ALMD-EG3D-VX002 [BOARDCOM]

High Brightness SMT Round LED Lamps Amber, Red, Green and Blue Tinted LEDs;
ALMD-EG3D-VX002
型号: ALMD-EG3D-VX002
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

High Brightness SMT Round LED Lamps Amber, Red, Green and Blue Tinted LEDs

PC 光电
文件: 总12页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ALMD-EL3D, ALMD-EG3D, ALMD-CM3D, ALMD-CB3D  
High Brightness SMT Round LED Lamps  
Amber, Red, Green and Blue Tinted LEDs  
Data Sheet  
Description  
Features  
The new Avago ALMD-xx3D LED series has the same or xꢀ Compact form factor  
just slightly less luminous intensity than conventional  
high brightness, through-hole LEDs.  
xꢀ High brightness material  
xꢀ Available in Red, Amber, Green and Blue color  
The new LED lamps can be assembled using common  
SMT assembly processes and are compatible with indus-  
trial reflow soldering processes.  
xꢀ Red AlInGaP 626 nm  
xꢀ Amber AlInGaP 590 nm  
xꢀ Green InGaN 525 nm  
The LEDs are made with an advanced optical grade epoxy  
for superior performance in outdoor sign applications.  
xꢀ Blue InGaN 470 nm  
xꢀ JEDEC MSL 2A  
For easy pick and place assembly, the LEDs are shipped  
in EIA-compliant tape and reel. Every reel is shipped from  
a single intensity and color bin– except the red color–for  
better uniformity.  
xꢀ Compatible with industrial reflow soldering process  
xꢀ Typical Viewing angle: 30q  
xꢀ Tinted, non-diffused  
Package Dimensions  
Applications  
Package Marking  
xꢀ Variable Message Signs  
A
A
C
4.20 0.20  
C
A: Anode  
C: Cathode  
4.20 0.20  
4.75 0.50  
6.50 0.50  
3.40 0.50  
Notes:  
1. All dimensions in millimeters (inches).  
2. Tolerance is 0.20 mm unless other speciꢀed.  
A
C
2.50 0.20  
1.4 (4x)  
3. Copper leadframe.  
CAUTION: InGaN devices are Class 1C HBM ESD sensitive, AlInGaP devices are Class 1B ESD sensitive per JEDEC Standard.  
Please observe appropriate precautions during handling and processing. Refer to Application Note AN-1142 for additional details.  
CAUTION: Customer is advised to keep the LED in the MBB when not in use as prolonged exposure to environment might cause  
the silver plated leads to tarnish, which might cause difficulties in soldering.  
Device Selection Guide  
[1,2,5]  
Luminous Intensity Iv (mcd)  
Viewing Angle  
Typ (°)  
Part Number  
Color and Dominant Wavelength  
[4]  
[3]  
O (nm)Typ  
d
Min  
Max  
ALMD-EG3D-VX002  
ALMD-EL3D-VX002  
ALMD-CM3D-Y1002  
ALMD-CB3D-SU002  
Notes:  
Red 626  
4200  
4200  
9300  
1900  
9300  
9300  
30q  
Amber 590  
Green 525  
Blue 470  
21000  
4200  
1. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. Dominant wavelength, Od, is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
4. T½ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
5. Tolerance for each bin limit is 15ꢁ  
Part Numbering System  
A
L
M
D
-
x1 x2 x3 x4  
-
x5 x6 x7 x8 x9  
Code  
Description  
Option  
x1  
Package type  
E
C
Round AlInGaP  
Round InGaN  
x2  
Color  
B
G
L
Blue  
Red  
Amber  
Green  
M
x3  
Viewing angle  
3
30°  
x4  
Product speciꢀc designation  
Minimum intensity bin  
Maximum intensity bin  
Color bin selection  
D
x5  
Refer to device selection guide  
Refer to device selection guide  
x6  
x7  
0
Full distribution  
x8x9  
Packaging option  
02  
Tested 20mA, 13inch carrier tape  
2
Absolute Maximum Rating, T = 25 qC  
J
Parameter  
Red and Amber  
Blue and Green  
Unit  
mA  
mA  
mW  
V
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
50  
100 [2]  
30  
100 [3]  
120  
114  
Reverse Voltage  
5 (IR = 100 PA) [4]  
5 (IR = 10 PA) [4]  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
110  
qC  
-40 to +85  
-40 to +100  
qC  
qC  
Notes:  
1. Derate linearly as shown in Figure 4 and Figure 9.  
2. Duty Factor 30ꢁ, frequency 1 kHz.  
3. Duty Factor 10ꢁ, frequency 1 kHz.  
4. Indicates product ꢀnal testing; long-term reverse bias is not recommended.  
Electrical / Optical Characteristics, T = 25 qC  
J
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
Red  
Amber  
Green  
VF  
V
IF = 20 mA  
1.8  
1.8  
2.8  
2.8  
2.1  
2.1  
3.2  
3.2  
2.4  
2.4  
3.8  
3.8  
Blue  
Reverse Voltage  
Red & Amber  
Green & Blue  
VR  
5
5
V
IF = 100 PA  
IF = 10 PA  
Dominant Wavelength [1]  
Red  
Amber  
Green  
Blue  
Od  
IF = 20 mA  
618.0  
584.5  
519.0  
460.0  
626.0  
590.0  
525.0  
470.0  
630.0  
594.5  
539.0  
480.0  
Peak Wavelength  
Red  
Amber  
Green  
Blue  
OPEAK  
634  
594  
516  
464  
nm  
Peak of Wavelength of Spectral  
Distribution at IF = 20 mA  
Thermal Resistance  
RTJ-PIN  
130  
qC/W  
LED Junction-to-Pin  
Luminous Efficacy [2]  
Red  
Amber  
Green  
Blue  
KV  
200  
520  
530  
65  
lm/W  
Emitted Luminous Power/Emitted  
Radiant Power  
Thermal coefficient of Od  
nm/qC IF = 20 mA ; +25 qC ≤ TJ ≤ +100 qC  
Red  
0.059  
0.103  
0.028  
0.024  
Amber  
Green  
Blue  
Notes:  
1. The dominant wavelength is derived from the chromaticity diagram and represents the color of the lamp.  
2. The radiant intensity, I in watts per steradian, may be found from the equation I = I /K where I is the luminous intensity in candelas and K is  
e
e
V
V
V
V
the luminous efficacy in lumens/watt.  
3
AlInGaP  
1
100  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
Amber  
Red  
0
0.5  
1
1.5  
2
2.5  
3
500  
550  
600  
650  
WAVELENGTH - nm  
FORWARD VOLTAGE - V  
Figure 1. Relative Intensity vs Wavelength  
Figure 2. Forward Current vs ForwardVoltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
50  
40  
30  
20  
10  
0
Amber  
Red  
0
20  
40  
60  
80  
100  
0
20  
TA - AMBIENT TEMPERATURE (°C)  
Note: RTJ-A = 460 qC/W  
40  
60  
80  
100  
FORWARD CURRENT - mA  
Figure 3. Relative Intensity vs Forward Current  
Figure 4. Maximum Forward Current vs Ambient Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
Amber  
0.6  
0.4  
0.2  
0.0  
Red  
-0.2  
-0.4  
-0.6  
0
20  
40  
60  
80  
100  
FORWARD CURRENT - mA  
Figure 5. Relative Dominant Wavelength Shift vs Forward Current  
4
InGaN  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100  
80  
60  
40  
20  
0
BLUE  
GREEN  
380  
430  
480  
530  
580  
630  
0
1
2
3
4
5
WAVELENGTH - nm  
FORWARD VOLTAGE-V  
Figure 6. Relative Intensity vs Wavelength  
Figure 7. Forward Current vs ForwardVoltage  
35  
30  
25  
20  
15  
10  
5
3.5  
Blue  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Green  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
DC FORWARD CURRENT-mA  
TA - AMBIENT TEMPERATURE - °C  
Figure 8. Relative Intensity vs Forward Current  
Figure 9. Maximum Forward Current vs Ambient Temperature  
10  
5
Green  
Blue  
0
-5  
-10  
0
20  
40  
60  
80  
100  
FORWARD CURRENT-mA  
Figure 10. Dominant Wavelength Shift vs Forward Current  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Package Marking  
A
A
C
X
X
C
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT-DEGREE  
Figure 11a. Radiation Pattern for X axis  
Figure 11b. Component Axis for Radiation Pattern  
10  
0.3  
Red  
Amber  
Blue  
Green  
Red  
Amber  
Green  
Blue  
0.2  
0.1  
0
1
-0.1  
-0.2  
-0.3  
0.1  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TJ - JUNCTION TEMPERATURE  
TJ - JUNCTION TEMPERATURE  
Figure 12. Relative Intensity Shift vs Junction Temperature  
Figure 13. ForwardVoltage Shift vs Junction Temperature  
2.1  
5.2  
Note: Recommended stencil thickness is 0.1524mm (6 mils) minimum  
and above.  
Figure 14. Recommended Soldering Land Pattern  
6
4.00 0.ꢀ0  
ꢀ.00 0.ꢀ0  
0.50 0.10  
1.55 0.ꢀ0  
1.75 0.ꢀ0  
1.80 0.ꢀ0  
7.50 0.ꢀ0  
5.ꢀ0 0.ꢀ0  
8.00 0.ꢀ0  
ꢀ.ꢀ0 0.ꢀ0  
4.50 0.ꢀ0  
16.00 0.ꢁ0  
1.60 0.ꢀ0  
5.ꢁ0 0.ꢀ0  
7.10 0.ꢀ0  
Figure 15. Carrier Tape Dimension  
16.40 0.ꢀ0  
1ꢁ.00 0.ꢀ0  
Figure 16. Reel Dimension  
ꢀ anode leads lead unreeling direction  
Figure 17. Unit Orientation from reel  
7
Intensity Bin Limit Table (1.3:1 Iv bin ratio)  
Intensity (mcd) at 20 mA  
V Bin Table (V at 20 mA) for Red & Amber  
F
Bin ID  
VD  
Min  
1.8  
2.0  
2.2  
Max  
2.0  
2.2  
2.4  
Bin  
S
Min  
Max  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
VA  
T
VB  
U
V
Tolerance for each bin limit is 0.05V  
W
X
Y
Z
1
Tolerance for each bin limit is 15ꢁ  
Red Color Range  
Green Color Range  
Min Dom Max Dom X min  
Y Min  
X max  
Y max  
Min  
Bin Dom  
Max  
Dom  
Xmin  
Ymin  
Xmax  
Ymax  
618.0  
630.0  
0.6872  
0.6690  
0.3126  
0.3149  
0.6890  
0.7080  
0.2943  
0.2920  
1
2
3
4
5
519.0  
523.0  
527.0  
531.0  
535.0  
523.0  
527.0  
531.0  
535.0  
539.0  
0.0667 0.8323 0.1450 0.7319  
0.1200 0.7375 0.0979 0.8316  
0.0979 0.8316 0.1711 0.7218  
0.1450 0.7319 0.1305 0.8189  
0.1305 0.8189 0.1967 0.7077  
0.1711 0.7218 0.1625 0.8012  
0.1625 0.8012 0.2210 0.6920  
0.1967 0.7077 0.1929 0.7816  
0.1929 0.7816 0.2445 0.6747  
0.2210 0.6920 0.2233 0.7600  
Tolerance for each bin limit is 0.5nm  
Amber Color Range  
Min  
Bin Dom  
Max  
Dom  
Xmin  
Ymin  
Xmax  
Ymax  
1
2
4
6
584.5  
587.0  
589.5  
592.0  
587.0  
589.5  
592.0  
594.5  
0.5420 0.4580 0.5530 0.4400  
0.5370 0.4550 0.5570 0.4420  
0.5570 0.4420 0.5670 0.4250  
0.5530 0.4400 0.5720 0.4270  
0.5720 0.4270 0.5820 0.4110  
0.5670 0.4250 0.5870 0.4130  
0.5870 0.4130 0.5950 0.3980  
0.5820 0.4110 0.6000 0.3990  
Tolerance for each bin limit is 0.5nm  
Blue Color Range  
Min  
Max  
Bin Dom  
Dom  
Xmin  
Ymin  
Xmax  
Ymax  
Tolerance for each bin limit is 0.5nm  
1
2
3
4
5
460.0  
464.0  
468.0  
472.0  
476.0  
464.0  
468.0  
472.0  
476.0  
480.0  
0.1440 0.0297 0.1766 0.0966  
0.1818 0.0904 0.1374 0.0374  
0.1374 0.0374 0.1699 0.1062  
0.1766 0.0966 0.1291 0.0495  
0.1291 0.0495 0.1616 0.1209  
0.1699 0.1062 0.1187 0.0671  
0.1187 0.0671 0.1517 0.1423  
0.1616 0.1209 0.1063 0.0945  
0.1063 0.0945 0.1397 0.1728  
0.1517 0.1423 0.0913 0.1327  
Tolerance for each bin limit is 0.5nm  
8
Packing Label  
(i) Mother Label (Available on MBB bag)  
STANDARD LABEL LS0002  
RoHS Compliant  
(Q) QTY: Quantity  
e4 Max Temp 260C MSL 2a  
(1P) Item: Part Number  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(9D) Date Code: Date Code  
(V) Vendor ID:  
DeptID: OEAT01  
Made In: Country of Origin  
(ii) Baby Label (Available on Plastic Reel)  
(1P) PART #: Part Number  
(1T) Lot #: Lot Number  
BABY LABEL COSBOO1B V0.0  
(Q) QTY: Quantity  
(9D)MFG Date: Manufacturing Date  
(9D) Date Code: Date Code  
C/0: Country of Origin  
CAT Intensity Bin  
(1T) TAPE DATE: Taping Date  
BIN Refer to Below information  
Note: Acronyms and Deꢀnition:  
BIN:  
Example:  
a. Color bin only or VF bin only  
BIN: 4 (represent color bin 4 only)  
BIN: VA (represent VF bin “VAonly)  
b. Color bin incorporate with VF bin  
(i) Color bin only or VF bin only  
(Applicable for part number with color bins but with-  
out VF bin OR part number with VF bins and no color  
bin)  
BIN: 4 VA  
(ii) Color bin incorporated with VF bin  
Applicable for part number that have both color bin  
and VF bin  
VA: VF bin “VA”  
4: Color bin 4 only  
9
Soldering  
Recommended reflow soldering condition:  
(i) Leaded reflow soldering:  
(ii) Lead-free reflow soldering:  
20 SEC. MAX.  
10 to 30 SEC.  
240°C MAX.  
3°C/SEC. MAX.  
255 - 260 °C  
3°C/SEC. MAX.  
217°C  
200°C  
183°C  
100-150°C  
6°C/SEC. MAX.  
150°C  
-6°C/SEC.  
MAX.  
3°C/SEC.  
MAX.  
3 °C/SEC. MAX.  
100 SEC. MAX.  
60 - 120 SEC.  
120 SEC. MAX.  
TIME  
60-150 SEC.  
TIME  
a. Reflow soldering must not be done more than two c. Do not apply any pressure or force on the LED during  
times. Make sure you take the necessary precautions  
for handling a moisture-sensitive device, as stated in  
the following section.  
reflow and after reflow when the LED is still hot.  
d. It is preferred that you use reflow soldering to  
solder the LED. Use hand soldering only for rework  
if unavoidable but must be strictly controlled to the  
following conditions:  
b. Recommended board reflow direction:  
-
-
-
-
Soldering iron tip temperature = 320 °C max.  
Soldering duration = 3 sec max.  
Number of cycles = 1 only  
Power of soldering iron = 50 W max.  
e. Do not touch the LED body with a hot soldering iron  
except the soldering terminals as this may damage the  
LED.  
f. For de-soldering, it is recommended that you use a  
double flat tip.  
g. Please conꢀrm beforehand whether the functionality  
and performance of the LED is affected by hand  
soldering.  
REFLOW SOLDERING  
10  
PRECAUTIONARY NOTES  
d. Control of assembled boards  
1. Handling precautions  
For automated pick and place, Avago has tested nozzle  
size below made with urethane material to be working  
ꢀne with this LED. However, due to the possibility of  
variations in other parameters such as pick and place  
machine maker/model and other settings of the ma-  
chine, customer is recommended to verify the nozzle  
selected.  
-
If the PCB soldered with the LEDs is to be  
subjected to other high temperature processes,  
the PCB need to be stored in sealed MBB with  
desiccant or desiccator at <5ꢁRH to ensure that  
all LEDs have not exceeded their floor life of 672  
hours.  
e. Baking is required if:  
Pick & Place nozzle  
-
-
-
The HIC indicator is not BROWN at 10ꢁ and is  
AZURE at 5ꢁ.  
The LEDs are exposed to condition of >30°C /  
60ꢁ RH at any time.  
4.8 mm  
>3.5mm  
The LED floor life exceeded 672hrs.  
The recommended baking condition is: 60 5ꢂC  
for 20hrs. Baking should only be done once.  
4.4 mm  
‡3.9 mm  
LED flange  
f. Storage  
Note:  
-
The soldering terminals of these Avago LEDs  
a. Nozzle tip should touch the LED flange during pick and place.  
b. Outer dimensions of the nozzle should be able to ꢀt into the carrier  
tape pocket.  
are silver plated. If the LEDs are being exposed  
in ambient environment for too long, the silver  
plating might be oxidized and thus affecting its  
solderability performance. As such, unused LEDs  
must be kept in sealed MBB with desiccant or in  
desiccator at <5ꢁRH.  
2. Handling of moisture-sensitive device  
This product has a Moisture Sensitive Level 2a rating  
per JEDEC J-STD-020. Refer to Avago Application Note  
AN5305, Handling of Moisture Sensitive Surface Mount  
Devices, for additional details and a review of proper  
handling procedures.  
3. Application precautions  
a. Drive current of the LED must not exceed the  
maximum allowable limit across temperature as  
stated in the datasheet. Constant current driving is  
recommended to ensure consistent performance.  
a. Before use  
-
An unopened moisture barrier bag (MBB) can  
be stored at <40°C/90ꢁRH for 12 months. If the  
actual shelf life has exceeded 12 months and  
the humidity Indicator Card (HIC) indicates that  
baking is not required, then it is safe to reflow the  
LEDs per the original MSL rating.  
b. LED is not intended for reverse bias. Do use other  
appropriate components for such purpose. When  
driving the LED in matrix form, it is crucial to ensure  
that the reverse bias voltage is not exceeding the  
allowable limit of the LED.  
c. Avoid rapid change in ambient temperature  
especially in high humidity environment as this will  
cause condensation on the LED.  
-
It is recommended that the MBB not be opened  
prior to assembly (e.g. for IQC).  
b. Control after opening the MBB  
d. If the LED is intended to be used in outdoor or harsh  
environment, the LED leads must be protected  
with suitable potting material against damages  
caused by rain water, oil, corrosive gases etc. It is  
recommended to have louver or shade to reduce  
direct sunlight on the LEDs.  
-
The humidity indicator card (HIC) shall be read  
immediately upon opening of MBB.  
-
The LEDs must be kept at <30°C / 60ꢁRH at all  
times and all high temperature related processes  
including soldering, curing or rework need to be  
completed within 672 hours.  
4. Eye safety precautions  
LEDs may pose optical hazards when in operation. It is  
not advisable to view directly at operating LEDs as it  
may be harmful to the eyes. For safety reasons, use ap-  
propriate shielding or personal protective equipments.  
c. Control for unꢀnished reel  
-
Unused LEDs must be stored in a sealed MBB  
with desiccant or desiccator at <5ꢁRH.  
11  
DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for  
sale as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a  
nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to  
make claims against avago or its suppliers, for all loss, damage, expense or liability in connection with such use.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.  
AV02-2372EN - April 21, 2015  

相关型号:

ALMD-EG3E

Compact form factor
AVAGO

ALMD-EG3E-VX002

Compact form factor
AVAGO

ALMD-EL1E-Z2002

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL1E-Z2K02

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL1E-Z2L02

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL2E-XZ002

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL2E-XZK02

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL2E-XZL02

High Brightness SMT Round Red, Amber LED Lamps
BOARDCOM

ALMD-EL3D

High Brightness SMT Round LED Lamps Amber, Red, Green and Blue Tinted LEDs
BOARDCOM

ALMD-EL3D-SX602

SINGLE COLOR LED, AMBER, ROHS COMPLIANT, PLASTIC, SMT, 4 PIN
AVAGO

ALMD-EL3D-TT202

SINGLE COLOR LED, AMBER, ROHS COMPLIANT, PLASTIC, SMT, 4 PIN
AVAGO

ALMD-EL3D-TW202

SINGLE COLOR LED, AMBER, ROHS COMPLIANT, PLASTIC, SMT, 4 PIN
AVAGO