CAT504JITE13 [CATALYST]

8-Bit Quad DACpot; 8位四路DACpot
CAT504JITE13
型号: CAT504JITE13
厂家: CATALYST SEMICONDUCTOR    CATALYST SEMICONDUCTOR
描述:

8-Bit Quad DACpot
8位四路DACpot

文件: 总12页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CAT504  
8-Bit Quad DACpot  
FEATURES  
APPLICATIONS  
Output settings retained without power  
Output range includes both supply rails  
4 independently addressable outputs  
1 LSB Accuracy  
Automated product calibration.  
Remote control adjustment of equipment  
Offset, gain and zero adjustments in Self-  
Calibrating and Adaptive Control systems.  
Tamper-proof calibrations.  
Serial µP interface  
Single supply operation: 2.7V-5.5V  
Setting read-back without effecting outputs  
DESCRIPTION  
The CAT504 is a quad 8-Bit Memory DAC designed as  
an electronic replacement for mechanical potentiom-  
eters and trim pots. Intended for final calibration of  
productssuchascamcorders,faxmachinesandcellular  
telephones on automated high volume production lines,  
it is also well suited for systems capable of self calibra-  
tion, and applications where equipment which is either  
difficult to access or in a hazardous environment, re-  
quires periodic adjustment.  
Control of the CAT504 is accomplished with a simple 3  
wire serial interface. A Chip Select pin allows several  
CAT504s to share a common serial interface and com-  
munication back to the host controller is via a single  
serial data line thanks to the CAT504’s Tri-Stated Data  
Output pin.  
The CAT504 operates from a single 3–5 volt power  
supply drawing just a few milliwatts of power. When  
storing data in EEPROM memory an additional 20 volt  
low current supply is required.  
The 4 independently programmable DAC's have an  
output range which includes both supply rails. Output  
settings, stored in non-volatile EEPROM memory, are  
not lost when the device is powered down and are  
automatically reinstated when power is returned. Each  
output can be dithered to test new output values without  
effecting the stored settings and stored settings can be  
read back without disturbing the DAC’s output.  
The CAT504 is available in the 0 to 70° C Commercial  
and –40° C to + 85° C Industrial operating temperature  
ranges and offered in 14-pin plastic DIP and Surface  
mount packages.  
FUNCTIONAL DIAGRAM  
PIN CONFIGURATION  
V
V
V
H
PP  
DD  
REF  
DIP Package (P)  
SOIC Package (J)  
3
1
14  
H
1
H
1
V
V
V
V
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
V
V
DD  
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
DD  
REF  
REF  
7
PROGRAM  
CONTROL  
PROG  
CLK  
CLK  
OUT  
13  
12  
11  
10  
6
OUT  
V
1
2
3
4
DAC 1  
DAC 2  
OUT  
2
3
4
2
3
4
V
V
V
V
PP  
PP  
OUT  
V
OUT  
OUT  
V
OUT  
V
OUT  
CAT  
504  
CAT  
504  
CS  
DI  
CS  
DI  
5
2
DI  
V
V
OUT  
OUT  
L
L
DATA  
REGISTER  
& EEPROM  
DO  
V
REF  
GND  
DO  
V
REF  
GND  
SERIAL  
CONTROL  
CLK  
PROG  
PROG  
8
7
8
7
DAC 3  
DAC 4  
V
OUT  
4
CS  
V
OUT  
SERIAL  
DATA  
OUTPUT  
REGISTER  
DO  
CAT504  
8
9
GND  
V
L
REF  
Doc. No. 25048-0A 2/98 M-1  
© 1998 by Catalyst Semiconductor, Inc.  
Characteristics subject to change without notice  
1
CAT504  
ABSOLUTE MAXIMUM RATINGS*  
Operating Ambient Temperature  
Supply Voltage  
Commercial (‘C’ suffix) .................... 0°C to +70°C  
Industrial (‘I’ suffix)...................... – 40°C to +85°C  
Junction Temperature ..................................... +150°C  
Storage Temperature ....................... –65°C to +150°C  
Lead Soldering (10 sec max) .......................... +300°C  
VDD to GND ......................................0.5V to +7V  
VPP to GND.....................................0.5V to +22V  
Inputs  
CLK to GND............................0.5V to VDD +0.5V  
CS to GND..............................0.5V to VDD +0.5V  
DI to GND ...............................0.5V to VDD +0.5V  
PROG to GND ........................0.5V to VDD +0.5V  
VREFH to GND ........................0.5V to VDD +0.5V  
VREFL to GND .........................0.5V to VDD +0.5V  
Outputs  
*StressesabovethoselistedunderAbsoluteMaximumRatings  
may cause permanent damage to the device. Absolute  
Maximum Ratings are limited values applied individually while  
other parameters are within specified operating conditions,  
and functional operation at any of these conditions is NOT  
implied.Deviceperformanceandreliabilitymaybeimpairedby  
exposure to absolute rating conditions for extended periods of  
time.  
D0 to GND...............................0.5V to VDD +0.5V  
VOUT 1– 4 to GND...................0.5V to VDD +0.5V  
RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Units  
Test Method  
(1)  
VZAP  
ESD Susceptibility  
Latch-Up  
2000  
100  
Volts  
mA  
MIL-STD-883, Test Method 3015  
JEDEC Standard 17  
(1)(2)  
ILTH  
NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.  
2. Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to VCC + 1V.  
DC ELECTRICAL CHARACTERISTICS:  
VDD = 2.7V to 5.5V, VREFH = VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Resolution  
8
Bits  
Accuracy  
INL  
Integral Linearity Error  
ILOAD = 250 nA, TR = C  
TR = I  
± 1  
± 1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ILOAD = 1 µA,  
TR = C  
TR = I  
± 2  
± 2  
DNL  
Differential Linearity Error  
ILOAD = 250 nA, TR = C  
TR = I  
± 0.5  
± 0.5  
± 1.5  
± 1.5  
ILOAD = 1 µA,  
TR = C  
TR = I  
Logic Inputs  
IIH  
Input Leakage Current  
Input Leakage Current  
High Level Input Voltage  
Low Level Input Voltage  
VIN = VDD  
VIN = 0V  
2
10  
–10  
VDD  
0.8  
µA  
µA  
V
IIL  
VIH  
VIL  
0
V
References  
VRH  
VRL  
ZIN  
VREFH Input Voltage Range  
VREFL Input Voltage Range  
VREFH–VREFL Resistance  
2.7  
GND  
7k  
VDD  
VDD -2.7  
V
V
Logic Outputs  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
IOH = – 40 µA  
VDD –0.3  
V
V
V
IOL = 1 mA, VDD = +5V  
IOL = 0.4 mA, VDD = +3V  
0.4  
0.4  
Doc. No. 25048-0A 2/98 M-1  
2
CAT504  
Units  
DC ELECTRICAL CHARACTERISTICS (Cont.):  
VDD = 2.7V to 5.5V, VREFH = +VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Analog Output  
FSO  
ZSO  
IL  
Full-Scale Output Voltage  
VR = VREFH–VREF  
VR = VREFH–VREF  
L
L
0.99 VR  
0.995 VR  
0.10 VR  
1
V
Zero-Scale Output Voltage  
DAC Output Load Current  
DAC Output Impedance  
0.005 VR  
V
µA  
ROUT  
VDD = +5V  
20k  
40k  
1
VDD = +3V  
PSSR  
Power Supply Rejection  
ILOAD = 250 nA  
LSB / V  
Temperature  
TCO  
VOUT Temperature Coefficient  
VREFH = +5V, VREFL = 0V  
VDD = +5V, ILOAD = 250nA  
200  
µV/ °C  
TCREF  
Temperature Coefficient of  
VREF Resistance  
VREFH to VREF  
L
700  
ppm / °C  
Power Supply  
IDD  
Supply Current  
Excludes VREF  
VPP = +19V  
200  
50  
500  
5.5  
20  
µA  
µA  
V
IPP  
Programming Current  
VDD  
VPP  
Operating Voltage Range  
Programing Voltage Range  
2.7  
18  
19  
V
AC ELECTRICAL CHARACTERISTICS:  
VDD = 2.7V to 5.5V, VREFH = +VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Digital  
tCSMIN  
tCSS  
tCSH  
tDIS  
Minimum CS Low Time  
CS Setup Time  
150  
100  
0
400  
400  
5
150  
150  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
MHz  
CS Hold Time  
DI Setup Time  
CL = 100 pF  
50  
50  
see note 1  
tDIH  
DI Hold Time  
tDO1  
tDO0  
tHZ  
Output Delay to 1  
Output Delay to 0  
Output Delay to High-Z  
Output Delay to Low-Z  
Erase/Write Pulse Width  
PROG Setup Time  
Minimum CLK High Time  
Minimum CLK Low Time  
Clock Frequency  
tLZ  
tPROG  
tPS  
3
150  
500  
300  
DC  
tCLK  
tCLK  
fC  
H
L
Analog  
tDS  
DAC Settling Time to 1/2 LSB  
CLOAD = 10 pF, VDD = +5V  
CLOAD = 10 pF, VDD = +3V  
3
6
10  
10  
µs  
µs  
Pin Capacitance  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V, f = 1 MHz(2)  
VOUT = 0V, f = 1 MHz(2)  
8
6
pF  
pF  
COUT  
NOTES: 1. All timing measurements are defined at the point of signal crossing VDD / 2.  
2. These parameters are periodically sampled and are not 100% tested.  
Doc. No. 25048-0A 2/98 M-1  
3
CAT504  
A. C. TIMING DIAGRAM  
Doc. No. 25048-0A 2/98 M-1  
4
CAT504  
PIN DESCRIPTION  
DAC addressing is as follows:  
Pin  
Name  
Function  
DAC OUTPUT  
A0  
0
A1  
0
1
2
3
4
5
6
7
VDD  
CLK  
VPP  
CS  
Power supply positive.  
Clock input pin  
V
V
V
V
1
2
3
4
OUT  
OUT  
OUT  
OUT  
1
0
EEPROM Programming Voltage  
Chip Select  
0
1
DI  
Serial data input pin.  
Serial data output pin.  
1
1
DO  
PROG  
EEPROM Programming Enable  
Input  
8
GND  
Power supply ground.  
9
VREF  
L
Minimum DAC output voltage.  
DAC output channel 4.  
DAC output channel 3.  
DAC output channel 2.  
DAC output channel 1.  
Maximum DAC output voltage.  
10  
11  
12  
13  
14  
VOUT  
VOUT  
VOUT  
VOUT  
4
3
2
1
VREF  
H
DEVICE OPERATION  
read to or from the chip, and the Data Output (DO) pin is  
active. Data loaded into the DAC control registers will  
remain in effect until CS goes low. Bringing CS to a logic  
low returns all DAC outputs to the settings stored in  
EEPROM memory and switches DO to its high imped-  
ance Tri-State mode.  
The CAT504 is a quad 8-bit Digital to Analog Converter  
(DAC) whose outputs can be programmed to any one of  
256 individual voltage steps. Once programmed, these  
output settings are retained in non-volatile EEPROM  
memoryandwillnotbelostwhenpowerisremovedfrom  
the chip. Upon power up the DACs return to the settings  
stored in EEPROM memory. Each DAC can be written  
to and read from independently without effecting the  
output voltage during the read or write cycle. Each  
output can also be temporarily adjusted without chang-  
ing the stored output setting, which is useful for testing  
new output settings before storing them in memory.  
Because CS functions like a reset the CS pin has been  
equipped with a 30 ns to 90 ns filter circuit to prevent  
noise spikes from causing unwanted resets and the loss  
of volatile data.  
CLOCK  
The CAT504’s clock controls both data flow in and out of  
the IC and EEPROM memory cell programming. Serial  
data is shifted into the DI pin and out of the DO pin on the  
clock’srisingedge. Whileitisnotnecessaryfortheclock  
to be running between data transfers, the clock must be  
operating in order to write to EEPROM memory, even  
though the data being saved may already be resident in  
the DAC control register.  
DIGITAL INTERFACE  
The CAT504 employs a standard 3 wire serial control  
interface consisting of Clock (CLK), Chip Select (CS)  
and Data In (DI) inputs. For all operations, address and  
data are shifted in LSB first. In addition, all digital data  
must be preceded by a logic “1” as a start bit. The DAC  
address and data are clocked into the DI pin on the  
clock’s rising edge. When sending multiple blocks of  
information a minimum of two clock cycles is required  
between the last block sent and the next start bit.  
No clock is necessary upon system power-up. The  
CAT504’s internal power-on reset circuitry loads data  
from EEPROM to the DACs without using the external  
clock.  
Multiple devices may share a common input data line by  
selectively activating the CS control of the desired IC.  
Data Outputs (DO) can also share a common line  
because the DO pin is Tri-Stated and returns to a high  
impedance when not in use.  
As data transfers are edge triggered clean clock transi-  
tionsarenecessarytoavoidfalselyclockingdataintothe  
control registers. Standard CMOS and TTL logic fami-  
lies work well in this regard and it is recommended that  
any mechanical switches used for breadboarding or  
device evaluation purposes be debounced by a flip-flop  
or other suitable debouncing circuit.  
CHIP SELECT  
Chip Select (CS) enables and disables the CAT504’s  
readandwriteoperations. WhenCSishighdatamaybe  
Doc. No. 25048-0A 2/98 M-1  
5
CAT504  
V
CS high, a start bit followed by a two bit DAC address  
and eight data bits are clocked into the DAC control  
register via the DI pin. Data enters on the clock’s rising  
edge. The DAC output changes to its new setting on the  
clock cycle following D7, the last data bit.  
REF  
VREF,thevoltageappliedbetweenpinsVREFHandVREFL,  
sets the DAC’s Zero to Full Scale output range where  
VREFL=ZeroandVREFH=FullScale. VREF canspanthe  
full power supply range or just a fraction of it. In typical  
applications VREFHandVREFL are connected across the  
power supply rails. When using less than the full supply  
voltageVREFHisrestrictedtovoltagesbetweenVDD and  
VDD/2 and VREFL to voltages between GND and VDD/2.  
Programming is achieved by bringing PROG high for a  
minimumof3mswhilesupplying18to20voltstotheVPP  
pin. PROG must be brought high sometime after the  
start bit and at least 150 ns prior to the rising edge of the  
clock cycle immediately following the D7 bit. Two clock  
cycles after the D7 bit the DAC control register will be  
ready to receive the next set of address and data bits.  
Theclockmustbekeptrunningthroughouttheprogram-  
ming cycle. Internal control circuitry takes care of  
rampingtheprogrammingvoltagefordatatransfertothe  
EEPROM cells. The CAT504’s EEPROM memory cells  
will endure over 100,000 write cycles and will retain data  
for a minimum of 20 years without being refreshed.  
V
PP  
When saving data to non-volatile EEPROM memory an  
external voltage of 18–20 volts must be applied to the  
VPP pin. This voltage need only be present during the  
programming cycle and may be removed or turned off  
the remainder of the time. While it is not necessary to  
remove or power down VPP between programming  
cycles, some power sensitive applications may choose  
to do so. In such cases, the VPP supply must be given  
sufficient time to come up and stabilize before issuing  
the PROG command.  
READING DATA  
Each time data is transferred into a DAC control register  
currently held data is shifted out via the DI pin, thus in  
every data transaction a read cycle occurs. Note,  
however, that the reading process is destructive. Data  
must be removed from the register in order to be read.  
Figure 2 depicts a Read Only cycle in which no change  
occurs in the DAC’s output. This feature allows µPs to  
poll DACs for their current setting without disturbing the  
output voltage but it assumes that the setting being read  
isalsostoredinEEPROMsothatitcanberestoredatthe  
end of the read cycle. In Figure 2 CS returns low before  
the13th clockcyclecompletes. IndoingsotheEEPROM’s  
setting is reloaded into the DAC control register. Since  
this value is the same as that which had been there  
previously no change in the DAC’s output is noticed.  
Had the value held in the control register been different  
from that stored in EEPROM then a change would occur  
at the read cycle’s conclusion.  
DATA OUTPUT  
Data is output serially by the CAT504, LSB first, via the  
Data Out (DO) pin following the reception of a start bit  
and two address bits by the Data Input (DI). DO  
becomes active whenever CS goes high and resumes  
itshighimpedanceTri-StatemodewhenCSreturnslow.  
Tri-Stating the DO pin allows several 504s to share a  
single serial data line and simplifies interfacing multiple  
504s to a microprocessor.  
WRITING TO MEMORY  
Programming the CAT504’s EEPROM memory is ac-  
complished through the application of an externally  
generated programming voltage, VPP, and the control  
signals: Chip Select (CS) and Program (PROG). With  
Figure 1. Writing to Memory  
Figure 2. Reading from Memory  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
t
1
2
3
4
5
6
7
8
9
10 11 12  
o
o
CS  
DI  
CS  
DI  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
CURRENT DAC DATA  
1
A0 A1  
CURRENT DAC DATA  
D0 D1 D2 D3 D4 D5 D6 D7  
DO  
DO  
PROG  
Vpp  
D0 D1 D2 D3 D4 D5 D6 D7  
PROG  
DON'T CARE  
Vpp  
DON'T CARE  
CURRENT  
DAC VALUE  
DAC  
OUTPUT  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
NEW  
DAC VALUE  
DAC  
OUTPUT  
NON-VOLATILE  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
Doc. No. 25048-0A 2/98 M-1  
6
CAT504  
TEMPORARILY CHANGE OUTPUT  
Figure 3. Temporary Change in Output  
TheCAT504 allowstemporarychangesinDAC’soutput  
to be made without disturbing the settings retained in  
EEPROM memory. This feature is particularly useful  
when testing for a new output setting and allows for user  
adjustment of preset or default values without losing the  
original factory settings.  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
o
CS  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
DI  
CURRENT DAC DATA  
D0 D1 D2 D3 D4 D5 D6 D7  
DO  
Figure 3 shows the control and data signals needed to  
effect a temporary output change. DAC settings may be  
changed as many times as required and can be made to  
any of the four DACs in any order or sequence. The  
temporarysetting(s)remainineffectlongasCSremains  
high. WhenCSreturnslowallfourDACswillreturntothe  
output values stored in EEPROM memory.  
PROG  
Vpp  
DON'T CARE  
DAC  
OUTPUT  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
CURRENT  
DAC VALUE  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
When it is desired to save a new setting acquired using  
this feature, the new value must be reloaded into the  
DAC control register prior to programming. This is be-  
cause the CAT504’s internal control circuitry discards  
the new data from the programming register two clock  
cycles after receiving it (after reception is complete) if no  
PROG signal is received.  
APPLICATION CIRCUITS  
+5V  
+5V  
R
R
i
F
+15V  
+15V  
V
V
H
L
V
V
H
L
DD  
REF  
DD  
REF  
+
V
V
OUT  
OUT  
CONTROL  
& DATA  
CONTROL  
& DATA  
+
CAT504  
CAT504  
OP 07  
OP 07  
-15V  
-15V  
GND  
V
REF  
GND  
V
REF  
R
F
V
= (1 + –––) V  
OUT  
DAC  
R
V
= V  
DAC  
I
OUT  
Buffered DAC Output  
Amplified DAC Output  
DAC INPUT  
DAC OUTPUT  
ANALOG  
OUTPUT  
+5V  
CODE  
= ——— (V - V  
FS  
V
V
) + V  
ZERO  
V
R
R
F
DAC  
ZERO  
i
i
255  
= 0.99 V  
REF  
FS  
V
= 5V  
F
+15V  
REF  
V
= 0.01 V  
REF  
MSB LSB  
1111 1111  
R = R  
V
V
H
L
DD  
REF  
I
ZERO  
V
OUT  
255  
—— (.98 V  
) + .01 V  
REF  
= .990 V  
REF  
V
= +4.90V  
CONTROL  
& DATA  
REF  
OUT  
255  
CAT504  
+
OP 07  
-15V  
128  
GND  
V
REF  
1000 0000  
0111 1111  
0000 0001  
—— (.98 V  
) + .01 V  
REF  
= .502 V  
REF  
V
= +0.02V  
= -0.02V  
= -4.86V  
REF  
OUT  
255  
V
R
F
V
=
(
R ) -V  
R +  
F i  
i
127  
OUT  
DAC  
—— (.98 V  
) + .01 V  
REF  
= .498 V  
REF  
V
255  
REF  
OUT  
R
i
1
—— (.98 V  
) + .01 V  
REF  
= .014 V  
REF  
V
255  
REF  
OUT  
For R =R  
i
F
V
= 2V -V  
OUT  
DAC i  
0
0000 0000 —— (.98 V  
) + .01 V  
REF  
= .010 V  
REF  
V
= -4.90V  
REF  
OUT  
255  
Bipolar DAC Output  
Doc. No. 25048-0A 2/98 M-1  
7
CAT504  
APPLICATION CIRCUITS (Cont.)  
+5V  
V
+V  
REF  
V
REF  
R
= —————  
C
256 1 µA  
*
V
H
DD  
REF  
+5V  
V
REF  
Fine adjust gives ± 1 LSB change in V  
OFFSET  
V
REF  
2
when V  
=
———  
127R  
OFFSET  
C
V
H
V
DD  
REF  
FINE ADJUST  
DAC  
+
)
OFFSET  
(+V  
) - (V  
REF  
127R  
R
= ———————————  
1 µA  
C
C
FINE ADJUST  
DAC  
+
(-V  
) + (V  
)
REF  
OFFSET  
R
= ———————————  
1 µA  
o
R
C
COARSE ADJUST  
DAC  
+V  
R
C
V
OFFSET  
COARSE ADJUST  
DAC  
+
GND  
V
L
REF  
+V  
-V  
R
o
V
OFFSET  
+
-V  
REF  
GND  
V
L
REF  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Single Power Supply Systems  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Dual Power Supply Systems  
28 - 32V  
V+  
I > 2 mA  
15K  
10 µF  
1N5231B  
5.1V  
V
= 5.000V  
REF  
V
V
H
L
DD  
REF  
V
V
H
DD  
REF  
10K  
CONTROL  
& DATA  
CONTROL  
& DATA  
LT 1029  
+
MPT3055EL  
CAT504  
CAT504  
LM 324  
4.02 K  
GND  
V
REF  
L
GND  
V
REF  
OUTPUT  
10 µF  
35V  
0 - 25V  
@ 1A  
1.00K  
Digitally Trimmed Voltage Reference  
Digitally Controlled Voltage Reference  
Doc. No. 25048-0A 2/98 M-1  
8
CAT504  
APPLICATION CIRCUITS (Cont.)  
+5V  
V
V
IN  
REF  
1.0 µF  
LM 339  
+
10K  
V
V
H
+5V  
+5V  
+5V  
+5V  
+5V  
WINDOW 1  
WINDOW 2  
WINDOW 3  
WINDOW 4  
WINDOW 5  
DD  
REF  
V
REF  
+
CAT504  
V
WINDOW 1  
WINDOW 2  
PP  
+
DAC 1  
10K  
10K  
10K  
10K  
V
1
2
OUT  
+
CS  
DI  
V
OUT  
+
DAC 2  
DAC 3  
DAC 4  
WINDOW 3  
+
DO  
V
3
4
OUT  
+
PROG  
WINDOW 4  
WINDOW 5  
V
OUT  
+
CLK  
+
GND  
+
WINDOW STRUCTURE  
GND  
V
L
REF  
Staircase Window Comparator  
+5V  
V
V
IN  
REF  
1.0 µF  
LM 339  
+
V
DD  
V
H
REF  
10K  
CAT504  
+5V  
WINDOW 1  
V
PP  
+
DAC 1  
V
H
REF  
CS  
DI  
WINDOW 1  
V
2
3
OUT  
+
DAC 2  
DAC 3  
DAC 4  
V
1
4
OUT  
10K  
+5V  
WINDOW 2  
+
WINDOW 2  
WINDOW 3  
DO  
V
OUT  
V
OUT  
PROG  
CLK  
GND  
+
10K  
WINDOW STRUCTURE  
+5V  
WINDOW 3  
+
GND  
V
L
REF  
Overlapping Window Comparator  
Doc. No. 25048-0A 2/98 M-1  
9
CAT504  
APPLICATION CIRCUITS (Cont.)  
+5V  
2.2K  
V
V
REF  
4.7 µA  
DD  
LM385-2.5  
+15V  
I
= 2 - 255 mA  
1 mA steps  
SINK  
DAC  
+
2N7000  
+5V  
10K  
10K  
391W  
391W  
CONTROL  
& DATA  
CAT504  
DAC  
+
5 µA steps  
2N7000  
3.9K  
GND  
V
L
5 meg  
10K  
5 meg  
REF  
10K  
+
TIP 30  
-15V  
Current Sink with 4 Decades of Resolution  
+15V  
51K  
+
TIP 29  
10K  
10K  
+5V  
V
V
H
DD  
REF  
5 meg  
5 meg  
391W  
391W  
DAC  
+
CONTROL  
& DATA  
BS170P  
3.9K  
CAT504  
1 mA steps  
5 meg  
5 meg  
DAC  
+
GND  
V
L
REF  
BS170P  
5 µA steps  
LM385-2.5  
-15V  
I
= 2 - 255 mA  
SOURCE  
Current Source with 4 Decades of Resolution  
Doc. No. 25048-0A 2/98 M-1  
10  
CAT504  
APPLICATION CIRCUITS (Cont.)  
+12V  
10K  
1N914  
1.0 µF  
+12V  
74C14  
.005 µF  
13  
V
CC  
1N914  
2.5 µF  
0.1 µF  
0.01 µF  
0.39 µF  
4
8
TREB CAP  
BASS CAP  
0.47 µF  
2
INPUT 1  
IN 1  
20V  
IN5250B  
3
10  
1
19  
V
pp  
V
Z
OUT 1  
OUTPUT 1  
V
DD  
CAT504  
LM1040  
1.0 µF  
47K  
14  
V
REF  
H
9
LOUDNESS  
4
7
5
6
2
CHIP SELECT.  
PROGRAM  
DATA IN  
CS  
13  
12  
11  
10  
14  
11  
5
PROG  
DI  
V
1
2
3
4
VOLUME  
OUT  
47K  
47K  
47 µF  
1
BALANCE  
V
OUT  
10 µF  
10 µF  
7
BYPASS  
DO  
TREBLE  
BASS  
DATA OUT  
CLOCK  
V
OUT  
47K  
18  
16  
CLK  
V
OUT  
0.22 0.22 0.22 0.22  
µF  
µF  
µF  
µF  
9
8
V
L
REF  
15  
OUT 2  
OUTPUT 2  
GND  
0.39 µF  
0.47 µF  
17  
21  
24  
23  
3
IN 2  
BASS CAP  
TREB CAP  
INPUT 2  
STEREO  
0.01 µF  
0.1 µF  
GND  
GND  
22  
ENHANCE  
12  
4.7K  
Digital Stereo Control  
Doc. No. 25048-0A 2/98 M-1  
11  
CAT504  
ORDERING INFORMATION  
Prefix  
Device #  
Suffix  
-TE13  
CAT  
504  
J
I
Optional  
Company ID  
Product  
Number  
Package  
P: PDIP  
J: SOIC  
Tape & Reel  
TE13: 2000/Reel  
Temperature Range  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
Notes:  
(1) The device used in the above example is a CAT504JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)  
Doc. No. 25048-0A 2/98 M-1  
12  

相关型号:

CAT504JTE13

8-Bit Quad DACpot
CATALYST

CAT504P

8-Bit Digital-to-Analog Converter
ETC

CAT504PI

8-Bit Digital-to-Analog Converter
ETC

CAT504PITE13

8-Bit Quad DACpot
CATALYST

CAT504PTE13

8-Bit Quad DACpot
CATALYST

CAT505J

8-Bit Digital-to-Analog Converter
ETC

CAT505JI

8-Bit Digital-to-Analog Converter
ETC

CAT505P

8-Bit Digital-to-Analog Converter
ETC

CAT505PI

8-Bit Digital-to-Analog Converter
ETC

CAT506AC

12-Bit Digital-to-Analog Converter
ETC

CAT506BC

12-Bit Digital-to-Analog Converter
ETC

CAT506BCI

12-Bit Digital-to-Analog Converter
ETC