TMC1103 [CADEKA]

Triple Video A/D Converter with Clamps 8-Bit, 50Msps; 三路视频A / D转换器,线夹8位, 50MSPS
TMC1103
型号: TMC1103
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
三路视频A / D转换器,线夹8位, 50MSPS

转换器
文件: 总16页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.cadeka.com  
TMC1 1 0 3  
Trip le Vid e o A/D Co n ve rt e r w it h Cla m p s  
8 -Bit , 5 0 Ms p s  
Features  
Applications  
• 8-bit resolution  
• 50 Msps conversion rate  
• Low power: 100mW per channel @ 20 Msps  
• Integral track/hold  
• Video digitizing (composite and Y-C)  
• VGA and CCD digitizing  
• LCD projection panels  
• Image scanners  
• Independent Input Clamps  
• Independent clock inputs  
• Integral and differential linearity error 0.5 LSB  
• Differential phase 0.7 degree  
• Differential gain 1.8%  
• Personal computer video boards  
• Multimedia systems  
• Low cost, high speed data conversion  
• Single +5V power supply  
• Three-state TTL/CMOS-compatible outputs  
• Low cost  
Description  
Incorporated into the TMC1103 are three analog-to-digital  
(A/D) converters, each with an independent clock, reference  
voltage and input clamp. Analog signals are converted to  
Triple 8-bit digital words at sample rates up to 50 Msps  
(Megasamples per second) per channel.  
submicron CMOS technology reduce typical power dissipa-  
tion to 100 mW per converter.  
Power is derived from a single +5 Volt power supply. Out-  
puts are three-state outputs and TTL/CMOS-compatible.  
TMC1103 package is a 80-lead Metric Quad Flat Pack  
(MQFP). Performance specifications are guaranteed from  
0°C to 70°C.  
Integral Track/Hold circuits deliver excellent performance  
on signals with full-scale spectral components up to  
12 MHz. Innovative two-step conversion architecture and  
Block Diagram  
R
TA  
BA  
R
8-bit  
A/D Converter  
V
INA  
Clamp  
Clamp  
Clamp  
DA  
OE  
7-0  
A
V
CLPA  
CLP  
A
CLK  
A
R
TB  
BB  
R
8-bit  
A/D Converter  
V
INB  
DA  
7-0  
B
OE  
V
CLPB  
CLP  
B
CLK  
B
R
TC  
BC  
R
8-bit  
A/D Converter  
V
INC  
DA  
7-0  
C
OE  
V
CLPC  
CLP  
C
CLK  
C
65-1103-01  
Rev. 1.2.0  
TMC1103  
PRODUCT SPECIFICATION  
A/D Converter  
0.1µF  
Circuit Function  
Analog  
Input  
V
INX  
Within the TMC1103 are three 8-bit A/D converters, each  
employing two-step architecture to convert an analog input  
to a digital output at rates up to 50 Msps. Input signals are  
held in integral track/hold stages during the conversion pro-  
cess. Operation is pipelined, with one input sample taken and  
V
CLPX  
65-1103-02  
CLP  
X
one output word provided for each CLK cycle.  
X
Input Clamp Circuit  
Each of the three converters function identically. In the fol-  
lowing descriptions ‘X’ refers to a generic input/output or  
clock where ‘X’ is equivalent to A, B or C.  
Digital Inputs and Outputs  
Sampling of the applied input signal occurs on the falling  
edge of the CLK signal (Figure 1). Output data is delayed  
X
The first step in the conversion process is a coarse 4-bit  
quantization. This determines the range of the subsequent  
fine 4-bit quantization step. To eliminate spurious codes, the  
fine 4-bit A/D quantizer output is gray-coded and converted  
to binary before it is combined with the coarse result to form  
a complete 8-bit result.  
by 2 1/2 CLK cycles and is valid following the rising edge  
X
of CLK . Previous output data remains valid for t  
(Out-  
put Hold Time). New data becomes valid t (Output Delay  
X
HO  
D
Time) after this rising edge of CLK .  
X
Whenever the analog input signal is sampled and found to be  
at a level beyond the A/D conversion range, the output limits  
at 00h or FFh, as appropriate.  
Analog Input and Voltage References  
Each A/D accepts analog signals in the range RBX to RTX into  
digital data. Input signals outside this range produce “satu-  
rated” 00h or FFh output codes. The device will not  
Table 1. A/D Output Coding  
Input Voltage  
+ 1 LSB  
Output  
FF  
be damaged by signals within the range A  
to V .  
GND  
DDA  
R
TX  
Input range is very flexible and extends from the +5 Volt  
power supply to ground. Nominal input range is 2 Volts,  
extending from 0.6V to 2.6V. Characterization and  
performance is specified over this range. However, the  
part will function with a full-scale range from 1.0V to 5.0V.  
A smaller input range may simplify analog signal condition-  
ing circuitry, at the expense of additional noise sensitivity  
and some reduced differential linearity performance.  
R
TX  
FF  
R
TX  
- 1 LSB  
• • •  
FE  
• • •  
80  
R
R
+ 128 LSB  
+ 127 LSB  
• • •  
BX  
7F  
BX  
• • •  
01  
External voltage reference sources are connected to the R  
TX  
R
BX  
+ 1 LSB  
and R pins. R can be grounded. Within each A/D con-  
BX BX  
R
BX  
00  
verter is a reference resistor ladder comprising 255 resistors  
that are accessed by the TMC1103 comparators. R is con-  
TX  
R
BX  
- 1 LSB  
00  
nected to the top of the ladder, R to the bottom. Gain and  
BX  
offset errors are directly related to the accuracy and stability  
of the applied reference voltages.  
Note: 1 LSB = (R – R ) / 255  
TX BX  
The outputs of the TMC1103 are CMOS- and  
TTL-compatible, and are capable of driving four low-power  
Input Clamps  
Schottky TTL loads. An Output Enable control, OE , places  
X
A clamp circuit is connected to the input pin V of each of  
the three A/D converters. With CLP LOW, the input pin is  
clamped to the voltage at V  
INX  
the A/D outputs in a high-impedance state when HIGH.  
X
The outputs are enabled when OE is LOW.  
X
. If CLP is HIGH, the  
CLPX  
X
input pin is high impedance. Clamping adds an offset voltage  
to an AC coupled signal to adjust this signal’s amplitude to  
the A/D converter input voltage range.  
Power and Ground  
The TMC1103 operates from a single +5 Volt power supply.  
For optimum performance, an analog ground plane should  
be placed under the TMC1103 the A pins  
should be connected to the system analog ground plane.  
The analog input is corrected through a 0.1mF capacitor to  
and D  
GND  
GND  
V
. The source impedance of the analog source should be  
INX  
less than 50 Ohms. Current pulses through the capacitor over  
several clamp cycles until the voltage across the capacitor  
equals the difference between V  
and the voltage at the  
CLPX  
analog source during the clamping period. When the switch  
is open, the voltage on the coupling capacitor is added to the  
analog input, producing a a DC offset input signal.  
2
PRODUCT SPECIFICATION  
TMC1103  
Pin Assignments  
64  
41  
Pin  
1
Name  
Pin  
Name  
Pin  
Name  
Pin  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Name  
NC  
21 DGND  
22 DGND  
23 NC  
41 DC  
42 OE  
V
DD  
7
65  
40  
2
DA  
DA  
DA  
OE  
5
6
7
C
B
7
6
5
4
3
2
1
0
3
43  
44  
V
DD  
V
DD  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
4
24 NC  
5
OE  
25 DGND  
26 DGND  
45 CLK  
46 NC  
A
DD  
DD  
C
6
V
V
7
27  
V
47  
48  
V
DDA  
V
INC  
DD  
8
NC  
28 CLP  
29 CLP  
30 CLP  
31 NC  
A
B
C
9
CLK  
49 AGND  
A
10 NC  
50  
51  
52  
53  
R
TC  
R
BC  
R
BB  
R
TB  
11  
12  
V
DGND  
DGND  
NC  
80  
DDA  
INA  
25  
V
32 DGND  
33 DGND  
13 AGND  
1
24  
14  
15  
16  
17  
18  
R
R
34 DC  
35 DC  
36 DC  
37 DC  
38 DC  
39 DC  
40 DC  
54 AGND  
DGND  
DGND  
TA  
0
1
2
3
4
5
6
65-1103-03  
55  
56  
V
V
BA  
INB  
V
CLPA  
V
CLPB  
V
CLPC  
DA  
DA  
DA  
DA  
DA  
DDA  
0
1
2
3
4
57 NC  
58 CLK  
59 NC  
B
19 DGND  
20 DGND  
60  
V
DD  
3
PRODUCT SPECIFICATION  
TMC1103  
Pin Descriptions  
Pin Name  
Pin Number  
Value  
Pin Function Description  
A/D Converters  
V
V
, V  
INC  
,
12, 55, 48  
14, 53, 50  
15, 52, 51  
9, 58, 45  
R
R
to Analog Inputs. The input voltage conversion range lies between the  
INA INB  
TX  
voltage applied to the R and R pins.  
TX BX  
BX  
R
, R , R  
TA TB TC  
2.6V  
Reference Voltage, Top Inputs. DC voltages applied to R , R  
TA TB  
and R define highest value of V  
.
TC INX  
R
, R , R  
BA BB BC  
0.6V  
Reference Voltage, Bottom Inputs. DC voltages applied to R  
,
BA  
R
BB  
and R  
BC  
define lowest value of V .  
INX  
CLK , CLK ,  
CLK  
CMOS Clock Inputs. CMOS-compatible. V is sampled on the falling  
INX  
A
C
B
edge of CLK .  
X
DA  
DB  
DC  
4, 3, 2, 80, 79, CMOS/ Data outputs, Converter A (D = MSB). Eight-bit CMOS- and  
7
7-0  
7-0  
7-0  
78, 77, 76  
TTL  
TTL-compatible digital outputs. Valid data is output on the rising  
edge of CLK .  
X
63, 64, 65, 66, CMOS/ Data outputs, Converter B (D = MSB). Eight-bit CMOS- and  
7
67, 68, 69, 70  
TTL  
TTL-compatible digital outputs. Valid data is output on the rising  
edge of CLK .  
X
41, 40, 39, 38, CMOS/ Data outputs, Converter C (D = MSB). Eight-bit CMOS- and  
7
37, 36, 35, 34  
TTL  
TTL-compatible digital outputs. Valid data is output on the rising  
edge of CLK .  
X
OE , OE , OE  
5, 62, 42  
CMOS Output Enable Inputs. CMOS-compatible. When LOW, the A/D  
output is enabled. When HIGH, the output is in a high-impedance  
state.  
A
B
C
Clamps  
V
V
, V  
,
16, 17, 18  
28, 29, 30  
R
R
to Clamp Reference Voltage. One reference for each clamp. A V  
CLPA CLPB  
CLPB  
TX INX  
input is clamped to V when CLP is low.  
CLPX X  
BX  
CLP , CLP ,  
CLP  
CMOS Clamp Pulse Inputs. One input for each A/D clamp. When CLP is  
A
C
B
X
low, the V  
INX  
input is clamped to the V clamp voltage.  
CLPX  
Power  
V
11, 47, 56  
+5V  
+5V  
Analog Supply Voltage. +5 Volt power inputs. These should come  
from the same power source and be decoupled to A  
DDA  
.
GND  
Digital Supply Voltage. +5 Volt power inputs. These should come  
from the same power source and be decoupled to A  
V
DD  
6, 7, 27, 28, 29,  
30, 43, 44, 60,  
61  
.
GND  
A
13, 49, 54  
0.0V  
0.0V  
Analog Ground. Ground connections. These pins should be  
connected to the system analog ground plane.  
GND  
D
16, 17, 18, 19,  
20, 21, 22, 25,  
26, 32, 33, 71,  
72, 74, 75  
Digital Ground. Ground connections. These pins should be  
connected to the system analog ground plane.  
GND  
No Connect  
N/C  
1, 8, 10, 23, 24,  
31, 46, 57, 59,  
73  
open  
Not Connected.  
4
PRODUCT SPECIFICATION  
TMC1103  
Sample N+3  
t
STD  
Sample N+2  
V
Sample N  
INX  
Sample N+1  
t
t
1/f  
S
PWL  
PWH  
CLK  
X
t
DO  
t
HO  
Hi-Z  
DX  
Data N-3  
Data N-2  
Data N-1  
Data N  
7-0  
t
t
ENA  
DIS  
OE  
X
65-1103-04  
Figure 1. Timing  
Equivalent Circuits and Threshold Levels  
V
DD  
V
DD  
p
n
p
Digital  
Input  
Digital  
Output  
n
27011B  
27014B  
GND  
Figure 3. Equivalent Digital Output Circuit  
GND  
Figure 2. Equivalent Digital Input Circuit  
5
TMC1103  
PRODUCT SPECIFICATION  
Equivalent Circuits and Threshold Levels (continued)  
V
V
RT  
DDA  
t
ENA  
V
IN  
t
OE  
0.5V  
DIS  
Three-State  
Outputs  
2.0V  
0.8V  
7048B  
0.5V  
High Impedance  
29030  
A
GND  
V
RB  
Figure 4. Equivalent Analog Input Circuit  
Figure 5. Threshold Levels for Three-State Measurements  
Absolute Maximum Ratings (beyond which the device may be damaged)1  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Power Supply Voltages  
VDDA  
Measured to A  
Measured to D  
Measured to V  
Measured to D  
-0.5  
-0.5  
-0.5  
-0.5  
+7.0  
+7.0  
+0.5  
+0.5  
V
V
V
V
GND  
GND  
DD  
VDD  
VDDA  
AGND  
GND  
Digital Inputs  
Applied Voltage  
Forced current  
Analog Inputs  
Applied Voltage  
Forced current  
Digital Outputs  
Applied voltage  
Forced current  
Short circuit duration  
Temperature  
Operating, ambient  
Junction  
Measured to DGND  
-0.5  
V
V
V
+ 0.5  
V
DD  
-10.0  
+10.0  
mA  
Measured to A  
-0.5  
+0.5  
DDA  
V
GND  
GND  
-10.0  
+10.0  
mA  
Measured to D  
-0.5  
-6.0  
+ 0.5  
V
DD  
+6.0  
mA  
Single output in HIGH state to ground)  
1 second  
-20  
-65  
110  
°C  
°C  
°C  
°C  
°C  
V
+150  
+300  
+220  
+150  
±150  
Lead, soldering  
Vapor Phase soldering  
Storage  
10 seconds  
1 minute  
Electrostatic Discharge  
EIAJ test method  
Notes:  
1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating  
conditions. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed  
only if Operating Conditions are not exceeded.  
2. Applied voltage must be current limited to specified range.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current flowing into the device.  
6
PRODUCT SPECIFICATION  
TMC1103  
Operating Conditions  
Parameter  
Min.  
4.75  
-0.1  
Nom  
5.0  
0
Max.  
5.25  
0.1  
Units  
V
V
A
V
V
V
V
V
V
V
, V  
Power Supply Voltage  
DD DDA  
Analog Ground (Measured to D  
Reference Voltage, Top  
Reference Voltage, Bottom  
Reference Voltage Differential  
Analog Input Range  
)
V
GND  
RTX  
RBX  
GND  
2.6  
0.6  
2.0  
V
DDA  
V
0
V
-V  
1.0  
5.0  
V
RTX RBX  
V
RB  
V
RT  
V
INX  
CLPX  
IH  
Clamp Reference Voltage, 50W max source  
Input Voltage, Logic HIGH  
0
V
0.7 V  
DD  
V
DD  
V
Input Voltage, Logic LOW  
GND  
0.3 V  
DD  
V
IL  
I
I
Output Current, Logic HIGH  
Output Current, Logic LOW  
-4.0  
4.0  
70  
mA  
mA  
°C  
OH  
OL  
T
Ambient Temperature, Still Air  
0
A
Electrical Characteristics  
Parameter  
Conditions  
Min.  
Typ1  
Max.  
Units  
I
Power Supply Current1  
C
LOAD  
= 35pF, f = f (3 A/Ds)  
CK S  
DD  
f = 20 Msps  
70  
94  
90  
mA  
mA  
mA  
S
f = 40 Msps  
S
120  
135  
f = 50 Msps  
S
105  
I
Power Supply Current,  
Quiescent  
V
= V  
DD DDA  
= Max.  
DDQ  
CLK = LOW  
29  
45  
55  
65  
mA  
mA  
X
CLK = HIGH  
X
PD  
Total Power Dissipation1  
Input Capacitance, Analog  
C
= 35pF, f  
CK  
= f (3 A/Ds)  
S
LOAD  
f = 20 Msps  
S
300  
425  
490  
4
470  
630  
710  
mW  
mW  
mW  
pF  
f = 40 Msps  
S
f = 50 Msps  
S
C
AI  
CLK = LOW  
X
CLK = HIGH  
12  
pF  
X
R
R
Input Resistance  
500  
200  
kW  
W
IN  
Reference Resistance  
Input Current, Analog  
Input Current, HIGH  
Input Current, LOW  
270  
340  
±5  
REF  
I
I
I
I
mA  
mA  
mA  
mA  
CB  
V
DD  
V
DD  
V
DD  
= Max., V = V  
IN  
±5  
IH  
DD  
= Max., V = 0V  
IN  
±5  
IL  
Hi-Z Output Leakage Current,  
Output HIGH  
= Max., V = V  
IN  
±5  
OZH  
DD  
I
I
Hi-Z Output Leakage Current,  
Output LOW  
V
= Max., V = V  
IN  
±5  
mA  
OZL  
OS  
DD  
DD  
Short-Circuit Current  
35  
mA  
7
TMC1103  
PRODUCT SPECIFICATION  
Electrical Characteristics (continued)  
Parameter  
Conditions  
= -2.5mA  
Min.  
3.5  
Typ1  
Max.  
Units  
V
V
OH  
Output Voltage, HIGH  
I
I
I
OH  
OH  
OL  
= Max.  
= Max.  
2.4  
V
V
OL  
Output Voltage, LOW  
0.4  
10  
V
C
C
Digital Input Capacitance  
Digital Output Capacitance  
4
pF  
pF  
DI  
10  
DO  
Note:  
1. Typical values with V  
= V  
DDA  
= Nom and T = Nom, Maximum values with V  
DD  
= V = Max. and T = Min.  
DDA A  
DD  
A
Switching Characteristics  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
f
t
t
Conversion Rate  
TMC1103-20  
S
20  
40  
50  
Msps  
Msps  
Msps  
TMC1103-40  
TMC1103-50  
CLKX Pulsewidth, HIGH  
TMC1103-20  
PWH  
PWL  
14  
14  
13  
ns  
ns  
ns  
TMC1103-40  
TMC1103-50  
CLKX Pulsewidth, LOW  
TMC1103-20  
8
8
7
ns  
ns  
ns  
ps  
ns  
ps  
mS  
ns  
ns  
ns  
ns  
ns  
TMC1103-40  
TMC1103-50  
E
Aperture Error  
30  
2
AP  
t
t
t
t
t
t
t
t
Sampling Time Offset  
Sampling Time Skew  
Clamp Pulse Width1  
Clamp Delay Time  
Output Hold Time  
Output Delay Time  
Output Enable Time  
Output Disable Time  
1
5
STO  
STS  
CPW  
CDLY  
HO  
150  
400  
+20 < T < +70°C  
2
100  
9
A
300  
CLOAD = 15pF  
14  
27  
42  
DO  
ENA  
DIS  
8
PRODUCT SPECIFICATION  
TMC1103  
System Performance Characteristics  
Parameter  
Conditions  
= 2.6V  
Min.  
Typ.  
Max.  
Units  
E
LI  
Integral Linearity Error,  
Independent  
V
V
±0.5  
LSB  
RT  
E
Differential Linearity Error  
Bandwidth1  
= 0.6V  
±0.5  
LSB  
MHz  
MHz  
MHz  
mV  
LD  
RB  
BW  
TMC1203-20  
TMC1203-40  
TMC1203-50  
10  
12  
12  
80  
E
E
Offset Voltage, Top  
(R – V for most positive  
code transition)  
V
= 2.6V, V  
= 0.6V  
= 0.6V  
-40  
-95  
OT  
RT  
RB  
RB  
T
IN  
Offset Voltage, Bottom  
V
RT  
= 2.6V, V  
-30  
mV  
OB  
(R – V for most negative  
B
IN  
code transition)  
OFF  
dg  
Offset Voltage, Clamp  
Differential Gain  
±20  
mV  
%
CL  
f = 14.3Msps  
NTSC 40 IRE Mod Ramp  
1.8  
0.7  
45  
S
V
V
= +5.0V, T =25°C  
DDA  
= 2.6V, V  
A
= 0.6V  
RB  
RT  
dp  
Differential Phase  
f = 14.3Msps  
deg  
dB  
S
NTSC 40 IRE Mod Ramp  
V
V
= +5.0V, T =25°C  
DDA  
= 2.6V, V  
A
= 0.6V  
RB  
RT  
= 5.0 MHz  
XTALK Channel Crosstalk  
SNR Signal-to-Noise Ratio  
f
N
f = 20Msps, V = 2.6V, V  
= 0.6V  
S
N
N
N
N
RT  
RB  
f
f
f
f
= 1.24MHz  
= 2.48MHz  
= 6.98MHz  
= 10.0MHz  
46  
46  
45  
45  
dB  
dB  
dB  
dB  
f = 40Msps, V = 2.6V, V  
= 0.6V  
= 0.6V  
S
N
N
N
RT  
RB  
f
f
f
= 1.24MHz  
= 6.98MHz  
= 12.0MHz  
42  
41  
40  
dB  
dB  
dB  
f = 50Msps, V = 2.6V, V  
S
N
N
N
RT  
RB  
f
f
f
= 1.24MHz  
= 6.98MHz  
= 12.0MHz  
40  
40  
40  
dB  
dB  
dB  
9
TMC1103  
PRODUCT SPECIFICATION  
System Performance Characteristics (continued)  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
SFDR Spurious-Free Dynamic Range  
f = 20Msps, V = 2V p-p  
S
N
N
N
N
IN  
f
f
f
f
= 1.24MHz  
= 2.48MHz  
= 6.98MHz  
= 10.0MHz  
53  
48  
44  
40  
dB  
dB  
dB  
dB  
f = 40Msps, V = 2V p-p  
S
N
N
N
IN  
f
f
f
= 1.24MHz  
= 6.98MHz  
= 12.0MHz  
49  
44  
38  
dB  
dB  
dB  
f = 50Msps, V = 2V p-p  
S
N
N
N
IN  
f
f
f
= 1.24MHz  
= 6.98MHz  
= 12.0MHz  
46  
40  
37  
dB  
dB  
dB  
Notes:  
1. Bandwidth is the frequency up to which a full-scale sinewave can be digitized without spurious codes.  
2. Values shown in Typ. column are typical for V = V = +5V and T = 25°C.  
DD DDA  
A
3. SNR values do not include the harmonics of the fundamental frequency.  
4. SFDR is the ratio in dB of fundamental amplitude to the harmonic with the highest amplitude.  
5. Characteristics specified for V = 2.6V, V  
RT  
= 0.6V.  
RB  
10  
PRODUCT SPECIFICATION  
TMC1103  
Typical Performance Characteristics  
60  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
f
= 20Msps  
S
20  
10  
0
0
0
10  
20  
30  
(Msps)  
40  
50  
0
5
10  
15  
(Msps)  
20  
25  
f
S
f
IN  
65-1103-05  
65-1103-06  
Figure 6. Typical I  
vs f (Single A/D)  
Figure 7. Typical SFDR vs f  
DD  
S
IN  
50  
40  
50  
40  
30  
20  
30  
20  
f
= 20Msps  
S
f
= 20Msps  
S
10  
0
10  
0
0
5
10  
15  
(MHz)  
20  
25  
0
1
2
3
4
5
V
IN  
f
IN  
65-1103-08  
65-1103-07  
Figure 8. Typical SNR vs f  
IN  
Figure 9. Typical SNR vs Full Scale Input Range  
11  
TMC1103  
PRODUCT SPECIFICATION  
Application Notes  
The circuit in Figure 10 employs a band-gap reference to  
The voltage reference at R can be adjusted from 0.0 to 2.4  
TX  
generate a variable R reference voltages for the TMC1103  
volts while R is grounded. Schottky diodes can be used at  
TX  
BX  
as well as a bias voltage to offset the wideband input amplifi-  
ers to mid-range. The operational amplifier in the reference  
circuitry is a standard 741-type.  
V
to restrict the wideband amplifier output to between  
INX  
-0.3V and V  
+0.3V. Diode protection is good practice to  
DD  
limit the analog input voltage at V  
range.  
to the safe operating  
INX  
+5V  
0.1µF  
0.1µF  
1k½  
LM185-1.2  
+5V  
V
V
DD  
0.1µF  
DDA  
Gain Adjust  
+
20½  
V
+5V  
DDP  
R
R
R
2k½  
0.1µF  
TA  
TB  
TC  
1k½  
0.1µF  
0.1µF  
R
R
R
BA  
BB  
BC  
1k½  
GREEN  
Digital  
Video  
DA  
7-0  
100  
0.1µF  
+
GREEN  
Video  
Input  
Output  
V
INA  
OE  
A
A
75½  
V
CLPA  
CLK  
1k½  
CLP  
A
TMC1103  
10k½  
1k½  
BLUE  
Digital  
Video  
Output  
DB  
7-0  
100  
OE  
0.1µF  
B
B
+
BLUE  
Video  
Input  
V
V
INB  
CLPB  
CLK  
75½  
1k½  
CLP  
B
RED  
Digital  
Video  
Output  
10k½  
1k½  
DC  
7-0  
V
CLPC  
CLP  
OE  
C
C
C
100  
Pixel  
Clock  
0.1µF  
CLK  
+
RED  
Video  
Input  
V
INC  
75½  
A
D
GND  
GND  
1k½  
VCLAMP  
CLAMP  
10k½  
1k½  
65-1103-09  
Figure 10. Typical Interface Circuit – High Performance  
Grounding  
Printed Circuit Board Layout  
The TMC1103 has separate analog and digital circuits. To  
keep digital system noise from the A/D converter, it is rec-  
Designing with high performance mixed-signal circuits  
demands printed circuits with ground planes. Overall system  
performance is strongly influenced by the board layout.  
Capacitive coupling from digital to analog circuits may  
result in poor A/D conversion. Consider the following sug-  
gestions when doing the layout:  
ommended that power supply voltages (V  
and V )  
DD  
DDA  
come from the same source, and that ground connections  
(D and A ) be made to the analog ground plane, and  
GND GND  
as close as possible to the device pins. Power supply pins  
should be individually decoupled at the pin. The digital cir-  
cuitry that gets its input from the TMC1103 should be  
referred to the system digital ground plane.  
1. Keep the critical analog traces (V , R , R ) as short  
TX BX  
N
as possible and as far as possible from all digital signals.  
The TMC1103 should be located close to the analog  
input connectors.  
12  
PRODUCT SPECIFICATION  
TMC1103  
2. Segregate traces:  
5. Decoupling capacitors should be applied liberally to  
pins. Remember that not all power supply pins  
V
DD  
• A/D analog  
• D/A analog  
• Clocks  
are created equal. They supply different circuits on the  
integrated circuit, each of which generate varying  
amounts and types of noise. For best results, use 0.1mF  
ceramic capacitors. Lead lengths should be minimized.  
• Digital  
Treat analog inputs as transmission lines. Cleanly route  
traces over the ground plane bearing in mind that the  
return currents will flow through the ground plane  
beneath the traces. Do not route digital traces nearby.  
A few inches of digital trace less than a few line widths  
from an analog trace will cross-couple noise into  
adjacent analog circuits.  
6. CLK should be handled carefully. Jitter and noise on  
X
this clock may degrade performance. Terminate the  
clock line, if needed, to eliminate overshoot and ringing.  
Related Products  
• TMC1175A, TMC1275 8-Bit Video A/D Converters  
• TMC1173A, TMC1273 3V, Low-Power 8-Bit Video  
A/D Converters  
3. The power plane for the TMC1103 should be separate  
from that which supplies the rest of the digital circuitry.  
A single power plane should be used for all of the V  
DD  
• TMC1203 Triple 8-bit A/D Converter  
pins. If the power supply for the TMC1103 is the same  
as that of the system's digital circuitry, power to the  
TMC1103 should be decoupled with ferrite beads and  
0.1mF capacitors to reduce noise.  
• TMC3003/TMC3503 Triple Video D/A Converters  
• TMC2242B/TMC2243/TMC2246A Digital Filters  
4. The ground plane should be solid, not cross-hatched.  
Connections to the ground plane should have very short  
leads.  
13  
TMC1103  
PRODUCT SPECIFICATION  
Notes:  
14  
PRODUCT SPECIFICATION  
TMC1103  
Mechanical Dimensions – 80-Lead MQFP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. All dimensions and tolerances conform to ANSI Y14.5M-1982.  
Min.  
Max.  
2. Controlling dimension is millimeters.  
A
.134  
3.40  
3. Dimension "B" does not include dambar protrusion. Allowable  
dambar protrusion shall be .08mm (.003in.) maximum in excess of  
the "B" dimension. Dambar cannot be located on the lower radius  
or the foot.  
A1  
A2  
B
.010  
.100  
.012  
.005  
.904  
.783  
.667  
.547  
.25  
.120  
.018  
.009  
.923  
.791  
.687  
.555  
2.55  
.30  
3.05  
.45  
3, 5  
5
4. "L" is the length of terminal for soldering to a substrate.  
5. "B" & "C" includes lead finish thickness.  
C
.13  
.23  
D
22.95  
19.90  
16.95  
13.90  
23.45  
20.10  
17.45  
14.10  
D1  
E
E1  
e
.0315 BSC  
.80 BSC  
4
L
.025  
.041  
.65  
1.03  
N
80  
24  
16  
80  
24  
16  
ND  
NE  
a
0¡  
7¡  
0¡  
7¡  
ccc  
.004  
0.10  
D
D1  
.20 (.008) Min.  
e
0¡ Min.  
.13 (.30)  
.005 (.012)  
Datum Plane  
R
E1  
C
E
Pin 1  
Identifier  
a
.13 (.005) R Min.  
B
L
0.063" Ref (1.60mm)  
Lead Detail  
See Lead Detail  
Base Plane  
A2  
A
-C-  
LEAD COPLANARITY  
ccc  
Seating Plane  
A1  
C
15  
TMC1103  
PRODUCT SPECIFICATION  
Ordering Information  
Conversion  
Product Number Rate (Msps) Temperature Range Screening  
Package  
Package Marking  
1103KLC20  
TMC1103KLC20  
TMC1103KLC40  
TMC1103KLC50  
20 Msps  
40 Msps  
50 Msps  
T = 0°C to 70°C  
Commercial 80-Lead MQFP  
Commercial 80-Lead MQFP  
Commercial 80-Lead MQFP  
A
T = 0°C to 70°C  
A
1103KLC40  
T = 0°C to 70°C  
A
1103KLC50  
6/22/98 0.0m 002  
Stock# DS70001103  

相关型号:

TMC1103KLC20

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
FAIRCHILD

TMC1103KLC20

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
CADEKA

TMC1103KLC40

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
FAIRCHILD

TMC1103KLC40

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
CADEKA

TMC1103KLC50

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
FAIRCHILD

TMC1103KLC50

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
CADEKA

TMC1103X50

Triple Video A/D Converter with Clamps 8-Bit, 50Msps
FAIRCHILD

TMC1173AM7C20

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDSO24, PLASTIC, SOIC-24
FAIRCHILD

TMC1173AM7C5

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDSO24,
RAYTHEON

TMC1173AN2C20

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDIP24,
RAYTHEON

TMC1173AN2C5

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDIP24,
RAYTHEON

TMC1173AN7B20

A/D Converter, 8-Bit, 1 Func, CMOS, PDIP24,
FAIRCHILD