DP3020-9RG [BEL]

DC-DC Regulated Power Supply Module, 3 Output, Hybrid, METAL, CASE P01, MODULE;
DP3020-9RG
型号: DP3020-9RG
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 3 Output, Hybrid, METAL, CASE P01, MODULE

文件: 总24页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Features  
• RoHS lead-free-solder and lead-solder-exempted  
products available  
• Wide input voltage ranges up to 154 VDC  
• 1, 2, 3 or 4 isolated outputs up to 96 V  
• Class I equipment  
• Compliant with EN 45545 and NF-F-16 (version V114  
or later)  
• Very high efficiency up to 90%  
• Extremely low inrush current, hot-swappable  
• Excellent surge and transient protection  
• Many output configurations available with flexible load  
distribution  
• Externally adjustable output voltage  
• Inhibit primary referenced  
• Redundant operation (n+1), sense lines, current  
sharing option  
• Extremly slim case (4 TE, 20 mm), fully enclosed  
• Hipot test voltage up to 2.8 kVDC (Version V114 or later)  
• All PCBs coated with protective lacquer  
111  
4.4"  
3 U  
Telecom-compatible input voltage range of DP models  
according to ETS 300132-2  
164  
6.5"  
20  
0.8"  
4 TE  
• CompactPCI-compatible output voltage (xP4720)  
Safety-approved to the latest edition of IEC/EN  
60950-1 and UL/CSA 60950-1.  
Description  
The converters are particularly suitable for rugged environ-  
ments, such as railway applications. They have been designed  
in accordance with the European railway standards EN 50155  
and EN 50121-3-2. All printed circuit boards are coated with a  
protective lacquer. The converter inputs are protected against  
surges and transients occurring on the source lines and cover  
a total operating input voltage range from 16 to 150 VDC  
with five different model types. The outputs are continuously  
open- and short-circuit proof.  
These extremely compact DC-DC converters incorporate all  
necessary input and output filters, signaling and protection  
features, which are required in the majority of applications.  
The converters provide important advantages, such as  
flexible output power through primary-side current limitation,  
extremely high efficiency, excellent reliability, very low ripple  
and RFI noise levels, full input-to-output isolation, negligible  
inrush current, soft start, overtemperature protection and  
input over- and undervoltage lockout.  
Table of Contents  
Page  
Page  
Model Selection .................................................................... 2  
Functional Description.......................................................... 6  
Electrical Input Data ............................................................. 7  
Electrical Output Data .......................................................... 9  
Auxiliary Functions ............................................................. 14  
Electromagnetic Compatibility (EMC) ................................ 16  
Immunity to Environmental Conditions .............................. 18  
Mechanical Data ................................................................. 19  
Safety and Installation Instructions .................................... 20  
Description of Options ........................................................ 23  
Accessories ........................................................................ 24  
Copyright © 2017, Bel Power Solutions Inc. All rights reserved.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 1 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Full system flexibility and n+1 redundant operating mode are  
possible due to series or parallel connection capabilities of the  
outputs under the specified conditions. When several  
converters (with 3.3 and 5.1 V outputs) are connected in  
parallel, the T option allows for a single-wire connection  
between the converters to ensure good current sharing. LEDs  
at the front panel and an isolated Out-OK signal (option)  
indicate the status of the converter. Voltage suppressor  
diodes and an independent second control loop protect the  
outputs against an internally generated overvoltage.  
the main and the tracking output of each powertrain. Close  
magnetic coupling in the transformers and output conductors  
together with circuit symmetry ensure tight tracking of the  
auxiliary output. The switching frequency is fixed.  
As a modular power supply or as part of a distributed power  
supply system, the low-profile design significantly reduces the  
required volume without sacrificing high reliability. The  
converters are particularly suitable for 19" rack systems  
occupying 3U/4TE only, but they can also be chassis-  
mounted by means of four screws. Connector type is H15 (or  
H15S2 for some single-output models). The fully enclosed  
black-coated aluminum case acts as heat sink and RFI shield  
and protects the converter together with the coating of all  
components against environmental impacts.  
The converters are designed using planar magnetics  
transformers and control circuits in hybrid technology. There  
are always two powertrains fitted to a converter, each con-  
sisting either of a regulated single output with synchronous  
rectifier or of a regulated main output with a tracking second  
output. The output power may be flexibly distributed among  
Model Selection  
Note: Only standard models are listed. Other voltage con-  
figurations are possible as well; please contact the Company !  
Table 1a: Model types BP, CP  
Output 1, 4  
Output 2, 3  
Efficiency2, operating input voltage range  
Options  
4
4
Vo nom  
Po nom  
Po max  
Vo nom  
Po nom  
Po max  
η 2  
Vi min Vi max  
η 2  
Vi min Vi max  
[V]  
[W]  
[W]  
[V]  
[W]  
[W]  
[%]  
16–36 V  
[%]  
33.6–75 V  
3.3  
5.1  
12  
15  
24  
92  
132  
183  
192  
192  
192  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
848  
878  
87.5  
87.5  
88  
BP1101-9RG  
BP1001-9RG  
BP1301-9RG  
BP1501-9RG  
BP1601-9RG  
848  
888  
88.5  
88.5  
89  
CP1101-9RG  
CP1001-9RG  
CP1301-9RG  
CP1501-9RG  
CP1601-9RG  
-7  
122  
120  
120  
120  
D, T5, K8  
B0, B1, B3  
non-G  
3.3  
5.1  
5.1  
12  
15  
24  
46  
61  
61  
60  
60  
60  
66  
91  
91  
96  
96  
96  
5.1  
5.1  
12  
12  
15  
24  
61  
61  
60  
60  
60  
60  
91  
91  
96  
96  
96  
96  
86  
87  
87  
87.5  
87.5  
88  
BP2101-9RG  
BP2001-9RG  
BP2020-9RG  
BP2320-9RG  
BP2540-9RG  
BP2660-9RG  
86  
88  
88  
88.5  
88.5  
89  
CP2101-9RG  
CP2001-9RG  
CP2020-9RG  
CP2320-9RG  
CP2540-9RG  
CP2660-9RG  
-7  
D, T6  
B0, B1, B3  
non-G  
5.1  
5.1  
5.1  
12  
61  
61  
61  
60  
60  
91  
91  
91  
96  
96  
12, 123  
15, 153  
24, 243  
15, 153  
5.1, 5.13  
601  
601  
601  
601  
511  
961  
961  
961  
961  
821  
87  
87.5  
87.5  
87  
BP3020-9RG  
BP3040-9RG  
BP3060-9RG  
BP3340-9RG  
-
89  
88.5  
88.5  
-
CP3020-9RG  
CP3040-9RG  
CP3060-9RG  
-
24  
-
87  
CP3601-9RG  
5.1, 3.37  
5.1, 5.13  
12, 123  
15, 153  
24, 243  
30  
50  
12, 123  
15, 153  
12, 123  
15, 153  
24, 243  
601  
601  
601  
601  
601  
961  
961  
961  
961  
961  
85  
86  
87.5  
87.5  
88  
BP4720-9RG9  
BP4040-9RG  
BP4320-9RG  
BP4540-9RG  
BP4660-9RG  
-
-
CP4720-9RG9  
-
CP4320-9RG  
CP4540-9RG  
CP4660-9RG  
-7  
D
511  
601  
601  
601  
821  
961  
961  
961  
88.5  
88.5  
89  
B0, B1, B3  
non-G  
1
The power of both outputs shall in sum not exceed the total power for the specified ambient temperature.  
2
3
4
5
6
7
8
Min efficiency at Vi nom, Po nom, TA = 25 °C. Typical values are approx. 2% better.  
Isolated tracking output (±5% Vo nom, if each output is loaded with 5% of Po nom). Parallel or series configuration is possible.  
Short deviations below Vi min and beyond Vi max according to EN 50155 possible; see table 2a.  
Only available for models with 5.1 or 3.3 V output.  
Option T is only available for outputs with 5.1 or 3.3 V. Opt. T excludes opt. R; refer to table 13, pin allocations  
Outputs 5.1 and 3.3 V have a common return. Nominal values: 5.1 V / 4 A, 3.3 V / 3 A. Max. values: 5.1 V / 6.5 A, 3.3 V / 5 A.  
Option K only for xP1101 and xP1001: H15 standard connector. Models without option K exhibit a better efficiency: xP1101 is approx  
2% better, xP1001 approx 1% better than the models with option K.  
9
Compatible with CompactPCI® specification  
NFND: Not for new designs  
Preferred for new designs  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 2 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Table 1b: Model types DP, EP  
Output 1, 4  
Output 2, 3  
Efficiency2, operating input voltage range  
Options  
4
4
Vo nom  
[V]  
Po nom  
[W]  
Po max  
[W]  
Vo nom  
[V]  
Po nom  
[W]  
Po max  
[W]  
η 2  
[%]  
Vi min Vi max  
η 2  
Vi min Vi max  
67.2 – 150 V  
40 – 100.8 V9 [%]  
3.3  
5.1  
12  
15  
24  
92  
132  
183  
192  
192  
192  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
848  
888  
88  
88  
88  
DP1101-9RG 83.5 8  
DP1001-9RG 87.58  
EP1101-9RG  
EP1001-9RG  
EP1301-9RG B0, B1, B3  
EP1501-9RG  
EP1601-9RG  
-7  
122  
120  
120  
120  
D, T5, K 8  
DP1301-9RG  
DP1501-9RG  
DP1601-9RG  
87.5  
87  
87.5  
non-G  
3.3  
5.1  
5.1  
12  
15  
24  
46  
61  
61  
60  
60  
60  
66  
91  
91  
96  
96  
96  
5.1  
5.1  
12  
12  
15  
24  
61  
61  
60  
60  
60  
60  
91  
91  
96  
96  
96  
96  
86  
88  
88  
88  
88  
88  
DP2101-9RG  
DP2001-9RG  
DP2020-9RG  
DP2320-9RG  
DP2540-9RG  
DP2660-9RG  
86  
EP2101-9RG  
EP2001-9RG  
EP2020-9RG B0, B1, B3  
EP2320-9RG  
EP2540-9RG  
EP2660-9RG  
-7  
87.5  
87.5  
87.5  
87  
D, T6  
non-G  
87.5  
5.1  
5.1  
5.1  
61  
61  
61  
91  
91  
91  
12, 123  
15, 153  
24, 243  
601  
601  
601  
961  
961  
961  
87.5  
88  
88  
DP3020-9GR  
DP3040-9GR  
DP3060-9GR  
87.5  
88  
88  
EP3020-9RG  
EP3040-9RG  
EP3060-9RG  
5.1, 3.37  
12, 123  
15, 153  
24, 243  
30  
50  
12, 123  
12, 123  
15, 153  
24, 243  
601  
601  
601  
601  
961  
961  
961  
961  
85  
88  
88  
88  
DP4720-9RG9  
DP4320-9RG  
DP4540-9RG  
DP4660-9RG  
-
EP4720-9RG9  
EP4320-9RG  
EP4540-9RG B0, B1, B3  
EP4660-9RG non-G  
-7  
D
601  
601  
601  
961  
961  
961  
87.5  
87  
87.5  
Table 1c: Model types GP  
Output 1, 4  
Output 2, 3  
Efficiency2, oper. input voltage range  
Options  
4
Vo nom  
Po nom  
Po max  
Vo nom  
Po nom  
Po max  
η 2  
Vi min Vi max  
[V]  
[W]  
[W]  
[V]  
[W]  
[W]  
[%]  
21.6 – 50.4 V  
3.3  
5.1  
12  
15  
24  
92  
132  
183  
192  
192  
192  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
848  
888  
88  
88.5  
88  
GP1101-9RG  
GP1001-9RG  
GP1301-9RG  
GP1501-9RG  
GP1601-9RG  
-7  
122  
120  
120  
120  
D, T5, K8  
B0, B1, B3  
non-G  
3.3  
5.1  
5.1  
12  
15  
24  
46  
61  
61  
60  
60  
60  
66  
91  
91  
96  
96  
96  
5.1  
5.1  
12  
12  
15  
24  
61  
61  
60  
60  
60  
60  
91  
91  
96  
96  
96  
96  
86  
88  
87.5  
88  
88.5  
88  
GP2101-9RG  
GP2001-9RG  
GP2020-9RG  
GP2320-9RG  
GP2540-9RG  
GP2660-9RG  
-7  
D, T6  
B0, B1, B3  
non-G  
5.1  
5.1  
5.1  
61  
61  
61  
91  
91  
91  
12, 123  
15, 153  
24, 243  
601  
601  
601  
961  
961  
961  
87.5  
88.5  
88.5  
GP3020-9RG  
GP3040-9RG  
GP3060-9RG  
5.1, 3.37  
12, 123  
15, 153  
24, 243  
30  
50  
12, 123  
12, 123  
15, 153  
24, 243  
601  
601  
601  
601  
961  
961  
961  
961  
-
88  
88.5  
88  
GP4720-9RG 9  
GP4320-9RG  
GP4540-9RG  
GP4660-9RG  
-7  
D
601  
601  
601  
961  
961  
961  
B0, B1, B3  
non-G  
1
The power of both outputs may in sum not exceed the total power for the specified ambient temperature.  
2
3
4
5
6
7
8
Min efficiency at Vi nom, Po nom, TA = 25 °C. Typical values are approx. 2% better.  
Isolated tracking output (±5% Vo nom, if each output is loaded with 5% of Po nom). Parallel or series configuration possible  
Short deviations below Vi min and beyond Vi max according to EN 50155 possible; see table 2.  
Only available for models with 5.1 or 3.3 V output  
Option T is only available for outputs with 5.1 or 3.3 V. Opt. T excludes opt. R; refer to table 13, pin allocations  
Outputs 5.1 and 3.3 V have a common return. Nominal values: 5.1 V / 4 A, 3.3 V / 3 A. Max. values: 5.1 V / 6.5 A, 3.3 V / 5 A.  
H15 standard connector for xP1101 and xP1001 models; without option K, the η value for xP1101 is approx 2% better and for xP1001  
approx 1% better than for models with option K.  
9
Compatible with CompactPCI® specification; for detailed specification  
NFND: Not for new designs  
Preferred for new designs  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 3 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Part Number Description  
C P 3 0 20 -9 D T B1 G  
Input voltage Vi nom  
:
24 VDC ............................................................... B  
48 VDC ................................................................ C  
72 VDC ................................................................ D  
110 VDC .............................................................. E  
36 VDC ............................................................... G  
Series ..................................................................................... P  
Number of outputs:  
Single output (160 mm case) 4 .......................................... 1  
Double output (160 mm case) 4 ........................................ 2  
Triple output (160 mm case) 4 ........................................... 3  
Quadruple output (160 mm case) 4 ................................ 4  
Nominal voltage output 1/output 4, Vo1/4 nom  
:
3.3 V ..................................................................... 1  
5.1 V ..................................................................... 0  
12 V ...................................................................... 3  
15 V ...................................................................... 5  
24 V ...................................................................... 6  
other voltages1 ....................................................................... 7, 8  
Other specifications and additional features1 .............. 01, ...99  
Nominal voltage output 2/output 3, Vo2/3 nom  
:
5.1 V ................................................................... 01  
3.3 V ................................................................... 10  
12 V .................................................................... 20  
15 V .................................................................... 40  
24 V .................................................................... 60  
other voltages and features1 ............................ 80, ... 99  
Operational ambient temperature range TA:  
–40 to 71 °C ........................................................-9  
–25 to 71 °C (option) ...........................................-7  
others1 ........................................................... 0, -6  
Output voltage adjust (auxiliary function)............................... R  
Options: Out OK output ..................................................... D  
Current sharing ................................................. T 2  
H15 standard connector .....................................K3  
Heatsink ............................................... B0, B1, B3  
RoHS compliant for all 6 substances..................................... G  
1
Customer-specific models.  
2
Only available for 3.3 V and 5 V outputs. Option T excludes option R, except for single-output models; refer to table 1.  
For single-output models with 3.3 V or 5 V output  
Models with 220 mm case length. Just add 5000 to the standard model number, e.g. EP8060-9RG.  
3
4
Note: The sequence of options must follow the order above. This  
description is not intended for creating new part numbers.  
Example: CP3020-9DTB1G: DC-DC converter, input voltage  
33.6 to 75 V, 1 regulated output providing 5.1 V, 2nd powertrain  
with 2× 12 V, equipped with option D, option T for output 1,  
heatsink, ambient temperature –40 to 71°C, RoHS.  
Product Marking  
Basic type designation, safety approval and recognition  
marks, CE mark, warnings, pin allocation, patents, company  
logo, specific type designation, input voltage range, nominal  
output voltages and output currents, degree of protection,  
batch no., serial no. and data code including production site,  
modification status and date of production. Identification of  
LEDs.  
Note: All models exhibit the following auxiliary functions, which  
are not shown in the type designation: input and output filters,  
primary referenced inhibit, sense lines (single-, double- and triple-  
output models only) and LED indicators.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 4 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
connect converters in parallel without measures to provide  
reasonable current sharing. Choose suitable single-output  
models, if available.  
Output Configuration  
The P Series allows high flexibility in output configuration to  
cover almost every individual requirement, by simply wiring  
outputs in parallel, in series, or in independent configuration,  
as shown in the following diagrams.  
Note: Unused tracking outputs should be connected parallel to the  
respective regulated output.  
Parallel or serial operation of several converters with equal  
output voltage is possible, however it is not advantageous to  
01010-P  
Triple-output  
model  
Vo1+  
4
12  
14  
8
01006-P  
16  
S1+  
S1–  
Single-output  
model  
R
Load 1  
28  
30  
i
4
6
Vo+  
Vo1–  
Vo2+  
Vo2–  
Vo3+  
Vo3–  
Vi+  
Vo+  
32 Vi–  
6
S+ 12  
Load 2  
Load 3  
10  
18  
20  
28  
22  
i
OK+  
Load  
30  
OK– 24  
S– 14  
Vi+  
32 Vi–  
8
Vo–  
Fig. 4  
Independent triple-output configuration. Output 3 is  
tracking  
10  
Vo–  
Fig. 1  
JM200  
Standard configuration (single-output model)  
Quadruple-  
output  
model  
Vo1+  
Vo1–  
4
8
01007-P  
Load 1  
Load 4  
Double-output  
model  
Vo2+  
6
28  
30  
12  
14  
6
i
Vo4+  
Vo4–  
S2+ 18  
S2– 20  
Vi+  
32 Vi–  
Vo2+  
Vo2–  
Vo3+  
Vo3–  
Load 2  
Load 3  
Vo2–  
Vo1+  
S1+  
10  
4
10  
18  
20  
Load  
28  
30  
i
Vi+  
12  
32 Vi–  
S1– 14  
Vo1–  
Fig. 5  
8
Common ground configuration of output 1 with 4 and  
independent configuration of output 2 and 3  
Fig. 2  
Series output configuration of a double-output model.  
The second output is fully regulated.  
01012Pa  
Quadruple-  
output  
model  
18  
20  
6
Vo3+  
Vo3–  
Vo2+  
01013b-P  
Double-output  
model  
Vo1+  
4
12  
14  
8
S1+  
S1–  
28  
Vo2– 10  
Vo4+ 12  
i
Load  
Load 1  
Load 2  
28  
30  
i
30  
Vi+  
Vo1–  
Vo2+  
S2+  
Vi+  
32 Vi–  
Vo4–  
14  
32 Vi–  
6
Vo1+  
R
4
16  
8
R2  
R1  
18  
20  
S2–  
Vo1–  
Vo2– 10  
Fig. 6  
Series configuration of all outputs (Vo = 96 V for xP4660).  
The R-input influences only outputs 1 and 4. For the  
values of R1 and R2, see Output Voltage Adjust.  
Fig. 3  
Independent double-output configuration. Both outputs  
are fully regulated  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 5 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
powertrain in overload conditions. This allows for flexible  
power operation of the outputs from each powertrain. All  
outputs can either be connected in series or in parallel; see  
Electrical Output Data.  
Functional Description  
The power supplies are equipped with two independent flight-  
forward converters, switching 180° phase-shifted to minimize  
the ripple current at the input. They use primary and se-  
condary control circuits in hybrid technology. The two con-  
verters, called "powertrains" (PT). Each powertrain generates  
either a single output with synchronous rectifier or two  
isolated outputs, one fully regulated and the other one  
tracking (semi-regulated), thus providing up to four output  
voltages. In some models, both outputs of a powertrain are  
internally connected in parallel .  
An auxiliary converter provides the bias voltages for the  
primary and secondary referenced control logic and the option  
circuits. An oscillator generates a clock pulse of 307 ±1% kHz,  
which is fed to the control logic of each powertrain. The pulse  
width modulation and the magnetic feedback are provided by  
special ASICs. The converter is only enabled, if the input  
voltage is within the operating voltage range.  
Double-output powertrains are equipped with an independent  
monitor sensing the output voltage of the tracking output. It  
influences the control logic in order to reduce via the pulse  
width the voltages of both outputs. In addition, the tracking  
outputs are protected by a suppressor diode.  
The highly efficient input filter together with very low input  
capacitance results in a very low and short inrush current.  
After the isolating transformer and rectification, the output  
filter reduces ripple and noise to a minimum without affecting  
the dynamic response. Outputs 3 and 4, if available, are  
tracking (semi-regulated) and exhibit due to the close  
magnetic coupling of the common transformer and output  
inductor together with the circuit symmetry a close voltage  
regulation. A current limitation circuit is located on the primary  
side of each powertrain, limiting the total output current of that  
Outputs of single-output powertrains are also protected by a  
suppressor diode.  
The temperature of the heat sink is monitored and causes the  
converter to disable the outputs. After the temperature  
dropped, the converter automatically resumes.  
03107d  
Vo1  
Vo4  
Output  
filter PT1  
CY  
Input filter  
(with varistor)  
Vi  
Vo2  
Vo3  
Output  
filter PT2  
CY  
2 x in  
double-output  
power trains  
CY  
PT1  
PT2  
Auxiliary  
converter  
PT2  
PT1  
PWM controller,  
duty cycle limiter,  
non linear FF,  
ON/OFF control of  
sync. rectifier  
Clock  
generator  
Error amplifier,  
Vo monitor  
R
D, i, T  
Primary options  
Secondary options  
Fig. 7  
Block diagram. Powertrains PT1 and PT2 have isolated outputs.  
Pin allocation see table 13  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 6 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Electrical Input Data  
General Conditions:  
TA = 25°C, unless TC is specified  
– Sense lines connected directly at the connector, inhibit (pin 28) connected to Vi– (pin 32)  
– R input open  
Table 2a: Input data  
Input  
BP  
typ  
GP  
typ  
CP  
typ  
Unit  
Characteristics  
Conditions  
min  
max  
min  
max  
min  
max  
Vi  
Operating input voltage Io = 0 – Io max  
16  
36  
21.6  
50.4  
33.6  
75  
V
continuously  
TC min TC max  
Vi nom  
Vi 2s  
Vi abs  
Ii  
Nominal input voltage  
for 2 s  
24  
36  
48  
without lockout  
without damage  
Vi nom, Io nom  
14.4  
0
40  
50  
20  
0
52  
63  
28.8  
0
81  
for 3 s  
100  
Typical input current 1  
No-load input power 1  
Idle input power 1 4  
Input capacitance  
Peak inrush current 2  
Rise time inrush  
Rise time inhibit 3  
Fall time inhibit 3  
5.6  
3.7  
2.8  
A
Pi 0  
Pi inh  
Ci  
Vi min Vi max  
Io = 0  
4
1
6.5  
1.5  
4
1
6.5  
1.5  
5
1
10  
W
1.5  
220  
61  
50  
5
220  
64  
32  
5
107  
66  
30  
5
µF  
A
Iinr p  
tinr rise  
t r  
Vi max, Io max  
µs  
ms  
Io max Vi nom  
tf  
5
5
5
3
ton  
Start-up time  
0 Vi min, Io max  
110  
150  
300  
Table 2b: Input data  
Input  
DP2  
typ max  
100.8 67.2  
EP  
Unit  
Characteristics  
Conditions  
min  
min  
typ max  
Vi  
Operating input voltage Io = 0 – Io max  
402  
150  
V
continuously  
TC min TC max  
Vi nom  
Vi 2s  
Vi abs  
Ii  
Nominal input voltage  
for 2 s  
72  
110  
154  
200  
1.2  
12  
without lockout  
without damage  
Vi nom, Io nom  
38  
0
100.8  
125  
66 5  
0
for 3 s  
Typical input current 1  
No-load input power 1  
Idle input power 1 4  
Input Capacitance  
Peak inrush current 2  
Rise time inrush current  
Rise time inhibit 3  
Fall time inhibit 3  
1.9  
A
Pi 0  
Pi inh  
Ci  
Vi min Vi max  
Io = 0  
5
1
11  
5
W
1.7  
1.1  
1.7  
15  
15  
57  
20  
5
µF  
A
Iinr p  
tinr rise  
tr  
Vi max, Io max  
65  
20  
µs  
ms  
Io max, Vi nom  
5
tf  
5
6
3
ton  
Start-up time  
0 Vi min, Io max  
200  
200  
1
Typical values depending on model  
According to ETS 300132-2  
See fig.18  
Converter inhibited  
Vi min = 57.6 V for 0.1 s without lockout (operation with 96 V battery)  
2
3
4
5
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 7 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
system is not linear at all and eludes a simple calculation. One  
basic condition is given by the formula:  
Input Fuse and Reverse Polarity  
A fuse mounted inside the converter protects against further  
damage in case of a failure. The fuse is not user-accessible.  
Reverse polarity at the input will cause the fuse to blow.  
Lext Po max  
Ci + Cext > ———  
Rext Vi min  
dVi  
( ri =  )  
dIi  
²
Table 3: Fuse specification  
Rext is the series resistor of the voltage source including the  
supply lines. If this condition is not fulfilled, the converter may  
not reach stable operating conditions. Worst case conditions  
are a lowest Vi and at highest output power Po.  
Low inductance Lext of the supply lines and an additional  
capacitor Cext are helpful. Recommended values for Cext are  
given in table 4, which should allow for stable operation up to  
an input inductance of 2 mH. Ci is specified in table 2.  
Model  
BP  
Fuse type  
Rating  
Reference  
very fast blow 2× 10 A, 125 V Littelfuse Pico 251  
very fast blow 2× 10 A, 125 V Littelfuse Pico 251  
GP  
CP  
very fast blow 10 A, 125 V  
very fast blow 7 A, 125 V  
very fast blow 5 A, 250 V  
Littelfuse Pico 251  
Littelfuse Pico 251  
Littelfuse Pico 263  
DP  
EP  
Input Transient Protection  
JM085d  
A VDR (Voltage Dependent Resistor), the input fuse, and a  
symmetrical input filter form an effective protection against  
input transients, which typically occur in most installations, but  
especially in battery-driven mobile applications.  
Converter  
Lext  
Rext  
Ri  
Vi+  
Vi–  
Vo+  
Vo–  
+
ri  
Cext  
Ci  
Nominal battery voltages in use are: 24, 36, 48, 72, 96, and  
110 V. In most cases each nominal value is specified in a  
tolerance of –30% to +25%, with short excursions to ±40% or  
even more.  
Fig. 8  
In some applications, surges according to RIA 12 are  
specified in addition to those defined in IEC 60571-1 or EN  
50155. The power supply must not switch off during these  
surges, and since their energy can practically not be  
absorbed, an extremely wide input range is required. The P  
Series input ranges have been designed and tested to meet  
these requirements; see Electromagnetic Immunity.  
Input configuration  
Table 4: Recommended values for Cext  
Model  
BP  
Capacitance  
1500 µF  
1000 µF  
470 µF  
Voltage  
40 V  
GP  
63 V  
Input Under-/Overvoltage Lockout  
CP  
100 V  
125 V  
200 V  
When the input voltage is below Vi 2s min or exceeds Vi 2s max  
,
DP  
220 µF  
an internally generated inhibit signal disables the converter. It  
automatically recovers, when Vi is back in range.  
EP  
100 µF  
Inrush Current  
The inherent inrush current value is lower than specified in the  
standard ETS 300132-2. The converters operate with rela-  
tively small input capacitance Ci resulting in low inrush current  
of short duration. As a result, in a power-bus system the units  
can be hot plugged-in or disconnected causing negligible  
disturbances at the input side.  
Input Stability with Long Supply Lines  
If a converter is connected to the power source by long supply  
lines exhibiting a considerable inductance Lext, an additional  
external capacitor Cext connected across the input pins im-  
proves the stability and prevents oscillations.  
Actually, a P Series converter with its load acts as negative  
resistor ri, because the input current Ii rises, when the input  
voltage Vi decreases. It tends to oscillate with a resonant fre-  
quency determined by the line inductance Lext and the input  
capacitance Ci + Cext, damped by the resistor Rext. The whole  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 8 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Electrical Output Data  
General Conditions:  
TA = 25°C, unless TC is specified.  
– Sense lines connected directly at the connector, inhibit (28) connected to Vi– (32).  
– R input not connected  
Table 5a: Output data for single-output powertrains  
Output  
Single-output powertrain  
Conditions  
3.3 V  
typ  
5.1 V  
typ  
12 V  
typ  
12  
Unit  
Characteristics  
min  
3.28  
3.24  
max min  
3.32 5.07  
3.35 5.02  
max  
min  
max  
12.06  
12.18  
Vo  
Output voltage 1  
Vi nom, Io nom  
3.3  
5.1  
5.13 11.94  
5.18 11.82  
V
Vow  
Worst case output  
Vi min Vi max  
voltage  
TC min TC max  
(0.02 – 1) Io max  
Vo P  
Overvoltage protection 2  
4.1  
4.8  
14  
20  
22  
5
6.45  
6.8  
12  
7.14  
22.5  
14.3  
8.4  
15  
5
15.8  
10.0  
Io nom Nominal output current  
Io max Max. output current  
A
Vi min Vi max  
TC min TC max  
18  
8
IoL  
vo  
Output current limit 3  
20.5  
25  
18.9  
19.8  
5
8.8  
15  
30  
1.2  
Output Switch. frequ.  
Vi nom, Io max  
mVpp  
V
noise 4  
BW = 20 MHz  
Total incl.spikes  
20  
0.7  
20  
vo d  
Dynamic Voltage  
Vi nom  
0.8  
load  
deviation  
I
o max 1/  
Io max  
2
regulation  
5
td  
Recovery time  
0.4  
0.3  
0.15  
ms  
V
Vo tr  
Output voltage trim  
range (via R input)  
1.1 Vi min Vi max  
(0.1 – 1) Io max  
1.79  
3.63 2.75  
5.61  
6.5  
13.2  
αVo  
Temp. coefficient of Vo  
Io nom,TC min TC max  
±0.02  
±0.02  
±0.02  
%/K  
Table 5b: Output data for single-output powertrains. General conditions as in table 5a  
Output  
Single-output powertrain  
Conditions  
15 V  
typ  
15  
24 V  
typ  
24  
Unit  
Characteristics  
min  
max min  
15.08 23.88  
15.23 23.64  
max  
24.12  
24.36  
Vo  
Output voltage 1  
Vi nom, Io nom  
14.93  
14.78  
V
Vow  
Worst case output  
Vi min Vi max  
TC min TC max  
voltage  
(0.02 – 1) Io max  
Vo P  
Overvoltage protection2  
17.1  
6.8  
18  
4
18.9 28.5  
30  
2.5  
4
31.5  
5.0  
Io nom Nominal output current  
Io max Max. output current  
A
Vi min Vi max  
TC min TC max  
6.4  
7.2  
15  
40  
1.2  
IoL  
vo  
Output current limit 3  
8.2  
4.2  
4.4  
15  
50  
1.5  
Output Switch. frequ.  
Vi nom, Io max  
mVpp  
V
noise 4  
BW = 20 MHz  
Total incl.spikes  
vo d  
Dynamic Voltage  
Vi nom  
load  
deviation  
I
o max 1/  
Io max  
2
regulation  
5
td  
Recovery time  
0.2  
0.15  
ms  
V
Vo tr  
Output voltage trim  
range (via R input)  
1.1 Vi min Vi max  
(0.1 – 1) Io max  
8.1  
16.5  
13  
26.4  
αVo  
Temp. coefficient of Vo  
Io nom,TC min TC max  
±0.02  
±0.02  
%/K  
1
If the output voltages are increased above Vo nom through R-input control or remote sensing, the output power should be reduced  
accordingly, so that Po max and TC max are not exceeded.  
Breakdown voltage of the incorporated suppressor diode at 10 mA (3.3 V, 5.1 V) or 1 mA (12 V). Value for 3.3 V for version  
112. Exceeding this value might damage the suppressor diode.  
See Output Power at Reduced Temperature  
Measured according to IEC/EN 61204 with a probe described in annex A  
2
3
4
5
Recovery time until Vo returns to ±1% of Vo; see Dynamic Load Regulation  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 9 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Table 5c: Output data for double-output powertrains. General conditions as in table 5a  
Output  
Double-output powertrain  
5.1 V  
Tracking output  
12 V  
Tracking output  
Unit  
Main output  
Main output  
Characteristics  
Conditions  
min  
5.05  
4.95  
typ max min typ max min typ max min  
5.1 5.2 11.88 12 12.12 11.76 12 12.24  
See Output  
typ max  
Vo  
Output voltage 1  
Worst case output  
voltage  
Vi nom, Io nom  
5.1  
5.15 5.0  
5.25  
V
Vow  
Vi min Vi max  
TC min TC max  
(0.02 – 1) Io max  
11.82  
12.18  
See Output  
Voltage Regulation  
Voltage Regulation  
Vo P Overvoltage protection2  
Vo L Overvoltage limitation6  
Io nom Nominal output current  
Io max Max. output current 3  
none  
none  
5.0  
6.45  
6.8  
6.5  
5.0  
8.0  
none  
none  
2.5  
14.3  
15 15.8  
14.4  
2.5  
4
A
Vi min Vi max  
TC min TC max  
8.0  
4
IoL  
vo  
Output current limit  
17  
20  
8.4  
6.5  
10.0  
15  
Output Switch. frequ.  
Vi nom, Io max  
5
5
15  
30  
mV  
pp  
noise 4  
BW = 20 MHz  
Total incl.spikes  
20  
0.8  
20  
0.8  
30  
vo d  
Dynamic Voltage  
Vi nom  
1.2  
1.2  
V
load  
deviation  
I
o max 1/  
Io max  
2
regulation  
5
td  
Recovery time  
0.3  
0.3  
0.15  
0.15  
ms  
V
Vo tr Output voltage trim  
1.1 Vi min Vi max 2.75  
(0.1 – 1) Io max  
5.61  
See Output  
Voltage Regulation  
13.2  
See Output  
Voltage Regulation  
range (via R input)  
αVo  
Temp. coefficient of Vo  
Ionom  
±0.02  
±0.02  
%/K  
TC min TC max  
Table 5d: Output data for double-output powertrains. General conditions as in table 5a  
Output  
Double-output powertrain  
15 V  
Tracking output  
24 V  
Tracking output  
Unit  
Main output  
min  
Main output  
Characteristics  
Conditions  
typ max min typ max min typ max min  
14.85 15 15.15 14.7 15 15.3 23.88 24 24.12 23.76 24 24.24  
typ max  
Vo  
Output voltage 1  
Worst case output  
voltage  
Vi nom, Io nom  
V
Vow  
Vi min Vi max  
TC min TC max  
(0.02 – 1) Io max  
14.78  
15.23  
See Output  
23.64  
24.36  
See Output  
Voltage Regulation  
Voltage Regulation  
Vo P Overvoltage protection2  
Vo L Overvoltage limitation6  
Io nom Nominal output current  
Io max Max. output current 3  
none  
none  
2
17.1  
18 18.9  
none  
none  
1.25  
2
28.5  
30 31.5  
17.6  
2
28.8  
1.25  
2
A
Vi min Vi max  
TC min TC max  
3.2  
3.2  
8.2  
15  
IoL  
vo  
Output current limit  
6.8  
4.2  
5.0  
15  
Output Switch. frequ.  
noise 4  
Vi nom, Io max  
15  
40  
15  
50  
mV  
pp  
BW = 20 MHz  
Total incl.spikes  
40  
50  
vo d  
Dynamic Voltage  
Vi nom  
I
1.2  
1.2  
1.5  
1.5  
V
load  
deviation  
o max 1/  
Io max  
2
regulation  
5
td  
Recovery time  
0.2  
0.2  
0.15  
0.15  
ms  
V
Vo tr Output voltage trim  
1.1 Vi min Vi max 8.1  
(0.1 – 1) Io max  
16.5  
See Output  
Voltage Regulation  
13  
26.4  
See Output  
Voltage Regulation  
range (via R input)  
αVo  
Temp. coefficient of Vo  
Ionom  
±0.02  
±0.02  
%/K  
TC min TC max  
1
If the output voltages are increased above Vo nom through R-input control or remote sensing, the output power should be reduced  
accordingly, so that Po max and TC max are not exceeded.  
2
3
4
5
6
Breakdown voltage of the incorporated suppressor diode at 1 mA. Exceeding this voltage might damage the suppressor diode.  
See Output Power at Reduced Temperature  
Measured according to IEC/EN 61204 with a probe described in annex A  
Recovery time until Vo returns to ±1% of Vo; see Dynamic Load Regulation  
Output voltage limitation by an additional control loop  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 10 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
• Rated output voltages above 48 V (SELV = Safety Extra Low  
Voltage) require additional safety measures in order to comply  
with international safety standards.  
Parallel and Series Connection  
The first outputs of power trains with equal nominal output  
voltage can be connected in parallel. Where available, we  
recommend ordering option T.  
Parallel operation of two double-output converters with series-  
connected outputs is shown in fig. 10. The link between the T  
pins ensures proper current sharing, even though only the first  
outputs are influenced by T. Sense lines are connected  
directly at the connector, and load lines have equal length and  
section.  
Any output can be connected in series with any other output. If  
the main and the tracking output of the same power train are  
connected in series, consider that the effect of the R-input is  
doubled.  
Notes:  
• If a tracking output is not used, connect it in parallel to the  
respective regulated main output.  
06158c  
Double-output  
model  
16  
T
+
• Connection of several outputs in parallel should include  
measures to approximate all output currents. 3.3 and 5 V  
outputs with option T have current-share pins (T), which must  
be interconnected. For other outputs, the load lines should  
exhibit similar resistance. Parallel connection of regulated  
outputs without such precautions is not recommended.  
6
Vo2+  
26  
Rp  
S2+ 18  
S2–  
22  
24  
28  
30  
32  
20  
Out OK+  
Vo2– 10  
Out OK –  
• The maximum output current of series-connected outputs is  
limited by the output with the lowest current limit.  
Vo1+  
4
i
S1+ 12  
S1– 14  
Vi+  
Vi–  
JM033a  
Vo1–  
Double-output  
model  
8
6
Vo2+  
+
26  
18  
20  
10  
4
S2+  
S2–  
Double-output  
model  
Rp  
16  
6
T
22  
24  
28  
30  
Out OK+  
Vo2+  
26  
Vo2–  
Vo1+  
Out OK –  
18  
20  
10  
4
S2+  
S2–  
i
22 Out OK+  
12  
14  
8
Vi+  
S1+  
S1–  
Vo2–  
Vo1+  
24  
Out OK –  
32 Vi–  
28  
i
R
16  
Vo1–  
S1+ 12  
S1– 14  
30  
Vi+  
32 Vi–  
Double-output  
model  
6
18  
20  
10  
4
Vo2+  
i
+
Vo1–  
8
26  
S2+  
22  
24  
28  
30  
Out OK+  
S2–  
Vo2–  
Vo1+  
Fig. 10  
Parallel operation of 2 double-output converters with series-  
connected outputs.  
Out OK –  
i
12  
14  
8
S1+  
S1–  
Vi+  
Redundant Systems  
32 Vi–  
An example of a redundant system using converters with 2  
regulated ouputs (xP2020) is shown in fig. 11. Load 1 is  
powered with 5.1 V and load 2 with 12 V.  
R
16  
Vo1–  
i
+
The converters are separated with ORing diodes. If one  
converter fails, the remaining one still delivers the power to  
the loads. If more power is needed, the system may be  
extended to more parallel converters (n+1 redundancy).  
Fig. 9  
Series connection of double-output models. Sense lines  
connected at the connector.  
Current sharing of the 5.1 V outputs is ensured by the  
interconnected T pins, whereas the sense lines are connected  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 11 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
06157c  
Vo  
Double-output  
Vod  
T
Vo2+  
S2+  
Vo 1%  
Vo 1%  
+
model  
26  
Rp  
DS  
Vod  
td  
td  
RS  
S2–  
Out OK+  
t
Vo2–  
Vo1+  
S1+  
Io/Io nom  
Out OK–  
1
i
0.5  
Vi+  
Vi–  
10 µs  
10 µs  
S1–  
0
t
05102c  
Vo1–  
Fig. 12  
Typical dynamic load regulation of  
output voltage  
Double-output  
model  
T
Vo2+  
26  
DS  
C
i ext [mF]  
= external input capacitance  
= output power  
= efficiency  
S2+  
S2–  
Po [W]  
η [%]  
RS  
Out OK+  
t h [ms]  
Vi min [V]  
Vti [V]  
= hold-up time [ms]  
= minimum input voltage  
= threshold level  
Vo2–  
Vo1+  
S1+  
Out OK–  
i
Vi+  
Vi–  
Output Voltage Regulation  
S1–  
Line and load regulation of the regulated  
outputs is so good that input voltage and  
output current have virtually no influence  
to the output voltage.  
i
+
Vo1–  
Wires of equal length and sectinon  
However, if the tracking output is not  
loaded, the second control loop may  
slightly reduce the voltage of the main output. Thus, unused  
tracking outputs should be connected in parallel to the  
respective main output.  
Fig. 11  
Redundant configuration  
after the ORing diodes to maintain the correct output voltage.  
The dynamic load regulation is shown in fig. 12.  
For the 12 V outputs, no current-share feature (option T) is  
available. As a result, 2 little diodes Ds (loaded by little  
resistors Rs) simulate the voltage drop of the ORing diodes.  
Reasonable current sharing is provided by load lines of equal  
length and section.  
Tracking Outputs  
The main outputs 1 and 2 are regulated to Vo nom independent  
of the output current. If the loads on outputs 3 and 4 are too  
low (<10% of Io nom), their output voltage tends to rise. Vo3 and  
Vo4 depend upon the load distribution: If all outputs are loaded  
with at least 10% of Io nom, Vo3 and Vo4 remain within ±5% of  
Vo nom. The diagrams fig. 13 to 16 show the regulation of the  
tracking output under different load conditions up to the  
current limit. If Io1 = Io4 and Io2 = Io3 or if the tracking outputs  
are connected in series with their respective regulated  
outputs, then Vo3 and Vo4 remain within ±1% of Vo nom  
provided that the load is at least Io min. A 2nd control loop  
protects the tracking outputs against overvoltage by reducing  
the voltage of the respective regulated main output.  
Hot Swap  
Important: For applications using the hot swap capabilities,  
dynamic output voltage changes during plug-in and plug-out  
operations may occur.  
Hold-up time  
The converters provide virtually no interruption time. If an  
interruption time is required, use external output capacitors or  
input capacitors of adequate size and decoupling diodes.  
Because the P Series converters exhibit main transformers  
and main chokes in planar technology, the tracking outputs  
follow the main outputs very closely.  
Formula for additional external input capacitor:  
2 • Po th • 100  
Ci ext = ––––––––––––––––––  
(Vti2 Vi min2) • η  
Note: If the tracking output (Vo3 or Vo4 is not loaded, it should be  
connected in parallel to the respective main output (Vo3 parallel to  
Vo2, Vo4 parallel to Vo1).  
whereas:  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 12 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Vo3 or Vo4  
Output Current Limitation  
6.0 V  
Io1 or Io2  
= 12.8 A  
All outputs are continuously protected against open-circuit  
(no load) and short-circuit by an electronic current limitation.  
Io1 or Io2 = 6.4 A  
Io1 or Io2 = 3.2 A  
Io1 or Io2 = 1.6 A  
Io1 or Io2 = 0.4 A  
Single- and double-output powertrains have a rectangular  
current limitation characteristic. In double output power-trains  
only the total current is limited allowing free choice of load  
distribution between the two outputs of each power train up to  
5.5 V  
5.0 V  
a total Io1 + Io4 = Io max or Io2 + Io3 = Io max  
.
4.5 V  
0
Thermal Considerations and Protection  
Io3 or I  
o4  
If a converter is mounted upright in free air, allowing  
unrestricted convection cooling, and is operated at its nominal  
input voltage and output power at TA max (see table  
Temperature specifications), the temperature measured at the  
measurement point on the case TC (see Mechanical Data) will  
approach TC max after an initial warm-up phase. However the  
relationship between TA and TC depends heavily on the  
operating conditions and system integration. The thermal  
conditions are influenced significantly by the input voltage, the  
output current, airflow, and the temperature of the adjacent  
elements and surfaces. TA max is therefore contrary to TC max  
only an indicative value.  
4
8
12  
16  
A
Fig. 13  
5 V tracking output Vo4 versus Io4 (powertrain 1) or  
o3 versus Io3 (powertrain 2). Vi = Vi nom  
V
Vo3 or Vo4  
14 V  
I
or I = 8 A  
o1  
o2  
I
I
I
or I = 6 A  
o1  
o2  
or I = 4 A  
o2  
o1  
or I = 2 A  
o2  
13 V  
12 V  
11 V  
o1  
Io1 or Io2 = 0.4 A  
A temperature sensor fitted on the main PCB disables the  
output, when the case temperature exceeds TC max. The  
converter automatically resumes, when the temperature  
drops below this limit. An additional temperature sensor on  
each power train reduces the output current limit of that power  
train, when the temperature exceeds a safe level.  
Io3 or Io4  
0
2
4
6
8
A
Fig. 14  
12 V tracking output Vo4 versus Io4 (powertrain 1) or  
Vo3 versus Io3 (powertrain 2). Vi = Vi nom  
Output Power at Reduced Temperature  
Vo3 or Vo4  
Operating the converters with an output current between Io nom  
and Io max requires a reduction of the ambient temperature or  
forced air cooling, in order to keep TC below 95 °C; see fig 17.  
When TC max is exceeded, the thermal protection is activated  
and disables the outputs.  
17 V  
Io1 or Io2 = 6.5 A  
Io1 or Io2 = 4.8 A  
Io1 or Io2 = 3.2 A  
Io1 or Io2 = 1.6 A  
Io1 or Io2 = 0.4 A  
16 V  
15 V  
14 V  
Note: Forced cooling or an additional heat sink can improve the  
reliability or allow TA to go beyond TA max, provided that TC max is  
not exceeded. In rack systems without proper thermal  
management the converters should not be packed too closely  
together! In such cases the use of a 5 or 6 TE front panel is  
recommended.  
Io3 or Io4  
Po  
5
6 A  
4
0
1
2
3
05117b  
Fig. 15  
Po max  
15 V tracking output Vo = f(Io), Vi = Vi nom  
1.35 Po nom  
Vo3 or Vo4  
forced  
cooling  
0.5 m/s  
26 V  
Io1 or Io2 = 4 A  
Io1 or Io2 = 3 A  
Io1 or Io2 = 2 A  
Io1 or Io2 = 1 A  
Io1 or Io2 = 0.2 A  
Po nom  
convection  
cooling  
25 V  
24 V  
23 V  
0.45 Po nom  
T
C max  
TA  
50  
60  
70  
80  
90 °C  
Io3 or Io4  
0
1
2
3
4
A
Fig. 16  
Fig. 17  
Output power derating versus TA.  
24 V tracking output Vo = f(Io), Vi = Vi nom  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 13 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Caution: To prevent damage, Vext should not exceed 20 V, nor be  
negative.  
Auxiliary Functions  
Primary Inhibit (Remote On / Off)  
Note: If output voltages are set higher than Vo nom, the output  
currents should be reduced accordingly, so that the maximum  
specified output power is not exceeded.  
The inhibit input enables (logic low, pull down) or disables  
(logic high, pull up or open-circuit) the output, if a logic signal  
(TTL, CMOS) is applied. In systems consisting of several  
converters, this feature may be used to control the activation  
sequence by logic signals or to enable the power source to  
start up, before full load is applied.  
a) Adjustment by means of an external voltage:  
2.72 V  
Vext ––––––o1– – 0.28 V  
Vo nom  
JM034b  
Vext  
+
Note: If this function is not used, pin 28 must be connected with  
pin 32, otherwise the internal logic will disable the output.  
Double-  
output  
powertrain  
16  
R
Vo1+  
Table 6: Inhibit characteristics  
Load 1  
Load 4  
i
Characteristic  
Vinh Inhibit Vo = on Vi min Vi max 50  
Voltage C min TC max  
Conditions  
min typ max Unit  
Vo1–  
Vo4+  
Vo4–  
Vi+  
Vi–  
0.8  
50  
V
T
Vo = off  
I inh Inhibit current  
2.4  
Vinh = 50 V  
Vinh = 0 V  
–1000  
–40  
µA  
V
inh = 50 V  
900  
The output response after enabling or disabling the output  
with the inhibit input is shown in the figure below. See also  
Input Data.  
Fig. 19  
Output adjust of Vo1 and Vo4 with an external voltage Vext  
The other outputs are not influenced.  
.
Vo/Vo nom  
06159b  
tr  
tf  
1.01  
0.99  
b) Adjustment by means of an external resistor:  
The adjust resistor R1 is connected between pin 16 and S–  
(14) to set Vo < Vo nom, (see table 7a), or the adjust resistor  
0.1  
0
t
t
t
R2 is connected between pin 16 and S+ (12) to set Vo  
o nom (see table 7b).  
>
ton  
Vi  
Vi min  
0
V
Note: R inputs of n converters with paralleled outputs may be con-  
nected together, but if only one external resistor is used, its value  
should be R1/n or R2/n.  
Vinh [V]  
2.4  
JM035b  
0.8  
Double-  
output  
powertrain  
R
16  
R2  
Vo1+  
Fig. 18  
R1  
Output response as a function of Vi (on/off switching) or  
inhibit control  
Load 1  
i
Vo1–  
Vo4+  
Vo4–  
Vi+  
Vi–  
Output Voltage Adjust of Vo1 and Vo4  
Note: With open R-input, Vo = Vo nom  
.
Load 4  
The converters allow for adjustment of the voltage of power-  
train 1. Powertrain 2 can not be adjusted (except for single-  
output models). The programming is performed either by an  
external control voltage Vext or an external resistor R1 or R2,  
connected to the R-input. Trimming is limited to the values  
given in the table Electrical Output Data.  
With double-output powertrains, both outputs are influenced  
by the R-input setting simultaneously.  
Fig. 20  
Output adjust of Vo1 and Vo4 using R1 or R2. The other  
outputs are not influenced.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 14 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Table 7a: R1 for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R2 not fitted  
Vo nom = 3.3 V  
Vo (V) R1 [k]  
Vo nom = 5.1 V  
Vo nom = 12 V  
Vo [V] 1  
Vo nom = 15 V  
Vo [V] 1  
Vo nom = 24 V  
Vo [V] 1  
Vo (V)  
R1 [k]  
R1 [k]  
R1 [k]  
R1 [k]  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
5.62  
6.49  
7.50  
8.66  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
14.0  
15.8  
18.2  
21.0  
24.3  
29.4  
36.5  
47.5  
63.4  
97.6  
200.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
13  
14  
15  
16  
17  
18  
19  
20  
11  
22  
23  
4.22  
5.11  
6.19  
7.5  
8.0  
8.5  
9.0  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
4.12  
4.75  
5.49  
6.34  
7.5  
8.87  
10.5  
12.7  
15.4  
29.6  
25.5  
34.8  
54.9  
110.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
28  
30  
32  
34  
36  
38  
40  
41  
42  
43  
44  
45  
46  
47  
5.23  
6.19  
7.5  
9.5  
9.31  
11.5  
14.7  
19.6  
22.6  
27.4  
34.0  
43.2  
59.0  
88.7  
182.0  
10.2  
9.1  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
12.1  
14.3  
17.4  
22.1  
28.7  
39.2  
61.9  
12.7  
11.5  
14.7  
19.6  
27.4  
43.2  
88.7  
Table 7b: R2 for Vo > Vo nom ; approximate values (Vi nom, Io nom, series E 96 resistors); R1 not fitted  
Vo nom = 3.3 V  
Vo (V) R1 [k]  
3.4 47.5  
Vo nom = 5.1 V  
Vo (V) R1 [k]  
5.2 226.0  
Vo nom = 12 V  
Vo [V] 1  
Vo nom = 15 V  
Vo [V] 1  
Vo nom = 24 V  
Vo [V] 1  
R1 [k]  
R1 [k]  
R1 [k]  
12.2  
24.4  
24.8  
25.2  
25.6  
26.0  
26.4  
1100  
499  
332  
255  
205  
174  
15.3  
15.5  
15.7  
16.0  
16.2  
16.5  
30.6  
31.0  
31.4  
32.0  
32.4  
33.0  
1130  
665  
475  
332  
280  
232  
24.5  
25.0  
25.5  
26.0  
26.4  
49.0  
50.0  
51.0  
52.0  
52.8  
1820  
909  
604  
464  
392  
3.5  
3.6  
24.3  
16.3  
5.3  
5.4  
5.5  
5.6  
115.0  
78.7  
59.0  
48.7  
12.4  
12.6  
12.8  
13.0  
13.2  
1
First column: single-output powertrains or double-output powertrains with separated/paralleled outputs, second column: outputs in  
series connection.  
Sense Lines  
LED Indicators  
Important: Sense lines should always be connected. Incorrectly  
connected sense lines may damage the converter. If sense pins  
are left open-circuit, the output voltages are not accurate.  
The P Series converters exhibit a green LED "In OK",  
signaling that the input voltage is within the specified range  
provided that the unit is not disabled by inhibit signal.  
This feature enables compensation of voltage drop across the  
connector contacts and the load lines including ORing diodes  
in true redundant systems.  
A green LED "Out-OK" indicates for each powertrain that the  
respective power train is working correctly, i.e. that its output  
control loop is locked. This proves with high probability that  
the regulated output exhibit the correct voltage; see also  
Option D.  
Applying generously dimensioned cross-section load leads  
avoids troublesome voltage drop. To minimize noise pick-up,  
wire sense lines parallel or twisted to the respective output  
line. To be sure, connect the sense lines directly at the female  
connector.  
Note: Single-output models exhibit only 1 LED "Out-OK".  
2nd Control Loop  
The voltage difference between any sense line and its  
respective power output pin (as measured on the connector)  
should not exceed the following values at nominal output  
voltage.  
The 2nd output voltage of double-output power trains is  
watched by an independent monitoring circuit. In the case of  
an overvoltage, the primary control logic of the power train is  
influenced to reduce the duty cycle, resulting in a lower  
voltage on both outputs. Such an overvoltage may occur,  
when the 1st output is fully charged and the 2nd output is  
nearly unloaded – particularly with dynamic load changes.  
Table 8: Voltage compensation allowed using sense lines  
Output type  
Total drop  
<0.5 V  
Negative line drop  
<0.25 V  
3.3, 5.1 V output  
12, 15, 24 V output  
<1.0 V  
<0.5 V  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 15 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
high input transient voltages, which typically occur in most  
installations, but especially in battery-driven mobile  
applications. The P Series has been successfully tested to the  
following specifications:  
Electromagnetic Compatibility (EMC)  
A metal oxide VDR together with an input fuse and a  
symmetrical input filter form an effective protection against  
Electromagnetic Immunity  
Table 9: Immunity type tests  
Phenomenon  
Standard  
Level  
Coupling  
mode1  
Value  
applied  
Waveform  
0.1/1.0/0.1 s  
1/50 ns  
Source  
imped.  
Test  
procedure  
In  
Perf.  
oper. crit. 2  
Supply related  
surge  
EN 50155:2007 --  
clause 12.2.6  
+i/i  
1.4 • Vbatt  
0.2 Ω  
1 positive  
yes  
yes  
A
B
Electrostatic  
discharge  
(to case)  
IEC/EN  
61000-4-2  
44  
contact discharge  
air discharge  
8000 Vp  
330 Ω  
150 pF  
10 positive and  
10 negative  
discharges  
15000 Vp  
Electromagnetic IEC/ EN  
x5  
antenna  
antenna  
20 V/m  
20 V/m  
10 Vm  
5 V/m  
80% AM, 1 kHz  
80% AM, 1 kHz  
n.a.  
n.a.  
80 – 1000 MHz  
800 – 1000 MHz  
1400 – 2000 MHz  
2000 – 2700 MHz  
5100 – 6000 MHz  
yes  
yes  
A
A
field  
61000-4-3  
6
3 V/m  
7
Electrical fast  
transients/burst  
IEC/EN  
61000-4-4  
37  
4
direct coupling  
±2000 Vp bursts of 5/50 ns, 50 Ω  
60 s positive  
60 s negative  
transients per  
coupling mode  
yes  
yes  
yes  
yes  
A
B
A
A
+i/c,  
i/c,+i/  
i
5 kHz over 15 ms,  
burst period: 300  
±4000 Vp  
3
capacit. coupl., o/c ±2000 Vp  
ms  
3
Surges  
IEC/EN  
61000-4-5  
33  
+i/c, i/c  
+i/i  
±2000 Vp  
±1000 Vp  
1.2/50 µs  
12 /9µF 5 pos. and 5 neg.  
surges per  
coupling mode  
3
2 /18 µF  
Conducted  
disturbances  
IEC/EN  
61000-4-6  
38  
i, o, signal wires  
10 VAC  
(140 dBµV)  
AM 80%  
1 kHz  
150 Ω  
0.15 – 80 MHz  
yes  
yes  
A
A
9
Powerfrequency IEC/EN  
100 A/m  
60 s in all 3 axis  
magnetic field  
61000-4-8  
1
i = input, o = output, c = case.  
A = normal operation, no deviation from specs; B = temporary loss of function or deviation from specs possible.  
2
3
4
5
6
7
8
9
Measured with an external input cap specified in table 4. Exceeds EN 50121-3-2:2016 table 3.3 and EN 50121-4:2016 table 4.3.  
Exceeds EN 50121-3-2:2016 table 5.3 and EN 50121-4:2016 table 2.4.  
Corresponds to EN 50121-3-2:2016 table 5.1 and exceeds EN 50121-4:2016 table 2.1.  
Corresponds to EN 50121-3-2:2016 table 5.2 and EN 50121-4:2016 table 2.2.  
Corresponds to EN 50121-3-2:2016 table 3.2 and EN 50121-4:2016 table 4.2.  
Corresponds to EN 50121-3-2:2016 table 3.1 and EN 50121-4:2016 table 4.1 (radio frequency common mode).  
Corresponds to EN 50121-4:2016 table 2.3.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 16 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Radiated emissions have been tested according to EN 55011  
group 1, class A . These limits are similar to the requirements  
of EN 50121-3-2:2016 and EN 50121-4:2016, calling up  
EN 61000-6-4+A1:2011, table 1. The test was executed with  
horizontal and vertical polarization. The worse result is shown  
in fig. 22.  
Electromagnetic Emissions  
All conducted emissions (fig. 21) have been tested according  
to EN 55011, group 1, class A . These limits are much stronger  
than requested in EN 50121-3-2:2016, table 2.1, and cor-  
respond to EN 50121-4:2016, table 1.1. The limits in fig. 21  
apply to quasipeak values, which are always lower then peak  
values.  
In addition, the values for average must keep a limit 10 dBµV  
below the limits in fig. 21 (not shown).  
TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2009-05-29  
dBµV/m  
Testdistance 10 m, BP4660-9RD B01395787 U00006  
U =24 V, U =24 V I = 4 x 1.25 A  
i o o  
50  
40  
30  
20  
EN 55011 A  
dBµV  
07128b  
80  
EN 55011 A qp  
EN 55011 B qp  
60  
10  
0
40  
20  
30  
50  
100  
200  
500  
1000 MHz  
Fig. 22a  
Radiated disturbances (quasi peak) in 10 m distance:  
BP4660-9RD, Vi nom, Vo = 24 V, Io = 4 × 1.25 A  
0
MHz  
TÜV-Divina, ESDS 30, BBA 9106/UHALP 9107:Schwarzb., QP, 2015-10-05  
dBµV/m  
Testdistance 10 m, EP1601-9RG,  
U
=110 V,  
U
=24  
V
I =  
5
A
i
o
o
Fig. 21a  
BP 2320-9RD  
50  
EN 55011 A qp  
Typ. conducted disturbance voltage at the input (Vi nom, Ii nom  
resistive load, quasi peak).  
,
40  
30  
20  
dBµV  
07127b  
80  
EN 55011 A qp  
10  
0
EN 55011 B qp  
60  
30  
50  
100  
200  
500  
1000 MHz  
Fig. 22b  
40  
20  
Radiated disturbances (quasi peak) in 10 m distance:  
EP1601-9RG, Vi nom = 110 V, Vo = 24 V, Io = 5 A  
0
MHz  
Fig. 21b  
CP 1001-7RB1  
Typ. conducted disturbance voltage at the input (Vi nom, Ii nom  
,
resitive load, quasi peak).  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 17 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Immunity to Environmental Conditions  
Table 10: Mechanical and climatic stress  
Test method  
Standard  
Test conditions  
Status  
Cab  
Damp heat  
steady state  
EN 60068-2-78  
MIL-STD-810D section 507.2  
Temperature:  
Relative humidity:  
Duration:  
40 ±2 °C  
Converter  
not  
operating  
93 +2/-3  
%
56 days  
Db  
Bd  
Ad  
Ka  
Fc  
Damp heat test,  
cyclic  
EN 50155:2007, clause 12.2.5  
EN 60068-2-30  
Temperature:  
Cycles (respiration) duration  
55 °C and 25 °C  
2× 24 h  
Conv. not  
operating  
Dry heat test  
steady state  
EN 50155:2007, clause 12.2.4  
EN 60068-2-2  
Temperature:  
Duration:  
70 °C  
6 h  
Converter  
operating  
Cooling test  
steady state  
EN 50155:2007, clause 12.2.3  
EN 60068-2-1  
Temperature, duration  
Performance test  
–40 °C, 2 h  
+25 °C  
35±2 °C  
16 h  
Conv. not  
operating  
Salt mist test  
sodium chloride  
EN 50155:2007, clause 12.2.10 Temperature:  
EN 60068-2-11, class ST2  
Conv. not  
operating  
Duration:  
Vibration  
(sinusoidal)  
EN 60068-2-6  
MIL-STD-810D section 514.3  
Acceleration amplitude:  
0.35 mm (10 – 60 Hz)  
5 gn = 49 m/s2 (60 - 2000 Hz)  
10 – 2000 Hz  
Converter  
operating  
Frequency (1 Oct/min):  
Test duration:  
7.5 h (2.5 h in each axis)  
Fh  
Random vibration  
broad band  
(digital control) and  
guidance  
EN 60068-2-64  
Acceleration spectral density: 0.05 gn2/Hz  
Converter  
operating  
Frequency band:  
Acceleration magnitude:  
Test duration:  
8 – 500 Hz  
4.9 gn rms  
1.5 h (0.5 h in each axis)  
Ea  
--  
Shock  
(half-sinusoidal)  
EN 60068-2-27  
MIL-STD-810D section 516.3  
Acceleration amplitude:  
Bump duration:  
Number of bumps:  
50 gn = 490 m/s2  
11 ms  
18 (3 in each direction)  
Converter  
operating  
Shock  
EN 50155:2007 clause 12.2.11 Acceleration amplitude:  
EN 61373 sect. 10, class B,  
body mounted1  
5.1 gn  
30 ms  
18 (3 in each direction)  
Converter  
operating  
Bump duration:  
Number of bumps:  
--  
Simulated long life EN 50155:2007 clause 12.2.11 Acceleration spectral density: 0.02 gn2/Hz  
Converter  
operating  
testing at  
EN 61373 sect. 8 and 9,  
class B, body mounted1  
Frequency band:  
Acceleration magnitude:  
Test duration:  
5 – 150 Hz  
increased random  
vibration levels  
0.8 gn rms  
15 h (5 h in each axis)  
1
Body mounted = chassis of a railway coach  
Temperatures  
Table 11: Temperature specifications, valid for an air pressure of 800 – 1200 hPa (800 – 1200 mbar)  
Temperature  
-7 (option)  
typ  
-9 (standard)  
typ  
Characteristics  
Conditions  
Converter operating 1  
min  
–25  
–25  
–40  
max  
71  
95 1  
min  
–40  
–40  
–55  
max  
71  
Unit  
TA  
TC  
TS  
Ambient temperature  
Case temperature 2  
° C  
95 1  
Storage temperature  
Non operational  
85  
85  
Rth C-A Thermal resistance case to ambient in still air  
1.6 3  
1.6 3  
K/W  
1
Operation with Po max requires reduction to TA max = 50 °C, TC max = 85° C respectively; see Thermal Considerations.  
Overtemperature shutdown at TC >95 °C (temperature sensor)  
See table 17 for long case and heatsink options B0, B1, B3.  
2
3
Reliability  
Table 12: MTBF and device hours  
Ratings at specified  
Model  
Ground  
benign  
40 °C  
Ground fixed  
Ground  
mobile  
50 °C  
Demonstrated hours  
between failures 1  
Case Temperature  
40 °C  
88 000 h  
70 °C  
MTBF acc. to  
CP  
340 000 h  
42 000 h  
40 000 h  
757 000 h  
MIL-HDBK-217F, notice 2  
1
Statistical values, based upon an average of 4300 working hours per year and in general field use over 5 years; upgrades and  
customer-induced errors are excluded.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 18 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Mechanical Data  
The converters are designed for insertion into a 19" rack according to IEC 60297-3. Dimensions in mm.  
20.3  
pin 4  
H
G
F
E
Key Code System  
European  
Projection  
Front plate  
A
B
C
D
09099i  
Silkscreen  
without opt. Bx  
Silk-  
screen with  
opt. Bx  
M3; 5 deep  
Measuring  
point of case  
temperature TC  
AIRFLOW  
PT2  
PT1  
pin 4  
pin 32  
70  
Back plate  
111  
104  
100  
95  
* 231.0 ...231.9 mm  
for long case  
(add 5000 to the  
(
)
17.6  
part number)  
64.9  
59.23  
c
a
b
LED "In OK"  
LEDs "Out OK"  
= 4.5  
Alternative LED positions for customer-specific models with long case:  
a = "In OK", b = "Out 1 OK", c = "Out 2 OK" (front panel XMD168-G)  
Fig. 23  
Case Q04, weight approx. 500 g  
Aluminum, fully enclosed, black,  
EP powder coated, self cooling  
Note: Long case, elongated by 60 mm for a 220 mm rack depth,  
is available on request: Add 5000 to the part number !  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 19 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Safety and Installation Instructions  
30  
26 22  
18 14 10  
6
Connector Pin Allocation  
The connector pin allocation table defines the electrical  
potentials and the physical pin positions on the H15 and  
H15S2 connector. Pin no. 26, protective earth, is a leading pin  
to ensure that it makes contact with the female connector first.  
10025a  
32  
28 24  
20 16  
12  
8
4
Fig. 24a  
View of male standard H15 connector.  
The Key Code positions are shown in fig. 23.  
Notes:  
• The current through each standard H15 contact depends on the  
female connector, the ambient temperature and the air flow in  
the region of the connector. We recommend to limit the mean  
current to 15 A at 50 °C and to 13 A at 71 °C.  
30 26 22 18 14  
8/10  
4/6  
• High currents require a large cross-sectional area of the  
connections to the female contacts. We recommend solder or  
screw terminal contacts. Each faston connection exhibits a  
resistance of typ. 4 mΩ (max. 8 mΩ), which makes it less  
suitable for high currents.  
S10051a  
32 28 24 20 16 12  
• For single-output models with option K, both output contacts  
must always be used and connected in parallel to the load with  
large cross-sectional area wires or thick copper lands. The  
efficiency is lower with option K.  
Fig. 24b  
View of male H15S2 connector (with high-current contacts)  
used in P1000 and P1100 without option K. H15-S2  
connectors have no Key Code system.  
• High-current contacts of P1000 models allow for a high output  
current. Their resistance is only typ. 1 mΩ.  
Table 13: Pin allocation  
Pin  
41  
61  
P 1000  
P2000  
P3000  
P4000  
Vo+  
Vo+  
Vo–  
Vo–  
S+  
Output 1 pos.  
Output 1 pos.  
Output 1 neg.  
Output 1 neg.  
Sense +  
Vo1+  
Vo2+  
Vo1–  
Vo2–  
S1+  
S1–  
R
Output 1 pos.  
Output 2 pos.  
Output 1 neg.  
Output 2 neg.  
Sense 1 +  
Vo1+  
Vo2+  
Vo1–  
Vo2–  
S1+  
Output 1 pos.  
Output 2 pos.  
Output 1 neg.  
Output 2 neg.  
Sense 1 +  
Vo1+  
Vo2+  
Vo1–  
Vo2–  
Vo4+  
Vo4–  
R
Output 1 pos.  
Output 2 pos.  
Output 1 neg.6  
Output 2 neg.  
Output 4 pos.  
Output 4 neg.6  
Adjust of Vo1/4  
82  
102  
12  
14  
16  
S–  
Sense –  
Sense 1 –  
S1–  
Sense 1 –  
R
Adjust of Vo  
Adjust of Vo1  
Current share3  
Sense 2 +  
R
Adjust of Vo1  
Current share3  
Output 3 pos.  
Output 3 neg.  
Out OK+4  
T
T
18  
20  
22  
24  
T5  
Current share  
S2+  
S2–  
Vo3+  
Vo3–  
Out OK+  
n.c.  
Vo3+  
Vo3–  
Output 3 pos.  
Output 3 neg.  
Out OK+ Out OK+4  
n.c.  
Not connected  
Out OK+4 Out OK+4  
Sense 2 –  
Out OK+ Out OK+4  
n. c.  
Not connected  
Out OK– Out OK–4  
n.c.  
Not connected  
Out OK– Out OK4  
Not connected  
Out OK–4  
n.c.  
Not connected  
Out OK– Out OK–4  
Out OK–  
26  
28  
30  
32  
Prot. earth PE  
Prot. earth PE  
Prot. earth PE  
Inhibit primary  
Input pos.  
Prot. earth PE  
i
Inhibit primary  
Input pos.  
i
Inhibit primary  
Input pos.  
i
i
Inhibit primary  
Input pos.  
Vi+  
Vi–  
Vi+  
Vi–  
Vi+  
Vi–  
Vi+  
Vi–  
Input neg.  
Input neg.  
Input neg.  
Input neg.  
1
2
3
4
5
6
Pin 4/6 (high-current contact) for P1000 models with 3.3 V or 5.1 V output (H15S2 connector, no option K)  
Pin 8/10 (high-current contact) for P1000 models with 3.3 V or 5.1 V output (H15S2 connector, no option K)  
Option T for 3.3 V and 5.1 V powertrains: Only Io1 is influenced  
Not connected, if option D is not fitted.  
Not connected, if option T is not fitted.  
Powertrains with 5.1 V and 3.3 V outputs have a common return: Vo1– and Vo4– are connected together.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 20 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Installation Instructions  
input and output and between input and auxiliary circuits  
• Overvoltage category II  
These converters are components, intended exclusively for  
inclusion within other equipment by an industrial assembly  
process or by a professionally competent person. Installation  
must strictly follow the national safety regulations in respect of  
the enclosure, mounting, creepage distances, clearances,  
markings and segregation requirements of the end-use  
application.  
• Pollution degree 2 environment  
• The converters fulfill the requirements of a fire enclosure.  
CB-scheme is available (CB 06 07 24238 800).  
The converters are subject to manufacturing surveillance in  
accordance with the above mentioned UL standards and with  
ISO 9001:2015.  
Connection to the system shall be made via the female  
connector H15 or H15S2 (see Accessories). Other installation  
methods may not meet the safety requirements. Check for  
hazardous voltages before altering any connections. Pin 26  
(PE) is a leading pin and is reliably connected to the case. For  
safety reasons it is essential to connect this pin to the pro-  
tective earth.  
Protection Degree and Cleaning Liquids  
The DC-DC converters correspond to protection degree IP 40,  
provided that the female connector is fitted to the converter.  
Since the converters are not hermetically sealed. In order to  
avoid possible damage, any penetration of liquids shall be  
avoided.  
The Vi– input (pin 32) is internally fused. This fuse is designed  
to protect the converter against overcurrent caused by a  
failure, but may not be able to satisfy all requirements.  
External fuses in the wiring to one or both input pins (no. 30  
and/or no. 32) may therefore be necessary to ensure  
compliance with local requirements.  
Railway Applications  
The converters have been designed observing the railway  
standards EN 50155:2007 and EN 50121-3-2:2016. All boards  
are coated with a protective lacquer.  
All models with version V114 (or later, except models with  
connector H15S2 ) comply with EN 45545, HL1 to HL3. They  
also comply with NF-F-16, Class I3/F2 (except when operated  
in a vertical position, i.e. with the connector on top or on  
bottom).  
Important: If the inhibit function is not used, connect pin 28 (i)  
with pin 32 (Vi–) to enable the output(s).  
Do not open the converter, or the warranty will be invalidated.  
Make sure that there is sufficient airflow available for  
convection cooling. This should be verified by measuring the  
case temperature at the specified measuring point, when the  
converter is operated in the end-use application: TC max should  
not be exceeded. Ensure that a failure of the converter does  
not result in a hazardous condition; see also Safety of  
Operator-Accessible Output Circuits.  
Isolation  
The electric strength test is performed in the factory as routine  
test according to EN 50514 and IEC/EN 60950. The company  
will not honor any warranty claims resulting from incorrectly  
executed electric strength field tests. The resistance of the  
earth connection to the case (< 0.1 ) is tested as well.  
Standards and Approvals  
The P Series converters are safety-approved to the latest  
edition of IEC/EN 60950-1 and UL/CSA 60950-1.  
They have been evaluated for:  
• Class I equipment  
• Building in  
• Double or reinforced insulation based on 250 VAC between  
Table 14: Isolation  
Characteristic  
Input to  
outputs1 case+outputs  
Outputs  
to case  
Output  
to output4  
Out OK signals to3  
Unit  
input  
case  
outputs  
Electric  
strength  
test  
Factory test 10 s  
4.2  
3.0  
2.2/ 2.86 5  
1.5/ 2.0 5  
1.0  
0.7  
0.5/ 0.7 5  
2.2/ 2.86 5  
1.5/2.0 5  
1.0  
0.5/ 0.7 5 kVDC  
0.35/ 0.5 5 kVAC  
AC test voltage equivalent  
to actual factory test  
0.35/ 0.5 5  
0.7  
Insulation resistance  
Creepage distances  
>300 2  
4.0  
>300 2  
3.25  
>300 2  
1.0  
>100  
>300 2  
>100  
>100  
MΩ  
mm  
1
Pretest of subassemblies in accordance with IEC/EN 60950  
2
3
4
5
Tested at 500 VDC  
Option D  
Powertrains with a combined 5.1 / 3.3 V output have a commun return.  
2nd value valid for models with version V114 (or later)  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 21 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Safety of Operator-Accessible Output Circuits  
(sum of nominal voltages if in series or +/– configuration) of  
35 V.  
If the output circuit of a DC-DC converter is operator  
accessible, it shall be an SELV circuit according to the IEC/  
EN 60950 related safety standards.  
However, it is the sole responsibility of the installer to ensure  
the compliance with the relevant and applicable safety  
regulations.  
The following table shows some possible installation  
configurations, compliance with which causes the output  
circuit of the DC-DC converter to be an SELV circuit  
according to IEC/EN 60950 up to a configured output voltage  
Use fuses and earth connections as per table below. See also  
Installation Instructions.  
Table 15: Safety concept leading to an SELV output circuit  
Conditions Front end  
DC-DC converter  
Result  
Nominal  
supply  
voltage  
Minimum required grade  
of insolation, to be pro-  
vided by the AC-DC front  
end, including mains  
Maximum DC  
output voltage  
from the front  
end1  
Minimum required safety  
status of the front end  
output circuit  
Measures to achieve the  
specified safety status of the  
output circuit  
Safety status  
of the DC-DC  
converter  
output circuit  
supplied battery charger  
Mains  
Functional (i.e. there is  
168 V  
Primary circuit (The nominal Double or reinforced insula-  
SELV circuit  
250 VAC no need for electrical iso-  
lation between the mains  
supply circuit and the  
DC-DC converter input  
circuit)  
voltage between any input  
pin and earth shall not ex-  
ceed 250 VAC or 240 VDC.) DC-DC converter) and  
earthed case 2  
tion, based on 250 VAC and  
240 VDC (provided by the  
Basic  
Earth related hazardous  
voltage secondary circuit  
(The nominal voltage  
between any input pin and  
earth shall not exceed  
250 VAC or 240 VDC.)  
Double or reinforced insula-  
tion, based on the maximum  
nominal output voltage from  
the front end (both provided  
by the DC-DC converter) and  
earthed case 2  
Unearthed hazardous  
voltage secondary circuit  
Supplementary insulation,  
based on 250 VAC and DC  
and double or reinforced  
insulation, based on the  
maximum nominal output  
voltage from the front end  
(both provided by the DC-DC  
converter) and earthed case 2  
Supplementary  
Unearthed hazardous  
voltage secondary circuit 3  
Basic insulation, based on  
250 VAC and DC (provided  
by the DC-DC converter)  
1
The front end output voltage should match the specified input voltage range of the DC-DC converter. The maximum rated input  
voltage of EP types is 150 V according to IEC/EN 60950.  
2
3
The earth connection has to be procided by the installer according to the relevant safety standards, e.g., IEC/EN 60950.  
Has to be insulated from earth by at least supplementary insulation (by the installer) according to the relevant safety standards,  
e.g. IEC/EN 60950, based on the maximum nominal output voltage from the front end. If the converter case is accessible, it  
has to be earthed or the front end output circuit has to be insulated from the converter case by at least basic insulation, based  
on the maximum nominal mains supply voltage.  
10052a  
Max. 250 VAC or 240 VDC  
Fuse  
+
~
AC-DC  
front  
end  
DC-DC  
con-  
verter  
Mains  
Battery  
SELV  
Fuse  
~
Max. 250 VAC or 240 VDC  
Earth  
connection  
Fig. 25  
Schematic safety concept  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 22 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Description of Options  
In redundant systems, the outputs of the converters are  
decoupled by ORing diodes. Consequently, a failure of one  
converter will not lead to a system failure.  
Option D: Out OK Monitor  
Option D monitors the state of the output error amplifiers on  
both power trains rather than the input voltage, output voltage,  
or the current limit. It signals a fault, when one of the error  
amplifiers reaches its limit, which means that at least one  
output voltage is not within its regulation limits. This could  
occur, because the input voltage is below the minimum level  
or the load current is too high. This function is not adjustable.  
Since the voltage on the T-pin is referenced to the sense pin  
S–, the installer must ensure that the S– pins of all parallel  
converters are at the same electrical potential and that there  
are no voltage drops across the connection lines between  
these pins.  
Double-output converters with outputs connected in series  
can also be paralleled with current sharing, if pins Vo1– of all  
converters are connected together; see fig. 10.  
A galvanically isolated open-collector output generates the  
“Out OK” signal. The circuit monitors simultaneously that  
If the output voltages of parallel connected single-output  
converters are programmed to a voltage other than Vo nom by  
means of the R pin, the outputs should be adjusted  
individually within a tolerance of ±1%.  
• the input voltage is present and the inhibit signal enables  
the converter - same logic as LED “In OK”  
• the output voltages are within their limits - same logic as  
LED(s) “Out OK”.  
Note: Option T is only available for 3.3 V or 5.1 V single-output  
power trains and only for output 1.  
The open collector is conducting, if the monitored conditions  
are fulfilled.  
In double- or triple-output models, option T1 (pin 16) influences  
only output 1. Then the R-function is not present, since no pin is  
left for that function.  
This option is located on a subassembly allowing special  
circuit design on customer request.  
Vp  
Dimensioning of resistor value Rp –––––– .  
50 mA  
Option B0, B1, B3: Heat Sink  
The converter is fitted with an additional heat sink.  
Caution: The Out OK circuit is protected by a Zener diode. To  
prevent damage, the applied current IOK should be limited to ±50  
mA. The Zener diode should not be exposed to more than 0.25 W.  
Table 17: Thermal resistance case to ambient (approx.  
values)  
Case  
Thermalresistance  
Thickness ofcase  
Table 16: Output OK data  
Standard, 160 mm long  
Case, 220 mm long1  
Option B0  
Option B1  
Option B3  
1.6 K/W  
1.4 K/W  
1.4 K/W  
1.3 K/W  
1.2 K/W  
< 20 mm  
< 20 mm  
< 30 mm  
< 40 mm  
< 50 mm  
Characteristics / Conditions  
min typ max Unit  
VOK Out OK voltage  
Output good, IOK < 50 mA  
0.8 1.5  
25  
V
IOK Out OK current  
1
Add 5000 to the part number !  
Output out of range, VOK < 27 V 1  
mA  
1
for version V115 or later.  
Option G  
+
Vp  
Rp  
RoHS compliant for all six substances. Option G should be  
chosen for new designs.  
06151b  
IOK  
22  
Out OK+  
Output  
monitoring  
circuit  
VOK  
24  
Out OK–  
Fig. 26  
Output OK circuit (option D)  
Option T: Active Current Sharing  
For 3.3 V and 5.1 V outputs only. The current share facility  
should be used, when several converters are operated in  
parallel. Examples could be high reliability n+1 redundant  
systems or systems providing higher output power.  
Using this feature reduces the stress of individual converters  
and improves the reliability of the system. Interconnection of  
the current-sharing T-pins causes the converters to share  
their output currents evenly.  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 23 of 24  
P Series Data Sheet  
90 – 192 Watt DC-DC Converters  
Connector retention brackets HZZ01217-G (CRB-Q)  
Different cable connector housings (cable hoods)  
Accessories  
A wide variety of electrical and mechanical accessories are  
available:  
For additional information, see the accessory data sheets  
listed with each product series or individual model at our  
website.  
Mating connectors including faston, screw, solder, or press-  
fit terminals  
Front panels, system Schroff, for 19" rack 3 U,  
configuration 4 TE (G04-Q04), 5 TE (G05-Q04), or 6 TE  
(G06-Q04), including a support angel.  
Front panels system Schroff, for 19" rack 6 U,  
configuration 5 TE (G05-6HE-Q04)  
Mechanical mounting supports for chassis, DIN-rail, and  
PCB mounting  
Connector retention  
bracket HZZ01217-G  
H15 female connector  
with code key system  
Front panel G05-6HE-Q04  
Mounting plate Q for wall mounting  
accommodating two P units for a  
19" DIN-rack with 6 U, 5 TE.  
(HZZ01215-G) with connector  
retention clips Q (HZZ01229-G)  
Universal mounting bracket for DIN-rail  
and chassis mounting (HZZ00610-G)  
NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support  
systems, equipment used in hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on  
the date manufactured. Specifications are subject to change without notice.  
Copyright © 2018, Bel Power Solutions Inc. All rights reserved.  
belfuse.com/power-solutions  
MELCHER  
The Power Partners.  
BCD20010-G Rev AN1, 12-Nov-2018  
Page 24 of 24  

相关型号:

DP3020-9RI

DC-DC Regulated Power Supply Module, 3 Output, Hybrid, METAL, CASE P01, MODULE
BEL

DP3020-9RIB1

Analog Circuit,
BEL

DP3020-9RIB3

Analog Circuit,
BEL

DP3020-9RT

Analog Circuit,
BEL

DP3020-9RTB1

Analog Circuit,
BEL

DP3020-9RTB3

Analog Circuit,
BEL

DP3020-9RTI

Analog Circuit,
BEL

DP3020-9RTIB1

Analog Circuit,
BEL

DP3020-9RTIB3

Analog Circuit,
BEL

DP3020-9RTIW

Analog Circuit,
BEL

DP3020-9RTW

Analog Circuit,
BEL

DP3020-9RTWB3

Analog Circuit,
BEL