address of the register that is to be updated. The next eight bits are the data which will  
be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z  
state. It may be externally pulled high or low with a 47 kresistor, if desired  
There is a MAP auto increment capability, enabled by the INCR bit in the MAP register. If INCR is a zero,  
the MAP will stay constant for successive read or writes. If INCR is set to a 1, the MAP will autoincrement  
after each byte is written, allowing block writes of successive registers. Autoincrement reads are not sup-  
ported.  
To read a register, the MAP has to be set to the correct address by executing a partial write cycle which  
finishes (CS high) immediately after the MAP byte. The MAP auto increment bit (INCR) may be set or not,  
as desired. To begin a read, bring CS low, send out the chip address and set the read/write bit (R/W) high.  
The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high  
impedance state).  
CS  
C C L K  
C H IP  
C H IP  
M A P  
DATA  
A D D R E SS  
ADDRESS  
1001111  
1001111  
LSB  
MSB  
byte 1  
R/W  
R/W  
C D IN  
b yte n  
High Impedance  
LSB  
LSB  
MSB  
MSB  
C D O U T  
MAP = Memory Address Pointer, 8 bits, MSB first  
Figure 24. Control Port Timing in SPI Mode  
36  
DS632PP1  
CS44800  
4.6.2  
I²C Mode  
In I²C mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL.  
There is no CS pin. Pins AD0 and AD1 form the two least significant bits of the chip address and should  
be connected through a resistor to VLC or GND as desired. The state of the pins is sensed while the  
CS44800 is being reset.  
The signal timings for a read and write cycle are shown in Figure 25 and Figure 26. A Start condition is  
defined as a falling transition of SDA while the clock is high. A Stop condition is a rising transition while  
the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the  
CS44800 after a Start condition consists of a 7 bit chip address field and a R/W bit (high for a read, low  
for a write). The upper 5 bits of the 7-bit address field are fixed at 10011. To communicate with a CS44800,  
the chip address field, which is the first byte sent to the CS44800, should match 10011 followed by the  
settings of the AD1 and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the  
next byte is the Memory Address Pointer (MAP) which selects the register to be read or written. If the op-  
eration is a read, the contents of the register pointed to by the MAP will be output. Setting the auto incre-  
ment bit in MAP allows successive writes of consecutive registers. Each byte is separated by an  
acknowledge bit. The ACK bit is output from the CS44800 after each input byte is read, and is input to the  
CS44800 from the microcontroller after each transmitted byte. Autoincrement reads are not supported.  
26  
27 28  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
24 25  
SCL  
SDA  
CHIP ADDRESS (WRITE)  
0 0 1 1 AD1 AD0  
MAP BYTE  
DATA  
DATA +1  
DATA +n  
1
0
INCR  
6
5
4
3
2
1
0
7
6
1
0
7
6
1
0
7
6
1
0
ACK  
ACK  
ACK  
ACK  
STOP  
START  
Figure 25. Control Port Timing, I²C Slave Mode Write  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
26 27 28  
SCL  
STOP  
CHIP ADDRESS (WRITE)  
AD1 AD0  
MAP BYTE  
CHIP ADDRESS (READ)  
AD1 AD0  
DATA  
DATA +1 DATA + n  
1
0
0
1
1
1
SDA  
INCR  
6
5
4
3
2
1
0
1
0
0
1
1
0
7
0
7
0
7
0
ACK  
ACK  
START  
ACK  
ACK  
NO  
ACK  
START  
STOP  
Figure 26. Control Port Timing, I²C Slave Mode Read  
Since the read operation can not set the MAP, an aborted write operation is used as a preamble. As  
shown in Figure 26, the write operation is aborted after the acknowledge for the MAP byte by sending a  
stop condition. The following pseudocode illustrates an aborted write operation followed by a read oper-  
ation.  
Send start condition.  
Send 10011xx0 (chip address & write operation).  
Receive acknowledge bit.  
Send MAP byte, auto increment off.  
Receive acknowledge bit.  
Send stop condition, aborting write.  
Send start condition.  
Send 10011xx1(chip address & read operation).  
DS632PP1  
37  
CS44800  
Receive acknowledge bit.  
Receive byte, contents of selected register.  
Send acknowledge bit.  
Send stop condition.  
Each byte is separated by an acknowledge bit.  
4.6.3  
GPIOs  
The CS44800 GPIO pins will have the following features:  
Data direction control.  
Programmable open-drain or push-pull driver when configured as an output pin.  
Maskable interrupt for GPIO[3:0] pins when set as a general purpose input.  
Level-sensitive or edge-trigger event selector for all GPIO pins.  
4.6.4  
Host Interrupt  
The CS44800 has a comprehensive interrupt capability. The INT output pin is intended to drive the inter-  
rupt input pin on the host microcontroller. The INT pin may be set to be active low, active high or active  
low with an open-drain driver. This last mode is used for active low, wired-OR hook-ups, with multiple pe-  
ripherals connected to the microcontroller interrupt input pin.  
Many conditions can cause an interrupt, as listed in the interrupt status register descriptions. See “Inter-  
rupt Status (address 2Ah) (read only)” on page 64. Each source may be masked off through mask register  
bits. In addition, each source may be set to rising edge, falling edge, or level sensitive. Combined with the  
option of level sensitive or edge sensitive modes within the microcontroller, many different configurations  
are possible, depending on the needs of the equipment designer.  
38  
DS632PP1  
CS44800  
5. POWER SUPPLY, GROUNDING, AND PCB LAYOUT  
The CS44800 requires a 2.5 V digital power supply for the core logic. In order to support a number of PWM backend  
solutions, separate VDP power pins are provided to condition the interface signals to support up to 5.0 V levels. The  
VDP power pins control the voltage levels for all PWM interface signals, PSR interface signals and GPIO for control  
and status.  
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling capac-  
itors are recommended. It is necessary to decouple the power supply by placing capacitors directly between the  
power and ground of the CS44800. The recommended procedure is to place the lowest value capacitor as close as  
physically possible to each power pin. Decoupling capacitors should be as near to the pins of the CS44800 as pos-  
sible, with the low value ceramic capacitor being the nearest and mounted on the same side of the board as the  
CS44800 to minimize inductance effects.  
Figure 27 shows the recommended power supply decoupling layout. U1 is the CS44800. C2, C3, C6, C8, C10, C12,  
C14, and C16 are 0.01 µF X7R capacitors. These should be placed as close as possible to their respective power  
supply pins. C1, C4, C5, C7, C9, C11, C13, C15, and C17 are 0.1 µF X7R capacitors. C18 is a 10 µF electrolytic  
capacitor. Top and bottom ground fill should be used as much as possible around all components shown.  
Figure 27. Recommended CS44800 Power Supply Decoupling Layout  
DS632PP1  
39  
CS44800  
Figure 28 shows the recommended crystal circuit layout. U1 is the CS44800. C1 and C2 are the VDX power supply  
decoupling capacitors. Y1 is the crystal and C3, C4, L1 and C5 are the associated components for the crystal circuit.  
rd  
L1 and C5 are only used for 3 overtone crystals. C3 and C4 should have a C0G (NPO) dielectric. Care should be  
taken to minimize the distance between the CS44800 XTI/XTO pins and C3. Top and bottom ground fill should be  
used as much as possible around and in between all crystal circuit components to minimize noise.  
Figure 28. Recommended CS44800 Crystal Circuit Layout  
40  
DS632PP1  
CS44800  
Figure 29 shows the recommended PSR circuit layout. See the CS4461 datasheet for further details on the input  
buffer and other associated external components. U1 is the CS4461 and U2 is the input buffer op-amp. All supply  
decoupling should be placed as close as possible to their respective power supply pins. C4 should have a C0G  
(NPO) dielectric and be placed as close as possible to the CS4461 AIN+/- pins. The CS4461 and input buffer should  
be placed on the board between the CS44800 and the high voltage power supply. The sense point of the high volt-  
age power supply (the point at which the input buffer taps off of the high voltage power supply) should be close to  
the middle of the amplifier output channels. If the sense point is taken at either end of the amplifier output channels,  
inaccurate reading could occur due to localized channel disturbances causing noise on the high voltage power sup-  
ply. Optimally, the high voltage power connector should also be placed in the middle of the amplifier output channels  
Figure 29. Recommended PSR Circuit Layout  
DS632PP1  
41  
CS44800  
5.1  
Reset and Power-Up  
Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks, and  
configuration pins are stable. It is also recommended that the RST pin be activated if the voltage supplies  
drop below the recommended operating condition to prevent power-glitch- related issues.  
When RST is low, the CS44800 enters a low-power mode and all internal states are reset, including the  
control port and registers. When RST is high, the control port becomes operational and the desired settings  
should be loaded into the control registers. Writing a 0 to the PDN bit in the Power Control Register will then  
cause the part to leave the low-power state and begin operation.  
®
5.1.1  
PWM PopGuard Transient Control  
®
The CS44800 uses PopGuard technology to minimize the effects of output transients during power-up  
and power-down. This technique reduces the audio transients commonly produced by half-bridge, single-  
supply amplifiers when implemented with external DC-blocking capacitors connected in series with the  
audio outputs. Each PWM channel can individually be controlled for ramp-up and ramp-down cycles.  
When the device is initially powered-up and configured for ramp-up, the PWMOUTxx outputs are clamped  
to GND. Following a write of a 0 to the PDN_PWMxx bit in the PWM Channel Power Down Control (ad-  
dress 03h) register, each output begins to increase the PWM duty cycle toward the bias voltage point. By  
a speed set by the RAMP_SPDx bits, the PWMOUTxx outputs will ramp from 0 V (GND) and reach the  
bias point (50% PWM duty cycle). This gradual voltage ramping allows time for the external DC-blocking  
capacitor to charge to the bias voltage, minimizing the power-up transient.  
To prevent an audible transient at the next power-on, the DC-blocking capacitors must fully discharge be-  
fore turning off the power. If full discharge does not occur, a transient will occur when the audio outputs  
are initially clamped to GND.  
To prevent transients at power-down, the user must first mute the outputs. When this occurs, audio output  
ceases and the PWM duty cycle is approximately 50% duty cycle, which represents the mute condition.  
Once the channels are powered down, the PWMOUTxx outputs slowly decrease the DC offset until it  
reaches GND. The time required to reach GND is determined by the RAMP_SPDx bits. This allows the  
DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to the device may  
be turned off, and the system is ready for the next power-on.  
5.1.2  
Recommended Power-Up Sequence  
1. Hold RST low until the power supply and clocks are stable. In this state, all control port registers are  
reset to the default settings. The PWMOUTxx pins are driven low.  
2. The SYS_CLK pin will output a divided-down clock of the signal attached to the XTI pin. If the MUTE  
pin is held low, SYS_CLK is equal to the XTI frequency. If the MUTE pin is held high, then SYS_CLK  
is equal to the XTI frequency divided by 2.  
3. Bring RST high. The device will remain in a low power state and all registers will contain the specified  
default value. The logic state of the MUTE pin will be latched and used to specify the clock divider for  
SYS_CLK. The control port will be accessible at this time.  
4. With the CS44800 in the power-down state, PDN bit is ‘1’b, set up the required PWM configuration  
registers and volume control registers. Configure the GPIO pins for normal operation. Do not enable  
the power stages at this time.  
5. Mute all channel outputs by setting the corresponding CHxx_MUTE bits to ‘1’b.  
42  
DS632PP1  
CS44800  
6. When driving a single-ended (half-bridged) power output stage, set the RAMP[1:0] bits to ‘11’b and  
the required ramp speed, to initiate a ramp cycle when the channel is powered on. Set  
MIN_PULSE[4:0] to ‘00000’b.  
7. Set the PDN bit to ‘0’b to take the CS44800 out of the power-down state.  
8. Start all clocks on the DAI interface (DAI_MCLK, DAI_SCLK, DAI_LRCK). This will initiate the SRC to  
begin the lock sequence. The SRC lock function can be configured to cause an interrupt condition  
when lock has been completed. This will be indicated by an active INT signal.  
9. Wait for the SRC to lock.  
10.If using the PSR feedback, jump to “Recommended PSR Calibration Sequence” on page 44. When  
finished, continue to step 12. If not using PSR feedback, continue to step 12.  
11.Set the appropriate GPIO pin, or other control signal, to enable the power output stage.  
12.Enable each channel’s PWM modulator by setting the PDN_PWMxx bit to ‘0’b. If full-bridged, go to  
step 14. If single-ended (half-bridged), this will initiate a sequence which will slowly increase the DC  
voltage, from 0V to Vpower÷2, across the AC coupling capacitor. This will eliminate the instantaneous  
charge across the capacitor which would have caused an audible pop from the speaker.  
13.Wait for the ramp-up sequence to complete. The ramp-up function can be configured to cause an  
interrupt condition when the ramp period has completed. This will be indicated by an active INT signal.  
Once the ramp-up sequence has completed, set the RAMP[1:0] bits to ‘01’b  
14.For full-bridged power output stage configurations, the ramp-up sequence is not required. Enabling  
the power output stage will not cause an audible pop from the speaker.  
15.If using the PSR feedback, set the FEEDBACK_EN bit to ‘1’b.  
16.Un-mute all active channels.  
17. At this point, the CS44800 is ready to accept audio samples and begin playback.  
5.1.3  
Recommended PSR Calibration Sequence  
1. Set the DEC_SHIFT[2:0]/DEC_SCALE[18:0] coefficient (C  
36h = 00h, 37h = 00h).  
) to decimal 1.0 (register 35h = 22h,  
PSR  
2. Set the PSR_RESET bit to ‘1’b.  
3. Set the PSR_EN bit to ‘1’b.  
4. Set the PSR_EN bit to ‘0’b.  
5. Read DEC_OUTD[23:0].  
6. See Figure 30 to adjust the DEC_SHIFT[2:0]/DEC_SCALE[18:0] registers.  
7. Continue Recommended Power-Up Sequence.  
DS632PP1  
43  
CS44800  
Set PSR_RESET = 1b  
Set PSR_EN = 1b  
Set PSR_EN = 0b  
Read DEC_OUTD[23:0]  
3FEF90h <  
DEC_OUTD[23:0] <  
400FFFh?  
Y
N
Done  
Y
N
DEC_OUTD[23:0] >  
400FFFh?  
CPSR =CPSR - 9Bh  
CPSR =CPSR + 9Bh  
Figure 30. PSR Calibration Sequence  
5.1.4  
Recommended Power-Down Sequence  
1. Mute all channel outputs by setting the corresponding CHxx_MUTE bits to ‘1’b.  
2. When driving a single-ended (half-bridged) power output stage, set the RAMP[1:0] bits to ‘01’b and  
the required ramp speed, to initiate a ramp cycle when the channel is powered down.  
3. Power down each channel’s PWM modulator by setting the PDN_PWMxx bit to ‘1’b. If single-ended,  
this will initiate a sequence which will slowly decrease the DC voltage, from Vpower÷2 to 0 V, across  
the AC-coupling capacitor.  
4. The ramp-down function can be configured to cause an interrupt condition when the ramp period has  
completed. This will be indicated by an active INT signal.  
5. Once the ramp-down sequence has completed, set the appropriate GPIO pin, or other control signal,  
to power down the power output stage.  
6. For full-bridged power output stage configurations, the ramp-down sequence is not required. Powering  
down the power output stage will not cause an audible pop from the speaker.  
7. Concurrently with the ramp-down sequence, if desired, stop all clocks on the DAI interface  
(DAI_MCLK, DAI_SCLK, DAI_LRCK).  
8. Set the PDN bit to ‘1’b to put the CS44800 in the power down state.  
44  
DS632PP1  
6. REGISTER QUICK REFERENCE  
Addr  
Function  
7
CHIP_ID3  
1
6
CHIP_ID2  
1
5
CHIP_ID1  
0
4
CHIP_ID0  
0
3
REV_ID3  
0
2
1
REV_ID1  
0
0
REV_ID0  
1
01h ID / Rev.  
page 49  
REV_ID2  
0
default  
Clock Config / Power  
Control  
EN_SYS_CLK  
SYS_CLK_DIV1  
SYS_CLK_DIV0  
PWM_MCLK_DIV1 PWM_MCLK_DIV0  
PDN_XTAL  
PDN_OUTPUT_MO  
DE  
PDN  
02h  
page 50.  
default  
1
0
0
0
0
0
0
1
03h Chnl Power Down  
PDN_PWMB4  
PDN_PWMA4  
PDN_PWMB3  
PDN_PWMA3  
PDN_PWMB2  
PDN_PWMA2  
PDN_PWMB1  
PDN_PWMA1  
page 51.  
04h Misc. Config.  
page 52  
default  
1
1
1
1
1
1
1
1
DIF2  
DIF1  
DIF0  
RESERVED  
AM_FREQ_HOP  
FREEZE  
DEM1  
DEM0  
default  
default  
0
RESERVED  
0
0
1
0
0
0
RESERVED  
0
0
0
05h Ramp Config  
page 53  
RESERVED  
RESERVED  
RAMP1  
RAMP0  
RAMP_SPD1  
RAMP_SPD0  
0
SZC1  
0
SZC0  
0
0
0
1
AMUTE  
1
06h Vol Control Config  
SNGVOL  
0
RESERVED  
0
MUTE_50/50  
0
SRD_ERR  
0
SRU_ERR  
0
page 54  
default  
1
0
Master Vol. Control  
- Integer  
MSTR_IVOL7  
MSTR_IVOL6  
MSTR_IVOL5  
MSTR_IVOL4  
MSTR_IVOL3  
MSTR_IVOL2  
MSTR_IVOL1  
MSTR_IVOL0  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
page 56  
default  
0
0
0
0
0
0
0
0
Master Vol.  
Control - Fraction  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MSTR_FVOL1  
MSTR_FVOL0  
page 56  
default  
0
0
0
0
0
0
0
0
Channel A1 Vol.  
Control - Integer  
CHA1_IVOL7  
CHA1_IVOL6  
CHA1_IVOL5  
CHA1_IVOL4  
CHA1_IVOL3  
CHA1_IVOL2  
CHA1_IVOL1  
CHA1_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel B1 Vol.  
Control - Integer  
CHB1_IVOL7  
CHB1_IVOL6  
CHB1_IVOL5  
CHB1_IVOL4  
CHB1_IVOL3  
CHB1_IVOL2  
CHB1_IVOL1  
CHB1_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel A2 Vol.  
Control - Integer  
CHA2_IVOL7  
CHA2_IVOL6  
CHA2_IVOL5  
CHA2_IVOL4  
CHA2_IVOL3  
CHA2_IVOL2  
CHA2_IVOL1  
CHA2_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel B2 Vol.  
Control - Integer  
CHB2_IVOL7  
CHB2_IVOL6  
CHB2_IVOL5  
CHB2_IVOL4  
CHB2_IVOL3  
CHB2_IVOL2  
CHB2_IVOL1  
CHB2_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel A3 Vol.  
Control - Integer  
CHA3_IVOL7  
CHA3_IVOL6  
CHA3_IVOL5  
CHA3_IVOL4  
CHA3_IVOL3  
CHA3_IVOL2  
CHA3_IVOL1  
CHA3_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel B3 Vol.  
Control - Integer  
CHB3_IVOL7  
CHB3_IVOL6  
CHB3_IVOL5  
CHB3_IVOL4  
CHB3_IVOL3  
CHB3_IVOL2  
CHB3_IVOL1  
CHB3_IVOL0  
page 58  
default  
0
0
0
0
0
0
0
0
Channel A4 Vol.  
Control - Integer  
CHA4_IVOL7  
CHA4_IVOL6  
CHA4_IVOL5  
CHA4_IVOL4  
CHA4_IVOL3  
CHA4_IVOL2  
CHA4_IVOL1  
CHA4_IVOL0  
page 58.  
default  
0
0
0
0
0
0
0
0
Channel B4 Vol.  
Control - Integer  
CHB4_IVOL7  
CHB4_IVOL6  
CHB4_IVOL5  
CHB4_IVOL4  
CHB4_IVOL3  
CHB4_IVOL2  
CHB4_IVOL1  
CHB4_IVOL0  
page 58.  
default  
0
0
0
0
0
0
0
0
Addr  
Function  
7
6
5
4
3
2
1
0
Channel Vol. Con-  
trol 1-Fraction  
CHB2_FVOL1  
CHB2_FVOL0  
CHA2_FVOL1  
CHA2_FVOL0  
CHB1_FVOL1  
CHB1_FVOL0  
CHA1_FVOL1  
CHA1_FVOL0  
11h  
page 58.  
default  
0
0
0
0
0
0
0
0
Channel Vol. Con-  
trol 2-Fraction  
CHB4_FVOL1  
CHB4_FVOL0  
CHA4_FVOL1  
CHA4_FVOL0  
CHB3_FVOL1  
CHB3_FVOL0  
CHA3_FVOL1  
CHA3_FVOL0  
12h  
page 58  
default  
default  
default  
0
CHB4_MUTE  
0
0
CHA4_MUTE  
0
0
CHB3_MUTE  
0
0
CHA3_MUTE  
0
0
CHB2_MUTE  
0
0
CHA2_MUTE  
0
0
CHB1_MUTE  
0
0
CHA1_MUTE  
0
13h Channel Mute  
page 59  
14h Channel Invert  
page 59  
CHB4_INV  
0
CHA4_INV  
0
CHB3_INV  
0
CHA3_INV  
0
CHB2_INV  
0
CHA2_INV  
0
CHB1_INV  
0
CHA1_INV  
0
Peak Limiter  
Control  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
LIMIT_ALL  
LIMIT_EN  
15h  
page 60  
default  
0
ARATE7  
0
0
ARATE6  
0
0
0
0
0
0
0
16h Limiter Attack Rate  
ARATE5  
ARATE4  
ARATE3  
ARATE2  
ARATE1  
ARATE0  
page 60  
default  
0
RRATE5  
1
1
RRATE4  
0
0
RRATE3  
0
0
RRATE2  
0
0
RRATE1  
0
0
RRATE0  
0
17h Limiter Release Rate  
RRATE7  
0
RRATE6  
0
page 61  
default  
Chnl A1 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHA1_CORS5  
CHA1_CORS4  
CHA1_CORS3  
CHA1_CORS2  
CHA1_CORS1  
CHA1_CORS0  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl A1 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHA1_FINE5  
CHA1_FINE4  
CHA1_FINE3  
CHA1_FINE2  
CHA1_FINE1  
CHA1_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl B1 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHB1_CORS5  
CHB1_CORS4  
CHB1_CORS3  
CHB1_CORS2  
CHB1_CORS1  
CHB1_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl B1 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHB1_FINE5  
CHB1_FINE4  
CHB1_FINE3  
CHB1_FINE2  
CHB1_FINE1  
CHB1_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl A2 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHA2_CORS5  
CHA2_CORS4  
CHA2_CORS3  
CHA2_CORS2  
CHA2_CORS1  
CHA2_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl A2 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHA2_FINE5  
CHA2_FINE4  
CHA2_FINE3  
CHA2_FINE2  
CHA2_FINE1  
CHA2_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl B2 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHB2_CORS5  
CHB2_CORS4  
CHB2_CORS3  
CHB2_CORS2  
CHB2_CORS1  
CHB2_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl B2 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHB2_FINE5  
CHB2_FINE4  
CHB2_FINE3  
CHB2_FINE2  
CHB2_FINE1  
CHB2_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl A3 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHA3_CORS5  
CHA3_CORS4  
CHA3_CORS3  
CHA3_CORS2  
CHA3_CORS1  
CHA3_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Addr  
Function  
7
6
5
4
3
2
1
0
Chnl A3 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHA3_FINE5  
CHA3_FINE4  
CHA3_FINE3  
CHA3_FINE2  
CHA3_FINE1  
CHA3_FINE0  
21h  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl B3 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHB3_CORS5  
CHB3_CORS4  
CHB3_CORS3  
CHB3_CORS2  
CHB3_CORS1  
CHB3_CORS0  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl B3 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHB3_FINE5  
CHB3_FINE4  
CHB3_FINE3  
CHB3_FINE2  
CHB3_FINE1  
CHB3_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl A4 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHA4_CORS5  
CHA4_CORS4  
CHA4_CORS3  
CHA4_CORS2  
CHA4_CORS1  
CHA4_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl A4 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHA4_FINE5  
CHA4_FINE4  
CHA4_FINE3  
CHA4_FINE2  
CHA4_FINE1  
CHA4_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Chnl B4 Comp.  
Filter - Coarse Adj  
RESERVED  
RESERVED  
CHB4_CORS5  
CHB4_CORS4  
CHB4_CORS3  
CHB4_CORS2  
CHB4_CORS1  
CHB4_CORS0  
page 61  
default  
0
0
0
0
0
0
0
0
Chnl B4 Comp.  
Filter - Fine Adj  
RESERVED  
RESERVED  
CHB4_FINE5  
CHB4_FINE4  
CHB4_FINE3  
CHB4_FINE2  
CHB4_FINE1  
CHB4_FINE0  
page 62  
default  
0
0
0
0
0
0
0
0
Interrupt Mode  
Control  
INT1  
INT0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
OVFL_L/E  
page 62  
default  
default  
0
0
0
0
0
0
M_OVFL_INT  
0
0
RESERVED  
0
0
RESERVED  
0
29h Interrupt Mask  
page 63  
M_SRC_UNLOCK  
M_SRC_LOCK  
M_RMPUP_DONE  
M_RMPDN_DONE  
M_MUTE_DONE  
0
0
0
0
0
2Ah Interrupt Status  
SRC_UNLOCK  
0
SRC_LOCK  
0
RMPUP_DONE  
0
RMPDN_DONE  
0
MUTE_DONE  
0
OVFL_INT  
0
GPIO_INT  
0
RESERVED  
0
page 63  
default  
Chnl Over Flow Sta-  
tus  
CHB4_OVFL  
CHA4_OVFL  
CHB3_OVFL  
CHA3_OVFL  
CHB2_OVFL  
CHA2_OVFL  
CHB1_OVFL  
CHA1_OVFL  
2Bh  
page 65  
default  
0
0
0
0
0
0
0
0
2Ch GPIO Pin I/O  
page 65  
RESERVED  
0
GPIO6_I/O  
0
GPIO5_I/O  
0
GPIO4_I/O  
0
GPIO3_I/O  
0
GPIO2_I/O  
0
GPIO1_I/O  
0
GPIO0_I/O  
0
default  
Polar-  
GPIO Pin  
2Dh  
RESERVED  
GPIO6_P/T  
GPIO5_P/T  
GPIO4_P/T  
GPIO3_P/T  
GPIO2_P/T  
GPIO1_P/T  
GPIO0_P/T  
ity/Type  
ppage 65  
default  
0
1
1
1
1
1
1
1
GPIO Pin Level/Edge  
trigger  
RESERVED  
GPIO6_L/E  
GPIO5_L/E  
GPIO4_L/E  
GPIO3_L/E  
GPIO2_L/E  
GPIO1_L/E  
GPIO0_L/E  
2Eh  
page 66  
default  
0
0
0
0
0
0
0
0
2Fh GPIO Pin Status  
RESERVED  
GPIO6_STATUS  
GPIO5_STATUS  
GPIO4_STATUS  
GPIO3_STATUS  
GPIO2_STATUS  
GPIO1_STATUS  
GPIO0_STATUS  
page 66  
default  
X
X
X
X
X
M_GPIO3  
0
X
M_GPIO2  
0
X
M_GPIO1  
0
X
M_GPIO0  
0
30h GPIO Interrupt Mask  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
page 67  
default  
Addr  
Function  
PWM Config  
7
6
5
4
3
2
1
0
OSRATE  
RESERVED  
RESERVED  
A1/B1_OUT_CNFG A2/B2_OUT_CNFG  
A3_OUT_CNFG  
B3_OUT_CNFG  
A4/B4_  
OUT_CNFG  
31h  
page 67  
default  
0
0
0
0
0
0
0
0
PWM Minimum Pulse  
Width  
DISABLE_  
PWMOUTxx-  
RESERVED  
RESERVED  
MIN_PULSE4  
MIN_PULSE3  
MIN_PULSE2  
MIN_PULSE1  
MIN_PULSE0  
32h  
page 68  
default  
0
DIFF_DLY2  
0
0
0
DIFF_DLY0  
0
0
0
0
0
0
33h PWMOUT Delay  
DIFF_DLY1  
0
CHNL_DLY4  
0
CHNL_DLY3  
0
CHNL_DLY2  
0
CHNL_DLY1  
0
CHNL_DLY0  
0
page 69  
default  
PSR / Power Supply  
Config  
PSR_EN  
PSR_RESET  
FEEDBACK_ EN  
RESERVED  
RESERVED  
PS_SYNC_DIV2  
PS_SYNC_DIV1  
PS_SYNC_DIV0  
34h  
35h  
36h  
37h  
page 72  
default  
0
0
0
0
0
0
0
0
PSR_Decimator  
Scaled  
RESERVED  
DEC_SHIFT2  
DEC_SHIFT1  
DEC_SHIFT0  
RESERVED  
DEC_SCALED18  
DEC_SCALED17 DEC_SCALED16  
page 73  
default  
0
0
1
0
0
0
1
0
PSR_Decimator  
Scaled  
DEC_SCALED15  
DEC_SCALED14  
DEC_SCALED13  
DEC_SCALED12  
DEC_SCALED11  
DEC_SCALED10  
DEC_SCALED09 DEC_SCALED08  
page 73  
default  
0
1
0
1
1
0
0
0
PSR_Decimator  
Scaled  
DEC_SCALED07  
DEC_SCALED06  
DEC_SCALED05  
DEC_SCALED04  
DEC_SCALED03  
DEC_SCALED02  
DEC_SCALED01 DEC_SCALED00  
page 73  
default  
0
1
1
0
1
0
0
0
38h Reserved  
39h Reserved  
3Ah Reserved  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
default  
default  
default  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0
3Bh PSR_Decimator Outd  
page 74 default  
3Ch PSR_Decimator Outd  
page 74 default  
3Dh PSR_Decimator Outd  
page 74 default  
DEC_OUTD23  
DEC_OUTD22  
DEC_OUTD21  
DEC_OUTD20  
DEC_OUTD19  
DEC_OUTD18  
DEC_OUTD17  
DEC_OUTD16  
0
0
0
0
0
0
0
0
DEC_OUTD15  
DEC_OUTD14  
DEC_OUTD13  
DEC_OUTD12  
DEC_OUTD11  
DEC_OUTD10  
DEC_OUTD09  
DEC_OUTD08  
0
0
0
0
0
0
0
0
DEC_OUTD07  
0
DEC_OUTD06  
0
DEC_OUTD05  
0
DEC_OUTD04  
0
DEC_OUTD03  
0
DEC_OUTD02  
0
DEC_OUTD01  
0
DEC_OUTD00  
0
CS44800  
7. REGISTER DESCRIPTION  
All registers are read/write except for I.D. and Revision Register, Interrupt Status and Decimator OutD registers  
which are read only. See the following bit definition tables for bit assignment information. The default state of each  
bit after a power-up sequence or reset is listed in each bit description.  
7.1  
Memory Address Pointer (MAP)  
Not a register  
7
6
5
4
3
2
1
0
INCR  
MAP6  
MAP5  
MAP4  
MAP3  
MAP2  
MAP1  
MAP0  
7.1.1  
Increment (INCR)  
Default = 1  
Function:  
memory address pointer auto increment control  
– 0 - MAP is not incremented automatically.  
– 1 - Internal MAP is automatically incremented after each read or write.  
7.1.2  
Memory Address Pointer (MAPx)  
Default = 0000001  
Function:  
Memory address pointer (MAP). Sets the register address that will be read or written by the control port.  
7.2  
CS44800 I.D. and Revision Register (address 01h) (Read Only)  
7
6
5
4
3
2
1
0
CHIP_ID3  
CHIP_ID2  
CHIP_ID1  
CHIP_ID0  
REV_ID3  
REV_ID2  
REV_ID1  
REV_ID0  
7.2.1  
7.2.2  
Chip I.D. (Chip_IDx)  
Default = 1100  
Function:  
I.D. code for the CS44800. Permanently set to 1100.  
Chip Revision (Rev_IDx)  
Default = 0001  
Function:  
CS44800 revision level. Revision A is coded as 0001.  
DS632PP1  
49  
CS44800  
7.3  
Clock Configuration and Power Control (address 02h)  
7
6
5
4
3
2
1
0
EN_SYS_CLK SYS_CLK_DIV1 SYS_CLK_DIV0 PWM_MCLK_DIV1 PWM_MCLK_DIV0 PDN_XTAL PDN_OUTPUT_MODE PDN  
7.3.1  
Enable SYS_CLK Output (EN_SYS_CLK)  
Default = 1  
Function:  
This bit enables the driver for the SYS_CLK signal. If the SYS_CLK output is unused, this bit should be  
set to ‘0’b to disable the driver.  
7.3.2  
SYS_CLK Clock Divider Settings (SYS_CLK_DIV[1:0])  
Default = 00  
Function:  
These two bits determine the divider for the XTAL clock signal for generating the SYS_CLK signal. During  
a reset condition, with the RST input pin held low, the logic level on the MUTE input pin will determine the  
divider used for the SYS_CLK output. If MUTE is pulled low, the SYS_CLK divider will be set to divide  
the clock frequency on XTI by a factor of 1. If the MUTE pin is pulled high, the SYS_CLK output will be  
set to perform a divide-by-2 on the XTI clock. The state of the MUTE pin will be latched on the rising edge  
of the RST. The MUTE pin can then be used as defined.  
SYS_CLK_DIV[1:0]  
SYS_CLK Clock Divider  
00  
Use state of MUTE input pin following RST  
condition  
Divide by 2  
Divide by 4  
Divide by 8  
01  
10  
11  
7.3.3  
PWM Master Clock Divider Settings (PWM_MCLK_DIV[1:0])  
Default = 00  
Function:  
These two bits determine the divider for the XTAL clock signal for generating the PWM_MCLK signal.  
PWM_MCLK_DIV[1:0]  
PWM Master Clock  
Divider  
00  
01  
10  
11  
Divide by 1  
Divide by 2  
Divide by 4  
Divide by 8  
7.3.4  
Power Down XTAL (PDN_XTAL)  
Default = 0  
0 - Crystal Oscillator Circuit is running.  
1 - Crystal Oscillator Circuit is powered down.  
Function:  
This bit is used to power down the crystal oscillator circuitry when not being used. When using a clock  
signal attached to the XTI input, this bit should be set to ‘1’b.  
50  
DS632PP1  
CS44800  
7.3.5  
Power Down Output Mode (PDN_OUTPUT_MODE)  
Default = 0  
0 - PWM Outputs are driven low during power down  
1 - PWM Outputs are driven to the inactive state during power down  
Function:  
This bit is used to select the power-down state of the PWM output signals. When set to 0, each channel  
which has been powered down, following the ramp-down cycle if enabled, will drive the output signals,  
PWMOUTxx+ and PWMOUTxx-, low.  
When set to 1, each channel which has been powered down, following the ramp-down cycle if enabled,  
will drive the output signals to the inactive state. PWMOUTxx+ is driven low and PWMOUTxx- is driven  
high.  
7.3.6  
Power Down (PDN)  
Default = 1  
0 - Normal Operation  
1 - Power down  
Function:  
The entire device will enter a low-power state when this function is enabled, and the contents of the control  
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be  
disabled before normal operation can occur.  
7.4  
PWM Channel Power Down Control (address 03h)  
7
6
5
4
3
2
1
0
PDN_PWMB4  
PDN_PWMA4  
PDN_PWMB3  
PDN_PWMA3  
PDN_PWMB2  
PDN_PWMA2  
PDN_PWMB1  
PDN_PWMA1  
7.4.1  
Power Down PWM Channels (PDN_PWMB4:PDN_PWMA1)  
Default = 11111111  
0 - Normal Operation  
1 - Power down PWM channel  
Function:  
The specific PWM channel is in the power-down state. All processing is halted for the specific channel,  
but does not alter the setup or delay register values. The PWM output signals are driven to the appropriate  
logic level as defined by the Power-Down Output Mode bit, PDN_OUTPUT_MODE. When set to normal  
operation, the specific channel will power up according to the state of the RAMP[1:0] bits and the channel  
output configuration selected. When transitioning from normal operation to power down, the specific chan-  
nel will power down according to the state of the RAMP[1:0] bits and the channel output configuration se-  
lected. Ramp control is found in “Ramp Configuration (address 05h)” on page 54.  
DS632PP1  
51  
CS44800  
7.5  
Misc. Configuration (address 04h)  
7
6
5
4
3
2
1
0
DIF2  
DIF1  
DIF0  
RESERVED  
AM_FREQ_HOP  
FREEZE  
DEM1  
DEM0  
7.5.1  
Digital Interface Format (DIFX)  
Default = 001  
Function:  
These bits select the digital interface format used for the DAI Serial Port. The required relationship be-  
tween the Left/Right clock, serial clock, and serial data is defined by the Digital Interface Format and the  
options are detailed in Figures 17 - 22.  
DIF2  
DIF1  
DIF0  
Description  
Left-Justified, up to 24-bit data  
I²S, up to 24-bit data  
Right-Justified, 16-bit data  
Right-Justified, 24-bit data  
One-Line mode #1, 20-bit data  
One-Line mode #2, 24-bit data  
TDM Mode, up to 32-bit data  
Figure  
18  
17  
19  
19  
20  
21  
22  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Table 5. Digital Audio Interface Formats  
7.5.2  
AM Frequency Hopping (AM_FREQ_HOP)  
Default = 0  
Function:  
Enables the modulator to alter the PWM switch timings to remove interference when the desired frequen-  
cy from an AM tuner is positioned near the PWM switching rate. The PWM modulator circuitry must first  
be powered down using the PDN bit in the Clock Configuration and Power Control (address 02h) Register  
before this feature can be enabled. There will be a delay following the power-up sequence due to the re-  
locking of the SRC. Once this feature is enabled, the output switch rate is divided by 2.25, resulting in a  
lowered PWM switch rate. Care should be taken to ensure that:  
PWM_MCLK / 16 > the upper frequency limit of the AM tuner used  
7.5.3  
Freeze Controls (FREEZE)  
Default = 0  
Function:  
This function will freeze the previous output of, and allow modifications to be made to the Master Volume  
Control (address 07h-08h), Channel XX Volume Control (address 09h-12h), and Channel Mute (address  
13h) registers without the changes taking effect until the FREEZE bit is disabled. To make multiple chang-  
es in these control port registers take effect simultaneously, enable the FREEZE bit, make all register  
changes, then disable the FREEZE bit.  
52  
DS632PP1  
CS44800  
7.5.4  
De-Emphasis Control (DEM[1:0])  
Default = 00  
00 - no de-emphasis  
01 - 32 kHz de-emphasis filter  
10 - 44.1 kHz de-emphasis filter  
11 - 48 kHz de-emphasis filter  
Function:  
Enables the appropriate digital filter to maintain the standard 15 ms/50 ms digital de-emphasis filter re-  
sponse.  
7.6  
Ramp Configuration (address 05h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RAMP1  
RAMP0  
RESERVED  
RAMP_SPD1  
RAMP_SPD0  
7.6.1  
Ramp-Up/Down Setting (RAMP[1:0])  
Default = 00  
00 - Ramp-up and ramp-down are disabled  
01 - Ramp-up is disabled. Ramp-down is enabled.  
10 - Reserved  
11 - Ramp-up and ramp-down are enabled. Note that after a ramp-up sequence has completed, audio will  
not play until RAMP[1:0] is set to 01.  
Function:  
When ramping is enabled, the duty cycle of the output PWM signal is increased (ramp-up) or decreased  
(ramp-down) at a rate determined by the Ramp Speed variable (RAMP_SPDx). This function is used in  
single-ended applications to reduce pops in the output caused by the DC-blocking capacitor. When the  
ramp-up/down function is disabled in single-ended applications, there will be an abrupt change in the out-  
put signal. Refer to Section 5.1.1  
.
If ramp-up or down is not needed, as in a full-bridge application, these bits should be set to 00. If ramp-  
up or down is needed, as in a single-ended half-bridge application, these bits must be used in the proper  
sequence as outlined in “Recommended Power-Up Sequence” on page 43 and “Recommended Power-  
Down Sequence” on page 45.  
7.6.2  
Ramp Speed (RAMP_SPD[1:0])  
Default = 01  
00 - Ramp speed = approximately 0.1 seconds  
01 - Ramp speed = approximately 0.2 seconds  
10 - Ramp speed = approximately 0.3 seconds  
11 - Ramp speed = approximately 0.65 seconds  
Function:  
This feature is used in single-ended applications to reduce pops in the output caused by the DC-blocking  
capacitor. The Ramp Speed sets the time for the PWM signal to linearly ramp-up and down from the bias  
point (50% PWM duty cycle). Refer to Section 5.1.1  
DS632PP1  
53  
CS44800  
7.7  
Volume Control Configuration (address 06h)  
7
6
5
4
3
2
1
0
SNGVOL  
SZC1  
SZC0  
RESERVED  
MUTE_50/50  
SRD_ERR  
SRU_ERR  
AMUTE  
7.7.1  
Single Volume Control (SNGVOL)  
Default = 0  
Function:  
The individual channel volume levels are independently controlled by their respective Volume Control reg-  
isters when this function is disabled. When enabled, the volume on all channels is determined by the A1  
Channel Volume Control register. The other Volume Control registers are ignored.  
7.7.2  
Soft Ramp and Zero Cross Control (SZC[1:0])  
Default = 10  
00 - Immediate Change  
01 - Zero Cross  
10 - Soft Ramp  
11 - Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected, all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim-  
eout period (approximately 18.7 ms for a PWM switch rate of 384/768 kHz and 17.0 ms for a PWM switch  
rate of 421.875/843.75 kHz) if the signal does not encounter a zero crossing. The zero cross function is  
independently monitored and implemented for each channel.  
Soft Ramp  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
Soft Ramp on Zero Crossing  
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or  
muting, will occur in 1/8-dB steps and be implemented on a signal zero crossing. The 1/8-dB level change  
will occur after a timeout period (approximately 18.7 ms for a PWM switch rate of 384/768 kHz and  
17.0 ms for a PWM switch rate of 421.875/843.75 kHz) if the signal does not encounter a zero crossing.  
The zero cross function is independently monitored and implemented for each channel.  
7.7.3  
Enable 50% Duty Cycle for Mute Condition (MUTE_50/50)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This bit enables the modulator to output an exact 50%-duty-cycle PWM signal (not modulated), which cor-  
responds to digital silence, for all mute conditions. The muting function is affected, similar to volume con-  
54  
DS632PP1  
CS44800  
trol changes, by the Soft and Zero Cross bits (SZC[1:0]). This bit does not cause a mute condition to occur.  
The MUTE_50/50 bit only defines operation during a normal mute condition.  
When MUTE_50/50 is set and a mute condition occurs, PSR will not affect the output of the modulator,  
regardless if PSR is enabled. Output noise may be increased in this case if the noise on the high voltage  
power supply is greater than the system noise. Therefore, it is recommended that if a noisy power supply  
is used in a single-ended half-bridge configuration with PSR enabled, MUTE_50/50 should be disabled  
and a normal, modulated mute should be used. This will allow the modulator to use the PSR feedback to  
reject power supply noise and improve system performance.  
7.7.4  
Soft Ramp-Down on Interface Error (SRD_ERR)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
A mute will be performed upon detection of a timing error on the Digital Audio Interface or if an  
SRC_LOCK error has occurred. An SRC_LOCK interrupt is an indication that the sample rate converter  
timings have become unstable, or have changed abruptly. Audio data from the SRC is no longer consid-  
ered valid and could cause unwanted pops or clicks.  
When this feature is enabled, this mute is affected, similar to attenuation changes, by the Soft and Zero  
Cross bits (SZC[1:0]). When disabled, an immediate mute is performed on detection of an error.  
Note: For best results, it is recommended that this bit be used in conjunction with the SRU_ERR bit.  
7.7.5  
Soft Ramp-Up on Recovered Interface Error (SRU_ERR)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
An un-mute will be performed after a MCLK/LRCK ratio change, recovered DAI timing error, or after the  
SRC has gained lock. When this feature is enabled, this un-mute is affected, similar to attenuation chang-  
es, by the Soft and Zero Cross bits (SZC[1:0]). When disabled, an immediate un-mute is performed in  
these instances.  
Note: For best results, it is recommended that this bit be used in conjunction with the SRD_ERR bit.  
7.7.6  
Auto-Mute (AMUTE)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The PWM converters of the CS44800 will mute the output following the reception of 8192 consecutive  
audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and  
muting is done independently for each channel. The muting function is affected, similar to volume control  
changes, by the Soft and Zero Cross bits (SZC[1:0]).  
DS632PP1  
55  
CS44800  
7.8  
Master Volume Control - Integer (address 07h)  
7
6
5
4
3
2
1
0
MSTR_IVOL7  
MSTR_IVOL6  
MSTR_IVOL5  
MSTR_IVOL4  
MSTR_IVOL3  
MSTR_IVOL2  
MSTR_IVOL1  
MSTR_IVOL0  
7.8.1  
Master Volume Control - Integer (MSTR_IVOL[7:0])  
Default = 00000000  
Function:  
The Master Volume Control - Integer register allows global control of the signal levels on all channels in  
1 dB increments from +24 to -127 dB. Volume settings are decoded as shown in Table 6. The volume  
changes are implemented as specified by the Soft and Zero Cross bits (SZC[1:0]). All volume settings  
greater than 00011000b are equivalent to +24 dB. Binary values for integer volume settings less than  
0 dB are in two’s complement form.  
MSTR_IVOL[7:0]  
0001 1000  
0001 0111  
0000 0001  
0000 0000  
1111 1111  
Hex Value  
Volume Setting  
+24 dB  
+23 dB  
+1 dB  
18  
17  
01  
00  
FF  
FE  
81  
0 dB  
-1 dB  
-2 dB  
-127 dB  
1111 1110  
1000 0001  
Table 6. Master Integer Volume Settings  
7.9  
Master Volume Control - Fraction (address 08h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MSTR_FVOL1 MSTR_FVOL0  
7.9.1  
Master Volume Control - Fraction (MSTR_FVOL[1:0])  
Default = 00  
00 - +0.00 dB  
01 - +0.25 dB  
10 - +0.50 dB  
11 - +0.75 dB  
Function:  
The Master Volume Control - Fraction register is an additional offset to the value in the Master Volume  
Control - Integer register and allows global control of the signal levels on all channels in 0.25 dB incre-  
ments. Volume settings are decoded as shown in Table 7. These volume changes are implemented as  
specified by the Soft and Zero Cross bits (SZC[1:0]). All volume settings greater than 00011000b are  
equivalent to +24 dB. Binary values for integer and fractional volume settings less than 0 dB are in two’s  
complement form.  
To calculate from a positive decimal integer:fraction value to a binary positive integer:fraction value, do  
the following:  
1. Convert the decimal integer to binary. This is MSTR_IVOL[7:0].  
2. Select the bit representation of the desired 0.25 fractional increment. This is MSTR_FVOL[1:0].  
To calculate from a negative decimal integer:fraction value to a binary, 2’s complement integer:fraction  
value, do the following:  
56  
DS632PP1  
CS44800  
1. Convert the decimal integer to binary. This is MSTR_IVOL[7:0].  
2. Select the bit representation of the desired 0.25 fractional increment. This is MSTR_FVOL[1:0].  
3. Concatenate MSTR_IVOL[7:0]: MSTR_FVOL[1:0] to form a 10-bit binary value.  
4. Perform a 2’s complement conversion on all 10 bits.  
The upper 8 bits are now the new MSTR_FVOL[7:0] and the two lower bits are MSTR_FVOL[1:0].  
To convert from a 2’s complement integer:fraction value to a negative decimal, do the following:  
1. Concatenate MSTR_IVOL[7:0]: MSTR_FVOL[1:0] to form a 10-bit binary value.  
2. Perform a 2’s complement conversion on all 10 bits.  
3. Convert the 10-bit binary number to a decimal value.  
4. Divide the decimal value by 4.  
MSTR_IVOL[7:0]  
0001 1000  
0001 0111  
0000 0001  
0000 0001  
0000 0000  
0000 0000  
1111 1111  
MSTR_FVOL(1:0)  
Volume Setting  
+24.00 dB  
+23.50 dB  
+1.75 dB  
+1.00 dB  
+0.25 dB  
0 dB  
00  
10  
11  
00  
01  
00  
10  
00  
11  
10  
00  
11  
00  
-0.50 dB  
-1.00 dB  
-1.25 dB  
-2.50 dB  
-126.00 dB  
-126.25 dB  
-127.00 dB  
1111 1111  
1111 1110  
1111 1101  
1000 0010  
1000 0001  
1000 0001  
Table 7. Master Fractional Volume Settings  
DS632PP1  
57  
CS44800  
7.10 Channel XX Volume Control - Integer (addresses 09h - 10h)  
7
6
5
4
3
2
1
0
CHXX_IVOL7  
CHXX_IVOL6  
CHXX_IVOL5  
CHXX_IVOL4  
CHXX_IVOL3  
CHXX_IVOL2  
CHXX_IVOL1  
CHXX_IVOL0  
7.10.1 Channel Volume Control - Integer (CHXx_IVOL[7:0])  
Default = 00000000  
Function:  
The Channel X Volume Control - Integer register allows global control of the signal levels on all channels  
in 1 dB increments from +24 to -127 dB. Volume settings are decoded as shown in Table 6. The volume  
changes are implemented as specified by the Soft and Zero Cross bits (SZC[1:0]. All volume settings  
greater than 00011000b are equivalent to +24 dB. Binary values for integer volume settings less than  
0 dB are in two’s complement form.  
CHXX_IVOL[7:0]  
0001 1000  
0001 0111  
0000 0001  
0000 0000  
1111 1111  
Hex Value  
Volume Setting  
+24 dB  
+23 dB  
+1 dB  
18  
17  
01  
00  
FF  
FE  
81  
0 dB  
-1 dB  
-2 dB  
-127 dB  
1111 1110  
1000 0001  
Table 8. Channel Integer Volume Settings  
7.11 Channel XX Volume Control1 - Fraction (address 11h)  
7
6
5
4
3
2
1
0
CHB2_FVOL1 CHB2_FVOL0 CHA2_FVOL1 CHA2_FVOL0  
CHB1_FVOL1 CHB1_FVOL0 CHA1_FVOL1 CHA1_FVOL0  
7.12 Channel XX Volume Control2 - Fraction (address 12h)  
7
6
5
4
3
2
1
0
CHB4_FVOL1 CHB4_FVOL0 CHA4_FVOL1 CHA4_FVOL0  
CHB3_FVOL1 CHB3_FVOL0 CHA3_FVOL1 CHA3_FVOL0  
7.12.1 Channel Volume Control - Fraction (CHXX_FVOL[1:0])  
Default = 00  
00 - +0.00 dB  
01 - +0.25 dB  
10 - +0.50 dB  
11 - +0.75 dB  
Function:  
The Channel X Volume Control - Fraction register is an additional offset to the value in the Channel Vol-  
ume Control - Integer register and allows global control of the signal levels on all channels in 0.25 dB in-  
crements. Volume settings are decoded as shown in Table 7. These volume changes are implemented  
as specified by the Soft and Zero Cross bits (SZC[1:0]). All volume settings greater than 00011000b are  
equivalent to +24 dB. Binary values for integer and fractional volume settings less than 0 dB are in two’s  
complement form.  
See “Master Volume Control - Fraction (address 08h)” on page 57 for hints on converting decimal num-  
bers to 2’s complement binary values.  
58  
DS632PP1  
CS44800  
CHXX_IVOL[7:0]  
0001 1000  
0001 0111  
0000 0001  
0000 0001  
0000 0000  
0000 0000  
1111 1111  
CHXX_FVOL(1:0)  
Volume Setting  
+24.00 dB  
+23.50 dB  
+1.75 dB  
+1.00 dB  
+0.25 dB  
0 dB  
00  
10  
11  
00  
01  
00  
10  
00  
11  
10  
00  
11  
00  
-0.50 dB  
-1.00 dB  
-1.25 dB  
-2.50 dB  
-126.00 dB  
-126.25 dB  
-127.00 dB  
1111 1111  
1111 1110  
1111 1101  
1000 0010  
1000 0001  
1000 0001  
Table 9. Channel Fractional Volume Settings  
7.13 Channel Mute (address 13h)  
7
6
5
4
3
2
1
0
CHB4_MUTE  
CHA4_MUTE  
CHB3_MUTE  
CHA3_MUTE  
CHB2_MUTE  
CHA2_MUTE  
CHB1_MUTE  
CHA1_MUTE  
7.13.1 Independent Channel Mute (CHXX_MUTE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The PWM outputs of the CS44800 will mute when enabled. The muting function is affected, similar to at-  
tenuation changes, by the Soft and Zero Cross bits (SZC[1:0]).  
7.14 Channel Invert (address 14h)  
7
6
5
4
3
2
1
0
CHB4_INV  
CHA4_INV  
CHB3_INV  
CHA3_INV  
CHB2_INV  
CHA2_INV  
CHB1_INV  
CHA1_INV  
7.14.1 Invert Signal Polarity (CHXX_INV)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
When enabled, these bits will invert the signal polarity of their respective channels.  
DS632PP1  
59  
CS44800  
7.15 Peak Limiter Control Register (address 15h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
LIMIT_ALL  
LIMIT_EN  
7.15.1 Peak Signal Limit All Channels (LIMIT_ALL)  
Default = 0  
0 - individual channel  
1 - all channels  
Function:  
When set to 0, the peak signal limiter will limit the maximum signal amplitude to prevent clipping on the  
specific channel indicating clipping. The other channels will not be affected.  
When set to 1, the peak signal limiter will limit the maximum signal amplitude to prevent clipping on ALL  
channels in response to ANY single channel indicating clipping.  
7.15.2 Peak Signal Limiter Enable (LIMIT_EN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The CS44800 will limit the maximum signal amplitude to prevent clipping when this function is enabled.  
Peak Signal Limiting is performed by digital attenuation. The attack rate is determined by the Limiter At-  
tack Rate register.  
7.16 Limiter Attack Rate (address 16h)  
7
6
5
4
3
2
1
0
ARATE7  
ARATE6  
ARATE5  
ARATE4  
ARATE3  
ARATE2  
ARATE1  
ARATE0  
7.16.1 Attack Rate (ARATE[7:0])  
Default = 00010000  
Function:  
The limiter attack rate is user selectable. The effective rate is a function of the SRC output sampling fre-  
quency and the value in the Limiter Attack Rate register. Rates are calculated using the function  
RATE = (32/{value})/SRC Fs, where {value} is the decimal value in the Limiter Attack Rate register and  
SRC Fs is the output sample rate of the SRC which is determined by the PWM master clock frequency.  
SRC Fs equals 384 kHz for 24.576 MHz based clocks and 421.875 kHz for 27.000 MHz based clocks.  
Note: A value of zero in this register is not recommended, as it will induce erratic behavior of the limiter.  
Use the LIM_EN bit to disable the limiter function (see Peak Limiter Control Register (address 15h)).  
60  
DS632PP1  
CS44800  
Binary Code  
Decimal Value  
Attack Rate - 384 kHz  
Attack Rate - 421.875 kHz  
(µs per 1/8 dB)  
(µs per 1/8 dB)  
00000001  
00010100  
00101000  
00111100  
01011010  
1
83.33  
4.167  
2.083  
1.389  
0.926  
75.852  
3.793  
1.896  
1.264  
0.843  
20  
40  
60  
90  
Table 10. Limiter Attack Rate Settings  
7.17 Limiter Release Rate (address 17h)  
7
6
5
4
3
2
1
0
RRATE7  
RRATE6  
RRATE5  
RRATE4  
RRATE3  
RRATE2  
RRATE1  
RRATE0  
7.17.1 Release Rate (RRATE[7:0])  
Default = 00100000  
Function:  
The limiter release rate is user selectable. The effective rate is a function of the SRC output sampling fre-  
quency and the value in the Release Rate register. Rates are calculated using the function  
RATE = (512/{value})/SRC Fs, where {value} is the decimal value in the Release Rate register and SRC  
Fs is the output sample rate of the SRC which is determined by the PWM master clock frequency. SRC  
Fs equals 384 kHz for 24.576 MHz based clocks and 421.875 kHz for 27.000 MHz based clocks.  
Note: A value of zero in this register is not recommended, as it will induce erratic behavior of the limiter.  
Use the LIM_EN bit to disable the limiter function (see Peak Limiter Control Register (address 15h)).  
Binary Code  
Decimal Value  
Release Rate - 384 kHz  
Release Rate - 421.875 kHz  
(µs per 1/8 dB)  
(µs per 1/8 dB)  
00000001  
00010100  
00101000  
00111100  
01011010  
1
1333.333  
66.667  
33.333  
22.222  
14.815  
1213.630  
60.681  
30.341  
20.227  
13.485  
20  
40  
60  
90  
Table 11. Limiter Release Rate Settings  
7.18 Chnl XX Load Compensation Filter - Coarse Adjust  
(addresses 18h, 1Ah, 1Ch, 1Eh, 20h, 22h, 24h, 26h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
CHXX_CORS5 CHXX_CORS4 CHXX_CORS3 CHXX_CORS2 CHXX_CORS1 CHXX_CORS0  
7.18.1 Channel Compensation Filter - Coarse Adjust (CHXX_CORS[5:0])  
Default = 000000  
Function:  
The Channel Load Compensation Filter Coarse Adjustment settings control the amount of attenuation of  
this single-pole filter and are used in conjunction with the Fine Adjustment bits to compensate for speaker  
impedance load variations. Each PWM channel is controlled by an associated register. The coarse ad-  
justment bits will attenuate the audio response curve according to the table below in 0.1 dB increments.  
Filter setting values less than -4.0 dB will cause the PWM output to mute.  
DS632PP1  
61  
CS44800  
CHXX_CORS[5:0]  
000000  
Coarse Filter Setting  
0 dB  
000001  
-0.1 dB  
001010  
-1.0 dB  
011001  
-2.5 dB  
100000  
-3.2 dB  
101000  
-4.0 dB  
Table 12. Channel Load Compensation Filter Coarse Adjust  
7.19 Chnl XX Load Compensation Filter - Fine Adjust  
(addresses 19h, 1Bh, 1Dh, 1Fh, 21h, 23h, 25h, 27h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
CHXX_FINE5  
CHXX_FINE4  
CHXX_FINE3  
CHXX_FINE2  
CHXX_FINE1  
CHXX_FINE0  
7.19.1 Channel Compensation Filter - Fine Adjust (CHXX_FINE[5:0])  
Default = 000000  
Function:  
The Channel Load Compensation Filter Fine Adjustment settings control the amount of attenuation of this  
single-pole filter which follows the Coarse Adjustment Compensation Filter. These bits are used in con-  
junction with the Coarse Adjustment bits to fine tune the total frequency response of the system to com-  
pensate for speaker impedance load variations. Each PWM channel is controlled by an associated  
register. The fine adjustment bits will attenuate the audio response curve according to the table below in  
0.1 dB increments. Filter setting values less than -4.0 dB will cause the PWM output to mute.  
CHXX_FINE[5:0]  
000000  
Fine Filter Setting  
0 dB  
000001  
-0.1 dB  
001010  
-1.0 dB  
011001  
-2.5 dB  
100000  
-3.2 dB  
101000  
-4.0 dB  
Table 13. Channel Load Compensation Filter Fine Adjust  
7.20 Interrupt Mode Control (address 28h)  
7
6
5
4
3
2
1
0
INT1  
INT0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
OVFL_L/E  
7.20.1 Interrupt Pin Control (INT1/INT0)  
Default = 00  
00 - Active high, high output indicates interrupt condition has occurred  
01 - Active low, low output indicates an interrupt condition has occurred  
10 - Open drain, active low. Requires an external pull-up resistor on the INT pin.  
11 - Reserved  
Function:  
Determines how the interrupt pin (INT) will indicate an interrupt condition. If any of the mask bits in the  
Interrupt Mask Register are set to a 1b, read the Interrupt Status Register to determine which condition  
caused the interrupt.  
62  
DS632PP1  
CS44800  
7.20.2 Overflow Level/Edge Select (OVFL_L/E)  
Default = 0  
Function:  
This bit defines the OVFL interrupt type (0 = level sensitive, 1 = edge trigger). The Over Flow status of all  
the audio channels when configured as “edge trigger” is cleared by reading the Channel Over Flow Status  
(address 2Bh) (Read Only), and by reset. After a Reset this bit defaults to 0b, specifying “level sensitive”.  
7.21 Interrupt Mask (address 29h)  
7
6
5
4
3
2
1
0
M_SRC_UNLOCK M_SRC_LOCK M_RMPUP_DONE M_RMPDN_DONE M_MUTE_DONE M_OVFL_INT RESERVED RESERVED  
Default = 00000000  
Function:  
The bits of this register serve as a mask for the interrupt sources found in the Interrupt Status register. If a  
mask bit is set to 1b, the interrupt is unmasked, meaning that its occurrence will affect the INT pin and the  
Interrupt Status register. If a mask bit is set to 0b, the condition is masked, meaning that its occurrence will  
not affect the INT pin. The bit positions align with the corresponding bits in the Interrupt Status register. The  
mask bits for the GPIO_INT interrupt are located in the GPIO Interrupt Mask Register.  
7.22 Interrupt Status (address 2Ah) (Read Only)  
7
6
5
4
3
2
1
0
SRC_UNLOCK  
SRC_LOCK  
RMPUP_DONE RMPDN_DONE  
MUTE_DONE  
OVFL_INT  
GPIO_INT  
RESERVED  
For all bits in this register, a ‘1’ means the associated interrupt condition has occurred at least once since  
the register was last read. A ‘0’ means the associated interrupt condition has NOT occurred since the last  
reading of the register. Reading the register resets the SRC_UNLOCK, SRC_LOCK, RMPUP_DONE,  
RMPDN_DONE and MUTE_DONE bits to 0. These bits are considered “edge-trigger” interrupts.  
The OVFL_INT and GPIO_INT bits will not reset to 0 by reading this register. The OVFL_INT bit will be set  
to 0 by a read to the “Channel Over Flow Status (address 2Bh) (Read Only)” on page 66 only when the in-  
terrupt type is set to “edge-trigger”. The GPIO_INT bit will be set to 0 by a read to the “GPIO Status Register  
(address 2Fh)” on page 67 only when the interrupt type is set to “edge trigger”. If either of these interrupt  
types are configured as “level sensitive”, then reading the appropriate status register will not clear the cor-  
responding status bit in this register. OVFL_INT or GPIO_INT will remain set as long as the logic active level  
is present. Once the level is cleared, then a read to the proper status register will clear the status bit.  
7.22.1 SRC Unlock Interrupt (SRC_UNLOCK)  
Default = 0  
Function:  
When high, indicates that the DAI interface has detected an error condition and/or the SRC has lost lock.  
Conditions which cause the SRC to loose lock, such as loss of DAI_LRCK, DAI_MCLK or a DAI_LRCK/  
DAI_MCLK ratio change, will cause an interrupt condition. This interrupt is an edge-triggered event.  
If this bit is set to a 1b, indicating an unlock condition, and an SRC_LOCK interrupt is detected, then this  
bit will be reset to 0b before a read of the Interrupt Status Register. Only the last valid state of the SRC  
will be reported.  
DS632PP1  
63  
CS44800  
7.22.2 SRC Lock Interrupt (SRC_LOCK)  
Default = 0  
Function:  
When high, indicates that on all active channels, the sample rate converters have achieved lock. This  
interrupt is an edge-triggered event.  
If this bit is set to a 1b, indicating a lock condition, and an SRC_UNLOCK condition is detected, then this  
bit will be reset to 0b before a read of the Interrupt Status Register. Only the last valid state of the SRC  
will be reported.  
7.22.3 Ramp-Up Complete Interrupt (RMPUP_DONE)  
Default = 0  
Function:  
When high, indicates that all active channels have completed the configured ramp-up interval.  
7.22.4 Ramp-Down Complete Interrupt (RMPDN_DONE)  
Default = 0  
Function:  
When high, indicates that all active channels have completed the configured ramp-down interval.  
7.22.5 Mute Complete Interrupt (Mute_DONE)  
Default = 0  
Function:  
When high, indicates that all muted channels have completed the mute cycle-down interval as defined by  
the SZC[1:0] bits in the “Volume Control Configuration (address 06h)” on page 55.  
7.22.6 Channel Over Flow Interrupt (OVFL_INT)  
Default = 0  
Function:  
When high, indicates that the magnitude of an output sample on one of the channels has exceeded full  
scale and has been clipped to positive or negative full scale as appropriate. This bit is the logical OR of  
all the bits in the Channel Over Flow Status Register. Read the Channel Over Flow Status Register to  
determine which channel(s) had the overflow condition.  
7.22.7 GPIO Interrupt Condition (GPIO_INT)  
Default = 0  
Function:  
When high, indicates that a transition as configured on one of the un-masked GPIO pins has occurred.  
This bit is the logical OR of all the supported un-masked bits in the GPIO Status Register. Read the GPIO  
Status Register to determine which GPIO input(s) caused the interrupt condition. The GPIO interrupt is  
not removed by reading this register. The GPIO Status Register must be read to clear this interrupt. If the  
GPIO input is configured as “edge trigger” the interrupt will clear. If the GPIO input is configured as “level  
sensitive”, the interrupt condition will remain as long as the GPIO input remains at the active level.  
64  
DS632PP1  
CS44800  
7.23 Channel Over Flow Status (address 2Bh) (Read Only)  
7
6
5
4
3
2
1
0
CHB4_OVFL  
CHA4_OVFL  
CHB3_OVFL  
CHA3_OVFL  
CHB2_OVFL  
CHA2_OVFL  
CHB1_OVFL  
CHA1_OVFL  
For all bits in this register, a ‘1’ means the associated condition has occurred at least once since the register  
was last read. A ‘0’ means the associated condition has NOT occurred since the last reading of the register.  
Reading the register resets all bits to 0 if the Overflow Level/Edge interrupt type is set to “edge trigger”.  
These channel overflow status bits are not effected by the interrupt mask bit, M_OVFL_INT. The overflow  
condition of each channel can be polled instead of generating an interrupt as required.  
7.23.1 ChXX_OVFL  
Default = 0  
Function:  
When high, indicates that the magnitude of the current output sample on the associated channel has ex-  
ceeded full scale and has been clipped to positive or negative full scale as appropriate.  
7.24 GPIO Pin In/Out (address 2Ch)  
7
6
5
4
3
2
1
0
RESERVED  
GPIO6_I/O  
GPIO5_I/O  
GPIO4_I/O  
GPIO3_I/O  
GPIO2_I/O  
GPIO1_I/O  
GPIO0_I/O  
7.24.1 GPIO In/Out Selection (GPIOX_I/O)  
Default = 0  
0 - General Purpose Input  
1 - General Purpose Output  
Function:  
General Purpose Input - The pin is configured as an input.  
General Purpose Output - The pin is configured as a general purpose output.  
7.25 GPIO Pin Polarity/Type (address 2Dh)  
7
6
5
4
3
2
1
0
RESERVED  
GPIO6_P/T  
GPIO5_P/T  
GPIO4_P/T  
GPIO3_P/T  
GPIO2_P/T  
GPIO1_P/T  
GPIO0_P/T  
7.25.1 GPIO Polarity/Type Selection (GPIOX_P/T)  
Default = 1  
Function:  
General Purpose Input - If the pin is configured as an input, this bit defines the input polarity (0 = Active  
Low, 1 = Active High).  
General Purpose Output - If the pin is configured as a general purpose output, this bit defines the GPIO  
output type (0 = CMOS, 1 = OPEN-DRAIN).  
DS632PP1  
65  
CS44800  
7.26 GPIO Pin Level/Edge Trigger (address 2Eh)  
7
6
5
4
3
2
1
0
RESERVED  
GPIO6_L/E  
GPIO5_L/E  
GPIO4_L/E  
GPIO3_L/E  
GPIO2_L/E  
GPIO1_L/E  
GPIO0_L/E  
7.26.1 GPIO Level/Edge Input Sensitive (GPIOX_L/E)  
Default = 0  
Function:  
General Purpose Input - This bit defines the GPIO input type (0 = level sensitive, 1 = edge trigger) when  
a GPIO pin is configured as an input. The GPIO pin status of an input configured as “edge trigger” is  
cleared by reading the GPIO Status Register when not enabled to generate an interrupt (MASK bit equals  
0b) and by reset. After a reset this bit defaults to 0b, specifying “level sensitive”.  
General Purpose Output - Not Used.  
7.27 GPIO Status Register (address 2Fh)  
7
6
5
4
3
2
1
0
RESERVED GPIO6_STATUS GPIO5_STATUS GPIO4_STATUS GPIO3_STATUS GPIO2_STATUS GPIO1_STATUS GPIO0_STATUS  
7.27.1 GPIO Pin Status (GPIOX_STATUS)  
Default = x  
Function:  
General Purpose Input - Bits in this register are read only when the corresponding GPIO pin is configured  
as an input. Each bit indicates the status of the GPIO pin. The corresponding bit of a GPIO input config-  
ured as “edge trigger” is cleared by reading the GPIO Status Register. GPIO inputs configured as “level  
sensitive” will not be automatically cleared, but will reflect the logic state on the GPIO input. The mask bits  
in the GPIO Interrupt Mask Register have no effect on the operation of these status bits.  
When a GPIO is un-masked and enabled to generate an interrupt, and is configured as “edge trigger”, a  
read operation to this register will clear the status bit and remove the interrupt condition. A read operation  
to the Interrupt Status (address 2Ah) (read only) when a GPIO is configured to generate an interrupt con-  
dition will not clear any bits in this register.  
General Purpose Output - For GPIO pins configured as outputs, these bits are used to control the output  
signal level. A 1b written to a particular bit will cause the corresponding GPIO pin to be driven to a logic  
high. A 0b will cause a logic low.  
66  
DS632PP1  
CS44800  
7.28 GPIO Interrupt Mask Register (address 30h)  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
M_GPIO3  
M_GPIO2  
M_GPIO1  
M_GPIO0  
7.28.1 GPIO Pin Interrupt Mask (M_GPIOX)  
Default = 0  
Function:  
General Purpose Input - The bits of this register serve as a mask for GPIO[3:0] interrupt sources. If a mask  
bit is set to 1, the interrupt is unmasked, meaning that its occurrence will affect the INT pin and the Inter-  
rupt Status register. If a mask bit is set to 0, the condition is masked, meaning that its occurrence will not  
affect the INT pin or Interrupt Status Register. The proper pin status will be reported in the GPIO Status  
Register. The bit positions align with the corresponding bits in the GPIO Status register.  
General Purpose Output - This register is not used.  
7.29 PWM Configuration Register (address 31h)  
7
6
5
4
3
2
1
0
OSRATE RESERVED RESERVED A1/B1_OUT_CNFG A2/B2_OUT_CNFG A3_OUT_CNFG B3_OUT_CNFG A4/B4_OUT_CNFG  
7.29.1 Over Sample Rate Selection (OSRATE)  
Default = 0  
0 - modulated PWM output pulses run at single-mode switch rate. Typically 384 kHz or 421.875 kHz.  
1 - modulated PWM output pulses run at double-mode switch rate. Typically 768 kHz or 843.75 kHz.  
Function:  
Enables the interpolation filter in the modulator to over-sample the incoming audio to support a double-  
speed PWM switch rate. This parameter can only be changed when all modulators and associated logic  
are in the power-down state by setting the PDN bit in the register “Clock Configuration and Power Control  
(address 02h)” on page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
7.29.2 Channels A1 and B1 Output Configuration (A1/B1_OUT_CNFG)  
Default = 0  
0 - pwm outputs for both channels A1 and B1 are configured for half-bridge operation  
1 - pwm outputs for both channels A1 and B1 are configured for full-bridge operation  
Function:  
Identifies the output configuration. The value selected for this bit is applicable to the outputs for channels  
A1 and B1. This parameter can only be changed when all modulators and associated logic are in the pow-  
er-down state by setting the PDN bit in the register “Clock Configuration and Power Control (address 02h)”  
on page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
7.29.3 Channels A2 and B2 Output Configuration (A2/B2_OUT_CNFG)  
Default = 0  
0 - pwm outputs for both channels A2 and B2 are configured for half-bridge operation  
1 - pwm outputs for both channels A2 and B2 are configured for full-bridge operation  
Function:  
Identifies the output configuration. The value selected for this bit is applicable to the outputs for channels  
A2 and B2. This parameter can only be changed when all modulators and associated logic are in the pow-  
DS632PP1  
67  
CS44800  
er-down state by setting the PDN bit in the register “Clock Configuration and Power Control (address 02h)”  
on page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
7.29.4 Channel A3 Output Configuration (A3_OUT_CNFG)  
Default = 0  
0 - pwm outputs for channel A3 are configured for half-bridge operation  
1 - pwm outputs for channel A3 are configured for full-bridge operation  
Function:  
Identifies the output configuration. The value selected for this bit is applicable to the outputs for only chan-  
nel A3. This parameter can only be changed when all modulators and associated logic are in the power  
down state by setting the PDN bit in the register “Clock Configuration and Power Control (address 02h)”  
on page 51 to a ‘1’b. Attempts to write this register while the PDN is not set will be ignored.  
7.29.5 Channel B3 Output Configuration (B3_OUT_CNFG)  
Default = 0  
0 - pwm outputs for channel B3 are configured for half-bridge operation  
1 - pwm outputs for channel B3 are configured for full-bridge operation  
Function:  
Identifies the output configuration. The value selected for this bit is applicable to the outputs for only chan-  
nel B3. This parameter can only be changed when all modulators and associated logic are in the power-  
down state by setting the PDN bit in the register “Clock Configuration and Power Control (address 02h)”  
on page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
7.29.6 Channels A4 and B4 Output Configuration (A4/B4_OUT_CNFG)  
Default = 0  
0 - pwm outputs for both channels A4 and B4 are configured for half-bridge operation  
1 - pwm outputs for both channels A4 and B4 are configured for full-bridge operation  
Function:  
Identifies the output configuration. The value selected for this bit is applicable to the outputs for chan-  
nels A4 and B4. This parameter can only be changed when all modulators and associated logic are  
in the power down state by setting the PDN bit in the register “Clock Configuration and Power Control  
(address 02h)” on page 51 to a ‘1’b. Attempts to write this register while the PDN is not set will be  
ignored.  
7.30 PWM Minimum Pulse Width Register (address 32h)  
7
6
5
4
3
2
1
0
DISABLE_PWMOUTXX- RESERVED RESERVED MIN_PULSE4 MIN_PULSE3 MIN_PULSE2  
MIN_PULSE1  
MIN_PULSE0  
7.30.1 Disable PWMOUTXX - Signal (DISABLE_PWMOUTXX-)  
Default = 0  
0 - PWM minus (“-”) differential signal is operational when PWM channel is configured for half-bridge.  
1 - PWM minus (“-”) differential signal is disabled when PWM channel is configured for half-bridge.  
Function:  
Determines if the PWM minus (“-”) differential signal is disabled when the particular PWM channel is con-  
figured for half-bridge operation. This bit is ignored for channels configured for full-bridge operation. The  
value selected for this bit is applicable to the outputs for all channels configured for half-bridge operation.  
This parameter can only be changed when all modulators and associated logic are in the power-down  
68  
DS632PP1  
CS44800  
state by setting the PDN bit in the register “Clock Configuration and Power Control (address 02h)” on  
page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
7.30.2 Minimum PWM Output Pulse Settings (MIN_PULSE[4:0])  
Default = 00000  
Function:  
The PWM Minimum Pulse registers allow settings for the minimum allowable pulse width on each of the  
PWMOUT differential signal pairs, PWMOUTxx+ and PWMOUTxx-. The value selected in this register is  
applicable to all PWM channels. The effective minimum pulse is calculated by multiplying the register val-  
ue by the period of the PWM_MCLK. This parameter can only be changed when all modulators and as-  
sociated logic are in the power-down state by setting the PDN bit in the register “Clock Configuration and  
Power Control (address 02h)” on page 51 to a 1b. Attempts to write this register while the PDN is not set  
will be ignored.  
Binary Code  
Minimum Pulse  
MIN_PULSE[4:0]  
Setting (multiply by  
PWM_MCLK period)  
00000  
00110  
10100  
11111  
0 - no minimum  
6
20  
31  
Table 14. PWM Minimum Pulse Width Settings  
7.31 PWMOUT Delay Register (address 33h)  
7
6
5
4
3
2
1
0
DIFF_DLY2  
DIFF_DLY1  
DIFF_DLY0  
CHNL_DLY4  
CHNL_DLY3  
CHNL_DLY2  
CHNL_DLY1  
CHNL_DLY0  
7.31.1 Differential Signal Delay (DIFF_DLY[2:0])  
Default = 000  
Function:  
The Differential Signal Delay bits allow delay adjustment between each channel’s differential signals,  
PWMOUTxx+ and PWMOUTxx-. This set of bits control the delay between PWMOUTxx+ and PW-  
MOUTxx- across all active channels. The value of this register determines the amount of delay inserted  
in the output path. The effective delay is calculated by multiplying the register value by the period of the  
PWM_MCLK. This parameter can only be changed when all modulators and associated logic are in the  
power-down state by setting the PDN bit in the register “Clock Configuration and Power Control (address  
02h)” on page 51 to a 1b. Attempts to write this register while the PDN is not set will be ignored.  
Binary Code  
Delay Setting (multiply by  
PWM_MCLK period)  
000  
001  
100  
111  
0 - no delay  
1
4
7
Table 15. Differential Signal Delay Settings  
7.31.2 Channel Delay Settings (CHNL_DLY[4:0])  
Default = 00000  
Function:  
DS632PP1  
69  
CS44800  
The Channel Delay bits allow delay adjustment of each of the PWMOUT differential signal pairs, PW-  
MOUTAx+/PWMOUTAx- from the associated PWMOUTBx+/PWMOUTBx-. The value of this register de-  
termines the amount of delay inserted in the output path. The effective delay is calculated by multiplying  
the register value by the period of the PWM_MCLK. This parameter can only be changed when all mod-  
ulators and associated logic are in the power-down state by setting the PDN bit in the register “Clock Con-  
figuration and Power Control (address 02h)” on page 51 to a 1b. Attempts to write this register while the  
PDN is not set will be ignored.  
Binary Code  
00000  
Delay Setting(multiply by PWM_MCLK period)  
0 - no delay  
00110  
6
11000  
11111  
24  
31  
Table 16. Channel Delay Settings  
70  
DS632PP1  
CS44800  
PWMOUTA1+  
PWMOUTA1-  
tdifdly  
tchdly  
PWMOUTB1+  
PWMOUTB1-  
tdifdly  
tdifdly  
tdifdly  
PWMOUTA2+  
PWMOUTA2-  
tdifdly  
tchdly  
PWMOUTB2+  
PWMOUTB2-  
PWMOUTA3+  
PWMOUTA3-  
tdifdly  
tchdly  
PWMOUTB3+  
PWMOUTB3-  
PWMOUTA4+  
PWMOUTA4-  
tdifdly  
tchdly  
PWMOUTB4+  
PWMOUTB4-  
tdifdly  
Figure 31. PWM Output Delay  
DS632PP1  
71  
CS44800  
7.32 PSR and Power Supply Configuration (address 34h)  
7
6
5
4
3
2
1
0
PSR_EN  
PSR_RESET  
FEEDBACK_EN  
RESERVED  
RESERVED  
PS_SYNC_DIV2 PS_SYNC_DIV1 PS_SYNC_DIV0  
7.32.1 Power Supply Rejection Enable (PSR_EN)  
Default = 0  
0 - disable  
1 - enable  
Function:  
Enables the on-card and internal power supply rejection circuitry. This bit will cause the PSR_EN output  
signal to change logic level. A ‘0’b in this bit will cause the PSR_EN to drive a logic low. A ‘1’b will drive a  
logic high.  
72  
DS632PP1  
CS44800  
7.32.2 Power Supply Rejection Reset (PSR_RESET)  
Default = 0  
0 - force reset condition  
1 - remove reset condition  
Function:  
This bit is used to assert a reset condition to the on-card PSR components. When set to a ‘0’b, the  
PSR_RESET signal will be asserted low. The reset condition will continue as long as this bit is set to a  
‘0’b. This bit must be set to a ‘1’b for proper PSR operation.  
7.32.3 Power Supply Rejection Feedback Enable (FEEDBACK_EN)  
Default = 0  
0 - disable  
1 - enable  
Function:  
Enables the internal power supply rejection feedback logic.  
7.32.4 Power Supply Sync Clock Divider Settings (PS_SYNC_DIV[2:0])  
Default = 000  
Function:  
These three bits determine the divider for the XTAL clock signal for generating the PS_SYNC clock signal.  
PS_SYNC_DIV[2:0]  
PS_SYNC Clock Divider  
Output Disabled  
Divide by 32  
000  
001  
010  
011  
100  
101  
110  
Divide by 64  
Divide by 128  
Divide by 256  
Divide by 512  
Divide by 1024  
Table 17. Power Supply Sync Clock Divider Settings  
7.33 Decimator Shift/Scale (addresses 35h, 36h, 37h)  
7
6
5
4
3
2
1
0
RESERVED  
DEC_SHIFT2  
DEC_SHIFT1  
DEC_SHIFT0  
RESERVED  
DEC_SCALE18 DEC_SCALE17 DEC_SCALE16  
7
6
5
4
3
2
1
0
DEC_SCALE15 DEC_SCALE14 DEC_SCALE13 DEC_SCALE12 DEC_SCALE11 DEC_SCALE10 DEC_SCALE09 DEC_SCALE08  
7
6
5
4
3
2
1
0
DEC_SCALE07 DEC_SCALE06 DEC_SCALE05 DEC_SCALE04 DEC_SCALE03 DEC_SCALE02 DEC_SCALE01 DEC_SCALE00  
7.33.1 Decimator Shift (DEC_SHIFT[2:0])  
Default = 010  
Function:  
These bits are used to scale the power supply reading (Decimator Outd (addresses 3Bh, 3Ch, 3Dh)) dur-  
ing the PSR feedback calibration sequence. The combination of shift and scale factors  
(DEC_SCALE[18:0]*2^(DEC_SHIFT[2:0])) can be viewed as a floating point coefficient. The floating point  
coefficient will be determined during the PSR feedback calibration sequence. See Decimator Scale  
(DEC_SCALE[18:0]) register description and “Recommended PSR Calibration Sequence” on page 44.  
DS632PP1  
73  
CS44800  
7.33.2 Decimator Scale (DEC_SCALE[18:0])  
Default = 25868h  
Function:  
These bits are used to scale the power supply reading (Decimator Outd (addresses 3Bh, 3Ch, 3Dh)) dur-  
ing the PSR feedback calibration sequence. DEC_SCALE[18:0] has 19-bit precision, formatted as signed  
1.18 with decimal values from -1 to 1-2^(-18). The combination of shift and scale factors  
(DEC_SCALE[18:0]*2^(DEC_SHIFT[2:0])) can be viewed as a floating point coefficient. The floating point  
coefficient will be determined during the PSR feedback calibration sequence. See Decimator Shift  
(DEC_SHIFT[2:0]) register description and “Recommended PSR Calibration Sequence” on page 44.  
DEC_SCALE[18:0] DEC_SHIFT[2:0] Calculated Coefficient (CPSR  
)
20000h=0.5  
28851h=0.6331  
001b=1  
010b=2  
0.5*2^(1)=1  
0.6331*2^(2)=2.5325  
Table 18. Decimator Shift/Scale Coefficient Calculation Examples  
7.34 Decimator Outd (addresses 3Bh, 3Ch, 3Dh)  
7
6
5
4
3
2
1
0
DEC_OUTD23 DEC_OUTD22 DEC_OUTD21 DEC_OUTD20 DEC_OUTD19 DEC_OUTD18 DEC_OUTD17 DEC_OUTD16  
7
6
5
4
3
2
1
0
DEC_OUTD15 DEC_OUTD14 DEC_OUTD13 DEC_OUTD12 DEC_OUTD11 DEC_OUTD10 DEC_OUTD09 DEC_OUTD08  
7
6
5
4
3
2
1
0
DEC_OUTD07 DEC_OUTD06 DEC_OUTD05 DEC_OUTD04 DEC_OUTD03 DEC_OUTD02 DEC_OUTD01 DEC_OUTD00  
7.34.1 Decimator Outd (DEC_OUTD[23:0])  
Default = 000000h (Read Only)  
Function:  
These bits reflect the real-time power supply value as measured by the external PSR feedback circuit.  
DEC_OUTD[23:0] has 24-bit precision, formatted as signed 2.22 with decimal values from -4 to 4-2^(-22).  
Calibration needs to be done to correlate the value of DEC_OUTD[23:0] with the real power supply value.  
A quiet DC power supply without any ripple is treated as 1.0 with DEC_OUTD[23:0] calibrated at 400000h.  
See “Recommended PSR Calibration Sequence” on page 44.  
74  
DS632PP1  
CS44800  
8. PARAMETER DEFINITIONS  
Dynamic Range (DR)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth, typically 20 Hz to 20 kHz. Dynamic Range is a signal-to-noise ratio measurement over the spec-  
ified band width made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer  
the measurement to full-scale, with units in dB FS A. This technique ensures that the distortion components  
are below the noise level and do not effect the measurement. This measurement technique has been ac-  
cepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan,  
EIAJ CP-307.  
Frequency Response (FR)  
FR is the deviation in signal level verses frequency. The 0 dB reference point is 1 kHz. The amplitude cor-  
ner, Ac, lists the maximum deviation in amplitude above and below the 1 kHz reference point. The listed  
minimum and maximum frequencies are guaranteed to be within the Ac from minimum frequency to maxi-  
mum frequency inclusive.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with no signal to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog output for a full-scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
Offset Error  
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.  
dB FS A  
dB FS is defined as dB relative to full-scale. The “A” indicates an A weighting filter was used.  
Differential Nonlinearity  
The worst case deviation from the ideal code width. Units in LSB.  
FFT  
Fs  
Fast Fourier Transform.  
Sampling Frequency.  
Resolution  
The number of bits in the output words to the DACs, and in the input words to the ADCs.  
DS632PP1  
75  
CS44800  
Signal to Noise Ratio (SNR)  
SNR, similar to DR, is the ratio of an arbitrary sinusoidal input signal to the RMS sum of the noise floor, in  
the presence of a signal. It is measured over a 20 Hz to 20 kHz bandwidth with units in dB.  
SRC  
Sample Rate Converter. Converts data derived at one sample rate to a differing sample rate. The CS44800  
operates at a fixed sample frequency. The internal sample rate converter is used to convert digital audio  
streams playing back at other frequencies to the PWM output rate.  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
band width (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured  
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.  
76  
DS632PP1  
CS44800  
9. REFERENCES  
1. Cirrus Logic, “Audio Quality Measurement Specification,” Version 1.0, 1997.  
http://www.cirrus.com/products/papers/meas/meas.html  
2. Cirrus Logic, “AN18: Layout and Design Rules for Data Converters and Other Mixed Signal Devices,”  
Version 6.0, February 1998.  
3. Cirrus Logic, “AN22: Overview of Digital Audio Interface Data Structures, Version 2.0”, February 1998.; A  
useful tutorial on digital audio specifications.  
4. Philips Semiconductor, “The I²C-Bus Specification: Version 2,” Dec. 1998.  
http://www.semiconductors.philips.com  
DS632PP1  
77  
CS44800  
10.PACKAGE DIMENSIONS  
64L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
Note: See Legend Below  
B
A
A1  
Figure 32. 64-Pin LQFP Package Drawing  
INCHES  
L
MILLIMETERS  
NOM  
DIM  
MIN  
NOM  
MAX  
MIN  
MAX  
A
A1  
B
D
D1  
E
E1  
e*  
L
---  
0.55  
0.004  
0.008  
0.063  
0.006  
0.011  
0.484  
0.398  
0.484  
0.398  
0.024  
0.030  
7.000°  
---  
1.40  
0.10  
0.20  
1.60  
0.15  
0.27  
12.30  
10.10  
12.30  
10.10  
0.60  
0.002  
0.007  
0.461  
0.390  
0.461  
0.390  
0.016  
0.018  
0.05  
0.17  
11.70  
9.90  
11.70  
9.90  
0.40  
0.45  
0.00°  
0.472 BSC  
0.393 BSC  
0.472 BSC  
0.393 BSC  
0.020 BSC  
0.024  
12.0 BSC  
10.0 BSC  
12.0 BSC  
10.0 BSC  
0.50 BSC  
0.60  
0.75  
7.00°  
0.000°  
4°  
4°  
* Nominal pin pitch is 0.50 mmControlling dimension is mm.  
JEDEC Designation: MS022  
78  
DS632PP1  
CS44800  
11.THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Junction to Ambient Thermal Impedance  
2 Layer Board  
4 Layer Board  
-
-
48  
38  
-
-
θ
°C/Watt  
JA  
DS632PP1  
79  
CS44800  
12.REVISION HISTORY  
Release  
A1  
Date  
Changes  
May 2004  
1st Advance Release  
A2  
September 2004 Updated lead-free device ordering information  
A3  
October 2004 -Updated “Features” on page 1  
-Updated “External Crystal operating frequency” on page 11  
-Updated Figure 11. Typical Full-Bridge Connection Diagram on page 21  
-Updated Figure 12. Typical Half-Bridge Connection Diagram on page 22  
-Updated Section 4.2 "Feature Set Summary" on page 23  
-Updated “FsOut Domain Clocking” on page 25  
-Updated “Sample Rate Converter” on page 32  
-Updated “PWM Engines” on page 33  
-Updated Table 4, “Typical PWM Switch Rate Settings,” on page 34  
-Updated Section 4.5.8 "Modulator" on page 34  
-Updated Section 4.5.10 on page 35  
-Updated Section 4.6.1 "SPI Mode" on page 36  
-Updated Section 4.6.2 "I²C Mode" on page 37  
-Updated Section 5. "Power Supply, Grounding, and PCB layout" on page 39  
-Updated Section 5.1 "Reset and Power-Up" on page 42  
-Updated Section 5.1.1 "PWM PopGuard® Transient Control" on page 42  
-Updated Section 5.1.2 "Recommended Power-Up Sequence" on page 42  
-Updated Section 5.1.3 "Recommended PSR Calibration Sequence" on page 43  
-Updated Section 5.1.4 "Recommended Power-Down Sequence" on page 44  
-Updated Section 6. "Register Quick Reference" on page 45  
-Updated Section 7.5.2 "AM Frequency Hopping (AM_FREQ_HOP)" on page 52  
-Updated Section 7.6 "Ramp Configuration (address 05h)" on page 53  
-Updated Section 7.7.3 on page 54  
-Corrected Table 7, “Master Fractional Volume Settings,” on page 57  
-Corrected Table 9, “Channel Fractional Volume Settings,” on page 59  
-Corrected Table 11, “Limiter Release Rate Settings,” on page 61  
-Updated Table 7.18, “Chnl XX Load Compensation Filter - Coarse Adjust  
(addresses 18h, 1Ah, 1Ch, 1Eh, 20h, 22h, 24h, 26h),” on page 61  
-Updated Table 7.19, “Chnl XX Load Compensation Filter - Fine Adjust  
(addresses 19h, 1Bh, 1Dh, 1Fh, 21h, 23h, 25h, 27h),” on page 62  
-Updated Section 7.26 "GPIO Pin Level/Edge Trigger (address 2Eh)" on page 66  
-Updated Section 7.29 "PWM Configuration Register (address 31h)" on page 67  
PP1  
May 2005  
-Updated “Features” on page 1  
-Updated “Ordering Information” on page 2  
-Correcte “Power Supply Current” on page 9  
-Corrected “High-Level Input Voltage” on page 9  
-Corrected “Low-Level Input Voltage” on page 9  
-Corrected “High-Level Output Voltage at Io = -2 mA” on page 9  
-Corrected “Low-Level Output Voltage at Io = 2 mA” on page 9  
-Corrected “Digital Filter Response (Note 12)” on page 11  
-Updated Figure 11. Typical Full-Bridge Connection Diagram on page 21  
-Updated Figure 12. Typical Half-Bridge Connection Diagram on page 22  
-Corrected Figure 13 on page 24  
-Updated Section 7.5.2 "AM Frequency Hopping (AM_FREQ_HOP)" on page 52  
Table 19. Revision History  
80  
DS632PP1  
CS44800  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its  
subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice  
and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before  
placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order  
acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this informa-  
tion, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document  
is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks,  
trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be  
made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to  
other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-  
STOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED,  
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT  
THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL  
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND  
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION  
WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs and PopGuard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may  
be trademarks or service marks of their respective owners.  
DS632PP1  
81  

相关型号:

CS44800-DQZR

8-Channel Digital Amplifier Controller
CIRRUS

CS44800_06

8-Channel Digital Amplifier Controller
CIRRUS

CS44L10

Digital PWH Headphone Monitor
CIRRUS

CS44L10-KZ

Digital PWH Headphone Monitor
CIRRUS

CS44L11

Low Voltage Class-D PWM Headphone Amplifier
CIRRUS

CS44L11-CZZ

Low Voltage Class-D PWM Headphone Amplifier
CIRRUS

CS44L11-CZZR

Audio Amplifier, 0.034W, 1 Channel(s), 1 Func, PDSO16, 4.40 MM, LEAD FREE, MO-153, TSSOP-16
CIRRUS

CS45-08IO1

Phase Control Thyristor
IXYS

CS45-12IO1

Phase Control Thyristor
IXYS

CS45-16IO1

Phase Control Thyristor
IXYS

CS45-16IO1R

Phase Control Thyristor
IXYS

CS45-B2GA101K-GKA

High Voltage Ceramic Capacitors Automotive Grade, Safety Standard Approved
TDK