CDK8307CITQ80 [CADEKA]

12/13-bit, 20/40/50/65MSPS, Eight Channel, Ultra Low Power ADC with LVDS; 12月13日位, 20/40/ 50 / 65MSPS ,八通道,超低功耗ADC LVDS
CDK8307CITQ80
型号: CDK8307CITQ80
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

12/13-bit, 20/40/50/65MSPS, Eight Channel, Ultra Low Power ADC with LVDS
12月13日位, 20/40/ 50 / 65MSPS ,八通道,超低功耗ADC LVDS

文件: 总29页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY Data Sheet  
Amplify the Human Experience  
CDK8307  
12/13-bit, 20/40/50/65MSPS, Eight Channel,  
Ultra Low Power ADC with LVDS  
F E A T U R E S  
General Description  
nꢀ  
20/40/50/65MSPS maximum sampling rate  
The CDK8307 is a high performance low power octal analog-to-digital  
converter (ADC). The ADC employs internal reference circuitry, a serial control  
interface and serial LVDS output data, and is based on a proprietary structure.  
nꢀ  
Low Power Dissipation  
– 22mW/channel at 20MSPS  
– 34mW/channel at 40MSPS  
– 40mW/channel at 50MSPS  
– 50mW/channel at 65MSPS  
72.2dB SNR at 8MHz FIN  
An integrated PLL multiplies the input sampling clock by a factor of 12 or 14,  
according to the LVDS output setting. The multiplied clock is used for data  
serialization and data output. Data and frame synchronization output clocks are  
supplied for data capture at the receiver.  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
0.5μs startup time from Sleep  
15μs startup time from Power Down  
Various modes and configuration settings can be applied to the ADC through  
the serial control interface (SPI). Each channel can be powered down inde-  
pendently and data format can be selected through this interface. A full chip  
idle mode can be set by a single external pin. Register settings determines the  
exact function of this external pin.  
Internal reference circuitry requires no  
external components  
nꢀ  
nꢀ  
Internal offset correction  
Reduced power dissipation modes available  
– 32mW/channel at 50MSPS  
– 71.5dB SNR at 8MHz FIN  
Coarse and fine gain control  
1.8V supply voltage  
The CDK8307 is designed to easily interface with field-programmable gate  
arrays (FPGAs) from several vendors.  
nꢀ  
nꢀ  
nꢀ  
The very low startup times of the CDK8307 allow significant power reduction  
in duty-cycled systems, by utilizing the Sleep Mode or Power Down Mode when  
the receive path is idle.  
Serial LVDS output  
– 12- and 14-bit output available  
Package alternatives  
nꢀ  
Block Diagram  
– TQFP-80  
– QFN-64  
A P P L I C A T I O N S  
FCLKP  
nꢀ  
Medical Imaging  
Serial Control  
Interface  
Clock  
Input  
FCLKN  
LCLKP  
LCLKN  
PLL  
LVDS  
LVDS  
nꢀ  
Wireless Infrastructure  
nꢀ  
Test and Measurement  
IP1  
IN1  
D1N  
D1P  
Digital  
Gain  
ADC  
nꢀ  
Instrumentation  
IP2  
IN2  
D2N  
D2P  
Digital  
Gain  
ADC  
LVDS  
IP8  
IN8  
D8N  
D8P  
Digital  
Gain  
ADC  
LVDS  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
PRELIMINARY Data Sheet  
Table of Contents  
Features.................................................................. 1  
Applications ............................................................ 1  
General Description................................................ 1  
Block Diagram ........................................................ 1  
Table of Contents ................................................... 2  
Ordering Information............................................. 3  
Pin Configurations.................................................. 4  
Pin Assignments .................................................. 5-8  
Absolute Maximum Ratings................................... 9  
Reliability Information........................................... 9  
ESD Protection........................................................ 9  
Recommended Operating Conditions.................... 9  
Electrical Characteristics...................................... 10  
Electrical Characteristics – CDK8307A................ 10  
Electrical Characteristics – CDK8307B................ 11  
Electrical Characteristics – CDK8307C................ 11  
Electrical Characteristics – CDK8307C  
Table 6. LVDS Output Drive Strength for  
LCLK, FCLK, and Data ............................... 18  
Table 7. LVDS Internal Termination  
Programmability ....................................... 19  
Table 8. Bit Clock Internal Termination.................... 19  
Table 9. Analog Input Invert................................... 19  
Table 10. LVDS Test Patterns.................................. 20  
Table 11. Programmable Gain................................. 20  
Table 12. Gain Setting for Channels 1-8 .................. 21  
Table 13. LVDS Clock Programmability and  
Data Output Modes................................. 21  
Figure 6. Phase Programmability Modes for LCLK..... 22  
Figure 7. SDR Interface Modes ............................... 22  
Table 14. Number of Serial Output Bits ................... 22  
Table 15. Full Scale Control.................................... 23  
Table 16. Register Values with Corresponding  
Charge in Full-Scale Range...................... 23  
Table 17. Clock Frequency...................................... 23  
Table 18. Clock Frequency Settings......................... 23  
Table 19. Performance Control................................ 24  
Table 20. Performance Control Settings................... 24  
Table 21. External Common Mode Voltage  
(Continued)........................................................... 12  
Electrical Characteristics – CDK8307D................ 12  
Digital and Timing Electrical Characteristics ...... 13  
LVDS Timing Diagrams......................................... 14  
Figure 1. 12-bit Output, DDR Mode......................... 14  
Figure 2. 14-bit Output, DDR Mode......................... 14  
Figure 3. 12-bit Output, SDR Mode......................... 14  
Figure 4. Data Timing............................................ 14  
Serial Interface..................................................... 15  
Timing Diagram .................................................... 15  
Figure 5. Serial Port Interface Timing Diagram..... 15  
Table 1. Serial Port Interface Timing Definitions ... 15  
Register Initialization............................................. 15  
Serial Register Map ..........................................16-17  
Table 2. Summary of Functions Supported  
Buffer Driving Strength ........................... 24  
Theory of Operation ............................................. 25  
Recommended Usage........................................... 25  
Analog Input......................................................... 25  
Figure 8. Input Configuration Diagram ................ 25  
DC-Coupling.......................................................... 25  
Figure 9. DC-Coupled Input................................ 25  
AC-Coupling.......................................................... 26  
Figure 10. Transformer Coupled Input................. 26  
Figure 11. AC-Coupled Input .............................. 26  
Figure 12. Alternative Input Network................... 26  
Clock Input and Jitter Considerations...................... 27  
Mechanical Dimensions ...................................28-29  
QFN-64 Package.................................................... 28  
TQFP-80 Package.................................................. 29  
by Serial Interface ................................16-17  
Description of Serial Registers ........................17-24  
Table 3. Software Reset......................................... 17  
Table 4. Power-Down Modes .................................. 17  
Table 5. LVDS Drive Strength Programmability......... 18  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
2
PRELIMINARY Data Sheet  
Ordering Information  
Part Number  
Speed  
Package  
TQFP-80  
Pb-Free RoHS Compliant Operating Temperature Range Packaging Method  
CDK8307AITQ80*  
20MSPS  
20MSPS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
Tray  
CDK8307AILP64*  
QFN-64  
QFN-64  
TQFP-80  
QFN-64  
QFN-64  
TQFP-80  
QFN-64  
QFN-64  
TQFP-80  
QFN-64  
QFN-64  
CDK8307AILP64B2** 20MSPS  
CDK8307BITQ80*  
CDK8307BILP64*  
40MSPS  
40MSPS  
CDK8307BILP64B2** 40MSPS  
CDK8307CITQ80*  
CDK8307CILP64*  
50MSPS  
50MSPS  
CDK8307CILP64B2** 50MSPS  
CDK8307DITQ80*  
CDK8307DILP64*  
65MSPS  
65MSPS  
CDK8307DILP64B2** 65MSPS  
Moisture sensitivity level for all parts is MSL-3. *Preliminary. **Preliminary, pinout matches AD9222.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
3
PRELIMINARY Data Sheet  
Pin Configurations  
QFN-64  
QFN-64 (B2 Version: AD9222 Pinout Option)  
IP1  
IN1  
IN8  
AVDD  
IP3  
AVDD  
IP6  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
IP8  
AVSS  
IP2  
AVSS  
IN7  
IN3  
IN6  
3
3
AVDD  
IN4  
AVDD  
IN5  
4
4
IN2  
IP7  
5
5
IP4  
IP5  
AVSS  
IP3  
AVSS  
IN6  
6
6
CDK8307  
CDK8307  
AVDD  
AVDD  
CLKN  
CLKP  
AVDD  
AVDD  
DVSS  
DVDD  
D4N  
AVDD  
PD  
7
7
QFN-64  
QFN-64  
IN3  
IP6  
8
8
CSN  
SDATA  
SCLK  
AVDD  
DCVSS  
DVDD  
D5P  
AVSS  
IP4  
AVSS  
IN5  
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
IN4  
IP5  
DVSS  
PD  
AVSS  
DVSS  
DVDD  
D8N  
D8P  
DVSS  
D1P  
D1N  
D4P  
D5N  
TQFP-80  
AVDD  
IP1  
AVDD  
IN8  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
IN1  
IP8  
3
AVSS  
IP2  
AVSS  
IN7  
4
5
IN2  
IP7  
6
AVDD  
AVSS  
IP3  
AVDD  
AVSS  
IN6  
7
8
CDK8307  
9
TQFP-80  
IN3  
IP6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AVSS  
IP4  
AVSS  
IN5  
IN4  
IP5  
AVDD  
DVSS  
PD  
AVDD  
DVSS  
RESETN  
DVSS  
DVSS  
FCLKN  
FCLKP  
DVSS  
DVSS  
LCLKP  
LCLKN  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
4
PRELIMINARY Data Sheet  
Pin Assignments  
Pin No.  
QFN-64  
Pin Name  
Description  
49, 50, 57  
AVDD  
AVSS  
IP1  
Analog power supply, 1.8V  
Analog ground  
3, 6, 9, 37, 40, 43, 46, 52  
1
Positive differential input signal, channel 1  
2
4
5
IN1  
IP2  
IN2  
Negative differential input signal, channel 1  
Positive differential input signal, channel 2  
Negative differential input signal, channel 2  
Positive differential input signal, channel 3  
Negative differential input signal, channel 3  
Positive differential input signal, channel 4  
Negative differential input signal, channel 4  
7
8
IP3  
IN3  
IP4  
IN4  
10  
11  
38  
IP5  
IN5  
Positive differential input signal, channel 5  
Negative differential input signal, channel 5  
Positive differential input signal, channel 6  
Negative differential input signal, channel 6  
Positive differential input signal, channel 7  
Negative differential input signal, channel 7  
Positive differential input signal, channel 8  
Negative differential input signal, channel 8  
Digital ground  
39  
41  
IP6  
42  
IN6  
44  
IP7  
45  
IN7  
47  
IP8  
48  
IN8  
12, 14, 36  
35  
DVSS  
DVDD  
PD  
Digital and I/O power supply, 1.8V  
Power-down input  
13  
15  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
D5P  
D5N  
D6P  
D6N  
D7P  
D7N  
D8P  
D8N  
FCLKP  
FCLKN  
LCLKP  
LCLKN  
LVDS channel 1, positive output  
LVDS channel 1, negative output  
LVDS channel 2, positive output  
LVDS channel 2, negative output  
LVDS channel 3, positive output  
LVDS channel 3, negative output  
LVDS channel 4, positive output  
LVDS channel 4, negative output  
LVDS channel 5, positive output  
LVDS channel 5, negative output  
LVDS channel 6, positive output  
LVDS channel 6, negative output  
LVDS channel 7, positive output  
LVDS channel 7, negative output  
LVDS channel 8, positive output  
LVDS channel 8, negative output  
LVDS frame clock (1x), positive output  
LVDS frame clock (1x), negative output  
LVDS bit clock, positive output  
16  
17  
18  
19  
20  
21  
22  
27  
28  
29  
30  
31  
32  
33  
34  
23  
24  
25  
26  
LVDS bit clock, negative output  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
5
PRELIMINARY Data Sheet  
Pin Assignments (Continued)  
Pin No.  
Pin Name  
NC  
Description  
51, 54, 55, 56  
Not connected  
53  
58  
59  
60  
61  
62  
63  
64  
VCM  
Common mode output pin, 0.5 AVDD  
Positive differential input clock  
Negative differential input clock.  
Digital CMOS inputs supply voltage (1.7V to 3.6V)  
Chip select enable. Active low.  
Serial data input  
CLKP  
CLKN  
OVDD  
CSN  
SDATA  
SCLK  
Serial clock input  
RESETN  
Reset SPI interface  
QFN-64 (B2 version: AD9222 pinout option)  
1, 4, 7, 8, 11, 12, 37, 42, 45, 48,  
AVDD  
Analog power supply, 1.8V  
51, 59, 62  
0
AVSS  
IP1  
Analog ground (Exposed paddle, Pin 0, bottom of package)  
Positive differential input signal, channel 1  
Negative differential input signal, channel 1  
Positive differential input signal, channel 2  
Negative differential input signal, channel 2  
Positive differential input signal, channel 3  
Negative differential input signal, channel 3  
Positive differential input signal, channel 4  
Negative differential input signal, channel 4  
Positive differential input signal, channel 5  
Negative differential input signal, channel 5  
Positive differential input signal, channel 6  
Negative differential input signal, channel 6  
Positive differential input signal, channel 7  
Negative differential input signal, channel 7  
Positive differential input signal, channel 8  
Negative differential input signal, channel 8  
Digital ground  
60  
61  
IN1  
IP2  
64  
63  
IN2  
IP3  
2
3
IN3  
IP4  
6
5
IN4  
IP5  
43  
44  
IN5  
IP6  
47  
46  
IN6  
IP7  
49  
50  
IN7  
IP8  
53  
52  
IN8  
DVSS  
DVDD  
PD  
13, 36  
14, 35  
41  
Digital and I/O power supply, 1.8V  
Power-down input  
22  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
D5P  
D5N  
LVDS channel 1, positive output  
21  
LVDS channel 1, negative output  
20  
LVDS channel 2, positive output  
19  
LVDS channel 2, negative output  
18  
LVDS channel 3, positive output  
17  
LVDS channel 3, negative output  
16  
LVDS channel 4, positive output  
15  
LVDS channel 4, negative output  
34  
LVDS channel 5, positive output  
33  
LVDS channel 5, negative output  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
6
PRELIMINARY Data Sheet  
Pin Assignments (Continued)  
Pin No.  
Pin Name  
D6P  
Description  
32  
LVDS channel 6, positive output  
LVDS channel 6, negative output  
LVDS channel 7, positive output  
LVDS channel 7, negative output  
LVDS channel 8, positive output  
LVDS channel 8, negative output  
LVDS frame clock (1X), positive output  
LVDS frame clock (1X), negative output  
LVDS bit clock, positive output  
LVDS bit clock, negative output  
Not connected  
31  
D6N  
30  
D7P  
29  
D7N  
28  
D8P  
27  
D8N  
26  
FCLKP  
FCLKN  
LCKP  
LCKN  
NC  
25  
24  
23  
54  
55  
NC  
Not connected  
56  
VCM  
NC  
Common mode output pin, 0.5*AVDD  
Not connected  
57  
58  
NC  
Not connected  
10  
CLKP  
CLKN  
CSN  
Positive differential input clock  
Negative differential input clock.  
Chip select enable. Active Low  
Serial data input  
9
40  
39  
SDATA  
SCLK  
38  
Serial clock input  
TQFP  
1, 7, 14, 47, 54, 60, 63, 70  
AVDD  
AVSS  
Analog power supply, 1.8V  
Analog ground  
4, 8, 11, 50, 53, 57, 61, 68, 73,  
74, 79, 80  
2
IP1  
IN1  
IP2  
Positive differential input signal, channel 1  
Negative differential input signal, channel 1  
Positive differential input signal, channel 2  
Negative differential input signal, channel 2  
Positive differential input signal, channel 3  
Negative differential input signal, channel 3  
Positive differential input signal, channel 4  
Negative differential input signal, channel 4  
Positive differential input signal, channel 5  
Negative differential input signal, channel 5  
Positive differential input signal, channel 6  
Negative differential input signal, channel 6  
Positive differential input signal, channel 7  
Negative differential input signal, channel 7  
Positive differential input signal, channel 8  
Negative differential input signal, channel 8  
Digital ground  
3
5
6
IN2  
IP3  
9
10  
IN3  
IP4  
12  
13  
IN4  
IP5  
48  
49  
IN5  
IP6  
51  
52  
IN6  
IP7  
55  
56  
IN7  
IP8  
58  
59  
15, 17, 18, 26, 36, 43, 44, 46  
25, 35  
IN8  
DVSS  
DVDD  
Digital and I/O power supply, 1.8V  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
7
PRELIMINARY Data Sheet  
Pin Assignments (Continued)  
Pin No.  
Pin Name  
PD  
Description  
16  
Power-down input  
19  
LCKP  
LCKN  
D1P  
LVDS bit clock, positive output  
LVDS bit clock, negative output  
LVDS channel 1, positive output  
LVDS channel 1, negative output  
LVDS channel 2, positive output  
LVDS channel 2, negative output  
LVDS channel 3, positive output  
LVDS channel 3, negative output  
LVDS channel 4, positive output  
LVDS channel 4, negative output  
LVDS channel 5, positive output  
LVDS channel 5, negative output  
LVDS channel 6, positive output  
LVDS channel 6, negative output  
LVDS channel 7, positive output  
LVDS channel 7, negative output  
LVDS channel 8, positive output  
LVDS channel 8, negative output  
LVDS frame clock (1x), positive output  
LVDS frame clock (1x), negative output  
Reset SPI interface  
20  
21  
22  
D1N  
23  
D2P  
24  
D2N  
27  
D3P  
28  
D3N  
29  
D4P  
30  
D4N  
31  
D5P  
32  
D5N  
33  
D6P  
34  
D6N  
37  
D7P  
38  
D7N  
39  
D8P  
40  
D8N  
41  
FCLKP  
FCLKN  
RESETN  
NC  
42  
45  
62, 64, 66, 67, 69  
Not connected  
65  
71  
72  
75  
76  
77  
78  
VCM  
CLKP  
CLKN  
OVDD  
CSN  
Common mode output pin, 0.5 AVDD  
Positive differential input clock  
Negative differential input clock.  
Digital CMOS inputs supply voltage (1.7V to 3.6V)  
Chip select enable. Active low.  
Serial data input  
SDATA  
SCLK  
Serial clock input  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
8
PRELIMINARY Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Reference Pin  
Min  
Max  
Unit  
AVDD  
AVSS  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
+2.3  
+2.3  
+3.9  
+0.3  
+2.3  
+2.3  
+2.3  
+3.9  
V
V
V
V
V
V
V
V
DVDD  
DVSS  
OVDD  
AVSS  
AVSS, DVSS  
DVSS / AVSS  
AVSS  
Analog inputs and outpts (IPx, INx)  
CLKx  
AVSS  
LVDS outputs  
Digital inputs  
DVSS  
DVSS  
Reliability Information  
Parameter  
Min  
-60  
Typ  
Max  
Unit  
Junction Temperature  
TBD  
°C  
°C  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
+150  
J-STD-020  
ESD Protection  
Product  
QFN-64  
TQFP-80  
Human Body Model (HBM)  
TBD  
TBD  
TBD  
TBD  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
-40  
Typ  
Max  
+85  
Unit  
°C  
Operating Temperature Range  
This device can be damaged by ESD. Even though this product is protected with state-of-the-art ESD protection  
circuitry, damage may occur if the device is not handled with appropriate precautions. ESD damage may range  
from device failure to performance degradation. Analog circuitry may be more susceptible to damage as vary small  
parametric changes can result in specification noncompliance.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
9
PRELIMINARY Data Sheet  
Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 50MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 14-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
No Missing Codes  
Offset Error  
Guaranteed  
1
Offset error after digital offset cancellation  
LSB  
Gain Error  
-6  
6
%FS  
Gain matching between channels. ±3sigma  
value at worst case conditions.  
Gain Matching  
-0.5  
0.5  
%FS  
DNL  
Differential Non-Linearity  
Integral Non-Linearity  
12-bit level  
12-bit level  
±0.2  
±0.6  
LSB  
LSB  
V
INL  
VCMO  
Common Mode Voltage Output  
VAVDD/2  
Analog Input  
VCMI  
Input Common Mode  
Analog input common mode voltage  
Differential input voltage range  
Differential input capacitance  
Input bandwidth  
VCM -0.1  
500  
VCM +0.2  
V
2.0  
2
Vpp  
pF  
VFSR  
Full Scale Range  
Input Capacitance  
Bandwidth  
MHz  
Power Supply  
AVDD  
Analog Supply Voltage  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
2.0  
2.0  
3.6  
V
V
V
DVDD  
Digital Supply Voltage  
Digital and output driver supply voltage  
OVDD  
Digital CMOS Input Supply Voltage  
Electrical Characteristics - CDK8307A  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 20MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 14-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
72.2  
71.5  
82  
dBFS  
dBFS  
dBc  
SINAD  
SFDR  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
HD2  
95  
dBc  
HD3  
82  
dBc  
ENOB  
11.6  
bits  
Signal applied to 7 channels (FIN0).  
Crosstalk  
Measurement taken on one channel with full  
scale at FIN1. FIN1 = 8MHz, FIN0 = 9.9MHz  
95  
dBc  
Power Supply  
47  
50  
85  
90  
175  
10  
43  
44  
16  
mA  
mA  
Analog supply current  
Digital and output driver supply  
Digital supply current  
mW  
mW  
mW  
μW  
Analog power Dissipation  
Digital power Dissipation  
Total power Dissipation  
Power Down Dissipation  
Sleep Mode Dissipation  
Sleep Channel Mode Dissipation  
Sleep Channel Mode Savings  
mW  
mW  
mW  
Power dissipation with all chs in sleep mode  
Power dissipation savings per channel off  
Clock Inputs  
20  
MSPS  
MSPS  
Maximum Conversion Rate  
Minimum Conversion Rate  
15  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK8307B  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 40MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 14-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
72.2  
71.5  
82  
dBFS  
dBFS  
dBc  
SINAD  
SFDR  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
HD2  
95  
dBc  
HD3  
82  
dBc  
ENOB  
11.6  
bits  
Signal applied to 7 channels (FIN0).  
Crosstalk  
Measurement taken on one channel with full  
scale at FIN1. FIN1 = 8MHz, FIN0 = 9.9MHz  
95  
dBc  
Power Supply  
91  
60  
mA  
mA  
Analog supply current  
Digital and output driver supply  
Digital supply current  
164  
108  
272  
10  
mW  
mW  
mW  
μW  
Analog power Dissipation  
Digital power Dissipation  
Total power Dissipation  
Power Down Dissipation  
Sleep Mode Dissipation  
Sleep Channel Mode Dissipation  
Sleep Channel Mode Savings  
67  
mW  
mW  
mW  
Power dissipation with all chs in sleep mode  
Power dissipation savings per channel off  
72  
23  
Clock Inputs  
40  
MSPS  
MSPS  
Maximum Conversion Rate  
Minimum Conversion Rate  
20  
Electrical Characteristics - CDK8307C  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 50MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 14-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
72.2  
71.5  
82  
dBFS  
dBFS  
dBc  
SINAD  
SFDR  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
HD2  
95  
dBc  
HD3  
82  
dBc  
ENOB  
11.6  
bits  
Signal applied to 7 channels (FIN0).  
Crosstalk  
Measurement taken on one channel with full  
scale at FIN1. FIN1 = 8MHz, FIN0 = 9.9MHz  
95  
dBc  
Power Supply  
112  
66  
mA  
mA  
Analog supply current  
Digital supply current  
Analog power Dissipation  
Digital power Dissipation  
Total power Dissipation  
Power Down Dissipation  
Sleep Mode Dissipation  
Digital and output driver supply  
202  
119  
321  
10  
mW  
mW  
mW  
μW  
78  
mW  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
PRELIMINARY Data Sheet  
Electrical Characteristics - CDK8307C Continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Power dissipation with all chs in sleep mode  
Power dissipation savings per channel off  
80  
28  
mW  
mW  
Sleep Channel Mode Dissipation  
Sleep Channel Mode Savings  
Clock Inputs  
50  
MSPS  
MSPS  
Maximum Conversion Rate  
Minimum Conversion Rate  
20  
Electrical Characteristics - CDK8307D  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, 65MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 14-bit output, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Performance  
SNR  
Signal to Noise Ratio  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
FIN = 8MHz  
72.2  
71.5  
82  
dBFS  
dBFS  
dBc  
SINAD  
SFDR  
Signal to Noise and Distortion Ratio  
Spurious Free Dynamic Range  
Second order Harmonic Distortion  
Third order Harmonic Distortion  
Effective number of Bits  
HD2  
95  
dBc  
HD3  
82  
dBc  
ENOB  
11.6  
bits  
Signal applied to 7 chs (FIN0). Measurement  
Crosstalk  
taken on one ch, full scale at FIN1. FIN1  
8MHz, FIN0 = 9.9MHz  
=
95  
dBc  
Power Supply  
145  
67  
mA  
mA  
Analog supply current  
Digital and output driver supply  
Digital supply current  
261  
121  
382  
10  
mW  
mW  
mW  
μW  
Analog power Dissipation  
Digital power Dissipation  
Total power Dissipation  
Power Down Dissipation  
Sleep Mode Dissipation  
Sleep Channel Mode Dissipation  
Sleep Channel Mode Savings  
96  
mW  
mW  
mW  
Power dissipation with all chs in sleep mode  
Power dissipation savings per channel off  
98  
38  
Clock Inputs  
65  
MSPS  
MSPS  
Maximum Conversion Rate  
Minimum Conversion Rate  
20  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
PRELIMINARY Data Sheet  
Digital and Timing Electrical Characteristics  
(AVDD = 1.8V, DVDD = 1.8V, OVDD = 1.8V, unless otherwise noted)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Clock Inputs  
Duty Cycle  
Compliance  
20  
80  
%high  
CMOS, LVDS, LVPECL  
200  
200  
800  
mVpp  
mVpp  
V
Differential input swing  
Input range  
Input range  
800  
0.3  
Differential input swing, sine wave clock input  
Keep voltages within gnd and voltage of AVDD  
Differential  
Input common mode voltage  
Input capacitance  
VAVDD -0.3  
2
pF  
Logic Inputs (CMOS)  
VOVDD ≥ 3.0V  
2
V
V
VIH  
VIL  
High Level Input Voltage  
VOVDD = 1.7V – 3.0V  
VOVDD ≥ 3.0V  
0.8 VOVDD  
0
0.8  
0.2 VOVDD  
10  
V
Low Level Input Voltage  
VOVDD = 1.7V – 3.0V  
0
V
IIH  
IIL  
CI  
High Level Input Leakage Current  
Low Level Input Leakage Current  
Input Capacitance  
-10  
-10  
μA  
μA  
pF  
10  
3
Data Outputs (LVDS)  
Compliance  
LVDS  
VOUT  
VCM  
Digital Output Voltage  
Output Common Mode Voltage  
Output Coding  
247  
454  
mV  
V
1.125  
1.375  
Default/Optional  
Offset Binary/2‘s Complement  
Timing Characteristics  
TAP  
Aperture Delay  
0.8  
ns  
ps  
εRMS  
Aperture Jitter  
Power Down  
<0.5  
Start up time from Power Down to Active  
Mode. References have reached 99% of final  
value. (See section Clock Frequency)  
clock  
cycles  
TPD  
350  
900  
TSLP  
TOVR  
TLAT  
Sleep Mode  
Start up time from Sleep Mode to Active Mode  
0.5  
1
μs  
Out Of Range Recovery Time  
Pipeline Delay  
clk cycles  
clk cycles  
14  
LVDS Output Timing Characterisctics  
tdata  
LCLK to Data Delay Time  
Clock Propagation Delay  
Excluding programmable phase shift  
50  
ps  
ns  
TBD  
TPROP  
% LCLK  
cycle  
LVDS Bit-Clock Duty-Cycle  
Frame clock cycle-to-cycle jitter  
Data Rise- and Fall Time  
45  
55  
% LCLK  
cycle  
2.5  
Calculated from -100mV to +100mV,  
and vice-versa  
TEDGE  
TBD  
TBD  
ns  
ns  
Calculated from -100mV to +100mV,  
and vice-versa  
TCLKEDGE  
Clock Rise- and Fall Time  
Note:  
(1) The outputs will be functional with higher loads. However, it is recommended to keep the load on output data bits as low as possible to keep dynamic currents  
and resulting switching noise at a minimum.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
PRELIMINARY Data Sheet  
LVDS Timing Diagrams  
Analog Input  
ADC Clock  
TLVDS  
LCLKP  
LCLKN  
FCLKN  
FCLKP  
D10 D11 D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9 D10 D11 D0  
D1  
N
D2  
N
D3  
N
D4  
N
D5  
N
D6  
N
D7  
N
D8  
N
D9 D10  
Dxx<1:0>  
N-2 N-2 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1  
N
N
N
TPROP  
Figure 1. 12-bit Output, DDR Mode  
Analog Input  
ADC Clock  
TLVDS  
LCLKP  
LCLKN  
FCLKN  
FCLKP  
D0 D1 D2 D3  
N-1 N-1 N-1 N-1  
D5 D6 D7 D8 D9 D10 D11 D12 D13 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13  
D4  
N-1  
Dxx<1:0>  
N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
TPROP  
Figure 2. 14-bit Output, DDR Mode  
Analog Input  
ADC Clock  
TLVDS  
LCLKP  
LCLKN  
FCLKN  
FCLKP  
D10 D11 D0 D1  
N-2 N-2 N-1 N-1  
D3 D4 D5 D6 D7 D8 D9 D10 D11 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10  
D2  
N-1  
Dxx<1:0>  
N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1 N-1  
N
N
N
N
N
N
N
N
N
N
N
TPROP  
Figure 3. 12-bit Output, SDR Mode  
TLVDS  
LCLKP  
LCLKN  
Dxx<1:0>  
TLVDS/2  
tdata  
Figure 4. Data Timing  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
PRELIMINARY Data Sheet  
Serial Interface  
The CDK8307 configuration registers can be accessed through a serial interface formed by the pins SDATA (serial  
interface data), SCLK (serial interface clock) and CSN (chip select, active low). The following occurs when CSN is set low:  
nꢀ  
Serial data are shifted into the chip  
nꢀ  
At every rising edge of SCLK, the value present at SDATA is latched  
nꢀ  
SDATA is loaded into the register every 24th rising edge of SCLK  
Multiples of 24-bit words data can be loaded within a single active CSN pulse. If more than 24 bits are loaded into  
SDATA during one active CSN pulse, only the first 24 bits are kept. The excess bits are ignored. Every 24-bit word is  
divided into two parts:  
nꢀ  
The first eight bits form the register address  
nꢀ  
The remaining 16 bits form the register data  
Acceptable SCLK frequencies are from 20MHz down to a few hertz. Duty-cycle does not have to be tightly controlled.  
Timing Diagram  
Figure 5 shows the timing of the serial port interface. Table 1 below explains the timing variables used in the Timing  
Diagram.  
tch  
tcs  
thi  
tclk  
ts  
tch  
i
tlo  
th  
CSN  
SCLK  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4 D3  
D2  
D1 D0  
SDATA  
Figure 5. Serial Port Interface Timing Diagram  
Table 1. Serial Port Interface Timing Definitions  
Parameter  
Description  
Minimum Value  
Unit  
t
Setup time between CSN and SCLK  
Hold time between CSN and SCLK  
SCLK high time  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
cs  
t
ch  
t
20  
20  
50  
5
hi  
lo  
t
SCLK low time  
t
clk  
SCLK period  
t
Data setup time  
s
t
Data hold time  
5
h
Register Initialization  
Before CDK8307 can be used, the internal registers must be initialized to their default values. This can be done  
immediately after applying supply voltage to the circuit. Initialization can be done in one of two ways:  
1. By applying a low-going pulse on the RESET pin  
2. By using the serial interface to set the RST bit high. Internal registers are reset to default values when this  
bit is set. The RST bit is self-reset to zero. When using this method, do not apply any low-going pulse on the  
RESETN pin.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
15  
PRELIMINARY Data Sheet  
Serial Register Map  
Table 2. Summary of Functions Supported by the Serial Interface  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Software reset.  
This bit is self-clearing  
Channel-specific power-down  
Go to sleep-mode  
Default  
Inactive  
X
X
rst  
00  
X
X
X
X
X
X
X
pd_ch<8:1>  
sleep  
Inactive  
Inactive  
Inactive  
X
X
pd  
Go to power-down  
0F  
PD pin  
Configures the PD pin for  
sleep-mode  
configured for  
power-down  
mode  
X
X
pd_pin_cfg  
LVDS current drive programma-  
bility for LCLKP and LCLKN pins  
X
X
X
ilvds_lclk<2:0>  
3.5mA drive  
3.5mA drive  
3.5mA drive  
ilvds_  
frame<2:0>  
LVDS current drive programma-  
bility for FCLKP and FCLKN pins  
X
X
X
11  
12  
LVDS current drive programma-  
bility for output data pins  
X
X
ilvds_dat<2:0>  
en_lvds_term  
Enables internal termination  
for LVDS buffers  
Termination  
disabled  
X
1
1
1
Programmable termination  
for LCLKN and LCLKP buffers  
Termination  
disabled  
X
X
X
X
X
X
term_lclk<2:0>  
term_  
frame<2:0>  
Programmable termination  
for FCLKN and FCLKP buffers  
Termination  
disabled  
X
X
X
Programmable termination  
for output data buffers  
Termination  
disabled  
X
X
X
term_dat<2:0>  
invert_ch<8:1>  
en_ramp  
Swaps the polarity of the  
analog input pins electrically  
IPx is  
positive input  
X
X
X
X
0
X
0
X
24  
25  
Enables a repeating full-scale  
ramp pattern on the outputs  
Inactive  
Inactive  
Inactive  
Enable the mode wherein the  
0
0
X
X
X
0
X
X
0
X
X
X
dual_custom_pat output toggles between two  
defined codes  
single_custom_  
pat  
Enables the mode wherein the  
output is a constant specified code  
Bits for the single custom pattern  
bits_cus-  
tom1<13:0>  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
and for the first code of the dual Inactive  
26  
27  
custom pattern. <0> is the LSB  
bits_cus-  
tom2<13:0>  
Bits for the second code of the  
Inactive  
X
X
X
X
dual custom pattern  
X
X
gain_ch1<3:0>  
gain_ch2<3:0>  
gain_ch3<3:0>  
gain_ch4<3:0>  
gain_ch5<3:0>  
gain_ch6<3:0>  
gain_ch7<3:0>  
gain_ch8<3:0>  
Programmable gain for channel 1 0dB gain  
Programmable gain for channel 2 0dB gain  
Programmable gain for channel 3 0dB gain  
Programmable gain for channel 4 0dB gain  
Programmable gain for channel 5 0dB gain  
Programmable gain for channel 6 0dB gain  
Programmable gain for channel 7 0dB gain  
Programmable gain for channel 8 0dB gain  
X
X
X
X
2A  
2B  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
16  
PRELIMINARY Data Sheet  
Table 2. Summary of Functions Supported by the Serial Interface (Continued)  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
Controls the phase of LCLK  
output relative to data  
X
X
phase_ddr<1:0>  
90 degrees  
42  
45  
0
X
X
0
pat_deskew  
pat_sync  
Enable deskew pattern mode  
Enable sync pattern mode  
Inactive  
Inactive  
Binary two's complement  
format for ADC output data  
Straight  
X
btc_mode  
msb_first  
en_sdr  
offset binary  
Serialized ADC output data  
comes out with MSB first  
LSB-first  
output  
X
Enable SDR output mode. LCLK  
becomes a 12x input clock  
DDR  
output mode  
X
1
46  
Rising edge  
of LCLK  
comes in the  
middle of the  
data window  
Controls whether the LCLK ris-  
ing or falling edge comes in the  
middle of the data window when  
operating in SDR mode  
X
fall_sdr  
X
X
X
X
perfm_cntrl  
ext_vcm_bc  
ADC performance control  
Nominal  
50  
VCM buffer driving strength  
control  
X
X
X
X
Nominal  
Controls LVDS power down  
mode  
X
0
lvds_pd_mode  
lvds_num_bits  
High z mode  
13-bit  
52  
53  
Sets the number of LVDS  
output bits  
X
X
X
X
X
X
fs_cntrl  
clk_freq  
Fine adjust ADC full scale range 0% change  
Input clock frequency 65MHz  
55  
56  
Description of Serial Registers  
Table 3. Software Reset  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Self-clearing software reset  
Default  
Inactive  
X
rst  
00  
Setting the rst register bit to '1', resets all internal registers including the rst register bit itself.  
Table 4. Power-Down Modes  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
Inactive  
X
X
X
X
X
X
X
X
pd_ch<8:1>  
sleep  
Channel-specific power-down  
Go to sleep-mode  
X
Inactive  
Inactive  
X
pd  
Go to power-down  
0F  
52  
X
pd_pin_cfg  
Configures the PD pin for  
sleep-mode  
PD pin con-  
figured for  
power-down  
mode.  
Controls LVDS power down  
mode  
X
lvds_pd_mode  
High z mode  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
17  
PRELIMINARY Data Sheet  
Setting pd_ch<n> = '1', powers down channel <n> of the ADC. Setting sleep = '1', powers down the entire chip, except  
the band-gap reference circuit.  
Setting pd = '1' completely powers down the chip, including the band-gap reference circuit. Start-up time from this mode  
is significantly longer than from the sleep and pd_ch<n> modes.  
Setting pdn_pin_cfg = '1' configures the circuit to enter sleep mode when the PD pin is set high. When pdn_pin_cfg =  
'0', which is the default, the circuit enters power down mode when the PD pin is set high.  
The lvds_pd_mode register configures whether the LVDS data output drivers are powered down or not in sleep and  
sleep channel modes. LCLK and FCLK drivers are not affected by this register, and are always on in sleep and sleep  
channel modes. If lvds_pd_mode is set low (default), the LVDS output is put in high Z, and the driver is completely  
powered down. If lvds_pd_mode is set high, the LVDS output is set to constant 0, and the driver is still on during sleep  
and sleep channel modes.  
Table 5. LVDS Drive Strength Programmability  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
X
X
ilvds_lclk<2:0>  
LVDS current drive programma- 3.5mA drive  
bility for LCLKP and LCLKN pins.  
X
X
X
ilvds_  
frame<2:0>  
LVDS current drive programma- 3.5mA drive  
bility for FCLKP and FCLKN pins.  
11  
X
X
X
ilvds_dat<2:0>  
LVDS current drive programma- 3.5mA drive  
bility for output data pins.  
The current delivered by the LVDS output drivers can be configured as shown in Table 6. The default current is 3.5mA,  
which is what the LVDS standard specifies.  
Setting the ilvds_lclk<2:0> register controls the current drive strength of the LVDS clock output on the LCLKP and LCLKN  
pins.  
Setting the ilvds_frame<2:0> register controls the current drive strength of the frame clock output on the FCLKP and  
FCLKN pins.  
Setting the ilvds_dat<2:0> register controls the current drive strength of the data outputs on the D[8:1]P and D[8:1]  
N pins.  
Table 6. LVDS Output Drive Strength for LCLK, FCLK, and Data  
ilvds_*<2:0>  
LVDS Drive Strength  
3.5 mA (default)  
2.5 mA  
000  
001  
010  
011  
100  
101  
110  
111  
1.5 mA  
0.5 mA  
7.5 mA  
6.5 mA  
5.5 mA  
4.5 mA  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
18  
PRELIMINARY Data Sheet  
Table 7. LVDS Internal Termination Programmability  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
1
1
1
en_lvds_term  
Enables internal termination for  
LVDS buffers  
Termination  
disabled  
X
X
X
term_lclk<2:0>  
Programmable termination for  
LCLKN and LCLKP buffers  
Termination  
disabled  
12  
X
X
X
term_  
frame<2:0>  
Programmable termination for  
FCLKN and FCLKP buffers  
Termination  
disabled  
X
X
X
term_dat<2:0>  
Programmable termination for  
DxP and DxN buffers  
Termination  
disabled  
The off-chip load on the LVDS buffers may represent a characteristic impedance that is not perfectly matched with  
the PCB traces. This may result in reflections back to the LVDS outputs and loss of signal integrity. This effect can be  
mitigated by enabling an internal termination between the positive and negative outputs of each LVDS buffer. Internal  
termination mode can be selected by setting the en_lvds_term bit to '1'. Once this bit is set, the internal termination  
values for the bit clock, frame clock, and data buffers can be independently programmed using sets of three bits. Table  
8 shows how the internal termination of the LVDS buffers are programmed. The values are typical values and can vary  
by up to ±20% from device to device and across temperature.  
Table 8. Bit Clock Internal Termination  
term_*<2:0>  
LVDS Internal Termination  
000  
001  
010  
011  
100  
101  
110  
111  
Termination Disabled  
260Ω  
150Ω  
94Ω  
125Ω  
80Ω  
66Ω  
55Ω  
Table 9. Analog Input Invert  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
X
X
X
X
X
X
X
invert_ch<8:1>  
Swaps the polarity of the analog IPx is positive  
input pins electrically input  
24  
The IPx pin represents the positive analog input pin, and INx represents the negative (complementary) input. Setting  
the bits marked invert_ch <8:1> (individual control for each channel) causes the inputs to be swapped. INx would then  
represent the positive input, and IPx the negative input.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
19  
PRELIMINARY Data Sheet  
Table 10. LVDS Test Patterns  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
Inactive  
X
0
0
X
0
0
en_ramp  
Enables a repeating full-scale  
ramp pattern on the outputs  
dual_custom_pat Enable the mode wherein the  
output toggles between two  
defined codes  
Inactive  
Inactive  
25  
26  
0
X
0
X
X
X
single_custom_  
pat  
Enables the mode wherein the  
output is a constant specified code  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
bits_cus-  
tom1<13:0>  
Bits for the single custom pattern Inactive  
and for the first code of the dual  
custom pattern. <0> is the LSB  
X
X
X
bits_cus-  
tom2<13:0>  
Bits for the second code of the  
dual custom pattern  
Inactive  
27  
45  
0
X
X
0
pat_deskew  
pat_sync  
Enable deskew pattern mode  
Enable sync pattern mode  
Inactive  
Inactive  
To ease the LVDS synchronization setup of CDK8307, several test patterns can be set up on the outputs. Normal ADC  
data are replaced by the test pattern in these modes. Setting en_ramp to '1' sets up a repeating full-scale ramp pattern  
on all data outputs. The ramp starts at code zero and is increased 1LSB every clock cycle. It returns to zero code and  
starts the ramp again after reaching the full-scale code.  
A constant value can be set up on the outputs by setting single_custom_pat to '1', and programming the desired value  
in bits_custom1<13:0>. In this mode, bits_custom1<13:0> replaces the ADC data at the output, and is controlled by  
LSB-first and MSB-first modes in the same way as normal ADC data are.  
The device may also be made to alternate between two codes by programming dual_custom_pat to '1'. The two codes  
are the contents of bits_custom1<13:0> and bits_custom2<13:0>. Two preset patterns can also be selected:  
1. Deskew pattern: Set using pat_deskew, this mode replaces the ADC output with '01010101010101' (two LSBs  
removed in 12 bit mode).  
2. Sync pattern: Set using pat_sync, the normal ADC word is replaced by a fixed 1111110000000 word.  
Note: Only one of the above patterns should be selected at the same time.  
Table 11. Programmable Gain  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
X
X
X
gain_ch1<3:0>  
gain_ch2<3:0>  
gain_ch3<3:0>  
gain_ch4<3:0>  
gain_ch5<3:0>  
gain_ch6<3:0>  
gain_ch7<3:0>  
gain_ch8<3:0>  
Programmable gain for channel 1 0dB gain  
Programmable gain for channel 2 0dB gain  
Programmable gain for channel 3 0dB gain  
Programmable gain for channel 4 0dB gain  
Programmable gain for channel 5 0dB gain  
Programmable gain for channel 6 0dB gain  
Programmable gain for channel 7 0dB gain  
Programmable gain for channel 8 0dB gain  
X
X
X
X
2A  
2B  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CDK8307 includes a purely digital programmable gain option in addition to the Full-scale Control. The programmable  
gain of each channel can be individually set using a set of four bits, indicated as gain_chn<3:0> for Channel x. The gain  
setting is coded in binary from 0dB to 12dB, as shown in Table 12 on the following page.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
20  
PRELIMINARY Data Sheet  
Table 12. Gain Setting for Channels 1-8  
gain_chx<3:0>  
0000  
Channel x Gain Setting  
0dB  
1dB  
0001  
0010  
2dB  
0011  
3dB  
0100  
4dB  
0101  
5dB  
0110  
6dB  
0111  
7dB  
1000  
8dB  
1001  
9dB  
1010  
10dB  
1011  
11dB  
1100  
12dB  
1101  
Do not use  
Do not use  
Do not use  
1110  
1111  
Table 13. LVDS Clock Programmability and Data Output Modes  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
phase_ddr<1:0>  
btc_mode  
Description  
Default  
Controls the phase of LCLK out-  
put relative to data  
X
X
90 degrees  
42  
Binary two's complement format Straight offset  
for ADC output data  
X
binary  
Serialized ADC output data  
comes out with MSB first  
LSB-first  
output  
X
msb_first  
Enable SDR output mode. LCLK  
becomes a 12x input clock  
DDR output  
mode  
X
X
en_sdr  
46  
Rising edge  
of LCLK  
comes in the  
middle of the  
data window  
Controls whether the LCLK ris-  
ing or falling edge comes in the  
middle of the data window when  
operating in SDR mode  
X
fall_sdr  
The output interface of CDK8307 is normally a DDR interface, with the LCLK rising and falling edge transitions in the  
middle of alternate data windows. The phase for LCLK can be programmed relative to the output frame clock and data  
using bits phase_ddr<1:0>. The LCLK phase modes are shown in Figure 6. The default timing is identical to setting  
phase_ddr<1:0> = '10'.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
21  
PRELIMINARY Data Sheet  
PHASE_DDR<1:0>=’00’  
PHASE_DDR<1:0>=’10’  
FCLKN  
FCLKP  
LCLKP  
LCLKN  
FCLKN  
FCLKP  
LCLKN  
LCLKP  
Dxx<1:0>  
Dxx<1:0>  
PHASE_DDR<1:0>=’01’  
PHASE_DDR<1:0>=’11’  
FCLKN  
FCLKP  
LCLKN  
LCLKP  
FCLKN  
FCLKP  
LCLKP  
LCLKN  
Dxx<1:0>  
Dxx<1:0>  
Figure 6. Phase Programmability Modes for LCLK  
The device can also be made to operate in SDR mode by setting the en_sdr bit to '1'. The bit clock (LCLK) is output at  
12x times the input clock in this mode, two times the rate in DDR mode. Depending on the state of fall_sdr, LCLK may  
be output in either of the two manners shown in Figure 7. As can be seen in Figure 7, only the LCLK rising (or falling)  
edge is used to capture the output data in SDR mode. The SDR mode is not recommended beyond 40MSPS because the  
LCLK frequency becomes very high.  
EN_SDR=’1, FALL_SDR_’0’  
FCLKN  
EN_SDR=’1, FALL_SDR_’1’  
FCLKN  
FCLKP  
LCLKP  
LCLKN  
FCLKP  
LCLKN  
LCLKP  
Dxx<1:0>  
Dxx<1:0>  
Figure 7. SDR Interface Modes  
The default data output format is offset binary. Two's complement mode can be selected by setting the btc_mode bit to  
'1' which inverts the MSB.  
The first bit of the frame (following the rising edge of FCLKP) is the LSB of the ADC output for default settings. Program-  
ming the msb_first mode results in reverse bit order, and the MSB is output as the first bit following the FCLKP rising edge.  
Table 14. Number of Serial Output Bits  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
0
lvds_num_bits  
Sets the number if LVDS output bits 12-bit  
53  
The ADCs have 13-bit resolution. There are two options for the serial LVDS outputs, 12 bits or 14 bits, selected by reg-  
ister values '00' and '10', respectively. In 12-bit mode, the LSB bit from the ADCs are removed in the output stream. In  
14-bit mode, a '0' is added in the LSB position. Power down mode must be activated after or during a change in the  
number of output bits.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
22  
PRELIMINARY Data Sheet  
Table 15. Full Scale Control  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
X
X
X
X
X
X
fs_cntrl<5:0>  
Fine adjust ADC full scale range 0% change  
55  
The full-scale voltage range of CDK8307 can be adjusted using an internal 6-bit DAC controlled by the fs_cntrl register.  
Changing the value in the register by one step, adjusts the full-scale range approximately 0.3%. This leads to a maximum  
range of ±10% adjustment. Table 16 shows how the register settings correspond to the full-scale range. Note that the  
values for full-scale range adjustment are approximate. The DAC is, however, guaranteed to be monotonous.  
The full-scale control and the programmable gain features differ in two major ways:  
1. The full-scale control feature controls the full-scale voltage range in an analog fashion, whereas the programmable  
gain is a digital feature.  
2. The programmable gain feature has much coarser gain steps and larger range than the full-scale control.  
Table 16. Register Values with Corresponding Change in Full-Scale Range  
fs_cntrl <5:0>  
111111  
...  
Full-Scale Range Adjustment  
+9.7%  
...  
100001  
100000  
011111  
...  
+0.3%  
+0%  
-0.3%  
...  
000000  
-10%  
Table 17. Clock Frequency  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Input clock frequency  
Default  
65MHz  
X
X
clk_freq<1:0>  
56  
To optimize startup time a register is provided where the input clock frequency can be set. Some internal circuitry has  
startup times that are frequency independent. Default counter values are set to accommodate these startup times at  
the maximum clock frequency. This will lead to increased startup times at low clock frequency. Setting the value of this  
register to the nearest higher clock frequency will reduce the count values of the internal counters, to better fit the actual  
startup time, such that the startup time will be reduced.  
Table 18. Clock Frequency Settings  
clk_freq <1:0>  
Clock Frequency (MHz)  
00  
01  
10  
11  
65  
45  
30  
20  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
23  
PRELIMINARY Data Sheet  
Table 19. Performance Control  
D
1
5
D
1
4
D
1
3
D
1
2
D
1
1
D
1
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Address  
In Hex  
Name  
Description  
Default  
Nominal  
X
X
X
perfm_  
ADC performance control  
cntrl<2:0>  
50  
X
X
ext_vcm_  
bc<1:0>  
VCM buffer driving strength  
control  
Nominal  
There are two registers that impact performance and power dissipation.  
The perfm_cntrl register adjusts the performance level of the ADC core. If full performance is required, the nominal  
setting must be used. The lowest code can be used in situations where power dissipation is critical and performance is  
less important. For most conditions the performance at the minimum setting will be similar to nominal setting. However,  
only 10-bit performance can be expected at worst case conditions. The power dissipation savings shown in Table 20 are  
only approximate numbers for the ADC current alone.  
Table 20. Performance Control Settings  
performance_control <2:0>  
Power Dissipation  
-40% (lower performance)  
-30%  
100  
101  
110  
-20%  
111  
-10%  
000 (default)  
001  
Nominal  
Do not use  
Do not use  
Do not use  
010  
011  
The ext_vcm_bc register controls the driving strength in the buffer supplying the voltage on the VCM pin. If this pin is  
not in use, the buffer can be switched off. If current is drawn from the VCM pin, the driving strength can be increased  
to keep the voltage on this pin at the correct level.  
Table 21. External Common Mode Voltage Buffer Driving Strength  
ext_vcm_bc <1:0>  
VCM Buffer Driving Strength  
00  
01 (default)  
10  
Off (VCM floating)  
Low  
High  
Max  
11  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
24  
PRELIMINARY Data Sheet  
differential shunt capacitor at the chip side of the resistors  
may be used to provide dynamic charging currents and  
may improve performance. The resistors form a low pass  
filter with the capacitor, and values must therefore be  
determined by requirements for the application.  
Therory of Operation  
The CDK8307 is an 8-channel, high-speed, CMOS ADC.  
The 13-bits given out by each channel are serialized to  
12, 13 or 14-bits and sent out on a single pair of pins in  
LVDS format. All eight channels of the CDK8307 operate  
from a single differential or single ended clock. The sam-  
pling clocks for each of the eight channels are generated  
from the clock input using a carefully matched clock buf-  
fer tree. The 12x/13x/14x clock required for the serializer  
is generated internally from FCLK using a phase-locked  
loop (PLL). A 6x/6.5x/7x and 1x clock are also output in  
LVDS format, along with the data to enable easy data  
capture.TheCDK8307usesinternallygeneratedreferences  
that can be shorted across several devices to improve  
gain-matching. The differential reference value is 1V. This  
results in a differential input of -1V to correspond to the  
zero code of the ADC, and a differential input of +1V to  
correspond to the full-scale code (code 8191).  
Figure 8. Input Configuration Diagram  
DC-Coupling  
Figure 9 shows a recommended configuration for DC-  
coupling. Note that the common mode input voltage must  
be controlled according to specified values. Preferably, the  
CM_EXT output should be used as a reference to set the  
common mode voltage.  
The ADC employs a pipelined converter architecture.  
Each stage feeds its output data into the digital error  
correction logic, ensuring excellent differential linearity  
and no missing codes at 13-bit level.  
The CDK8307 operates from two sets of supplies and  
grounds. The analog supply and ground set is identified  
as AVDD and AVSS, while the digital set is identified by  
DVDD and DVSS.  
The input amplifier could be inside a companion chip or  
it could be a dedicated amplifier. Several suitable single  
ended to differential driver amplifiers exist in the market.  
The system designer should make sure the specifications  
of the selected amplifier is adequate for the total system,  
and that driving capabilities comply with the CDK8307  
input specifications.  
Recommended Usage  
Analog Input  
The analog input to the CDK8307 is a switched capacitor  
track-and-hold amplifier optimized for differential opera-  
tion. Operation at common mode voltages at mid supply  
is recommended even if performance will be good for the  
ranges specified. The VCM pin provides a voltage suitable  
as common mode voltage reference. The internal buffer  
for the VCM voltage can be switched off, and driving  
capabilities can be changed programming the ext_vcm_  
bc<1:0> register.  
Detailed configuration and usage instructions must be  
found in the documentation of the selected driver, and  
the values given in Figure 10 must be varied according to  
the recommendations for the driver.  
43Ω  
33pF  
43Ω  
Figure 8 shows a simplified drawing of the input network.  
The signal source must have sufficiently low output  
impedance to charge the sampling capacitors within one  
clock cycle. A small external resistor (e.g. 22Ω) in series  
with each input is recommended as it helps reducing  
transient currents and dampens ringing behavior. A small  
Figure 9. DC-Coupled Input  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
25  
PRELIMINARY Data Sheet  
AC-Coupling  
A signal transformer or series capacitors can be used  
to make an AC-coupled input network. Figure 8 shows  
a recommended configuration using a transformer. Make  
sure that a transformer with sufficient linearity is selected,  
and that the bandwidth of the transformer is appropriate.  
The bandwidth should exceed the sampling rate of the  
ADC with at least a factor of 10. It is also important to  
keep phase mismatch between the differential ADC inputs  
small for good HD2 performance. This type of transformer  
coupled input is the preferred configuration for high  
frequency signals as most differential amplifiers do  
not have adequate performance at high frequen-  
cies. Magnetic coupling between the transformers  
and PCB traces may impact channel crosstalk, and  
must hence be taken into account during PCB layout.  
Ω
Ω
pF  
Figure 11. AC-Coupled Input  
Note that startup time from Sleep Mode and Power Down  
Mode will be affected by this filter as the time required  
to charge the series capacitors is dependent on the filter  
cut-off frequency.  
If the input signal has a long traveling distance, and the  
kick-backs from the ADC not are effectively terminated  
at the signal source, the input network of Figure 12 can  
be used. The configuration is designed to attenuate the  
kickback from the ADC and to provide an input impedance  
that looks as resistive as possible for frequencies below  
Nyquist.  
33Ω  
RT  
47Ω  
33Ω  
33Ω  
220Ω  
33Ω  
120nH  
1:1  
Figure 10. Transformer Coupled Input  
If the input signal is traveling a long physical distance  
from the signal source to the transformer (for example a  
long cable), kick-backs from the ADC will also travel along  
this distance. If these kick-backs are not terminated prop-  
erly at the source side, they are reflected and will add to  
the input signal at the ADC input. This could reduce the  
ADC performance. To avoid this effect, the source must  
effectively terminate the ADC kick-backs, or the traveling  
distance should be very short. If this problem could not be  
avoided, the circuit in Figure 10 can be used.  
pF  
RT  
68Ω  
optional  
120nH  
Figure 12: Alternative Input Network  
Values of the series inductor will however depend on  
board design and conversion rate. In some instances a  
shunt capacitor in parallel with the termination resistor  
(e.g. 33pF) may improve ADC performance further. This  
capacitor attenuate the ADC kick-back even more, and  
minimize the kicks traveling towards the source. However,  
the impedance match seen into the transformer becomes  
worse.  
Figure 11 shows AC-coupling using capacitors. Resistors  
from the CM_EXT output, RCM, should be used to bias the  
differential input signals to the correct voltage. The series  
capacitor, CI, form the high-pass pole with these resistors,  
and the values must therefore be determined based on  
the requirement to the high-pass cut-off frequency.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
26  
PRELIMINARY Data Sheet  
For applications where jitter may limit the obtainable per-  
formance, it is of utmost importance to limit the clock  
jitter. This can be obtained by using precise and stable  
clock references (e.g. crystal oscillators with good jitter  
specifications) and make sure the clock distribution is well  
controlled. It might be advantageous to use analog power  
and ground planes to ensure low noise on the supplies  
to all circuitry in the clock distribution. It is of utmost im-  
portance to avoid crosstalk between the ADC output bits  
and the clock and between the analog input signal and  
the clock since such crosstalk often results in harmonic  
distortion.  
Clock Input and Jitter Considerations  
Typicallyhigh-speedADCsusebothclockedgestogenerate  
internal timing signals. In the CDK8307 only the rising  
edge of the clock is used. Hence, input clock duty cycles  
between 20% and 80% is acceptable.  
The input clock can be supplied in a variety of formats.  
The clock pins are AC-coupled internally, and hence a wide  
common mode voltage range is accepted. Differential  
clock sources as LVDS, LVPECL or differential sine wave  
can be connected directly to the input pins. For CMOS  
inputs, the CLKN pin should be connected to ground, and  
the CMOS clock signal should be connected to CLKP. For  
differential sine wave clock input the amplitude must be  
The jitter performance is improved with reduced rise and  
fall times of the input clock. Hence, optimum jitter per-  
formance is obtained with LVDS or LVPECL clock with fast  
edges. CMOS and sine wave clock inputs will result in  
slightly degraded jitter performance.  
at least ±0.8V .  
pp  
The quality of the input clock is extremely important for  
high-speed, high-resolution ADCs. The contribution to  
SNR from clock jitter with a full scale signal at a given  
frequency is shown in equation below.  
If the clock is generated by other circuitry, it should be re-  
timed with a low jitter master clock as the last operation  
before it is applied to the ADC clock input.  
SNR  
= 20 log (2 π F εt)  
jitter  
IN  
where F is the signal frequency, and εt is the total rms  
IN  
jitter measured in seconds. The rms jitter is the total of all  
jitter sources including the clock generation circuitry, clock  
distribution and internal ADC circuitry.  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
27  
PRELIMINARY Data Sheet  
Mechanical Dimensions  
QFN-64  
Inches  
Typ  
Millimeters  
Typ  
aaa  
C
A
ccc C  
Symbol  
Min  
Max  
Min  
Max  
A
D
A
A
0.00  
0.035  
0.002  
0.028  
0.00  
0.01  
0.65  
0.2 REF  
0.25  
9.00 BSC  
8.75 BSC  
5.2  
9.00 BSC  
8.75 BSC  
5.2  
0.9  
0.05  
0.7  
A2  
A3  
A
A
A
0.0004  
0.026  
1
2
3
D1  
0.008 REF  
0.010  
0.354 BSC  
0.354 BSC  
0.205  
0.354 BSC  
0.344 BSC  
0.205  
b
D
0.008  
0.197  
0.197  
0.012  
0.213  
0.213  
0.2  
5.0  
5.0  
0.30  
5.4  
aaa  
C B  
A1  
D
1
D
2
E
E
1
E
2
5.4  
F
G
L
0.05  
0.0096  
0.012  
0.0168  
0.016  
0.020 BSC  
1.3  
0.24  
0.3  
0.42  
0.4  
0.50 BSC  
0.6  
0.5  
0.024  
0.020  
e
θ
0°  
12°  
0°  
12°  
1
E
E1  
Tolerance of Form and Position  
aaa  
bbb  
ccc  
0.10  
0.10  
0.05  
0.004  
0.004  
0.002  
Pin 1 ID  
0.05 Dia.  
NOTES:  
1. All dimensions are in millimeters.  
2. Die thickness allowable is 0.305mm maximum (.012 inches maximum)  
3. Dimensioning & tolerances conform to ASME y14.5m. -1994.  
4. Dimension applies to plated terminal and is measured between 0.20 and 0.25mm from terminal tip.  
5. The pin #1 identifier must be placed on the top surface of the package by using indentation mark  
or other feature of package body.  
seating  
plane  
θ1  
1.14  
bbb C  
B
6. Exact shape and size of this feature is optional.  
C
7. Package warpage max 0.08mm.  
B
bbb C A  
1.14  
8. Applied for exposed pad and terminals. Exclude embedding part of exposed pad from measuring.  
9. Applied only to terminals.  
TOP VIEW  
SIDE VIEW  
10. Package corners unless otherwise specipied are r0.175±0.025mm.  
F
D2  
Pin 1 ID  
Dia. 0.20  
0.45  
G
E2  
L
e
b
L
0.10 M  
C A B  
BOTTOM VIEW  
©2009 CADEKA Microcircuits LLC  
www.cadeka.com  
28  
PRELIMINARY Data Sheet  
Mechanical Dimensions (Continued)  
TQFP-80  
TQFP-80  
Symbol  
A
Dimensions (mm)  
1.20  
A
1
A
2
0.10 ±0.05  
1.00 ±0.05  
A
3
0.25  
b
0.22 ±0.05  
0.145 +0.055  
0.145 -0.045  
c
D
E
12.00 ±0.20  
12.00 ±0.20  
e
0.50  
HD  
HE  
L
14.00 ±0.20  
14.00 ±0.20  
0.50  
Lp  
0.60 ±0.15  
1.00 ±0.20  
0.08  
L
1
x
y
0.08  
ZD  
ZE  
1.25  
1.25  
3° +5°  
3° -3°  
θ
NOTE:  
Each lead centerline is located within 0.08mm of  
its true position at maximum material condition.  
Detail of Lead End  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
Amplify the Human Experience  
CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
designed by  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2009 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CDK8307DILP64

12/13-bit, 20/40/50/65/80MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8307DILP64B2

12/13-bit, 20/40/50/65MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8307DITQ80

12/13-bit, 20/40/50/65MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8307EILP64

12/13-bit, 20/40/50/65/80MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8307EITQ80

12/13-bit, 20/40/50/65/80MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8307_1A

12/13-bit, 20/40/50/65/80MSPS, Eight Channel, Ultra Low Power ADC with LVDS
CADEKA

CDK8920A

CRYSTAL LAN ISA PLUG-AND-PLAY ETHERNET CONTROLLER
CIRRUS

CDL13005

NPN PLASTIC POWER TRANSISTOR
RECTRON

CDL13005A

Power Bipolar Transistor, 4A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin, PLASTIC, TO-220, 3 PIN
RECTRON

CDL13005A-C

暂无描述
RECTRON

CDL13005B

Power Bipolar Transistor, 4A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin, PLASTIC, TO-220, 3 PIN
RECTRON

CDL13005B-C

Transistor
RECTRON