CAT28LV64N-30 [CATALYST]

EEPROM, 8KX8, 300ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32;
CAT28LV64N-30
型号: CAT28LV64N-30
厂家: CATALYST SEMICONDUCTOR    CATALYST SEMICONDUCTOR
描述:

EEPROM, 8KX8, 300ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

存储 内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总10页 (文件大小:82K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
CAT28LV64  
64K-Bit CMOS PARALLEL E2PROM  
FEATURES  
CMOS and TTL Compatible I/O  
3.0V to 3.6 V Supply  
Automatic Page Write Operation:  
– 1 to 32 Bytes in 5ms  
Read Access Times:  
– 250/300/350ns  
– Page Load Timer  
Low Power CMOS Dissipation:  
– Active: 8 mA Max.  
End of Write Detection:  
– Toggle Bit  
– Standby: 100 µA Max.  
DATA Polling  
Simple Write Operation:  
Hardware and Software Write Protection  
100,000 Program/Erase Cycles  
100 Year Data Retention  
– On-Chip Address and Data Latches  
– Self-Timed Write Cycle with Auto-Clear  
Fast Write Cycle Time:  
– 5ms Max.  
Commercial, Industrial and Automotive  
Temperature Ranges  
DESCRIPTION  
The CAT28LV64 is a low voltage, low power, CMOS  
parallel E2PROM organized as 8K x 8-bits. It requires a  
simple interface for in-system programming. On-chip  
addressanddatalatches,self-timedwritecyclewithauto-  
clear and VCC power up/down write protection eliminate  
additional timing and protection hardware. DATA Polling  
and Toggle status bit signal the start and end of the self-  
timed write cycle. Additionally, the CAT28LV64 features  
hardware and software write protection.  
The CAT28LV64 is manufactured using Catalyst’s ad-  
vanced CMOS floating gate technology. It is designed to  
endure 100,000 program/erase cycles and has a data  
retention of 100 years. The device is available in JEDEC  
approved 28-pin DIP, 28-pin TSOP, 28-pin SOIC or 32-  
pin PLCC packages.  
BLOCK DIAGRAM  
8,192 x 8  
E2PROM  
ARRAY  
ROW  
DECODER  
ADDR. BUFFER  
A –A  
5
12  
& LATCHES  
INADVERTENT  
WRITE  
PROTECTION  
HIGH VOLTAGE  
GENERATOR  
32 BYTE PAGE  
REGISTER  
V
CC  
CE  
OE  
WE  
CONTROL  
LOGIC  
I/O BUFFERS  
DATA POLLING  
AND  
TIMER  
TOGGLE BIT  
I/O –I/O  
0
7
ADDR. BUFFER  
& LATCHES  
A –A  
COLUMN  
DECODER  
0
4
5094 FHD F02  
Doc. No. 25035-00 2/98  
© 1998 by Catalyst Semiconductor, Inc.  
Characteristics subject to change without notice  
1
CAT28LV64  
Preliminary  
PIN CONFIGURATION  
DIP Package (P)  
SOIC Package (J, K)  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
WE  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
A
12  
2
A
2
WE  
12  
A
3
NC  
A
3
NC  
7
6
5
4
3
2
1
0
0
1
2
7
6
5
4
3
2
1
0
0
1
2
A
4
A
A
A
8
A
4
A
A
A
8
A
5
9
A
5
9
A
6
11  
A
6
11  
A
7
OE  
A
A
7
OE  
A
A
8
10  
A
8
10  
A
9
CE  
A
9
CE  
A
10  
11  
12  
13  
14  
I/O  
7
A
10  
11  
12  
13  
14  
I/O  
7
I/O  
I/O  
I/O  
V
I/O  
I/O  
I/O  
I/O  
6
5
4
3
I/O  
I/O  
I/O  
V
I/O  
I/O  
I/O  
I/O  
6
5
4
3
SS  
SS  
PLCC Package (N)  
TSOP Top View (8mm x 13.4mm) (T13)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OE  
1
2
3
4
5
6
7
8
A
10  
A
A
A
NC  
CE  
I/O  
I/O  
I/O  
I/O  
I/O  
11  
9
8
7
6
5
4
3
4
3 2 1 32 31 30  
5
6
7
8
9
29  
28  
27  
26  
25  
24  
23  
22  
21  
A
A
A
A
A
A
A
A
A
A
6
5
4
3
2
1
0
8
WE  
9
V
CC  
NC  
12  
GND  
11  
A
9
I/O  
I/O  
1
I/O  
NC  
OE  
A
2
A
10  
11  
12  
13  
14  
7
TOP VIEW  
A
A
A
A
6
5
4
3
0
10  
11  
12  
13  
A
0
10  
A
1
CE  
A
2
NC  
I/O  
I/O  
I/O  
7
6
0
14 15 16 17 18 19 20  
28LV64 F03  
5094 FHD F01  
PIN FUNCTIONS  
Pin Name  
Function  
Pin Name  
WE  
Function  
Write Enable  
3.0 to 3.6 V Supply  
Ground  
A0–A12  
I/O0–I/O7  
CE  
Address Inputs  
Data Inputs/Outputs  
Chip Enable  
VCC  
VSS  
OE  
Output Enable  
NC  
No Connect  
Doc. No. 25035-00 2/98  
2
Preliminary  
CAT28LV64  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature Under Bias ................. –55°C to +125°C  
Storage Temperature....................... –65°C to +150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
These are stress ratings only, and functional operation  
of the device at these or any other conditions outside of  
those listed in the operational sections of this specifica-  
tion is not implied. Exposure to any absolute maximum  
rating for extended periods may affect device perfor-  
mance and reliability.  
Voltage on Any Pin with  
Respect to Ground(2) ........... –2.0V to +VCC + 2.0V  
VCC with Respect to Ground ............... –2.0V to +7.0V  
Package Power Dissipation  
Capability (Ta = 25°C)................................... 1.0W  
Lead Soldering Temperature (10 secs) ............ 300°C  
Output Short Circuit Current(3) ........................ 100 mA  
RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Endurance  
Min.  
105  
Max.  
Units  
Cycles/Byte  
Years  
Test Method  
(1)  
NEND  
MIL-STD-883, Test Method 1033  
MIL-STD-883, Test Method 1008  
MIL-STD-883, Test Method 3015  
JEDEC Standard 17  
(1)  
TDR  
Data Retention  
ESD Susceptibility  
Latch-Up  
100  
(1)  
VZAP  
2000  
100  
Volts  
(1)(4)  
ILTH  
mA  
MODE SELECTION  
Mode  
CE  
WE  
OE  
L
I/O  
DOUT  
DIN  
Power  
ACTIVE  
ACTIVE  
ACTIVE  
STANDBY  
ACTIVE  
Read  
L
L
H
Byte Write (WE Controlled)  
Byte Write (CE Controlled)  
Standby, and Write Inhibit  
Read and Write Inhibit  
H
L
X
H
H
DIN  
H
X
X
High-Z  
High-Z  
H
CAPACITANCE T = 25°C, f = 1.0 MHz  
A
Symbol  
Test  
Max.  
10  
Units  
pF  
Conditions  
(1)  
CI/O  
Input/Output Capacitance  
Input Capacitance  
VI/O = 0V  
VIN = 0V  
(1)  
CIN  
6
pF  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DC  
voltage on output pins is V +0.5V, which may overshoot to V +2.0V for periods of less than 20 ns.  
CC  
CC  
(3) Output shorted for no more than one second. No more than one output shorted at a time.  
(4) Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to V +1V.  
CC  
Doc. No. 25035-00 2/98  
3
CAT28LV64  
Preliminary  
D.C. OPERATING CHARACTERISTICS  
V
= 3.0V to 3.6V, unless otherwise specified.  
cc  
Limits  
Symbol  
Parameter  
Min. Typ.  
Max.  
Units  
Test Conditions  
CE = OE = VIL,  
f = 1/tRC min, All I/O’s Open  
CE = VIHC  
ICC  
VCC Current (Operating, TTL)  
8
mA  
(3)  
ISBC  
VCC Current (Standby, CMOS)  
100  
µA  
,
All I/O’s Open  
ILI  
Input Leakage Current  
Output Leakage Current  
–1  
–5  
1
5
µA  
µA  
VIN = GND to VCC  
ILO  
VOUT = GND to VCC,  
CE = VIH  
(3)  
VIH  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Write Inhibit Voltage  
2
–0.3  
2
VCC +0.3  
0.6  
V
V
V
V
V
VIL  
VOH  
VOL  
VWI  
IOH = –100µA  
0.3  
IOL = 1.0mA  
2
A.C. CHARACTERISTICS, Read Cycle  
= 3.0V to 3.6V, unless otherwise specified.  
V
cc  
28LV64-25  
28LV64-30  
28LV64-35  
Symbol  
Parameter  
Read Cycle Time  
Min. Max. Min. Max. Min. Max.  
Units  
ns  
tRC  
tCE  
tAA  
tOE  
250  
300  
350  
CE Access Time  
250  
250  
100  
300  
300  
150  
350  
350  
150  
ns  
Address Access Time  
OEAccess Time  
ns  
ns  
(1)  
tLZ  
CE Low to Active Output  
OE Low to Active Output  
CE High to High-Z Output  
OE High to High-Z Output  
Output Hold from Address Change  
0
0
0
0
0
0
ns  
(1)  
tOLZ  
ns  
(1)(2)  
tHZ  
55  
55  
60  
60  
60  
60  
ns  
(1)(2)  
tOHZ  
ns  
(1)  
tOH  
0
0
0
ns  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) Output floating (High-Z) is defined as the state when the external data line is no longer driven by the output buffer.  
(3) V = V –0.3V to V +0.3V.  
IHC  
CC  
CC  
Doc. No. 25035-00 2/98  
4
Preliminary  
CAT28LV64  
(4)  
Figure 1. A.C. Testing Input/Output Waveform  
V
- 0.3 V  
CC  
2.0 V  
0.6 V  
INPUT PULSE LEVELS  
REFERENCE POINTS  
0.0 V  
28LV64 F04  
Figure 2. A.C. Testing Load Circuit (example)  
Vcc  
1.8 K  
DEVICE  
UNDER  
TEST  
OUTPUT  
1. 3K  
C
= 100 pF  
L
C INCLUDES JIG CAPACITANCE  
L
28LV64 F05  
A.C. CHARACTERISTICS, Write Cycle  
= 3.0V to 3.6V, unless otherwise specified.  
V
cc  
28LV64-25  
28LV64-30  
28LV64-35  
Symbol  
Parameter  
Write Cycle Time  
Min. Max.  
Min. Max.  
Min. Max.  
Units  
ms  
ns  
tWC  
tAS  
tAH  
tCS  
tCH  
tCW  
5
5
5
Address Setup Time  
Address Hold Time  
CE Setup Time  
0
100  
0
0
100  
0
0
100  
0
ns  
ns  
CE Hold Time  
0
0
0
ns  
(2)  
CE Pulse Time  
150  
10  
10  
150  
100  
0
150  
10  
10  
150  
100  
0
150  
10  
10  
150  
100  
0
ns  
tOES  
tOEH  
OE Setup Time  
ns  
OE Hold Time  
ns  
(2)  
tWP  
tDS  
WE Pulse Width  
ns  
Data Setup Time  
Data Hold Time  
ns  
tDH  
ns  
(1)  
tINIT  
Write Inhibit Period After Power-up  
Byte Load Cycle Time  
5
10  
5
10  
5
10  
ms  
µs  
(1)(3)  
tBLC  
0.1  
100  
0.1  
100  
0.1  
100  
Note:  
(1) This parameter is tested initially and after a design or process change that affects the parameter.  
(2) A write pulse of less than 20ns duration will not initiate a write cycle.  
(3) A timer of duration t  
max. begins with every LOW to HIGH transition of WE. If allowed to time out, a page or byte write will begin;  
BLC  
however a transition from HIGH to LOW within t  
max. stops the timer.  
BLC  
(4) Input rise and fall times (10% and 90%) < 10 ns.  
Doc. No. 25035-00 2/98  
5
CAT28LV64  
Preliminary  
Byte Write  
DEVICE OPERATION  
A write cycle is executed when both CE and WE are low,  
and OE is high. Write cycles can be initiated using either  
WE or CE, with the address input being latched on the  
falling edge of WE or CE, whichever occurs last. Data,  
conversely, is latched on the rising edge of WE or CE,  
whichever occurs first. Once initiated, a byte write cycle  
automatically erases the addressed byte and the new  
data is written within 5 ms.  
Read  
Data stored in the CAT28LV64 is transferred to the data  
bus when WE is held high, and both OE and CE are held  
low. The data bus is set to a high impedance state when  
either CE or OE goes high. This 2-line control architec-  
ture can be used to eliminate bus contention in a system  
environment.  
Figure 3. Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
t
WE  
LZ  
t
OHZ  
t
t
HZ  
DATA VALID  
t
OH  
OLZ  
HIGH-Z  
DATA OUT  
DATA VALID  
t
AA  
28LV64 F06  
Figure 4. Byte Write Cycle [WE Controlled]  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
t
CH  
CS  
CE  
OE  
WE  
t
t
t
OEH  
OES  
WP  
t
BLC  
HIGH-Z  
DATA OUT  
DATA IN  
DATA VALID  
DS  
t
t
DH  
5096 FHD F06  
Doc. No. 25035-00 2/98  
6
Preliminary  
Page Write  
CAT28LV64  
(which can be loaded in any order) during the first and  
subsequent write cycles. Each successive byte load  
cycle must begin within tBLC MAX of the rising edge of the  
preceding WE pulse. There is no page write window  
The page write mode of the CAT28LV64 (essentially an  
extended BYTE WRITE mode) allows from 1 to 32 bytes  
of data to be programmed within a single E2PROM write  
cycle. This effectively reduces the byte-write time by a  
factor of 32.  
limitation as long as WE is pulsed low within tBLC MAX  
.
Upon completion of the page write sequence, WE must  
stay high a minimum of tBLC MAX for the internal auto-  
matic program cycle to commence. This programming  
cycle consists of an erase cycle, which erases any data  
that existed in each addressed cell, and a write cycle,  
whichwritesnewdatabackintothecell. Apagewritewill  
only write data to the locations that were addressed and  
will not rewrite the entire page.  
FollowinganinitialWRITEoperation(WEpulsedlow,for  
tWP, and then high) the page write mode can begin by  
issuing sequential WE pulses, which load the address  
anddatabytesintoa32bytetemporarybuffer. Thepage  
address where data is to be written, specified by bits A5  
to A12, is latched on the last falling edge of WE. Each  
byte within the page is defined by address bits A0 to A4  
Figure 5. Byte Write Cycle [CE Controlled]  
t
WC  
ADDRESS  
t
t
t
BLC  
AS  
AH  
t
CW  
CE  
OE  
WE  
t
OEH  
t
OES  
t
t
CH  
CS  
HIGH-Z  
DATA OUT  
DATA IN  
DATA VALID  
DS  
t
t
DH  
5094 FHD F07  
Figure 6. Page Mode Write Cycle  
OE  
CE  
WE  
t
t
BLC  
WP  
ADDRESS  
I/O  
t
WC  
LAST BYTE  
BYTE n+2  
BYTE 0 BYTE 1  
BYTE 2  
7
BYTE n  
BYTE n+1  
5096 FHD F10  
Doc. No. 25035-00 2/98  
CAT28LV64  
DATA Polling  
Preliminary  
Toggle Bit  
DATA polling is provided to indicate the completion of  
write cycle. Once a byte write or page write cycle is  
initiated, attempting to read the last byte written will  
output the complement of that data on I/O7 (I/O0–I/O6  
are indeterminate) until the programming cycle is com-  
plete. Upon completion of the self-timed write cycle, all  
I/O’s will output true data during a read cycle.  
In addition to the DATA Polling feature, the device offers  
an additional method for determining the completion of  
a write cycle. While a write cycle is in progress, reading  
data from the device will result in I/O6 toggling between  
one and zero. However, once the write is complete, I/O6  
stops toggling and valid data can be read from the  
device.  
Figure 7. DATA Polling  
ADDRESS  
CE  
WE  
t
OEH  
t
OES  
t
OE  
OE  
t
WC  
= X  
I/O  
D
IN  
= X  
D
D
= X  
OUT  
7
OUT  
28LV64 F10  
Figure 8. Toggle Bit  
WE  
CE  
OE  
t
OEH  
t
OES  
t
OE  
(1)  
(1)  
I/O  
6
t
WC  
28LV64 F11  
Note:  
(1) Beginning and ending state of I/O is indeterminate.  
6
Doc. No. 25035-00 2/98  
8
Preliminary  
CAT28LV64  
HARDWARE DATA PROTECTION  
(4) Noise pulses of less than 20 ns on the WE or CE  
inputs will not result in a write cycle.  
The following is a list of hardware data protection fea-  
tures that are incorporated into the CAT28LV64.  
SOFTWARE DATA PROTECTION  
(1) VCC sense provides for write protection when VCC  
falls below 2.0V min.  
The CAT28LV64 features a software controlled data  
protectionschemewhich, onceenabled, requiresadata  
algorithmtobeissuedtothedevicebeforeawritecanbe  
performed. The device is shipped from Catalyst with the  
software protection NOT ENABLED (the CAT28LV64 is  
in the standard operating mode).  
(2) A power on delay mechanism, tINIT (see AC charac-  
teristics), provides a 5 to 10 ms delay before a write  
sequence, after VCC has reached 2.40V min.  
(3) Write inhibit is activated by holding any one of OE  
low, CE high or WE high.  
Figure 9. Write Sequence for Activating Software  
Data Protection  
Figure 10. Write Sequence for Deactivating  
Software Data Protection  
AA  
WRITE DATA:  
ADDRESS:  
AA  
WRITE DATA:  
ADDRESS:  
1555  
1555  
WRITE DATA:  
ADDRESS:  
55  
WRITE DATA:  
ADDRESS:  
55  
0AAA  
0AAA  
WRITE DATA:  
ADDRESS:  
A0  
WRITE DATA:  
ADDRESS:  
80  
1555  
1555  
WRITE DATA:  
ADDRESS:  
AA  
SOFTWARE DATA  
PROTECTION ACTIVATED  
(1)  
1555  
WRITE DATA:  
XX  
WRITE DATA:  
ADDRESS:  
55  
TO ANY ADDRESS  
0AAA  
WRITE LAST BYTE  
TO  
LAST ADDRESS  
WRITE DATA:  
ADDRESS:  
20  
1555  
28LV64 F12  
5094 FHD F09  
Note:  
(1) Write protection is activated at this point whether or not any more writes are completed. Writing to addresses must occur within t  
Max., after SDP activation.  
BLC  
Doc. No. 25035-00 2/98  
9
CAT28LV64  
Preliminary  
Toactivatethesoftwaredataprotection,thedevicemust  
besentthreewritecommandstospecificaddresseswith  
specific data (Figure 9). This sequence of commands  
(along with subsequent writes) must adhere to the page  
writetimingspecifications(Figure11).Oncethisisdone,  
all subsequent byte or page writes to the device must be  
preceded by this same set of write commands. The data  
protection mechanism is activated until a deactivate  
sequence is issued regardless of power on/off transi-  
tions. This gives the user added inadvertent write pro-  
tection on power-up in addition to the hardware protec-  
tion provided.  
To allow the user the ability to program the device with  
an E2PROM programmer (or for testing purposes) there  
is a software command sequence for deactivating the  
data protection. The six step algorithm (Figure 10) will  
reset the internal protection circuitry, and the device will  
return to standard operating mode (Figure 12 provides  
reset timing). After the sixth byte of this reset sequence  
has been issued, standard byte or page writing can  
commence.  
Figure 11. Software Data Protection Timing  
t
WC  
DATA  
ADDRESS  
AA  
1555  
55  
0AAA  
A0  
1555  
BYTE OR  
PAGE  
CE  
WRITES  
ENABLED  
t
t
BLC  
WP  
WE  
5094 FHD F13  
Figure 12. Resetting Software Data Protection Timing  
t
DATA  
ADDRESS  
AA  
1555  
55  
0AAA  
80  
1555  
AA  
1555  
55  
0AAA  
20  
1555  
WC  
SDP  
RESET  
CE  
DEVICE  
UNPROTECTED  
WE  
5094 FHD F14  
ORDERING INFORMATION  
Prefix  
Device #  
Suffix  
T
CAT  
28LV64  
N
I
-25  
Optional  
Company  
ID  
Temperature Range  
Tape & Reel  
T: 500/Reel  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
A = Automotive (-40˚ to +105˚C)*  
Package  
Speed  
Product  
Number  
P: PDIP  
25: 250ns  
30: 300ns  
35: 350ns  
J: SOIC (JEDEC)  
K: SOIC (EIAJ)  
N: PLCC  
T13: TSOP (8mmx13.4mm)  
* -40˚C to +125˚C is available upon request  
Notes:  
28LV64 F17  
(1) The device used in the above example is a CAT28LV64NI-25T (PLCC, Industrial temperature, 250 ns Access Time, Tape & Reel).  
Doc. No. 25035-00 2/98  
10  

相关型号:

CAT28LV64N-30T

64K-Bit CMOS PARALLEL E2PROM
CATALYST

CAT28LV64N-30TE13

8KX8 EEPROM 3V, 300ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28LV64N-30TE13

EEPROM, 8KX8, 300ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
CATALYST

CAT28LV64N-30TE7

EEPROM, 8KX8, 300ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
CATALYST

CAT28LV64N-30TE7

8KX8 EEPROM 3V, 300ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28LV64N-35

8KX8 EEPROM 3V, 350ns, PQCC32, PLASTIC, LCC-32
CATALYST

CAT28LV64N-35T

64K-Bit CMOS PARALLEL E2PROM
CATALYST

CAT28LV64N-35TE13

8KX8 EEPROM 3V, 350ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28LV64N-35TE7

8KX8 EEPROM 3V, 350ns, PQCC32, PLASTIC, LCC-32
ONSEMI

CAT28LV64N-35TE7

EEPROM, 8KX8, 350ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
CATALYST

CAT28LV64NA-15T

64K-Bit CMOS PARALLEL EEPROM
CATALYST

CAT28LV64NA-15T

64 kb CMOS Parallel EEPROM
ONSEMI