SX16A-3-5SA [BOURNS]

SIP Non-Isolated Power Module; SIP的非隔离电源模块
SX16A-3-5SA
型号: SX16A-3-5SA
厂家: BOURNS ELECTRONIC SOLUTIONS    BOURNS ELECTRONIC SOLUTIONS
描述:

SIP Non-Isolated Power Module
SIP的非隔离电源模块

电源电路
文件: 总13页 (文件大小:1091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High reliability  
Remote on/off  
Remote sense  
Output overcurrent protection  
(non-latching)  
Features  
SIP (Single in-line package)  
Output voltage programmable from  
0.75 Vdc to 3.3 Vdc via external resistor  
Up to 16 A output current  
Up to 95 % efficiency  
Overtemperature protection  
Constant switching frequency (300 kHz)  
Wide operating temperature range  
Optional sequencing function  
Small size, low profile, cost-efficient open  
frame design  
Low output ripple and noise  
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Description  
How to Order  
Bourns® SX(T)16A-3-5SA is a non-isolated DC-DC converter  
offering designers a cost and space-efficient solution with  
standard features such as remote on/off, remote sense, precisely  
regulated programmable output voltage, overcurrent and over-  
temperature protection, and optional output voltage sequencing.  
These modules deliver up to 16 A of output current with full load  
efficiency of 95 % at 3.3 V output.  
S X (T) 16A - 3-5 S A (-P)  
Configuration  
S = SIP  
Internal Identifier  
Identifies Sequencing Pin Function  
Output Current (Amps)  
Input Voltage (V)  
Outputs  
S = Single  
Output Voltage (V)*  
A = Adjustable  
Optional Positive On/Off Logic  
*Fixed output voltage parts and optional features available; contact factory.  
Absolute Maximum Ratings  
Stress in excess of absolute maximum ratings may cause permanent damage to the device. Device reliability may be affected if  
exposed to absolute maximum ratings for extended time periods.  
Characteristic  
Min.  
-0.3  
-40  
Max.  
5.8  
Units  
Notes & Conditions  
Continuous Input Voltage  
Operating Temperature Range  
Storage Temperature  
Sequencing Function  
V
dc  
+85  
°C  
See Thermal Considerations section  
-55  
+125  
°C  
-0.3  
V , max.  
in  
V
dc  
Electrical Specifications  
Unless otherwise specified, specifications apply over all input voltage, resistive load and temperature conditions.  
Characteristic  
Min.  
2.4  
-
Nom.  
Max.  
5.5  
Units  
Notes & Conditions  
Operating Input Voltage  
Maximum Input Current  
Input No Load Current  
V
V
V - 0.5 V  
out  
dc  
in  
Over V range, I max, V  
16.0  
A
= 3.3 V  
out dc  
dc  
in  
o
V
-V  
-V  
= 5.0 V , Io = 0 A, mod. enabled,  
in  
out  
out  
dc  
25  
30  
mA  
mA  
= 0.75 V  
dc  
= 3.3 V  
dc  
Input Stand-by Current  
1.5  
mA  
V
= 5.0 V , module disabled  
in  
dc  
2
Inrush Transient  
0.1  
A s  
Input Reflected Ripple Current  
Input Ripple Rejection  
100  
30  
mAp-p  
dB  
120 Hz  
Caution: The power modules are not internally fused. An external input line fast acting fuse with a maximum rating of 20 A (glass type,  
rated to 32V) is required. See the Safety Considerations section of this data sheet.  
Applications  
Intermediate Bus architecture  
Distributed power applications  
Workstations and servers  
Telecom equipment  
Enterprise networks including LANs/WANs  
Latest generation ICs (DSP, FPGA, ASIC) and microprocessor powered applications  
*RoHS Directive 2002/95/EC Jan 27 2003 including Annex.  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
1
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Electrical Specifications (Continued)  
Characteristic  
Min.  
-2.0  
-3.0  
Nom.  
Max.  
2.0  
Units  
Notes & Conditions  
Output Voltage Setpoint Accuracy  
Output Voltage Tolerance  
% V  
V
min, I max, T = 25 °C  
o,set  
o,set  
in  
o
A
3.0  
% V  
Over all rated in out voltage, load and  
temperature conditions  
Voltage Adjustment Range  
Line Regulation  
0.7525  
3.63  
V
dc  
0.3  
0.4  
0.4  
% V  
o,set  
o,set  
o,set  
Load Regulation  
% V  
% V  
A
Temperature Regulation  
Output Current  
0.0  
16.0  
dc  
Output Current Limit Inception (Hiccup Mode)  
Output Short Circuit Current  
200  
3.5  
% I max  
o
A
V 250 mV – Hiccup Mode  
dc  
o
Output Ripple and Noise Voltage  
1 µF ceramic/10 µF tantalum capacitors  
RMS  
Peak-to-Peak  
8
25  
15  
50  
mVrms  
mVpk-pk  
5 Hz to 20 MHz bandwidth  
External Capacitance  
- ESR 1 mΩ  
- ESR 10 mΩ  
1000  
5000  
µF  
µF  
Efficiency  
82.0  
87.0  
89.0  
90.0  
92.5  
95.0  
%
%
%
%
%
%
V
V
V
V
V
V
= 0.75 V  
= 1.2 V  
o,set  
o,set  
o,set  
o,set  
o,set  
o,set  
dc  
dc  
(V = 5 V , T = 25 °C, Full Load)  
in  
dc  
A
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
dc  
dc  
dc  
dc  
Switching Frequency  
300  
kHz  
Dynamic Load Response  
8 A to 16 A; 16 A to 8 A;  
(i/t = 2.5 A/µs; 25 °C)  
1 µF ceramic/10 µF tantalum capacitor  
Peak Deviation  
300  
25  
mV  
µs  
Settling Time (V <10 % peak deviation)  
o
3 x 100 µF polymer capacitors  
8 A to 16 A; 16 A to 8 A;  
(i/t = 2.5 A/µs; 25 °C)  
150  
100  
mV  
µs  
Peak Deviation  
Settling Time (V <10 % peak deviation)  
o
General Specifications  
Characteristic  
Calculated MTBF  
Weight  
Nom.  
Units  
Notes & Conditions  
13,675,000  
hours  
5.4  
g
(0.19)  
(oz.)  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
2
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Feature Specifications  
Characteristic  
Min.  
Nom.  
Max.  
Units  
Notes & Conditions  
10 µA max.  
Remote Enable  
Open = On (Logic Low)  
Low = Off (Logic High)  
0.4  
5.5  
V
V
dc  
>2.5  
1 mA max.  
dc  
Turn-On Delay and Rise Times  
Case 1: On/Off Low – V Applied  
Case 2: V Applied, then On/Off Set Low  
in  
Case 3: Output Voltage Rise  
2.5  
2.5  
3.0  
msec  
msec  
msec  
in  
(10 %-90 % of V setting)  
o
Sequencing Delay Time  
10  
msec  
Delay from V , min. to application of  
in  
voltage on SEQ pin  
Tracking Accuracy  
100  
200  
200  
400  
mV  
mV  
Power Up: 2 V/ms  
Power Down: 1 V/ms  
Output Voltage Overshoot  
Remote Sense Range  
1
% V  
I
max, V =5.5, T =25 °C  
in  
o, set  
o
A
0.5  
V
dc  
°C  
Overtemperature Protection  
125  
See Thermal Consideration section  
Input Undervoltage Lockout  
-Turn-on Threshold  
-Turn-off Threshold  
2.2  
2.0  
V
V
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
3
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Characteristic Curves  
The curves provided below are typical characteristics for the SX(T)16A-3-5SA modules at 25 °C. For any specific test configurations or  
any specific test requests, please contact Bourns.  
100.0  
95.0  
90.0  
85.0  
80.0  
100.0  
95.0  
90.0  
85.0  
80.0  
Vin=5.5 V  
Vin=5.0 V  
Vin=2.4 V  
Vin=5.5 V  
Vin=5.0 V  
Vin=2.4 V  
75.0  
70.0  
75.0  
70.0  
5.0  
10.0  
15.0  
5.0  
10.0  
15.0  
Output Current (A  
)
Output Current (A  
)
dc  
dc  
Fig. 1 Efficiency vs. Output Current (V  
out  
= 0.75 V )  
dc  
Fig. 4 Efficiency vs. Output Current (V  
out  
= 1.8 V )  
dc  
100.0  
100.0  
Vin=5.5 V  
Vin=5.0 V  
Vin=2.4 V  
95.0  
90.0  
85.0  
80.0  
95.0  
90.0  
85.0  
80.0  
Vin=5.5 V  
Vin=5.0 V  
Vin=3.0 V  
75.0  
70.0  
75.0  
70.0  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
Output Current (A  
)
Output Current (A  
)
dc  
Fig. 2 Efficiency vs. Output Current (V  
dc  
Fig. 5 Efficiency vs. Output Current (V  
= 2.5 V  
)
= 1.2 V  
)
out  
dc  
out  
dc  
100.0  
100.0  
Vin=5.5 V  
Vin=5.0 V  
Vin=2.4 V  
95.0  
90.0  
95.0  
90.0  
85.0  
80.0  
85.0  
80.0  
Vin=5.5 V  
75.0  
70.0  
75.0  
70.0  
Vin=5.0 V  
Vin=4.5 V  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
Output Current (A  
)
Output Current (A  
)
dc  
Fig. 3 Efficiency vs. Output Current (V  
dc  
Fig. 6 Efficiency vs. Output Current (V  
= 1.5 V  
dc  
)
= 3.3 V  
)
out  
out  
dc  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
4
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Characteristic Curves (Continued)  
18.0  
Iin, Adc  
Vo, Vdc  
16.0  
14.0  
12.0  
10.0  
8.0  
6.0  
4.0  
2.0  
Output Voltage: 200 mVolt 5 µs  
Output Current (5.0 A/Div): 2 Volt 5 µs  
Time (5 µs/div)  
0.0  
-0.5 0.5  
1.5 2.5  
Input Voltage (V  
3.5 4.5  
5.5  
)
dc  
Fig. 10 Transient Response - 8 A - 16 A Step  
Fig. 7 Input Voltage vs. I and V  
o
o
(V = 3.3 V  
)
(V = 2.5 V, I = 16.0 A)  
o
dc  
o
o
?
No Load: 20 mVolt 2.5 µs  
Half Load: 20 mVolt 2.5 µs  
Full Load: 20 mVolt 2.5 µs  
Output Voltage: 200 mVolt 5 µs  
Output Current (5.0 A/Div): 2 Volt 5 µs  
Time (2.5 µs/div)  
Fig. 8 Typical Output Ripple and Noise  
Time (5 µs/div)  
Fig. 11 Transient Response - 16 A - 8 A Step  
(V = 5.0 V, V = 0.75 V, I = 16.0 A)  
(V = 3.3 V  
dc  
)
in  
o
o
o
?
?
No Load: 20 mVolt 2.5 µs  
Half Load: 20 mVolt 2.5 µs  
Full Load: 20 mVolt 2.5 µs  
Output Voltage: 100 mVolt 10 µs  
Output Current (5.0 A/Div): 2 Volt 10 µs  
Time (10 µs/div)  
Fig. 12 Transient Response - 8 A - 16 A Step  
Time (2.5 µs/div)  
Fig. 9 Typical Output Ripple and Noise  
(V = 3.3 V , C = 3x100 µF Polymer Capacitors)  
dc ext  
(V = 5.0 V, V = 3.3 V, I = 16.0 A)  
o
in  
o
o
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
5
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Characteristic Curves (Continued)  
Output Voltage:  
500 mVolt 1 ms  
On/Off Voltage:  
2 Volt 1 ms  
Output Voltage: 100 mVolt 10 µs  
Output Current (5.0 A/Div): 2 Volt 10 µs  
Time (10 µs/div)  
Fig. 13 Transient Response - 16 A - 8 A Step  
(V = 3.3 V , C = 3x100 µF Polymer Capacitors)  
dc ext  
Time (1 ms/div)  
Fig. 16 Typical Start-up with Application of V  
in  
o
(V = 5 V , V = 3.3 V , I = 16 A)  
in dc dc  
o
o
Output Current:  
500 mVolt 1 ms  
On/Off Voltage:  
2 Volt 1 ms  
Output Voltage: 500 mVolt 1 ms  
On/Off Voltage: 2 Volt 1 ms  
Time (1 ms/div)  
Fig. 17 Typical Start-up using Remote On/Off with Prebias  
(V = 5 V , V = 3.3 V , I = 1 A, V = 1 V  
Time (1 ms/div)  
Fig. 14 Typical Start-up using Remote On/Off  
(V = 5 V , V = 3.3 V , I = 10 A)  
)
in dc dc bias dc  
o
o
in  
dc  
o
dc o  
Output Voltage:  
500 mVolt 1 ms  
On/Off Voltage:  
2 Volt 1 ms  
Output Current (10 A/div): 50 mVolt 5 ms  
Time (5 ms/div)  
Time (1 ms/div)  
Fig. 18 Output Short Circuit Current  
Fig. 15 Typical Start-up using Remote On/Off  
with Low-ESR External Capacitors (100x100 µF Polymer)  
(V = 5.0 V , V = 0.75 V  
in dc dc  
)
o
(V = 5.0 V , V = 3.3 V , I = 10.0 A, C = 1000 µF)  
in dc dc  
o
o
o
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
6
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Characteristic Curves (Continued)  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
4
2
0 LFM  
0 LFM  
100 LFM  
200 LFM  
300 LFM  
400 LFM  
100 LFM  
200 LFM  
300 LFM  
400 LFM  
6
4
2
0
0
15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
Fig. 19 Derating Output Current vs.  
Local Ambient Temp. and Airflow  
Fig. 22 Derating Output Current vs.  
Local Ambient Temp. and Airflow  
(V = 5.0 V , V = 3.3 V  
)
(V = 3.3 V , V = 0.75 V  
in dc dc  
)
in  
dc  
o
dc  
o
18  
16  
14  
12  
10  
8
0 LFM  
100 LFM  
200 LFM  
300 LFM  
400 LFM  
6
4
2
0
15 25 35 45 55 65 75 85  
Ambient Temperature (°C)  
Fig. 20 Derating Output Current vs.  
Local Ambient Temp. and Airflow  
(V = 5.0 V , V = 0.75 V  
in dc dc  
)
o
18  
16  
14  
12  
10  
8
0 LFM  
100 LFM  
200 LFM  
6
4
2
0
15 25  
35 45  
55 65 75  
85  
Ambient Temperature (°C)  
Fig. 21 Derating Output Current vs.  
Local Ambient Temp. and Airflow  
(V = 3.3 V , V = 2.5 V  
in dc dc  
)
o
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
7
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Operating Information  
Remote On/Off  
The SX(T)16A-3-5SA comes standard with Active LOW Negative On/Off logic, i.e., OPEN or LOW (< 0.4 V) will turn ON the device.  
To turn the device OFF, increase the voltage level on the On/Off pin above 2.4 V, as shown in Figure 23, placing the part into low  
dissipation sleep mode.  
The SX(T)16A-3-5SA-P comes with Active HIGH Positive On/Off logic, i.e., OPEN or HIGH (>2.4 V) will turn on the device. To turn OFF,  
decrease the voltage level on the On/Off pin below 0.4 V.  
The signal levels of the On/Off pin input is defined with respect to ground.  
SX(T)16A-3-5SA-P  
SX(T)16A-3-5SA  
Fig. 23 Circuit Configuration for using  
Negative Logic On/Off  
Fig. 24 Circuit Configuration for using  
Positive On/Off  
Input Considerations  
The input must have a stable low impedance AC source for optimum performance. This can be accomplished with external ceramic  
capacitors, tantalum capacitors and/or polymer capacitors. Using low impedance tantalum capacitors requires about 20 µF per amp  
and an ESR of 250 mper amp of output current. Tantalum capacitors with a combined value of 300 µF and less than 15mESR  
would be adequate. This can be implemented with (3) 100 µF tantalum capacitors with an ESR less than of 40m. Ceramic capacitors  
are also recommended to reduce high frequency ripple on the input.  
Output Considerations  
To maintain the specified output ripple and transient response, external capacitors must be used. An external 1 µF ceramic capacitor in  
parallel with a 10 µF low ESR tantalum capacitor will usually meet the specified performance. Improved performance can be achieved  
by using more capacitance. Low ESR polymer capacitors may also be used. Two 100 µF, 9 mor lower ESR capacitors are  
recommended.  
Safety Information  
In order to comply with safety requirements the user must provide a fuse in the unearthed input line. This is to prevent earth being  
disconnected in the event of a failure.  
The converter must be installed as per guidelines outlined by the various safety approvals if safety agency approval is required for the  
overall system. The positive input lead must be provided with a fact acting fuse with a maximum rating of 20 A (glass type, rated to  
32 V).  
Overtemperature Protection  
The device will shut down if it becomes too hot (typically 125 °C). Once the converter cools, it automatically restarts. This feature does  
not guarantee the converter won’t be damaged by temperatures above its rating.  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
8
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Operating Information (Continued)  
Overcurrent Protection  
The device has an internally set output current limit to protect it from overloads, placing the unit in hiccup mode. Once the overload is  
removed the converter automatically resumes normal operation. No user adjustments are available. An external fuse in series with the  
input voltage is also required for complete overload protection.  
Input Undervoltage Lockout  
The device operation is disabled if the input voltage drops below the specified input range. Once the input returns to the specified  
range operation automatically resumes. No user adjustments are available.  
Output Voltage Setting  
The output voltage can be programmed to any voltage between 0.75 Vdc and 3.3 Vdc by connecting a single resistor between the trim  
pin and the GND pin of the module, as shown in Fig. 25 below.  
If left open circuit the output voltage will default to 0.75 Vdc. The correct Rtrim value for a specific voltage can be calculated using the  
following equation:  
VIN (+)  
VO (+)  
Rtrim = [21.07/(Vo-0.7525)-5.11] KΩ  
For example, to set the SX(T)16A-3-5SA to 3.3 V the following  
Rtrim resistor must be used:  
LOAD  
ON/OFF  
TRIM  
Rtrim  
Rtrim = [21.07/(3.3-0.7525)-5.11] KΩ  
GND  
Rtrim = 3.161 k,  
The closest standard 1 % E96 value is 3.16 k.  
Fig. 25 Circuit Configuration to Program Output  
Voltage using an External Resistor  
Table 1 provides the Rtrim values required for some common output  
voltage set points. The nearest standard E96 1 % resistor value is also given.  
SX(T)16A-3-5SA Rtrim Values  
Vo (V)  
0.75  
1.0  
Rtrim (k)  
Open  
1 % Value  
Open  
80.6  
80.02  
1.2  
41.97  
42.2  
1.5  
23.08  
23.2  
1.8  
15.00  
15.0  
2.0  
11.78  
11.8  
2.5  
6.947  
6.98  
3.3  
3.161  
3.16  
Table 1  
The output voltage of the device can also be set by applying a voltage between the TRIM and GND pins. The Vtrim equation can be  
written as follows:  
Vtrim = (0.7 – 0.1698 x{Vo – 0.7225))  
To set Vo = 3.3 V, the Vtrim required would therefore be 0.2670 V.  
Table 2 provides the Vtrim values required for some common output voltage set points.  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
9
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Operating Information (Continued)  
SX(T)16A-3-5SA Vtrim Values  
Vo (V)  
0.75  
1.0  
Vtrim (V)  
Open  
0.6580  
0.6240  
0.5731  
0.5221  
0.4882  
0.4033  
0.2674  
1.2  
1.5  
1.8  
2.0  
2.5  
3.3  
Table 2  
Voltage Margining  
Output voltage margining can be implemented as follows and as shown in Figure 26.  
1) Trim-up: Connect a resistor, Rm-up, from the Trim pin to the ground pin for adjusting the voltage upwards, and  
2) Trim-down: Connect a resistor, Rm-down, from the Trim pin to the output pin for adjusting the voltage downwards.  
Please consult your local Bourns field applications engineer for more details and the calculation of the required resistor values.  
Vo  
Vo  
Vin  
R
margin-down  
Q2  
Trim  
On/Off  
R
margin-up  
R
trim  
Q1  
COM  
Fig. 26 Circuit Configuration for Margining Output Voltage  
Sequencing Function  
Bourns XT Series modules have a sequencing feature that enables users to implement various types of output voltage sequencing in  
their applications. When an analog voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the  
set-point voltage. The final SEQ pin voltage must be set higher than the set-point voltage of the module. The output voltage follows the  
voltage on the SEQ pin on a one-to-one basis. By connecting multiple modules together, customers can get multiple modules to track  
their output voltages to the voltage applied on the SEQ pin.  
For proper voltage sequencing, the input voltage is applied to the module. The On/Off pin should be set so as the module is ON by  
default. An analog voltage is applied to the SEQ pin and the output voltage of the module will track this voltage on a 1:1 basis until  
output reaches the set-point voltage, as shown in Figure 27.  
To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. Output voltage of the  
modules tracks the voltages below their set-point voltages on a one-to-one basis, as shown in Figure 28. A valid input voltage must be  
maintained until the tracking and output voltages reach ground potential to ensure a controlled shutdown of the modules.  
When not using the sequencing feature, tie the SEQ pin to V . For additional guidelines please contact your local Bourns field  
out  
applications engineer.  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
10  
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Operating Information (Continued)  
Vo: 1 Volt 1 ms  
Vseq: 1 Volt 1 ms  
Vo: 1 Volt 500 µs  
Vseq: 1 Volt 500 µs  
Time (0.5 ms/div)  
Time (0.5 ms/div)  
Fig. 28 Voltage Sequencing at Power Down  
Fig. 27 Voltage Sequencing at Power Up  
(V = 5.0 V , V = 3.3 V , I = 16.0 A)  
(V = 5.0 V , V = 3.3 V , I = 16.0 A)  
in  
dc  
o
dc o  
in  
dc  
o
dc o  
Remote Sense  
The Remote Sense feature is used to minimize the effects of distribution losses by regulating the voltage at the Remote Sense pin (See  
Figure 29). The voltage between the Sense pin and V pin must not exceed 0.5 V.  
o
When the Remote Sense feature is not being used, connect the Remote Sense pin to the output pin of the module.  
It is very important to make sure that the maximum output power (V x I ) of the module remains less than or equal to the maximum  
o
o
rated power. Using Remote Sense, the output voltage of the module can increase, which may increase the power output by the module.  
Rdistribution  
Rcontact  
Rdistribution Rcontact  
V (+) Vo  
IN  
Sense  
RLOAD  
R
Rdistribution  
Rcontact  
distribution Rcontact  
COM  
Fig. 29 Remote Sense Circuit Configuration  
Thermal Considerations  
Sufficient cooling must always be considered to ensure reliable operation, as these devices operate in a variety of thermal environments.  
Factors such as ambient temperature, airflow, power dissipation and reliability must be taken into consideration.  
The data presented in Figures 19 to 23 is based on physical test results taken in a wind tunnel test. The test set-up is shown in  
Figure 31.  
The thermal reference points are (1) T  
and T  
ref2  
as shown in Figure 30, and (2) T = temperature at controller IC. For reliable  
ref3  
ref1  
operation, none of these T points should exceed 115 °C.  
ref  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
11  
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Thermal Considerations (Continued)  
Air  
Flow  
WIND TUNNEL  
Airflow and ambient  
temp sensor probes  
location  
Air Flow  
Tref1  
Tref2  
Q1  
Q2  
C4 C3 C2  
L1  
C2  
C1  
UNIT UNDER TEST  
C1  
PCB  
Fig. 30 T  
Temperature Measurement Location  
ref1  
Fig. 31  
Thermal Test Set-up  
Product Dimensions  
FRONT VIEW OF BOARD (INDUCTOR SIDE)  
SIDE VIEW  
50.8  
(2.00)  
7.43  
(0.293)  
6.96  
(0.274)  
MAX.  
REF.  
DIMENSIONS:  
MM  
(INCHES)  
12.7  
(0.50) (0.485)  
12.32  
L1 (REF.)  
11 PINS  
0.64 0.38  
(0.025) (0.015)  
X
1
2
3
4
5
6
7
8
B*  
9
10  
TOLERANCES:  
DECIMAL .X  
0.5  
(0.02)  
7.6  
(0.30)  
0.25  
(0.010)  
DECIMAL .XX  
1.28  
(0.050)  
0.64  
(0.025)  
6.32  
(0.249)  
2.54  
(0.100)  
5.08  
(0.200)  
7.62  
PIN  
FUNCTION  
(0.300)  
10.16  
(0.400)  
1
2
3
4
VOUT  
VOUT  
SENSE  
VOUT  
GND  
35.56  
(1.400)  
38.10  
(1.500)  
5
6
7
8
GND  
VIN  
VIN  
SEQ  
40.64  
(1.600)  
43.18  
(1.700)  
B (optional)  
45.72  
(1.800)  
48.26  
(1.900)  
9
10  
TRIM  
ON/OFF  
*Pin Stuffed with SXT16A option only, absent with SX16A standard  
Fig. 32 Product Dimensions  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
12  
SX(T)16A-3-5SA SIP Non-Isolated Power Module  
Recommended Hole Pattern  
48.26  
(1.900)  
45.72  
(1.800)  
43.18  
(1.700)  
40.64  
(1.600)  
38.10  
(1.500)  
35.56  
(1.400)  
10.16  
(0.400)  
DIMENSIONS:  
MM  
(INCHES)  
7.62  
(0.300)  
5.08  
(0.200)  
2.54  
(0.100)  
1.27  
(0.050)  
1
2
3
4
5
6
7
8
B*  
9
10  
7.9  
(0.31)  
1.3  
(0.05)  
OUTLINE AREA  
1.09  
50.8  
(2.00)  
(0.043)  
THROUGH-HOLE  
PLATED  
1.63  
(0.064)  
BOTH SIDES  
PAD SIZE  
*Hole required with SXT16A option only, not required with SX16A standard  
Fig. 33 Recommended Hole Pattern  
Asia-Pacific:  
Europe:  
Tel: +886-2 2562-4117 • Fax: +886-2 2562-4116  
Tel: +41-41 768 5555 • Fax: +41-41 768 5510  
The Americas: Tel: +1-951 781-5500 • Fax: +1-951 781-5700  
www.bourns.com  
LONGFORM REV. A 06/06  
Specifications are subject to change without notice.  
Customers should verify device performance in their specific applications.  
13  

相关型号:

SX16M1000A5F11025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000A5SJ1030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000B2S-1030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000B2SV1025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000B3S11025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000B5SQ1030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000BPS81030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000BZS-1025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M1000BZSV1025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M100A3FL811

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 100uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M100APS5611

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 100uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SX16M100AZS5611

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 100uF, Through Hole Mount, ROHS COMPLIANT
YAGEO