MSC1212Y4 [BB]

Precision Analog-to-Digital Converter (ADC); 高精度模拟数字转换器( ADC )
MSC1212Y4
型号: MSC1212Y4
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Precision Analog-to-Digital Converter (ADC)
高精度模拟数字转换器( ADC )

转换器
文件: 总69页 (文件大小:1095K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSC1212  
®
M
S
C
1
2
1
2
SBAS278A – MARCH 2003 – REVISED DECEMBER 2004  
Precision Analog-to-Digital Converter (ADC)  
and Digital-to-Analog Converters (DACs)  
with 8051 Microcontroller and Flash Memory  
Peripheral Features  
FEATURES  
ANALOG FEATURES  
34 I/O PINS  
ADDITIONAL 32-BIT ACCUMULATOR  
THREE 16-BIT TIMER/COUNTERS  
SYSTEM TIMERS  
PROGRAMMABLE WATCHDOG TIMER  
FULL-DUPLEX DUAL USARTS  
MASTER/SLAVE SPIWITH DMA  
16-BIT PWM  
24-BITS NO MISSING CODES  
22-BITS EFFECTIVE RESOLUTION AT 10Hz  
Low Noise: 75nV  
PGA FROM 1 TO 128  
PRECISION ON-CHIP VOLTAGE REFERENCE:  
Accuracy: 0.2%  
Drift: 5ppm/°C  
POWER MANAGEMENT CONTROL  
INTERNAL CLOCK DIVIDER  
IDLE MODE CURRENT < 200µA  
STOP MODE CURRENT < 100nA  
PROGRAMMABLE BROWNOUT RESET  
PROGRAMMABLE LOW VOLTAGE DETECT  
21 INTERRUPT SOURCES  
8 DIFFERENTIAL/SINGLE-ENDED CHANNELS  
ON-CHIP OFFSET/GAIN CALIBRATION  
OFFSET DRIFT: 0.02PPM/°C  
GAIN DRIFT: 0.5PPM/°C  
ON-CHIP TEMPERATURE SENSOR  
SELECTABLE BUFFER INPUT  
BURNOUT DETECT  
QUAD 16-BIT MONOTONIC VOLTAGE DACs:  
2 VDACs Can Be Programmed as IDACs  
8µs Settling Time  
TWO HARDWARE BREAKPOINTS  
GENERAL FEATURES  
PIN-COMPATIBLE WITH MSC1210/11/13/14  
PACKAGE: TQFP-64  
LOW POWER: 4mW  
INDUSTRIAL TEMPERATURE RANGE:  
–40°C to +85°C  
POWER SUPPLY: 2.7V to 5.25V  
DIGITAL FEATURES  
Microcontroller Core  
8051 COMPATIBLE  
HIGH SPEED CORE:  
4 Clocks per Instruction Cycle  
DC TO 30MHz  
SINGLE INSTRUCTION 133ns  
DUAL DATA POINTER  
APPLICATIONS  
INDUSTRIAL PROCESS CONTROL  
INSTRUMENTATION  
Memory  
UP TO 32kB FLASH DATA MEMORY  
FLASH MEMORY PARTITIONING  
ENDURANCE 1M ERASE/WRITE CYCLES,  
100-YEAR DATA RETENTION  
IN-SYSTEM SERIALLY PROGRAMMABLE  
EXTERNAL PROGRAM/DATA MEMORY (64kB)  
1280 BYTES DATA SRAM  
FLASH MEMORY SECURITY  
2kB BOOT ROM  
PROGRAMMABLE WAIT STATE CONTROL  
LIQUID/GAS CHROMATOGRAPHY  
BLOOD ANALYSIS  
SMART TRANSMITTERS  
PORTABLE INSTRUMENTS  
WEIGH SCALES  
PRESSURE TRANSDUCERS  
INTELLIGENT SENSORS  
PORTABLE APPLICATIONS  
DAS SYSTEMS  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2003-2004, Texas Instruments Incorporated  
www.ti.com  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
FLASH  
MEMORY  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
PACKAGE-LEAD  
MSC1212Y2  
MSC1212Y2  
4k  
4k  
TQFP-64  
PAG  
"
40°C to +85°C  
MSC1212Y2  
"
"
"
MSC1212Y3  
MSC1212Y3  
8k  
8k  
TQFP-64  
PAG  
"
40°C to +85°C  
MSC1212Y3  
"
"
"
MSC1212Y4  
MSC1212Y4  
16k  
16k  
TQFP-64  
PAG  
"
40°C to +85°C  
MSC1212Y4  
"
"
"
MSC1212Y5  
MSC1212Y5  
32k  
32k  
TQFP-64  
PAG  
"
40°C to +85°C  
MSC1212Y5  
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or refer to our web  
site at www.ti.com/msc.  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
Analog Inputs  
DISCHARGE SENSITIVITY  
Input Current ............................................................ 100mA, Momentary  
Input Current .............................................................. 10mA, Continuous  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper han-  
dling and installation procedures can cause damage.  
Input Voltage .............................................AGND 0.3V to AVDD + 0.3V  
Power Supply  
DVDD to DGND......................................................................0.3V to 6V  
AVDD to AGND ......................................................................0.3V to 6V  
AGND to DGND .............................................................. 0.3V to +0.3V  
V
REF to AGND ....................................................... 0.3V to AVDD + 0.3V  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
Digital Input Voltage to DGND .............................. 0.3V to DVDD + 0.3V  
Digital Output Voltage to DGND ........................... 0.3V to DVDD + 0.3V  
Maximum Junction Temperature ................................................ +150°C  
Operating Temperature Range ...................................... 40°C to +85°C  
Storage Temperature Range ....................................... 65°C to +150°C  
Lead Temperature (soldering, 10s) ............................................ +235°C  
Package Power Dissipation ................................ (TJ Max - TAMBIENT)/θJA  
Output Current All Pins ................................................................ 200mA  
Output Pin Short Circuit .....................................................................10s  
Thermal Resistance, Junction-to-Ambient (θJA) High K (2s2p) 50.9°C/W  
Thermal Resistance, Junction-to-Ambient (θJA) Low K (1s) .... 76.2°C/W  
Thermal Resistance, Junction-to-Case (θJC) ........................... 12.5°C/W  
Digital Outputs  
Output Current ......................................................... 100mA, Continuous  
I/O Source/Sink Current ............................................................... 100mA  
Power Pin Maximum .................................................................... 300mA  
NOTE: (1) Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
MSC1212Yx FAMILY FEATURES  
FEATURES(1)  
MSC1212Y2(2)  
MSC1212Y3(2)  
MSC1212Y4(2)  
MSC1212Y5(2)  
Flash Program Memory (Bytes)  
Flash Data Memory (Bytes)  
Up to 4k  
Up to 4k  
Up to 8k  
Up to 8k  
Up to 16k  
Up to 16k  
Up to 32k  
Up to 32k  
Internal Scratchpad RAM (Bytes)  
Internal MOVX SRAM (Bytes)  
Externally Accessible Memory (Bytes)  
256  
1024  
256  
1024  
256  
1024  
256  
1024  
64k Program, 64k Data  
64k Program, 64k Data  
64k Program, 64k Data  
64k Program, 64k Data  
NOTES: (1) All peripheral features are the same on all devices; the flash memory size is the only difference. (2) The last digit of the part number (N) represents  
the onboard flash size = (2N)kBytes.  
MSC1212  
2
SBAS278A  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications from TMIN to TMAX, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +2.5V,  
unless otherwise noted. For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0-AIN7, AINCOM)  
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In); See Figure 4  
Buffer OFF  
AGND 0.1  
AGND + 50mV  
AVDD + 0.1  
AVDD 1.5  
±VREF/PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
7/PGA  
0.5  
Buffer ON  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
Buffer ON  
Multiplexer Channel Off, T = +25°C  
Sensor Input Open Circuit  
1
128  
9
0.5  
±2  
pF  
pA  
µA  
ADC OFFSET DAC  
Offset DAC Range  
±VREF/(2 PGA)  
V
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
% of Range  
ppm/°C  
±1.5  
1
SYSTEM PERFORMANCE  
Resolution  
ENOB  
24  
Bits  
Bits  
22  
Output Noise  
See Typical Characteristics  
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Offset Drift(1)  
Gain Error(2)  
Gain Error Drift(1)  
System Gain Calibration Range  
System Offset Calibration Range  
Common-Mode Rejection  
Sinc3 Filter  
End Point Fit, Differential Input  
After Calibration  
24  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
% of FS  
% of FS  
dB  
±0.0015  
7.5  
0.02  
0.005  
0.5  
Before Calibration  
After Calibration  
Before Calibration  
80  
50  
100  
120  
50  
At DC  
115  
130  
120  
120  
100  
100  
88  
fCM = 60Hz, fDATA = 10Hz  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
dB  
dB  
dB  
dB  
dB  
dB  
Normal Mode Rejection  
Power-Supply Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
(3)  
At DC, dB = 20log(VOUT/VDD  
)
VOLTAGE REFERENCE INPUTS  
Reference Input Range  
VREF  
VREF Common-Mode Rejection  
Input Current(4)  
(2)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
At DC  
VREF = 2.5V, ADC Only  
For Each DAC, 5V Reference  
0.0  
0.3  
AVDD  
AVDD  
V
V
dB  
µA  
µA  
2.5  
110  
10  
DAC Reference Current  
25  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
VREFH = 1 at +25°C, PGA = 1, 2, 4, 8  
2.495  
2.5  
1.25  
2.505  
V
V
VREFH = 0  
Power-Supply Rejection Ratio  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
65  
8
50  
dB  
mA  
µA  
Sink or Source  
Indefinite  
Drift  
5
3
8
ppm/°C  
ms  
Output Impedance  
Startup Time from Power ON  
Temperature Sensor  
Sourcing 100µA  
CREFOUT = 0.1µF  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
T = +25°C  
115  
375  
mV  
µV/°C  
VOLTAGE DAC STATIC PERFORMANCE(5)  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
Full-Scale Error  
Gain Error  
Zero Code Error Drift  
Gain Temperature Coefficient  
16  
Bits  
%
LSB  
±0.05  
±0.146  
±1  
+35  
All 0s Loaded to DAC Register  
All 1s Loaded to DAC Register  
+13  
0
0
±20  
±5  
mV  
1.25  
1.25  
% of FSR  
% of FSR  
µV/°C  
+1.25  
ppm of FSR/°C  
MSC1212  
SBAS278A  
3
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (Cont.)  
All specifications from TMIN to TMAX, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +2.5V,  
unless otherwise noted. For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE DAC OUTPUT CHARACTERISTICS(6)  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
AGND  
AVDD  
V
µs  
V/µs  
To ±0.003% FSR, 0200H to FD00H  
8
1
7
DC Output Impedance  
Short-Circuit Current  
All 1s Loaded to DAC Register  
Maximum VREF = 2.5V  
20  
mA  
IDAC OUTPUT CHARACTERISTICS  
Full-Scale Output Current  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Relative Accuracy  
Zero Code Error  
25  
Indefinite  
AVDD 1.5  
0.185  
mA  
V
Over Full Range  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
0.5  
0.4  
0.6  
Full-Scale Error  
Gain Error  
ANALOG POWER-SUPPLY REQUIREMENTS  
Analog Power-Supply Voltage  
Analog Current  
ADC Current  
AVDD  
Analog OFF, PDAD = 1  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
4.75  
5.25  
V
IADC + IVREF  
IADC  
< 1  
200  
500  
240  
850  
250  
250  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
PGA = 128, Buffer ON  
Excluding Load Current External Reference  
ADC ON, VDAC OFF  
VDAC Current  
VREF Supply Current  
IVDAC  
IVREF  
NOTES: (1) Calibration can minimize these errors. (2) The gain calibration cannot have a REF IN+ of more than AVDD 1.5V with buffer ON. To calibrate gain,  
turn buffer off. (3) VOUT is change in digital result. (4) 9pF switched capacitor at fSAMP clock frequency (see Figure 6). (5) Linearity calculated using a reduced code  
range of 512 to 65024; output unloaded. (6) Ensured by design and characterization, not production tested.  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications from TMIN to TMAX, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +1.25V,  
unless otherwise noted. For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0-AIN7, AINCOM)  
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In); See Figure 4  
Buffer OFF  
AGND 0.1  
AGND + 50mV  
AVDD + 0.1  
AVDD 1.5  
±VREF/PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
7/PGA  
0.5  
Buffer ON  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
Buffer On  
Multiplexer Channel Off, T = +25°C  
Sensor Input Open Circuit  
1
128  
9
0.5  
±2  
pF  
pA  
µA  
ADC OFFSET DAC  
Offset DAC Range  
±VREF/(2 PGA)  
V
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
% of Range  
ppm/°C  
±1.5  
1
SYSTEM PERFORMANCE  
Resolution  
ENOB  
24  
Bits  
Bits  
22  
Output Noise  
See Typical Characteristics  
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Offset Drift(1)  
Gain Error(2)  
Gain Error Drift(1)  
System Gain Calibration Range  
System Offset Calibration Range  
Sinc3 Filter  
End Point Fit, Differential Input  
After Calibration  
24  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
% of FS  
% of FS  
±0.0015  
7.5  
0.02  
0.005  
1.0  
Before Calibration  
After Calibration  
Before Calibration  
80  
50  
120  
50  
MSC1212  
4
SBAS278A  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (Cont.)  
All specifications from TMIN to TMAX, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, and Bipolar, VREF (REF IN+) (REF IN) = +1.25V,  
unless otherwise noted. For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
SYSTEM PERFORMANCE (Cont.)  
Common-Mode Rejection  
At DC  
100  
115  
130  
120  
120  
100  
100  
85  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
f
f
f
f
f
CM = 60Hz, fDATA = 10Hz  
CM = 50Hz, fDATA = 50Hz  
CM = 60Hz, fDATA = 60Hz  
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
Normal Mode Rejection  
Power-Supply Rejection  
(3)  
At DC, dB = 20log(VOUT/VDD  
)
VOLTAGE REFERENCE INPUTS  
Reference Input Range  
VREF  
VREF Common-Mode Rejection  
Input Current(4)  
(2)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
At DC  
VREF = 1.25V, ADC Only  
For each DAC, 3V Reference  
0.0  
0.3  
AVDD  
AVDD  
V
V
dB  
µA  
µA  
1.25  
110  
10  
DAC Reference Current  
25  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
VREFH = 0 at +25°C, PGA = 1, 2, 4, 8  
1.245  
1.25  
1.255  
V
Power-Supply Rejection Ratio  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
65  
2.6  
50  
Indefinite  
dB  
mA  
µA  
Sink or Source  
Drift  
5
3
8
ppm/°C  
ms  
Output Impedance  
Startup Time from Power ON  
Temperature Sensor  
Sourcing 100µA  
CREFOUT = 0.1µF  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
T = +25°C  
115  
375  
mV  
µV/°C  
VOLTAGE DAC STATIC PERFORMANCE(5)  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
Full-Scale Error  
Gain Error  
Zero Code Error Drift  
Gain Temperature Coefficient  
16  
Bits  
% of FSR  
LSB  
±0.05  
±0.146  
±1  
+35  
Ensured Monotonic by Design  
All 0s Loaded to DAC Register  
All 1s Loaded to DAC Register  
+13  
0
0
±20  
±5  
mV  
1.25  
1.25  
% of FSR  
% of FSR  
µV/°C  
±1.25  
ppm of FSR/°C  
VOLTAGE DAC OUTPUT CHARACTERISTICS(6)  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
AGND  
AVDD  
V
µs  
V/µs  
To ±0.003% FSR, 0200H to FD00H  
8
1
7
DC Output Impedance  
Short-Circuit Current  
All 1s Loaded to DAC Register  
Maximum VREF = 2.5V  
16  
mA  
IDAC OUTPUT CHARACTERISTICS  
Full-Scale Output Current  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Relative Accuracy  
Zero Code Error  
25  
Indefinite  
AVDD 1.5  
0.185  
mA  
Over Full Range  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
0.5  
0.4  
0.6  
Full-Scale Error  
Gain Error  
ANALOG POWER-SUPPLY REQUIREMENTS  
Analog Power-Supply Voltage  
Analog Current  
ADC Current  
AVDD  
Analog OFF, PDAD = 1  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
2.7  
3.6  
V
IADC + IVREF  
IADC  
< 1  
200  
500  
240  
850  
250  
250  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
PGA = 128, Buffer ON  
Excluding Load Current External Reference  
VDAC Current  
VREF Current  
IVDAC  
IVREF  
NOTES: (1) Calibration can minimize these errors. (2) The gain calibration cannot have a REF IN+ of more than AVDD 1.5V with buffer ON. To calibrate gain,  
turn buffer off. (3) VOUT is change in digital result. (4) 9pF switched capacitor at fSAMP clock frequency (see Figure 6). (5) Linearity calculated using a reduced code  
range of 512 to 65024; output unloaded. (6) Ensured by design and characterization, not production tested.  
MSC1212  
SBAS278A  
5
www.ti.com  
DIGITAL CHARACTERISTICS: DVDD = 2.7V to 5.25V  
All specifications from TMIN to TMAX, unless otherwise specified.  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
DIGITAL POWER-SUPPLY REQUIREMENTS  
DVDD (2.7V to 3.6V)  
2.7  
3.6  
V
Digital Power-Supply Current (2.7V to 3.6V)  
Normal Mode, fOSC = 1MHz  
Normal Mode, fOSC = 8MHz  
Stop Mode  
1.3  
6
100  
mA  
mA  
nA  
DVDD (4.75V to 5.25V)  
4.75  
5.25  
V
Digital Power-Supply Current (4.75V to 5.25V)  
Normal Mode, fOSC = 1MHz  
Normal Mode, fOSC = 8MHz  
Stop Mode  
2.2  
14  
100  
mA  
mA  
nA  
DIGITAL INPUT/OUTPUT (CMOS)  
Logic Level: VIH (except XIN pin)  
VIL (except XIN pin)  
Ports 0-3, Input Leakage Current, Input Mode  
Pins EA, XIN Input Leakage Current  
0.6 DVDD  
DGND  
10  
DVDD  
0.2 DVDD  
+10  
V
V
µA  
µA  
V
V
V
V
VIH = DVDD or VIH = 0V  
0
0
V
V
V
V
OL, ALE, PSEN, Ports 0-3, All Output Modes  
OL, ALE, PSEN, Ports 0-3, All Output Modes  
OH, ALE, PSEN, Ports 0-3, Strong Drive Output  
OH, ALE, PSEN, Ports 0-3, Strong Drive Output  
IOL = 1mA  
IOL = 30mA, 3V (20mA)  
IOH = 1mA  
DGND  
0.4  
1.5  
DVDD 0.4 DVDD 0.1  
DVDD  
IOH = 30mA, 3V (20mA)  
DVDD 1.5  
Ports 0-3 Pull-Up Resistors  
Pins ALE, PSEN, Pull-Up Resistors  
Pin RST, Pull-Down Resistor  
9
9
200  
kΩ  
kΩ  
kΩ  
Flash Programming Mode Only  
FLASH MEMORY CHARACTERISTICS: DVDD = 2.7V to 5.25V  
tUSEC = 1µs, tMSEC = 1ms  
MSC1212Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
Flash Memory Endurance  
100,000  
100  
10  
1,000,000  
cycles  
Years  
ms  
Flash Memory Data Retention  
Mass and Page Erase Time  
Flash Memory Data Retention  
Set with FER Value in FTCON  
Set with FWR Value in FTCON  
30  
40  
µs  
MSC1212  
6
SBAS278A  
www.ti.com  
AC ELECTRICAL CHARACTERISTICS(1)(2): DVDD = 2.7V to 5.25V  
2.7V to 3.6V  
4.75V to 5.25V  
SYMBOL  
FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNITS  
System Clock  
(3)  
fOSC  
D
D
D
External Crystal Frequency (fOSC  
)
1
0
1
16  
16  
12  
1
1
1
30  
30  
12  
MHz  
MHz  
MHz  
(3)  
1/tOSC  
External Clock Frequency (fOSC)  
(3)  
fOSC  
External Ceramic Resonator Frequency (fOSC)  
Program Memory  
tLHLL  
A
A
A
A
A
A
A
A
A
A
A
ALE Pulse Width  
1.5tCLK 5  
0.5tCLK 10  
0.5tCLK  
1.5tCLK 5  
0.5tCLK 7  
0.5tCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
Address Valid to ALE LOW  
Address Hold After ALE LOW  
ALE LOW to Valid Instruction In  
ALE LOW to PSEN LOW  
2.5tCLK 35  
2tCLK 40  
2.5tCLK 25  
2tCLK 30  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
tPXIZ  
tAVIV  
tPLAZ  
0.5tCLK  
0.5tCLK  
PSEN Pulse Width  
2tCLK 5  
2tCLK 5  
PSEN LOW to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
Address to Valid Instruction In  
PSEN LOW to Address Float  
5
5  
tCLK 5  
3tCLK 40  
0
tCLK  
3tCLK 25  
0
Data Memory  
tRLRH  
B
B
RD Pulse Width (tMCS = 0)(4)  
RD Pulse Width (tMCS > 0)(4)  
2tCLK 5  
tMCS 5  
2tCLK 5  
tMCS 5  
ns  
ns  
tWLWH  
C
C
WR Pulse Width (tMCS = 0)(4)  
Pulse Width (tMCS > 0)(4)  
2tCLK 5  
tMCS 5  
2tCLK 5  
tMCS 5  
ns  
ns  
tRLDV  
B
B
RD LOW to Valid Data In (tMCS = 0)(4)  
RD LOW to Valid Data In (tMCS > 0)(4)  
2tCLK 40  
tMCS 40  
2tCLK 30  
tMCS 30  
ns  
ns  
tRHDX  
tRHDZ  
B
Data Hold After Read  
5  
5  
ns  
B
B
Data Float After Read (tMCS = 0)(4)  
Data Float After Read (tMCS > 0)(4)  
tCLK  
tCLK  
ns  
ns  
2tCLK  
2tCLK  
tLLDV  
tAVDV  
tLLWL  
tAVWL  
B
B
ALE LOW to Valid Data In (tMCS = 0)(4)  
ALE LOW to Valid Data In (tMCS > 0)(4)  
2.5tCLK 40  
2.5tCLK 25  
ns  
ns  
tCLK + tMCS 40  
tCLK + tMCS 25  
B
B
Address to Valid Data In (tMCS = 0)(4)  
Address to Valid Data In (tMCS > 0)(4)  
3tCLK 40  
3tCLK 25  
ns  
ns  
1.5tCLK + tMCS 40  
1.5tCLK + tMCS 25  
B, C  
B, C  
ALE LOW to RD or WR LOW (tMCS = 0)(4)  
ALE LOW to RD or WR LOW (tMCS > 0)(4)  
0.5tCLK 5  
tCLK 5  
0.5tCLK + 5  
tCLK + 5  
0.5tCLK 5  
tCLK 5  
0.5tCLK + 5  
tCLK + 5  
ns  
ns  
B, C  
B, C  
Address to RD or WR LOW (tMCS = 0)(4)  
Address to RD or WR LOW (tMCS > 0)(4)  
tCLK 5  
2tCLK 5  
tCLK 5  
2tCLK 5  
ns  
ns  
tQVWX  
tWHQX  
tRLAZ  
C
C
B
Data Valid to WR Transition  
Data Hold After WR  
8  
5  
ns  
ns  
ns  
tCLK 8  
tCLK 5  
RD LOW to Address Float  
0.5tCLK 5  
0.5tCLK 5  
tWHLH  
B, C  
B, C  
RD or WR HIGH to ALE HIGH (tMCS = 0)(4)  
RD or WR HIGH to ALE HIGH (tMCS > 0)(4)  
5  
tCLK 5  
5
5  
tCLK 5  
5
ns  
ns  
tCLK + 5  
tCLK + 5  
External Clock  
tHIGH  
D
D
D
D
HIGH Time(5)  
LOW Time(5)  
Rise Time(5)  
Fall Time(5)  
15  
15  
10  
10  
ns  
ns  
ns  
ns  
tLOW  
tR  
5
5
5
5
tF  
PSEN  
NOTES: (1) Parameters are valid over operating temperature range, unless otherwise specified. (2) Load capacitance for Port 0, ALE, and  
= 100pF,  
load capacitance for all other outputs = 80pF. (3) tCLK = 1/fOSC = one oscillator clock period for clock divider = 1. (4) tMCS is a time period related to the Stretch  
MOVX selection. The following table shows the value of tMCS for each stretch selection. (5) These values are characterized but not 100% production tested.  
MD2  
MD1  
MD0  
MOVX DURATION  
tMCS  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Machine Cycles  
3 Machine Cycles (default)  
4 Machine Cycles  
5 Machine Cycles  
6 Machine Cycles  
7 Machine Cycles  
8 Machine Cycles  
9 Machine Cycles  
0
4tCLK  
8tCLK  
12tCLK  
16tCLK  
20tCLK  
24tCLK  
28tCLK  
MSC1212  
SBAS278A  
7
www.ti.com  
EXPLANATION OF THE AC SYMBOLS  
Each Timing Symbol has five characters. The first character is always t(= time). The other characters, depending on their positions, indicate the name of a signal  
or the logical status of that signal. The designators are:  
AAddress  
RRD Signal  
tTime  
CClock  
DInput Data  
VValid  
HLogic Level HIGH  
IInstruction (program memory contents)  
LLogic Level LOW, or ALE  
PPSEN  
WWR Signal  
XNo Longer a Valid Logic Level  
ZFloat  
Examples: (1) tAVLL = Time for address valid to ALE LOW. (2) tLLPL = Time for  
ALE LOW to PSEN LOW.  
QOutput Data  
tLHLL  
ALE  
tPLPH  
tAVLL  
tLLPL  
tLLIV  
tPLIV  
PSEN  
tPXIZ  
tLLAX  
tPLAZ  
tPXIX  
INSTR IN  
PORT 0  
A0-A7  
A0-A7  
tAVIV  
PORT 2  
A8-A15  
A8-A15  
FIGURE A. External Program Memory Read Cycle.  
ALE  
tWHLH  
PSEN  
tLLDV  
tLLWL  
tRLRH  
RD  
tAVLL  
tRHDZ  
tLLAX  
tRLDV  
tRLAZ  
tRHDX  
DATA IN  
A0-A7  
from RI or DPL  
PORT 0  
A0-A7 from PCL  
INSTR IN  
tAVWL  
tAVDV  
PORT 2  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
FIGURE B. External Data Memory Read Cycle.  
MSC1212  
8
SBAS278A  
www.ti.com  
ALE  
tWHLH  
PSEN  
tLLWL  
tWLWH  
WR  
tQVWX  
tAVLL  
tLLAX  
tWHQX  
tDW  
DATA OUT  
A0-A7  
from RI or DPL  
PORT 0  
A0-A7 from PCL  
INSTR IN  
tAVWL  
PORT 2  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
FIGURE C. External Data Memory Write Cycle.  
tHIGH  
tr  
tf  
VIH1  
VIH1  
0.8V  
VIH1  
0.8V  
VIH1  
0.8V  
0.8V  
tLOW  
tOSC  
FIGURE D. External Clock Drive CLK.  
MSC1212  
SBAS278A  
9
www.ti.com  
RESET AND POWER-ON TIMING  
tRW  
RST  
tRFD  
tRRD  
PSEN  
tRRD  
tRFD  
ALE  
tRS  
tRH  
EA  
NOTE: PSEN and ALE are internally pulled up with ~9kduring RST high.  
FIGURE E. Reset Timing.  
tRW  
RST  
PSEN  
ALE  
tRFD  
tRRD  
tRH  
tRS  
tRRD  
NOTE: PSEN and ALE are internally pulled up with ~9kduring RST high.  
FIGURE F. Parallel Flash Programming Power-On Timing (EA is ignored).  
tRW  
RST  
tRS  
tRRD  
tRH  
PSEN  
ALE  
tRRD  
tRFD  
NOTE: PSEN and ALE are internally pulled up with ~9kduring RST high.  
FIGURE G. Serial Flash Programming Power-On Timing (EA is ignored).  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
tRW  
tRRD  
tRFD  
tRS  
RST width  
2 tOSC  
ns  
µs  
ns  
ns  
ns  
RST rise to PSEN ALE internal pull high  
RST falling to PSEN and ALE start  
Input signal to RST falling setup time  
RST falling to input signal hold time  
5
(217 + 512) tOSC  
tOSC  
tRH  
(217 + 512) tOSC  
MSC1212  
10  
SBAS278A  
www.ti.com  
PIN CONFIGURATION  
Top View  
TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
XOUT  
1
2
3
4
5
6
7
8
9
48 EA  
XIN  
P3.0/RxD0  
47 P0.6/AD6  
46 P0.7/AD7  
45 ALE  
P3.1/TxD0  
P3.2/INT0  
44 PSEN/OSCCLK/MODCLK  
43 P2.7/A15  
42 DVDD  
P3.3/INT1/TONE/PWM  
P3.4/T0  
P3.5/T1  
41 DGND  
MSC1212  
P3.6/WR  
40 P2.6/A14  
39 P2.5/A13  
38 P2.4/A12  
37 P2.3/A11  
36 P2.2/A10  
35 P2.1/A09  
34 P2.0/A08  
33 NC  
P3.7/RD 10  
DVDD 11  
DGND 12  
RST 13  
DVDD 14  
DVDD 15  
RDAC0 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
PIN DESCRIPTIONS  
PIN #  
NAME  
DESCRIPTION  
1
XOUT  
The crystal oscillator pin XOUT supports parallel resonant AT cut crystals and ceramic resonators. XOUT serves as the output  
of the crystal amplifier.  
2
XIN  
The crystal oscillator pin XIN supports parallel resonant AT cut crystals and ceramic resonators. XIN can also be an input if  
there is an external clock source instead of a crystal.  
3-10  
P3.0-P3.7  
Port 3 is a bidirectional I/O port. The alternate functions for Port 3 are listed below.  
Port 3Alternate Functions:  
PORT  
ALTERNATE  
MODE  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
RxD0  
TxD0  
INT0  
Serial Port 0 Input  
Serial Port 0 Output  
External Interrupt 0  
INT1/TONE/PWM External Interrupt 1/TONE/PWM Output  
T0  
T1  
Timer 0 External Input  
Timer 1 External Input  
WR  
RD  
External Data Memory Write Strobe  
External Data Memory Read Strobe  
11, 14, 15, 42, 58  
DVDD  
DGND  
RST  
Digital Power Supply  
Digital Ground  
12, 41, 57  
13  
16  
17  
27  
18  
19  
A HIGH on the reset input for two tOSC periods will reset the device.  
RDAC0  
VDAC0  
AGND  
RDAC0 Output  
VDAC0 Output  
Analog Ground  
IDAC0/AIN0 IDAC0 Output/Analog Input Channel 0  
IDAC1/AIN1 IDAC1 Output/Analog Input Channel 1  
MSC1212  
SBAS278A  
11  
www.ti.com  
PIN DESCRIPTIONS (Cont.)  
PIN #  
NAME  
DESCRIPTION  
20  
21  
VDAC2/AIN2  
VDAC3/AIN3  
AIN4  
VDAC2 Output/Analog Input Channel 2  
VDAC3 Output/Analog Input Channel 3  
Analog Input Channel 4  
22  
23  
AIN5  
Analog Input Channel 5  
24  
AIN6, EXTD  
AIN7, EXTA  
AINCOM  
AVDD  
Analog Input Channel 6, Low Voltage Detect Input Generates DLVD Interrupt  
Analog Input Channel 7, Low Voltage Detect Input Generates ALVD Interrupt  
Analog Common for Single-Ended Inputs  
Analog Power Supply  
25  
26  
28  
29  
REF IN–  
Voltage Reference Negative Input  
30  
REFOUT/REF IN+ Voltage Reference Output/ Voltage Reference Positive Input  
31  
VDAC1  
RDAC1  
NC  
VDAC1 Output  
RDAC1 Output  
No Connection  
32  
33  
34-40, 43  
P2.0-P2.7  
Port 2 is a bidirectional I/O port. The alternate functions for Port 2 are listed below.  
Port 2Alternate Functions:  
PORT  
ALTERNATE MODE  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
A8  
A9  
Address Bit 8  
Address Bit 9  
Address Bit 10  
Address Bit 11  
Address Bit 12  
Address Bit 13  
Address Bit 14  
Address Bit 15  
A10  
A11  
A12  
A13  
A14  
A15  
44  
PSEN  
OSCCLK  
MODCLK  
Program Store Enable: Connected to optional external memory as a chip enable. PSEN will provide an active low pulse.  
In programming mode, PSEN is used as an input along with ALE to define serial or parallel programming mode.  
PSEN is held HIGH for parallel programming and tied LOW for serial programming. This pin can also be selected (when not  
using external memory) to output the Oscillator clock, Modulator clock, HIGH, or LOW for light loads.  
ALE  
PSEN  
PROGRAM MODE SELECTION DURING RESET  
NC  
0
NC  
NC  
0
Normal Operation (User Application mode)  
Parallel Programming  
Serial Programming  
NC  
0
0
Reserved  
45  
ALE  
Address Latch Enable: Used for latching the low byte of the address during an access to external memory. ALE is emitted  
at a constant rate of 1/2 the oscillator frequency, and can be used for external timing or clocking. One ALE pulse is skipped  
during each access to external data memory. In programming mode, ALE is used as an input along with PSEN to define  
serial or parallel programming mode. ALE is held HIGH for serial programming and tied LOW for parallel programming. This  
pin can also be selected (when not using external memory) to output HIGH or LOW for light loads.  
48  
EA  
External Access Enable: EA must be externally held LOW to enable the device to fetch code from external program memory  
locations starting with 0000H.  
46, 47, 49-54  
P0.0-P0.7  
Port 0 is a bidirectional I/O port. The alternate functions for Port 0 are listed below.  
Port 0Alternate Functions:  
PORT  
ALTERNATE MODE  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Address/Data Bit 0  
Address/Data Bit 1  
Address/Data Bit 2  
Address/Data Bit 3  
Address/Data Bit 4  
Address/Data Bit 5  
Address/Data Bit 6  
Address/Data Bit 7  
55, 56, 59-64  
P1.0-P1.7  
Port 1 is a bidirectional I/O port. The alternate functions for Port 1 are listed below.  
Port 1Alternate Functions:  
PORT  
ALTERNATE MODE  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
T2  
T2EX  
RxD1  
TxD1  
INT2/SS  
INT3/MOSI  
INT4/MISO  
INT5/SCK  
T2 Input  
T2 External Input  
Serial Port Input  
Serial Port Output  
External Interrupt/Slave Select  
External Interrupt/Master Out-Slave In  
External Interrupt/Master In-Slave Out  
External Interrupt/Serial Clock  
MSC1212  
12  
SBAS278A  
www.ti.com  
TYPICAL CHARACTERISTICS  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS vs DATA RATE  
vs DECIMATION RATIO  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA2  
PGA4  
PGA1  
PGA1  
PGA8  
PGA32  
PGA64  
PGA128  
PGA32  
PGA64  
PGA128  
PGA16  
Sinc3 Filter, Buffer OFF  
Sinc3 Filter, Buffer OFF  
1
10  
100  
Data Rate (SPS)  
1000  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA4  
PGA2  
PGA8  
PGA2  
PGA4  
PGA1  
PGA1  
PGA32  
PGA128  
PGA128  
PGA16  
PGA64  
PGA64  
PGA32  
PGA16  
Sinc3 Filter, Buffer ON  
AVDD = 3V, Sinc3 Filter,  
REF = 1.25V, Buffer OFF  
V
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
500  
1000  
Decimation Ratio =  
1500  
2000  
fMOD  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA4  
PGA2 PGA4  
PGA1  
PGA8  
PGA8  
PGA2  
PGA1  
PGA16 PGA64  
PGA32  
PGA128  
PGA32  
PGA128  
PGA64  
PGA16  
Sinc2 Filter  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer ON  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
500  
1000  
1500  
2000  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
MSC1212  
SBAS278A  
13  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
EFFECTIVE NUMBER OF BITS vs fMOD  
FAST SETTLING FILTER  
(set with ACLK)  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
25  
20  
15  
10  
5
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
fMOD = 203kHz  
fMOD = 15.6kHz  
fMOD = 31.25kHz  
fMOD = 110kHz  
fMOD = 62.5kHz  
Fast Settling Filter  
0
1
10  
100  
1k  
10k  
100k  
0
500  
1000  
1500  
fMOD  
2000  
Data Rate (SPS)  
Decimation Ratio =  
fDATA  
EFFECTIVE NUMBER OF BITS vs fMOD (set with ACLK)  
WITH FIXED DECIMATION  
NOISE vs INPUT SIGNAL  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
DEC = 2020  
DEC = 500  
DEC = 50  
DEC = 255  
DEC = 20  
DEC = 10  
0
2.5  
1.5  
0.5  
0.5  
1.5  
2.5  
10  
100  
1k  
10k  
100k  
Data Rate (SPS)  
VIN (V)  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
VREF = 2.5V  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
VREF = AVDD, Buffer OFF  
10  
8
30  
20  
6
40°C  
4
10  
2
+85°C  
0
0
2  
4  
6  
8  
10  
+25°C  
10  
20  
30  
2.5 2 1.5 1 0.5  
0
0.5  
1
1.5  
2
2.5  
VIN = VREF  
0
VIN = +VREF  
VIN (V)  
VIN (V)  
MSC1212  
14  
SBAS278A  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
INL ERROR vs PGA  
ADC INTEGRAL NONLINEARITY vs VREF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
VIN = VREF  
Buffer OFF  
AVDD = 3V  
AVDD = 5V  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VREF (V)  
1
2
4
8
16  
32  
64  
128  
PGA Setting  
ADC CURRENT vs PGA  
MAXIMUM ANALOG SUPPLY CURRENT  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
PGA = 128, ADC ON,  
Brownout Detect ON,  
All VDACs ON = FFFFH,  
VDACs REF = AVDD  
+85°C  
+25°C  
AVDD = 5V, Buffer = ON  
Buffer = OFF  
40°C  
AVDD = 3V, Buffer = ON  
Buffer = OFF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
2
4
8
16  
32  
64  
128  
Analog Supply Voltage (V)  
PGA Setting  
VREFOUT vs LOAD CURRENT  
HISTOGRAM OF OUTPUT DATA  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2  
1.5  
1  
0.5  
0
0.5  
1
1.5  
2
V
REFOUT Current Load (mA)  
ppm of FS  
MSC1212  
SBAS278A  
15  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
OFFSET DAC: OFFSET vs TEMPERATURE  
OFFSET DAC: GAIN vs TEMPERATURE  
10  
8
1.00006  
1.00004  
1.00002  
1
6
4
2
0
2  
4  
6  
8  
10  
12  
0.99998  
0.99996  
0.99994  
40  
+25  
+85  
40  
+25  
+85  
Temperature (°C)  
Temperature (°C)  
DIGITAL SUPPLY CURRENT vs FREQUENCY  
DIGITAL SUPPLY CURRENT vs CLOCK DIVIDER  
100  
10  
1
100  
10  
1
5V All Periph ON  
5V All Periph OFF  
5V All Periph ON IDLE  
Divider Values  
2
4
8
3V All Periph ON  
3V All Periph OFF  
3V All Periph ON IDLE  
16  
32  
1024  
2048  
4096  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
Clock Frequency (MHz)  
Clock Frequency (MHz)  
DIGITAL SUPPLY CURRENT vs SUPPLY VOLTAGE  
NORMALIZED GAIN vs PGA  
20  
15  
10  
5
101  
100  
99  
+85°C  
40°C  
+25°C  
98  
97  
0
96  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
4
8
16  
32  
64  
128  
Supply Voltage (V)  
PGA Setting  
MSC1212  
16  
SBAS278A  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
CMOS DIGITAL OUTPUT  
VDAC DIFFERENTIAL NONLINEARITY vs CODE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
5V  
Low  
Output  
0.6  
3V  
Low  
Output  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
5V  
3V  
0
10  
20  
30  
40  
50  
60  
70  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
DAC Code  
Output Current (mA)  
VDAC SOURCE CURRENT CAPABILITY  
VDAC INTEGRAL NONLINEARITY vs CODE  
40  
20  
5.0  
DAC = All 1s  
4.9  
4.8  
4.7  
4.6  
4.5  
+85°C  
0
+25°C  
20  
40°C  
40  
0
2
4
6
8
10  
12  
14  
16  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
DAC Code  
ISOURCE (mA)  
VDAC SINK CURRENT CAPABILITY  
VDAC FULL-SCALE ERROR vs LOAD RESISTOR  
1
0
0.6  
DAC = All 0s  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1  
2  
3  
4  
5  
0
2
4
6
8
10  
12  
14  
16  
0.5  
1
10  
100  
1k  
10k  
ISINK (mA)  
Load Resistor (k)  
MSC1212  
SBAS278A  
17  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer On, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
For VDAC, VREF = AVDD, RLOAD = 10k, and CLOAD = 200pF, unless otherwise noted.  
FULL-SCALE SETTLING TIME  
FULL-SCALE SETTLING TIME  
Scope Trigger (5.0V/div)  
Scope Trigger (5.0V/div)  
Full-Scale Code Change  
0200H to FFFFH  
Output Loaded with  
10kand 200pF to GND  
Large-Signal Output (1.0V/div)  
Full-Scale Code Change  
FFFFH to 0200H  
Output Loaded with  
10kand 200pF to GND  
Large-Signal Output (1.0V/div)  
Time (1µs/div)  
Time (1µs/div)  
HALF-SCALE SETTLING TIME  
HALF-SCALE SETTLING TIME  
Scope Trigger (5.0V/div)  
Half-Scale Code Change  
Scope Trigger (5.0V/div)  
4000H to C000H  
Output Loaded with  
Half-Scale Code Change  
10kand 200pF to GND  
C000H to 4000H  
Output Loaded with  
10kand 200pF to GND  
Large-Signal Output (1.0V/div)  
Large-Signal Output (1.0V/div)  
Time (1µs/div)  
Time (1µs/div)  
MSC1212  
18  
SBAS278A  
www.ti.com  
The MSC1212Yx allows the user to uniquely configure the  
Flash and SRAM memory maps to meet the needs of their  
application. The Flash is programmable down to 2.7V using  
both serial and parallel programming methods. The Flash  
endurance is 100k Erase/Write cycles. In addition, 1280  
bytes of RAM are incorporated on-chip.  
DESCRIPTION  
The MSC1212Yx is a completely integrated family of mixed-  
signal devices incorporating a high-resolution delta-sigma  
analog-to-digital converter (ADC), quad 16-bit digital-to-ana-  
log converters (DACs), 8-channel multiplexer, burnout detect  
current sources, selectable buffered input, offset DAC, Pro-  
grammable Gain Amplifier (PGA), temperature sensor, volt-  
age reference, 8-bit microcontroller, Flash Program Memory,  
Flash Data Memory, and Data SRAM, as shown in Figure 1.  
The part has separate analog and digital supplies, which can  
be independently powered from 2.7V to +5.5V. At +3V opera-  
tion, the power dissipation for the part is typically less than  
4mW. The MSC1212Yx is packaged in a TQFP-64 package.  
On-chip peripherals include an additional 32-bit accumulator, an  
SPI compatible serial port with FIFO, dual USARTs, multiple  
digital input/output ports, watchdog timer, low-voltage detect,  
on-chip power-on reset, 16-bit PWM, breakpoints, brownout  
reset, three timer/counters, and a system clock divider.  
The MSC1212Yx is designed for high-resolution measurement  
applications in smart transmitters, industrial process control,  
weigh scales, chromatography, and portable instrumentation.  
ENHANCED 8051 CORE  
The device accepts low-level differential or single-ended  
signals directly from a transducer. The ADC provides 24 bits  
of resolution and 24 bits of no-missing-code performance  
using a sinc3 filter with a programmable sample rate. The  
ADC also has a selectable filter that allows for high-resolu-  
tion single-cycle conversion.  
All instructions in the MSC1212 family perform exactly the same  
functions as they would in a standard 8051. The effect on bits,  
flags, and registers is the same. However, the timing is different.  
The MSC1212 family utilizes an efficient 8051 core which results  
in an improved instruction execution speed of between 1.5 and  
3 times faster than the original core for the same external clock  
speed (4 clock cycles per instruction versus 12 clock cycles per  
instruction, as shown in Figure 2). This translates into an effective  
throughput improvement of more than 2.5 times, using the same  
code and same external clock speed. Therefore, a device  
frequency of 30MHz for the MSC1212Yx actually performs at an  
The microcontroller core is 8051 instruction set compatible. The  
microcontroller core is an optimized 8051 core which executes up  
to three times faster than the standard 8051 core, given the same  
clock source. That makes it possible to run the device at a lower  
external clock frequency and achieve the same performance at  
lower power than the standard 8051 core.  
REF IN(1)  
AVDD AGND  
REFOUT/REF IN+  
DVDD DGND  
+AVDD  
Timers/  
Counters  
LVD  
VREF  
EA  
ALE  
PSEN  
BOR  
8-Bit  
Offset DAC  
WDT  
Temperature  
Sensor  
IDAC0/AIN0  
IDAC1/AIN1  
VDAC2/AIN2  
VDAC3/AIN3  
AIN4  
Alternate  
Functions  
ADDR  
DATA  
PORT0  
PORT1  
PORT2  
PORT3  
8
8
8
8
Digital  
Filter  
Modulator  
MUX  
BUF  
PGA  
T2  
SPI/EXT  
USART2  
AIN5  
Up to 32K  
FLASH  
AIN6  
ACC  
8051  
AIN7  
V/I  
Converter  
VDAC0  
VDAC1  
VDAC2  
VDAC3  
ADDR  
AINCOM  
1.2K  
SRAM  
V/I  
USART1  
EXT  
T0  
Converter  
IDAC0/  
AIN0  
T1  
SFR  
AIN2  
PWM  
RW  
SPI  
FIFO  
IDAC1/  
AIN1  
Clock  
Generator  
RST  
AIN3  
SYS Clock  
Divider  
POR  
AGND  
RDAC0  
RDAC1 VDAC0 VDAC1  
XIN XOUT  
NOTE: (1) REF INmust be tied to AGND when using internal VREF  
.
FIGURE 1. Block Diagram.  
CLK  
instr_cycle  
cpu_cycle  
n + 1  
n + 2  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
FIGURE 2. Instruction Cycle Timing.  
MSC1212  
SBAS278A  
19  
www.ti.com  
equivalent execution speed of 75MHz compared to the standard  
8051 core. This allows the user to run the device at slower  
external clock speeds, which reduces system noise and power  
consumption but provides greater throughput. This performance  
difference can be seen in Figure 3. The timing of software loops  
will be faster with the MSC1212. However, the timer/counter  
operation of the MSC1212 may be maintained at 12 clocks per  
increment or optionally run at 4 clocks per increment.  
Furthermore, improvements were made to peripheral features  
that off-load processing from the core, and the user, to further  
improve efficiency. For instance, the SPI interface uses a FIFO,  
which allows the SPI interface to transmit and receive data with  
minimum overhead needed from the core. Also, a 32-bit accu-  
mulator was added to significantly reduce the processing over-  
head for the multiple byte data from the ADC or other sources.  
This allows for 24-bit addition and shifting to be accomplished  
in a few instruction cycles, compared to hundreds of instruction  
cycles through software implementation.  
Single-Byte, Single-Cycle  
Instruction  
Family Device Compatibility  
The hardware functionality and pin configuration across the  
MSC1212 family is fully compatible. To the user the only differ-  
ence between family members is the memory configuration. This  
makes migration between family members simple. Code written  
for the MSC1212Y2 can be executed directly on an MSC1212Y3,  
MSC1212Y4, or MSC1212Y5. This gives the user the ability to  
add or subtract software functions and to freely migrate between  
family members. Thus, the MSC1212 can become a standard  
device used across several application platforms.  
ALE  
PSEN  
AD0-AD7  
PORT 2  
4 Cycles  
CLK  
12 Cycles  
Family Development Tools  
ALE  
PSEN  
The MSC1212 is fully compatible with the standard 8051  
instruction set. This means that the user can develop soft-  
ware for the MSC1212 with their existing 8051 development  
tools. Additionally, a complete, integrated development envi-  
ronment is provided with each demo board, and third-party  
developers also provide support.  
AD0-AD7  
PORT 2  
Power-Down Modes  
Single-Byte, Single-Cycle  
Instruction  
The MSC1212 can power several peripherals and put the  
CPU into IDLE. This is accomplished by shutting off the  
clocks to those sections, as shown in Figure 4.  
FIGURE 3. Comparison of MSC1212 Timing to Standard  
8051 Timing.  
The MSC1212 also provides dual data pointers (DPTRs) to  
speed block Data Memory moves.  
SYS Clock  
Oscillator  
STOP  
tOSC  
Additionally, it can stretch the number of memory cycles to  
access external Data Memory from between two and nine  
instruction cycles in order to accommodate different speeds of  
memory or devices, as shown in Table I. The MSC1212  
provides an external memory interface with a 16-bit address  
bus (P0 and P2). The 16-bit address bus makes it necessary  
to multiplex the low address byte through the P0 port. To  
enhance P0 and P2 for high-speed memory access, hardware  
configuration control is provided to configure the ports for  
external memory/peripheral interface or general-purpose I/O.  
SYS Clock  
Divider  
SCK  
SPICON  
PWMHI  
9A  
A3  
tCLK  
PDCON.0  
PWM Clock  
PWMLOW  
A2  
PDCON.4  
µs  
FTCON  
[3:0]  
Flash Write  
Timing  
USEC  
(30µs to 40µs)  
EF  
FB  
ms  
Flash Erase  
Timing  
FTCON  
MSECH  
FD  
MSECL  
(5ms to 11ms)  
[7:4]  
EF  
FC  
milliseconds  
interrupt  
MSINT  
FA  
seconds  
interrupt  
PDCON.1  
SECINT  
F9  
CKCON  
(8EH)  
MD2:MD0  
INSTRUCTION  
CYCLES  
(for MOVX)  
RD or WR  
STROBE WIDTH  
(SYS CLKs)  
RD or WR  
STROBE WIDTH  
(µs) AT 12MHz  
100ms  
HMSEC  
watchdog  
WDTCON  
FF  
FE  
PDCON.2  
ADCON2  
000  
001  
010  
011  
100  
101  
110  
111  
2
2
4
8
12  
16  
20  
24  
28  
0.167  
0.333  
0.667  
1.000  
1.333  
1.667  
2.000  
2.333  
divide  
by 64  
ADC Output Rate  
ADCON3  
ACLK  
3 (default)  
F6  
ADC Power Down  
DF  
DE  
4
5
6
7
8
9
Decimation Ratio  
Modulator Clock  
PDCON.3  
Timers 0/1/2  
CPU Clock  
USART0/1  
IDLE  
TABLE I. Memory Cycle Stretching. Stretching of MOVX  
timing as defined by MD2, MD1, and MD0 bits in  
CKCON register (address 8EH).  
FIGURE 4. MSC1212 Timing Chain and Clock Control.  
MSC1212  
20  
SBAS278A  
www.ti.com  
BURNOUT DETECT  
OVERVIEW  
When the Burnout Detect (BOD) bit is set in the ADC control  
configuration register (ADCON0 DCH), two current sources are  
enabled. The current source on the positive input channel sources  
approximately 2µA of current. The current source on the negative  
input channel sinks approximately 2µA. This allows for the  
detection of an open circuit (full-scale reading) or short circuit  
(small differential reading) on the selected input differential pair.  
INPUT MULTIPLEXER  
The input multiplexer provides for any combination of differential  
inputs to be selected as the input channel, as shown in Figure 5.  
If AIN0 is selected as the positive differential input channel, any  
other channel can be selected as the negative differential input  
channel. With this method, it is possible to have up to eight fully  
differential input channels. It is also possible to switch the polarity  
of the differential input pair to negate any offset voltages.  
INPUT BUFFER  
The analog input impedance is always high, regardless of  
PGA setting (when the buffer is enabled). With the buffer  
enabled, the input voltage range is reduced and the analog  
power-supply current is higher. If the limitation of input  
voltage range is acceptable, then the buffer is always pre-  
ferred.  
AIN0  
The input impedance of the MSC1212 without the buffer  
is 7M/PGA. The buffer is controlled by the state of the BUF  
bit in the ADC control register (ADCON0 DCH).  
AIN1  
AVDD  
Burnout Detect  
Current Source  
AIN2  
ANALOG INPUT  
When the buffer is not selected, the input impedance of the  
analog input changes with ACLK clock frequency (ACLK  
F6H) and gain (PGA). The relationship is:  
AIN3  
In+  
1MHz  
7MΩ  
AIN4  
AIN Impedance () =  
In–  
ACLK Frequency  
PGA  
where ACLK frequency = fCLK/(ACLK +1).  
AIN5  
Burnout Detect  
Current Sink  
Figure 6 shows the basic input structure of the MSC1212.  
The sampling frequency varies according to the PGA set-  
tings, as shown in Table II.  
AIN6  
Temperature Sensor  
AGND  
80 I  
I
AIN7  
RSW  
(8ktypical)  
High  
Impedance  
> 1GΩ  
AINCOM  
AIN  
CINT  
9pF Typical  
Sampling Frequency = fSAMP  
VCM  
FIGURE 5. Input Multiplexer Configuration.  
FIGURE 6. Analog Input Structure.  
In addition, current sources are supplied that will source or  
sink current to detect open or short circuits on the pins.  
PGA  
FULL-SCALE RANGE  
SAMPLING FREQUENCY  
1
2
±VREF  
±VREF/2  
fSAMP  
fSAMP  
4
±VREF/4  
fSAMP  
TEMPERATURE SENSOR  
8
±VREF/8  
fSAMP 2  
fSAMP 4  
fSAMP 8  
fSAMP 16  
fSAMP 16  
On-chip diodes provide temperature sensing capability. When  
the configuration register for the input MUX is set to all 1s,  
the diodes are connected to the input of the ADC. All other  
channels are open.  
16  
32  
64  
128  
±VREF/16  
±VREF/32  
±VREF/64  
±VREF/128  
NOTE: fSAMP = ACLK frequency/64.  
TABLE II. Sampling Frequency Versus PGA Setting.  
MSC1212  
SBAS278A  
21  
www.ti.com  
quires a positive full-scale differential input signal. It then  
computes a value to nullify gain errors in the system. Each of  
these calibrations will take seven tDATA periods to complete.  
PGA  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
Using the PGA can actually improve the effective resolution  
of the ADC. For instance, with a PGA of 1 on a ±2.5V full-  
scale range, the ADC can resolve to 1.5µV. With a PGA of  
128 on a ±19mV full-scale range, the ADC can resolve to  
75nV. With a PGA of 1 on a ±2.5V full-scale range, it would  
require a 26-bit ADC to resolve 75nV, as shown in Table III.  
Calibration should be performed after power on, a change in  
temperature, decimation ratio, buffer, or a change of the  
PGA. Calibration will remove the effects of the Offset DAC;  
therefore, changes to the Offset DAC register must be done  
after calibration.  
At the completion of calibration, the ADC Interrupt bit goes  
HIGH, which indicates the calibration is finished and valid  
data is available.  
RMS  
MEASUREMENT  
RESOLUTION ENOB AT PGA = 1  
FULL-SCALE  
RANGE  
(V)  
EQUIVALENT  
PGA  
SETTING  
ENOB  
AT 10Hz  
(nV)  
(5V RANGE)  
DIGITAL FILTER  
1
2
±2.5V  
±1.25  
21.7  
21.5  
21.4  
21.2  
20.8  
20.4  
20  
1468  
843  
452  
259  
171  
113  
74.5  
74.5  
21.7  
22.5  
23.4  
24.2  
24.8  
25.4  
26  
The Digital Filter can use either the Fast Settling, sinc2, or  
sinc3 filter, as shown in Figure 7. In addition, the Auto mode  
changes the sinc filter after the input channel or PGA is  
changed. When switching to a new channel, it will use the  
Fast Settling filter, for the next two conversions the first of  
which should be discarded. It will then use the sinc2 followed  
by the sinc3 filter to improve noise performance. This com-  
bines the low-noise advantage of the sinc3 filter with the  
quick response of the Fast Settling Time filter. The frequency  
response of each filter is shown in Figure 8.  
4
±0.625  
±0.313  
±0.156  
±0.0781  
±0.039  
±0.019  
8
16  
32  
64  
128  
19  
26  
TABLE III. ENOB Versus PGA.  
OFFSET DAC  
The analog input to the PGA can be offset by up to half the  
full-scale input range of the PGA by using the ODAC register  
(SFR E6H). The ODAC (Offset DAC) register is an 8-bit  
value; the MSB is the sign and the seven LSBs provide the  
magnitude of the offset. Since the ODAC introduces an  
analog (instead of digital) offset to the PGA, using the ODAC  
does not reduce the performance of the ADC.  
Adjustable Digital Filter  
Sinc3  
Sinc2  
MODULATOR  
Modulator  
Data Out  
The modulator is a single-loop 2nd-order system. The modu-  
lator runs at a clock speed (fMOD) that is derived from the CLK  
using the value in the Analog Clock register (ACLK). The  
data output rate is:  
Fast Settling  
Data Rate = fMOD/Decimation Ratio  
where fMOD = fCLK/(ACLK +1)/64  
FILTER SETTLING TIME  
FILTER  
SETTLING TIME  
(Conversion Cycles)  
CALIBRATION  
Sinc3  
Sinc2  
Fast  
3(1)  
2(1)  
1(1)  
The offset and gain errors in the MSC1212, or the complete  
system, can be reduced with calibration. Calibration is con-  
trolled through the ADCON1 register (SFR DDH), bits  
CAL2:CAL0. Each calibration process takes seven tDATA  
periods (data conversion time) to complete. Therefore, it  
takes 14 tDATA periods to complete both an offset and gain  
calibration.  
NOTE: (1) With Synchronized Channel Changes.  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
1
2
3
4+  
For system calibration, the appropriate signal must be  
applied to the inputs. The system offset command requires a  
zero differential input signal. It then computes an offset that will  
nullify offset in the system. The system gain command re-  
Discard  
Fast  
Sinc2  
Sinc3  
FIGURE 7. Filter Step Responses.  
MSC1212  
22  
SBAS278A  
www.ti.com  
If the internal VREF is not used, then VREF should be disabled in  
ADCON0.  
SINC3 FILTER RESPONSE  
(3dB = 0.262 fDATA  
)
0
20  
If the external voltage reference is selected, it can be used  
as either a single-ended input of differential input, for  
ratiometric measures. When using an external reference, it is  
important to note that the input current will increase for VREF  
with higher PGA settings and with a higher modulator fre-  
quency. The external voltage reference can be used over the  
input range specified in the Electrical Characteristics section.  
40  
60  
80  
100  
120  
DAC  
0
fD  
2fD  
3fD  
4fD  
5fD  
The architecture consists of a string DAC followed by an  
output buffer amplifier. Figure 9 shows a block diagram of the  
DAC architecture.  
Frequency (Hz)  
SINC2 FILTER RESPONSE  
(3dB = 0.318 fDATA  
)
0
20  
DAC3  
DAC2  
DAC1  
21 AIN3/VDAC3  
40  
AIN2/VDAC2  
20  
60  
VDAC1  
31  
V/I Converter  
80  
AIN1/IDAC1  
RDAC1  
19  
32  
Current  
Mirror  
100  
120  
0
fD  
2fD  
3fD  
4fD  
5fD  
AVDD  
VREF  
DAC0  
Frequency (Hz)  
17 VDAC0  
V/I Converter  
18  
FAST SETTLING FILTER RESPONSE  
(3dB = 0.469 fDATA  
AIN0/IDAC0  
)
Current  
Mirror  
0
20  
RDAC0  
16  
40  
FIGURE 9. DAC Architecture.  
60  
The input coding to the DAC is straight binary, so the ideal  
output voltage is given by:  
80  
100  
120  
D
VDAC = VREF  
65536  
0
fD  
2fD  
3fD  
4fD  
5fD  
where D = decimal equivalent of the binary code that is  
loaded to the DAC register; it can range from 0 to 65535.  
Frequency (Hz)  
NOTE: fD = Data Output Rate = 1/tDATA  
RESISTOR STRING  
FIGURE 8. Filter Frequency Responses.  
The DAC selects the voltage from a string of resistors from  
the reference to AGND. It is essentially a string of resistors,  
each of value R. The code loaded into the DAC register  
determines at which node on the string the voltage is tapped  
off to be fed into the output amplifier by closing one of the  
switches connecting the string to the amplifier. It is ensured  
monotonic because it is a string of resistors.  
VOLTAGE REFERENCE  
The MSC1212 can use either an internal or external voltage  
reference. The voltage reference selection is controlled via ADC  
Control Register 0 (ADCON0, SFR DCH). The default power-up  
configuration for the voltage reference is 2.5V internal.  
The internal voltage reference can be selected as either 1.25V  
or 2.5V. The analog power supply (AVDD) must be within the  
specified range for the selected internal voltage reference. The  
valid ranges are: VREF = 2.5 internal (AVDD = 3.3V to 5.25V) and  
OUTPUT AMPLIFIER  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output which gives an output range of  
AGND to AVDD. It is capable of driving a load of 2kin parallel with  
1000pF to GND. The source and sink capabilities of the output  
amplifier can be seen in the typical curves. The slew rate is 1V/µs  
with a full-scale settling time of 8µs with the output unloaded.  
VREF = 1.25 internal (AVDD = 2.7V to 5.25V). If the internal VREF  
is selected, then AGND must be connected to REF IN. The  
REFOUT/REF IN+ pin should also have a 0.1µF capacitor  
connected to AGND as close as possible to the pin.  
MSC1212  
SBAS278A  
23  
www.ti.com  
DAC REFERENCE  
IDAC  
Each DAC can be selected to use the internal REFOUT/REF IN+  
voltage or the supply voltage AVDD as the reference for the DAC.  
The full range of the voltage DAC is limited according to  
Table IV. The full range of the current DAC is limited  
according to Table V.  
The compliance specification of the IDAC output defines the  
maximum output voltage to achieve the expected current.  
Refer to Figure 9 for the IDAC structure and to Table V for  
the DAC reference selection and code range.  
POWER ON RESET  
DAC REFERENCE AVDD = 5V  
AVDD = 3V  
AVDD < 3.0V  
The on-chip Power On Reset (POR) circuitry releases the  
device from reset at approximately DVDD = 2.0V. The POR  
accommodates power-supply ramp rates as slow as  
1V/10ms. To ensure proper operation, the power supply  
should ramp monotonically. Note that as the device is re-  
leased from reset and program execution begins, the device  
current consumption may increase, which may result in a  
power-supply voltage drop. If the power supply ramps at a  
slower rate, is not monotonic, or a Brownout condition occurs  
(where the supply does not drop below the 2.0V threshold),  
then improper device operation may occur. The on-chip  
Brownout Reset may provide benefit in these conditions.  
Figure 11 shows a POR circuit.  
DACREF = AVDD  
DACREF = 2.5V  
DACREF = 1.25V  
Full Range  
Full Range  
Not Recommended  
Full Range Not Recommended Not Recommended  
Full Range  
Full Range  
Not Recommended  
TABLE IV. Voltage DAC Code Range.  
DAC REFERENCE AVDD = 5V  
AVDD = 3V  
AVDD < 3.0V  
DACREF = AVDD  
DACREF = 2.5V  
DACREF = 1.25V  
0000-7FFFH  
0000-3FFFH  
Not Recommended  
Full Range Not Recommended Not Recommended  
Full Range Full Range Not Recommended  
TABLE V. Current DAC Code Range.  
DAC LOADING  
The DAC can be selected to be turned off with a 1k, 100k,  
or open circuit on the DAC outputs.  
DVDD  
MSC1212  
BIPOLAR OPERATION USING THE DAC  
0.1µF  
10kΩ  
The DAC can be used for a bipolar output range, as shown in  
Figure 10. The circuit shown will give an output voltage range  
of ±VREF. Rail-to-rail operation at the amplifier output is achiev-  
able using an OPA703 as the output amplifier.  
13  
RST  
1MΩ  
R2  
100kΩ  
FIGURE 11. Typical Reset Circuit.  
+5V  
BROWNOUT RESET  
R1  
100kΩ  
The Brownout Reset (BOR) is enabled through Hardware  
Configuration Register 1 (HCR1). If the conditions for proper  
POR are not met or the device encounters a brownout  
condition that does not generate a POR, the BOR can be  
used to ensure proper device operation. The BOR will hold  
the state of the device when the power supply drops below  
the threshold level programmed in HCR1 and then generate  
a reset when the supply rises above the threshold level. Note  
that as the device is released from reset and program  
execution begins, the device current consumption may in-  
crease, which can result in a power supply voltage drop,  
which may initiate another brownout condition.  
DACREF  
OPA703  
±5V  
VREF  
VDAC  
5V  
FIGURE 10. Bipolar Operation with the DAC.  
The output voltage for any input code can be calculated as  
follows:  
D
R1 +R2  
R2  
R1  
VO = DACREF  
DACREF •  
65536  
R1  
The BOR level should be chosen to match closely with the  
application. That is, with a high external clock frequency, the  
BOR level should match the minimum operating voltage  
range for the device or improper operation may still occur.  
where D represents the input code in decimal (0 to 65535).  
With DACREF = 5V, R1 = R2 = 10k:  
10 D  
VO  
=
5V  
MEMORY MAP  
65536  
The MSC1212 contains on-chip SFR, Flash Memory,  
Scratchpad RAM Memory, Boot ROM, and SRAM. The SFR  
registers are primarily used for control and status. The  
standard 8051 features and additional peripheral features of  
This is an output voltage range of ±5V with 0000H corre-  
sponding to a 5V output and FFFFH corresponding to a +5V  
output. Similarly, using VREF = 2.5V, a ±2.5V output voltage  
can be achieved.  
MSC1212  
24  
SBAS278A  
www.ti.com  
the MSC1212 are controlled through the SFR. Reading from  
undefined SFR will return zero and writing to undefined SFR  
registers is not recommended and will have indeterminate  
effects.  
The MSC1212 allows the user to partition the Flash Memory  
between Program Memory and Data Memory. For instance,  
the MSC1212Y5 contains 32kB of Flash Memory on-chip.  
Through the HW configuration registers, the user can define  
the partition between Program Memory (PM) and Data  
Memory (DM), as shown in Tables VI and VII. The MSC1212  
family offers four memory configurations.  
Flash Memory is used for both Program Memory and Data  
Memory. The user has the ability to select the partition size  
of Program and Data Memories. The partition size is set  
through hardware configuration bits, which are programmed  
through either the parallel or serial programming methods.  
Both Program and Data Flash Memories are erasable and  
writable (programmable) in User Application mode (UAM).  
However, only program execution can occur from Program  
Memory. As an added precaution, a lock feature can be  
activated through the hardware configuration bits, which  
disables erase and writes to 4kB of Program Flash Memory  
or the entire Program Flash Memory in UAM.  
HCR0  
MSC1212Y2 MSC1212Y3 MSC1212Y4 MSC1212Y5  
DFSEL  
PM  
DM  
PM DM  
PM  
DM  
PM  
DM  
000  
0kB 4kB  
0kB 4kB  
0kB 4kB  
0kB 4kB  
0kB 4kB  
2kB 2kB  
3kB 1kB  
4kB 0kB  
0kB 8kB  
0kB 8kB  
0kB 8kB  
0kB 8kB  
0kB 16kB 0kB 32kB  
0kB 16kB 0kB 32kB  
0kB 16kB 16kB 16kB  
001  
010  
011  
8kB  
8kB 24kB 8kB  
100  
4kB 4kB 12kB 4kB 28kB 4kB  
6kB 2kB 14kB 2kB 30kB 2kB  
7kB 1kB 15kB 1kB 31kB 1kB  
8kB 0kB 16kB 0kB 32kB 0kB  
101  
110  
111 (default)  
The MSC1212 includes 1kB of SRAM on-chip. SRAM starts  
at address 0 and is accessed through the MOVX instruction.  
This SRAM can also be located to start at 8400H and can be  
accessed as both Program and Data Memory.  
NOTE: When a 0kB program memory configuration is selected program  
execution is external.  
TABLE VI. MSC1212Y Flash Partitioning.  
FLASH MEMORY  
HCR0  
MSC1212Y2 MSC1212Y3 MSC1212Y4 MSC1212Y5  
PM DM PM DM PM DM PM DM  
0000 0400- 0000 0400- 0000 0400- 0000 0400-  
13FF 23FF 43FF 83FF  
0000 0400- 0000 0400- 0000 0400- 0000 0400-  
13FF 23FF 43FF 83FF  
0000 0400 0000 0400 0000 0400 0000- 0400-  
13FF 23FF 43FF 3FFF 43FF  
0000 0400- 0000 0400- 0000- 0400- 0000- 0400-  
13FF 23FF 1FFF 23FF 5FFF 23FF  
DFSEL  
The MSC1212 uses a memory addressing scheme that sepa-  
rates Program Memory (FLASH/ROM) from Data Memory  
(FLASH/RAM). Each area is 64kB beginning at address 0000H  
and ending at FFFFH, as shown in Figure 12. The program and  
data segments can overlap since they are accessed in different  
ways. Program Memory is fetched by the microcontroller auto-  
matically. There is one instruction (MOVC) that is used to  
explicitly read the program area. This is commonly used to read  
lookup tables. The Data Memory area is accessed explicitly  
using the MOVX instruction. This instruction provides multiple  
ways of specifying the target address. It is used to access the  
64kB of Data Memory. The address and data range of devices  
with on-chip Program and Data Memory overlap the 64kB  
memory space. When on-chip memory is enabled, accessing  
memory in the on-chip range will cause the device to access  
internal memory. Memory accesses beyond the internal range  
will be addressed externally via Ports 0 and 2.  
000  
001  
010  
011  
100  
0000 0400- 0000- 0400- 0000- 0400- 0000- 0400-  
13FF 0FFF 13FF 2FFF 13FF 6FFF 13FF  
101  
0000- 0400- 0000- 0400- 0000- 0400- 0000- 0400-  
07FF 0BFF 17FF 0BFF 37FF 0BFF 77FF 0BFF  
110  
0000- 0400- 0000- 0400- 0000- 0400- 0000- 0400-  
0BFF 07FF 1BFF 07FF 3BFF 07FF 7BFF 07FF  
111 (default)  
0000- 0000 0000- 0000 0000- 0000 0000- 0000  
0FFF  
1FFF  
3FFF  
7FFF  
NOTE: Program memory accesses above the highest listed address will  
access external program memory.  
TABLE VII. Flash Memory Partitioning.  
Program  
Memory  
Data  
Memory  
It is important to note that the Flash Memory is readable and  
writable (depending on the MXWS bit in the MWS SFR) by  
the user through the MOVX instruction when configured as  
either Program or Data Memory. This means that the user  
may partition the device for maximum Flash Program Memory  
size (no Flash Data Memory) and use Flash Program Memory  
as Flash Data Memory. This may lead to undesirable behav-  
ior if the PC points to an area of Flash Program Memory that  
is being used for data storage. Therefore, it is recommended  
to use Flash partitioning when Flash Memory is used for data  
storage. Flash partitioning prohibits execution of code from  
Data Flash Memory. Additionally, the Program Memory erase/  
write can be disabled through hardware configuration bits  
(HCR0), while still providing access (read/write/erase) to  
Data Flash Memory.  
FFFFH  
F800H  
FFFFH  
2k Internal Boot ROM  
External  
Program  
Memory  
External  
Data  
Memory  
Mapped to Both  
Memory Spaces  
(von Neumann)  
8800H  
8400H  
8000H, 32k (Y5)  
8800H  
8400H, 33k (Y5)  
1k RAM or External  
External Memory  
1k RAM or External  
4400H, 17k (Y4)  
2400H, 9k (Y3)  
4000H, 16k (Y4)  
2000H, 8k (Y3)  
1400H, 5k (Y2)  
0400H, 1k  
1000H, 4k (Y2)  
0000H, 0k  
1k RAM or External  
FIGURE 12. Memory Map.  
The MSC1212 has two Hardware Configuration registers  
(HCR0 and HCR1) that are programmable only during Flash  
Memory Programming mode.  
MSC1212  
SBAS278A  
25  
www.ti.com  
The effect of memory mapping on Program and Data Memory  
is straightforward. The Program Memory is decreased in size  
from the top of internal Program Memory. Therefore, if the  
MSC1212Y5 is partitioned with 31kB of Flash Program  
Memory and 1kB of Flash Data Memory, external Program  
Memory execution will begin at 7C00H (versus 8000H for  
32kB). The Flash Data Memory is added on top of the SRAM  
memory. Therefore, access to Data Memory (through MOVX)  
will access SRAM for addresses 0000H-03FFH and access  
Flash Memory for addresses 0400H-07FFH.  
Bit Addressable Locations  
In addition to direct register access, some individual bits are  
also accessible. These are individually addressable bits in  
both the RAM and SFR area. In the Scratchpad RAM area,  
registers 20H to 2FH are bit addressable. This provides 128  
(16 8) individual bits available to software. A bit access is  
distinguished from a full-register access by the type of  
instruction. In the SFR area, any register location ending in  
a 0 or 8 is bit-addressable. Figure 14 shows details of the on-  
chip RAM addressing including the locations of individual  
RAM bits.  
Data Memory  
The MSC1212 can address 64kB of Data Memory. Scratchpad  
Memory provides 256 bytes in addition to the 64kB of Data  
Memory. The MOVX instruction is used to access the Data  
SRAM Memory. This includes 1024 bytes of on-chip Data  
SRAM Memory. The data bus values do not appear on  
Port 0 (during data bus timing) for internal memory access.  
FFH  
Indirect  
RAM  
7FH  
Direct  
RAM  
The MSC1212 also has on-chip Flash Data Memory which is  
readable and writable (depending on Memory Write Select  
register) during normal operation (full VDD range). This memory  
is mapped into the external Data Memory space directly  
above the SRAM.  
2FH  
2EH  
2DH  
2CH  
2BH  
2AH  
29H  
28H  
27H  
26H  
25H  
24H  
23H  
22H  
21H  
7F 7E 7D 7C 7B 7A 79 78  
77 76 75 74 73 72 71 70  
6F 6E 6D 6C 6B 6A 69 68  
67 66 65 64 63 62 61 60  
5F 5E 5D 5C 5B 5A 59 58  
57 56 55 54 53 52 51 50  
4F 4E 4D 4C 4B 4A 49 48  
47 46 45 44 43 42 41 40  
3F 3E 3D 3C 3B 3A 39 38  
37 36 35 34 33 32 31 30  
2F 2E 2D 2C 2B 2A 29 28  
27 26 25 24 23 22 21 20  
1F 1E 1D 1C 1B 1A 19 18  
17 16 15 14 13 12 11 10  
0F 0E 0D 0C 0B 0A 09 08  
07 06 05 04 03 02 01 00  
REGISTER MAP  
The Register Map is illustrated in Figure 13. It is entirely  
separate from the Program and Data Memory areas men-  
tioned before. A separate class of instructions is used to  
access the registers. There are 256 potential register loca-  
tions. In practice, the MSC1212 has 256 bytes of Scratchpad  
RAM and up to 128 SFRs. This is possible, since the upper  
128 Scratchpad RAM locations can only be accessed indi-  
rectly. That is, the contents of a Working Register (described  
below) will designate the RAM location. Thus, a direct refer-  
ence to one of the upper 128 locations must be an SFR  
access. Direct RAM is reached at locations 0 to 7FH (0 to 127).  
255  
128  
FFH  
80H  
FFH  
20H  
1FH  
Direct  
Special Function  
Registers  
Indirect  
RAM  
Bank 3  
80H  
7FH  
18H  
17H  
SFR Registers  
Direct  
RAM  
Bank 2  
Bank 1  
Bank 0  
10H  
0FH  
0000H  
Scratchpad  
RAM  
08H  
07H  
FIGURE 13. Register Map.  
0000H  
MSB  
LSB  
SFRs are accessed directly between 80H and FFH (128 to  
255). The RAM locations between 128 and 255 can be  
reached through an indirect reference to those locations.  
Scratchpad RAM is available for general-purpose data stor-  
age. It is commonly used in place of off-chip RAM when the  
total data contents are small. When off-chip RAM is needed,  
the Scratchpad area will still provide the fastest general-  
purpose access. Within the 256 bytes of RAM, there are  
several special-purpose areas.  
FIGURE 14. Scratchpad Register Addressing.  
MSC1212  
26  
SBAS278A  
www.ti.com  
Working Registers  
ACCESSING EXTERNAL MEMORY  
As part of the lower 128 bytes of RAM, there are four banks  
of Working Registers, as shown in Figure 14. The Working  
Registers are general-purpose RAM locations that can be  
addressed in a special way. They are designated R0 through  
R7. Since there are four banks, the currently selected bank will  
be used by any instruction using R0-R7. This allows software  
to change context by simply switching banks. This is controlled  
via the Program Status Word register (PSW; 0D0H) in the SFR  
area described below. Registers R0 and R1 also allow their  
contents to be used for indirect addressing of the upper 128  
bytes of RAM. Thus, an instruction can designate the value  
stored in R0 (for example) to address the upper RAM. The 16  
bytes immediately above the these registers are bit address-  
able. So any of the 128 bits in this area can be directly  
accessed using bit addressable instructions.  
If external memory is used, P0 and P2 can be configured as  
address and data lines. If external memory is not used, P0  
and P2 can be configured as general-purpose I/O lines  
through the Hardware Configuration Register.  
To enable access to external memory bits 0 and 1 of the  
HCR1 register must be set to 0. When these bits are enabled  
all memory accesses for both internal and external memory  
will appear on ports 0 and 2. During the data portion of the  
cycle for internal memory, Port 0 will be zero for security  
purposes.  
Accesses to external memory are of two types: accesses to  
external Program Memory and accesses to external Data  
Memory. Accesses to external Program Memory use signal  
PSEN (program store enable) as the read strobe. Accesses  
to external Data Memory use RD or WR (alternate functions  
of P3.7 and P3.6) to strobe the memory.  
Stack  
Another use of the Scratchpad area is for the programmers  
stack. This area is selected using the Stack Pointer (SP; 81H)  
SFR. Whenever a call or interrupt is invoked, the return  
address is placed on the Stack. It also is available to the  
programmer for variables, etc., since the Stack can be moved  
and there is no fixed location within the RAM designated as  
Stack. The Stack Pointer will default to 07H on reset. The user  
can then move it as needed. A convenient location would be  
the upper RAM area (> 7FH) since this is only available  
indirectly. The SP will point to the last used value. Therefore,  
the next value placed on the Stack is put at SP + 1. Each  
PUSH or CALL will increment the SP by the appropriate value.  
Each POP or RET will decrement as well.  
External Program Memory and external Data Memory may be  
combined if desired by applying the RD and PSEN signals to  
the inputs of an AND gate and using the output of the gate as  
the read strobe to the external Program/Data Memory.  
A program fetch from external Program Memory uses a 16-  
bit address. Accesses to external Data Memory can use  
either a 16-bit address (MOVX @DPTR) or an 8-bit address  
(MOVX @RI).  
If Port 2 is selected for external memory use (HCR1, bit 0), it can  
not be used as a general-purpose I/O. This bit (or Bit 1 of HCR1)  
also forces bits P3.6 and P3.7 to be used for WR and RD instead  
of I/O. Port 2, P3.6, and P3.7 should all be written to 1.  
If an 8-bit address is being used (MOVX @RI), the contents  
of the MPAGE (92H) SFR remain at the Port 2 pins through-  
out the external memory cycle. This will facilitate paging.  
Program Memory  
After reset, the CPU begins execution from Program Memory  
location 0000H. The selection of where Program Memory ex-  
ecution begins is made by tying the EA pin to VDD for internal  
In any case, the low byte of the address is time-multiplexed  
with the data byte on Port 0. The ADDR/DATA signals use  
CMOS drivers in the Port 0, Port 2, WR, and RD output  
buffers. Thus, in this application the Port 0 pins are not open-  
drain outputs, and do not require external pull-ups for high-  
speed access. Signal ALE (Address Latch Enable) should be  
used to capture the address byte into an external latch. The  
address byte is valid at the negative transition of ALE. Then,  
in a write cycle, the data byte to be written appears on Port 0  
just before WR is activated, and remains there until after WR  
is deactivated. In a read cycle, the incoming byte is accepted  
at Port 0 just before the read strobe is deactivated.  
access, or DGND for external access. When EA is tied to VDD  
,
any PC fetches outside the internal Program Memory address  
occur from external memory. If EA is tied to DGND, then all PC  
fetches address external memory. The standard internal Pro-  
gram Memory size for MSC1212 family members is shown in  
Table VIII. Refer to the Accessing External Memory section for  
details on using external Program Memory. If enabled the Boot  
ROM will appear from address F800H to FFFFH.  
STANDARD INTERNAL  
PROGRAM MEMORY SIZE (BYTES)  
MODEL NUMBER  
MSC1212Y5  
MSC1212Y4  
MSC1212Y3  
MSC1212Y2  
32k  
16k  
8k  
The function of Port 0 and Port 2 is selected in Hardware  
Configuration Register 1. This can only be changed during the  
Flash Program mode. There is no conflict in the use of these  
registers; they will either be used as general-purpose I/O or for  
external memory access. The default state is for Port 0 and Port  
2 to be used as general-purpose I/O. If an external memory  
access is attempted when they are configured as general-  
purpose I/O, the values of Port 0 and Port 2 will not be affected.  
4k  
TABLE VIII. MSC1212 Maximum Internal Program Memory Sizes.  
MSC1212  
SBAS278A  
27  
www.ti.com  
External Program Memory is accessed under two conditions:  
1) Whenever signal EA is LOW during reset, then all future  
accesses are external, or  
MSC1212  
P2[7]  
HOST  
PSEL  
AddrHi[6:0]  
AddrLo[7:0]  
Data[7:0]  
Cmd[2:0]  
Req  
Flash  
Programmer  
2) Whenever the Program Counter (PC) contains a number  
that is outside of the internal Program Memory address range,  
if the ports are enabled.  
P2[6:0]  
P1[7:0]  
P0[7:0]  
P3[7:5]  
P3[4]  
NC  
PSEN  
ALE  
If Port 0 and Port 2 is selected for external memory, all 8 bits  
of Port 0 and Port 2, as well as P3.6 and P3.7, are dedicated  
to an output function and may not be used for general-  
purpose I/O. During external program fetches, Port 2 outputs  
the high byte of the PC.  
Ack  
P3[3]  
Programming Flash Memory  
Pass  
P3[2]  
There are four sections of Flash Memory for programming.  
1. 128 configuration bytes.  
RST  
RST  
CLK  
2. Reset sector (4kB) (not to be confused with the 2kB Boot  
ROM).  
XIN  
3. Program Memory.  
4. Data Memory.  
FIGURE 15. Parallel Programming Configuration.  
Boot Rom  
Memory programming. The actual code for Flash programming  
can not execute from Flash. That code must execute from the  
Boot ROM or internal (von Neumann) RAM.  
There is a 2kB Boot ROM that controls operation during serial  
or parallel programming. Additionally, the Boot ROM routines  
can be accessed during the user mode if it is enabled. When  
enabled, the Boot ROM routines will be located at memory  
addresses F800H-FFFFH during user mode. In program mode  
the Boot ROM is located in the first 2kB of Program Memory.  
INTERRUPTS  
The MSC1212 uses a three-priority interrupt system. As  
shown in Table IX, each interrupt source has an independent  
priority bit, flag, interrupt vector, and enable (except that nine  
interrupts share the Auxiliary Interrupt (AI) at the highest  
priority). In addition, interrupts can be globally enabled or  
disabled. The interrupt structure is compatible with the origi-  
nal 8051 family. All of the standard interrupts are available.  
Flash Programming Mode  
There are two programming modes: parallel and serial. The  
programming mode is selected by the state of the ALE and  
PSEN signals during power-on reset. Serial programming  
mode is selected with PSEN = 0 and ALE = 1. Parallel  
programming mode is selected with PSEN = 1 and ALE = 0,  
as shown in Figure 15. If they are both HIGH, the MSC1212  
will operate in normal user mode. Both signals LOW is a  
reserved mode and is not defined. Programming mode is  
exited with a power-on reset signal and the normal mode  
selected.  
HARDWARE CONFIGURATION MEMORY  
The 128 configuration bytes can only be written during the  
program mode. The bytes are accessed through SFR regis-  
ters CADDR (SFR 93H) and CDATA (SFR 94H). Two of the  
configuration bytes control Flash partitioning and system  
control. If the security bit is set, these bits can not be changed  
except with a Mass Erase command that erases all of the  
Flash Memory including the 128 configuration bytes.  
The MSC1212 is shipped with Flash Memory erased (all 1s).  
Parallel programming methods typically involve a third-party  
programmer. Serial programming methods typically involve in-  
system programming. UAM allows Flash Program and Data  
MSC1212  
28  
SBAS278A  
www.ti.com  
INTERRUPT  
PRIORITY  
ENABLE  
INTERRUPT/EVENT  
ADDR  
NUM  
PRIORITY  
FLAG  
CONTROL  
DVDD Low Voltage/HW Breakpoint  
33H  
6
HIGH  
0
EDLVB (AIE.0)(1)  
EBP (BPCON.0)(1)  
EDLVV (AIE.0)(1)  
EBP (BPCON.0)(1)  
N/A  
AVDD Low Voltage  
SPI Receive  
33H  
33H  
33H  
33H  
33H  
33H  
33H  
03H  
0BH  
13H  
1BH  
23H  
6
6
6
6
6
6
6
0
1
2
3
4
0
0
0
0
0
0
0
1
2
3
4
5
EALV (AIE.1)(1)  
ESPIR (AIE.2)(1)  
ESPIT (AIE.3)(1)  
EMSEC (AIE.4)(1)  
EADC (AIE.5)(1)  
ESUM (AIE.6)(1)  
ESEC (AIE.7)(1)  
IE0 (TCON.1)(2)  
TF0 (TCON.5)(3)  
IE1 (TCON.3)(2)  
TF1 (TCON.7)(3)  
EALV (AIE.1)(1)  
ESPIR (AIE.2)(1)  
ESPIT (AIE.3)(1)  
EMSEC (AIE.4)(1)  
EADC (AIE .5)(1)  
ESUM (AIE.6)(1)  
ESEC (AIE.7)(1)  
EX0 (IE.0)(4)  
ET0 (IE.1)(4)  
EX1 (IE.2)(4)  
ET1 (IE.3)(4)  
ES0 (IE.4)(4)  
N/A  
N/A  
SPI Transmit  
N/A  
Milliseconds Timer  
ADC  
N/A  
N/A  
Summation Register  
Seconds Timer  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port 0  
N/A  
N/A  
PX0 (IP.0)  
PT0 (IP.1)  
PX1 (IP.2)  
PT1 (IP.3)  
PS0 (IP.4)  
RI_0 (SCON0.0)  
TI_0 (SCON0.1)  
Timer 2 Overflow  
Serial Port 1  
2BH  
3BH  
5
7
6
7
TF2 (T2CON.7)  
ET2 (IE.5)(4)  
ES1 (IE.6)(4)  
PT2 (IP.5)  
PS1 (IP.6)  
RI_1 (SCON1.0)  
TI_1 (SCON1.1)  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
Watchdog  
43H  
4BH  
53H  
5BH  
63H  
8
8
9
IE2 (EXIF.4)  
IE3 (EXIF.5)  
EX2 (EIE.0)(4)  
EX3 (EIE.1)(4)  
EX4 (EIE.2)(4)  
EX5 (EIE.3)(4)  
EWDI (EIE.4)(4)  
PX2 (IP.0)  
PX3 (IP.1)  
PX4 (IP.2)  
PX5 (IP.3)  
PWDI (IP.4)  
9
10  
11  
12  
10  
11  
IE4 (EXIF.6)  
IE5 (EXIF.7)  
12  
WDTI (EICON.3)  
LOW  
NOTES: (1) These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5). (2) If edge triggered, cleared automatically by hardware when the  
service routine is vectored to. If level triggered, the flag follows the state of the pin. (3) Cleared automatically by hardware when interrupt vector occurs.  
(4) Globally enabled by EA (IE.7).  
TABLE IX. Interrupt Summary.  
MSC1212  
SBAS278A  
29  
www.ti.com  
Hardware Configuration Register 0 (HCR0)Accessed Using SFR Registers CADDR and CDATA.  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 7FH  
EPMA  
PML  
RSL  
EBR  
EWDR  
DFSEL2  
DFSEL1  
DFSEL0  
For access to this register during normal operation, refer to the register descriptions for CADDR and CDATA.  
EPMA Enable Programming Memory Access (Security Bit).  
bit 7  
0: After reset in programming modes, Flash Memory can only be accessed in UAM until a mass erase is done.  
1: Fully Accessible (default)  
PML  
Program Memory Lock. (PML has Priority Over RSL)  
bit 6  
0: Enable all Flash Programming Modes in program mode; can be written in UAM.  
1: Enable Read-Only mode for program mode; cant be written in UAM (default).  
RSL  
Reset Sector Lock.  
bit 5  
0: Enable Reset Sector Writing  
1: Enable Read-Only mode for Reset Sector (4kB) (default)  
EBR  
Enable Boot Rom. Boot Rom is 2kB of code located in ROM, not to be confused with the 4kB Boot Sector located  
in Flash Memory.  
bit 4  
0: Disable Internal Boot Rom  
1: Enable Internal Boot Rom (default)  
EWDR Enable Watchdog Reset.  
bit 3  
0: Disable Watchdog Reset  
1: Enable Watchdog Reset (default)  
DFSEL Data Flash Memory Size. (see Table III)  
bits 2-0 000: Reserved  
001: 32kB, 16kB, 8kB, or 4kB Data Flash Memory  
010: 16kB, 8kB, or 4kB Data Flash Memory  
011: 8kB or 4kB Data Flash Memory  
100: 4kB Data Flash Memory  
101: 2kB Data Flash Memory  
110: 1kB Data Flash Memory  
111: No Data Flash Memory (default)  
The reset sector can be used to provide another method of Flash Memory programming. This will allow Program Memory  
updates without changing the jumpers for in-circuit code updates or program development. The code in this boot sector would  
then provide the monitor and programming routines with the ability to jump into the main Flash code when programming is  
finished.  
MSC1212  
30  
SBAS278A  
www.ti.com  
Hardware Configuration Register 1 (HCR1)  
7
6
5
4
3
2
1
0
CADDR 7EH  
DBLSEL1  
DBLSEL0  
ABLSEL1  
ABLSEL0  
DAB  
DDB  
EGP0  
EGP23  
For access to this register during normal operation, refer to the register descriptions for CADDR and CDATA.  
DBLSEL Digital Brownout Level Select  
bits 7-6 00: 4.5V  
01: 4.2V  
10: 2.7V  
11: 2.5V (default)  
ABLSEL Analog Brownout Level Select  
bits 5-4 00: 4.5V  
01: 4.2V  
10: 2.7V  
11: 2.5V (default)  
DAB  
Disable Analog Power-Supply Brownout Detection  
0: Enable Analog Brownout Detection  
bit 3  
1: Disable Analog Brownout Detection (default).  
Disable Digital Power-Supply Brownout Detection  
0: Enable Digital Brownout Detection  
DDB  
bit 2  
1: Disable Digital Brownout Detection (default)  
Enable General-Purpose I/O for Port 0  
EGP0  
bit 1  
0: Port 0 is Used for External Memory, P3.6 and P3.7 Used for WR and RD  
1: Port 0 is Used as General-Purpose I/O (default)  
.
.
EGP23 Enable General-Purpose I/O for Ports 2 and 3  
bit 0  
0: Port 2 is Used for External Memory, P3.6 and P3.7 Used for WR and RD  
1: Port 2 and Port3 are Used as General-Purpose I/O (default)  
Configuration Memory Programming  
Certain key functions such as Brownout Reset and Watchdog Timer are controlled by the hardware configuration bits. These  
bits are nonvolatile and can only be changed through serial and parallel programming. Other peripheral control and status  
functions, such as ADC configuration timer setup and Flash control, are controlled through the SFRs.  
MSC1212  
SBAS278A  
31  
www.ti.com  
SFR Definitions (Boldface is unique to the MSC1212Yx)  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUES  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
P0  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
FFH  
07H  
00H  
00H  
00H  
00H  
00H  
30H  
00H  
00H  
SP  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
0
0
0
0
0
0
0
SEL  
IDLE  
IT0  
PCON  
TCON  
TMOD  
SMOD  
TF1  
0
1
1
GF1  
IE1  
GF0  
IT1  
STOP  
IE0  
TR1  
TF0  
TR0  
|---------------------------Timer 1 --------------------------|  
|--------------------------Timer 0 ---------------------------|  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
90H  
TL0  
00H  
00H  
00H  
00H  
01H  
00H  
FFH  
TL1  
TH0  
TH1  
CKCON  
MWS  
P1  
0
0
T2M  
0
T1M  
0
T0M  
0
MD2  
0
MD1  
0
MD0  
MXWS  
P1.0  
T2  
0
0
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
TXD1  
1
P1.2  
RXD1  
0
P1.1  
T2EX  
0
INT5/SCK INT4/MISO INT3/MOSI INT2/SS  
91H  
92H  
93H  
94H  
95H  
96H  
97H  
98H  
99H  
9AH  
9BH  
9CH  
EXIF  
IE5  
IE4  
IE3  
IE2  
0
08H  
00H  
00H  
00H  
00H  
MPAGE  
CADDR  
CDATA  
MCON  
BPSEL  
0
0
RAMMAP  
SCON0  
SM0_0  
SM1_0  
SM2_0  
SCK0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00H  
00H  
00H  
00H  
00H  
SBUF0  
SPICON  
SPIDATA  
SPIRCON  
SCK2  
SCK1  
FIFO  
ORDER  
MSTR  
CPHA  
CPOL  
RXCNT7  
RXFLUSH  
TXCNT7  
RXCNT6  
TXCNT6  
RXCNT5  
RXCNT4  
TXCNT4  
RXCNT3  
TXCNT3  
RXCNT2  
RXIRQ2  
TXCNT2  
TXIRQ2  
RXCNT1  
RXIRQ1  
TXCNT1  
TXIRQ1  
RXCNT0  
RXIRQ0  
TXCNT0  
TXIRQ0  
9DH  
SPITCON  
TXCNT5  
CLK_EN  
00H  
TXFLUSH  
DRV_DLY DRV_EN  
9EH  
9FH  
A0H  
A1H  
A2H  
SPISTART  
SPIEND  
P2  
1
80H  
80H  
FFH  
00H  
00H  
1
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
PWMCON  
PWMLOW  
TONELOW  
PWMHI  
PPOL  
PWMSEL  
PWM4  
TDIV4  
SPDSEL  
PWM3  
TDIV3  
TPCNTL2 TPCNTL1 TPCNTL0  
PWM7  
TDIV7  
PWM6  
TDIV6  
PWM5  
TDIV5  
PWM13  
TDIV13  
PWM2  
TDIV2  
PWM1  
TDIV1  
PWM9  
TDIV9  
PWM0  
TDIV0  
PWM8  
TDIV8  
A3H  
PWM15  
TDIV15  
PWM14  
TDIV14  
PWM12  
TDIV12  
PWM11  
TDIV11  
PWM10  
TDIV10  
00H  
TONEHI  
A4H  
A5H  
A6H  
A7H  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
AEH  
AFH  
B0H  
PAI  
0
0
0
0
PAI3  
ESPIT  
SPIT  
ET1  
0
PAI2  
ESPIR  
SPIR  
EX1  
0
PAI1  
PAI0  
EDLVB  
DLVD  
EX0  
00H  
00H  
00H  
00H  
00H  
AIE  
ESEC  
SEC  
EA  
ESUM  
SUM  
ES1  
0
EADC  
ADC  
ET2  
0
EMSEC  
MSEC  
ES0  
0
EALV  
ALVD  
ET0  
AISTAT  
IE  
BPCON  
BPL  
BP  
PMSEL  
EBP  
BPH  
P0DDRL  
P0DDRH  
P1DDRL  
P1DDRH  
P3  
P03H  
P07H  
P13H  
P17H  
P3.7  
P03L  
P07L  
P13L  
P17L  
P3.6  
P02H  
P06H  
P12H  
P16H  
P3.5  
P02L  
P06L  
P12L  
P16L  
P3.4  
T0  
P01H  
P05H  
P11H  
P15H  
P3.3  
P01L  
P05L  
P11L  
P15L  
P3.2  
P00H  
P04H  
P10H  
P14H  
P3.1  
P00L  
P04L  
P10L  
P14L  
P3.0  
00H  
00H  
00H  
00H  
FFH  
RD  
WR  
T1  
INT1  
INT0  
P21L  
P25L  
P31L  
P35L  
TXD0  
P20H  
P24H  
P30H  
P34H  
RXD0  
P20L  
P24L  
P30L  
P34L  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
B8H  
B9H  
P2DDRL  
P2DDRH  
P3DDRL  
P3DDRH  
DACL  
P23H  
P27H  
P33H  
P37H  
P23L  
P27L  
P33L  
P37L  
P22H  
P26H  
P32H  
P36H  
P22L  
P26L  
P32L  
P36L  
P21H  
P25H  
P31H  
P35H  
00H  
00H  
00H  
00H  
DACH  
DACCON  
IP  
DSEL7  
DSEL6  
DSEL5  
DSEL4  
DSEL3  
DSEL2  
DSEL1  
DSEL0  
00H  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
80H  
MSC1212  
32  
SBAS278A  
www.ti.com  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUES  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
C0H  
SCON1  
SBUF1  
SM0_1  
SM1_1  
SM2_1  
REN_1  
TB8_1  
RB8_1  
TI_1  
RI_1  
00H  
00H  
C1H  
C2H  
C3H  
C4H  
C5H  
C6H  
C7H  
EWU  
EWUWDT EWUEX1  
EWUEX0  
DIV0  
00H  
00H  
00H  
SYSCLK  
0
0
DIVMOD1 DIVMOD0  
RCLK TCLK  
0
DIV2  
DIV1  
C8H  
C9H  
CAH  
T2CON  
TF2  
EXF2  
EXEN2  
TR2  
C/T2  
CP/RL2  
RCAP2L  
RCAP2H  
TL2  
00H  
00H  
00H  
00H  
CBH  
CCH  
CDH  
CEH  
CFH  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
TH2  
PSW  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00H  
00H  
OCL  
LSB  
OCM  
00H  
OCH  
MSB  
00H  
GCL  
LSB  
24H  
GCM  
90H  
GCH  
MSB  
67H  
ADMUX  
EICON  
ADRESL  
ADRESM  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
0
01H  
SMOD1  
1
EAI  
AI  
WDTI  
0
0
40H  
LSB  
00H  
00H  
MSB  
00H  
BOD  
POL  
DR6  
0
EVREF  
SM1  
DR5  
0
VREFH  
SM0  
DR4  
0
EBUF  
PGA2  
CAL2  
DR2  
PGA1  
CAL1  
DR1  
PGA0  
CAL0  
DR0  
38H  
x000_0000B  
1BH  
DR7  
0
DR3  
0
DR10  
DR9  
DR8  
06H  
00H  
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
ODAC  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00H  
00H  
00H  
00H  
00H  
00H  
LVDCON  
EIE  
ALVDIS  
ALVD2  
ALVD1  
ALVD0  
DLVDIS  
DLVD2  
EX4  
1
DLVD1  
DLVD0  
00H  
1
1
1
EWDI  
EX5  
EX3  
EX2  
E0H  
HWPC0  
HWPC1  
HWVER  
Reserved  
Reserved  
FMCON  
FTCON  
B
MEMORY SIZE  
0000_01xxB  
08H  
1
00H  
00H  
02H  
A5H  
00H  
7FH  
00H  
0
PGERA  
FER2  
0
FRCM  
FER0  
0
BUSY  
FWR2  
1
0
FER3  
FER1  
FWR3  
FWR1  
FWR0  
PDCON  
PASEL  
0
0
PDDAC  
0
1
PDPWM  
PSEN1  
PDAD  
PDWDT  
0
PDST  
ALE1  
PDSPI  
ALE0  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
PSEN2  
PSEN0  
ACLK  
0
FREQ6  
FREQ5  
0
FREQ4  
0
FREQ3  
0
FREQ2  
0
FREQ1  
0
FREQ0  
RSTREQ  
PX2  
03H  
00H  
E0H  
7FH  
7FH  
03H  
9FH  
0FH  
63H  
00H  
SRST  
0
0
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
EIP  
1
1
1
PWDI  
PX5  
PX4  
PX3  
SECINT  
MSINT  
USEC  
WRT  
WRT  
0
SECINT6  
MSINT6  
0
SECINT5  
MSINT5  
FREQ5  
SECINT4  
MSINT4  
FREQ4  
SECINT3  
MSINT3  
FREQ3  
SECINT2  
MSINT2  
FREQ2  
SECINT1  
MSINT1  
FREQ1  
SECINT0  
MSINT0  
FREQ0  
MSECL  
MSECH  
HMSEC  
WDTCON  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
MSC1212  
SBAS278A  
33  
www.ti.com  
Port 0 (P0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 80H  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
FFH  
P0.7-0  
bits 7-0  
Port 0. This port functions as a multiplexed address/data bus during external memory access, and as a general-  
purpose I/O port when external memory access is not needed. During external memory cycles, this port will contain  
the LSB of the address when ALE is HIGH, and Data when ALE is LOW. When used as a general-purpose I/O, this  
port drive is selected by P0DDRL and P0DDRH (ACH, ADH). Whether Port 0 is used as general-purpose I/O or for  
external memory access is determined by the Flash Configuration Register (HCR1.1) (see SFR CADDR 93H).  
Stack Pointer (SP)  
7
6
5
4
3
2
1
0
Reset Value  
07  
SFR 81H  
SP.7  
SP.6  
SP.5  
SP.4  
SP.3  
SP.2  
SP.1  
SP.0  
H
SP.7-0  
Stack Pointer. The stack pointer identifies the location where the stack will begin. The stack pointer is incremented before  
bits 7-0  
every PUSH or CALL operation and decremented after each POP or RET/RETI. This register defaults to 07H after reset.  
Data Pointer Low 0 (DPL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 82H  
DPL0.7  
DPL0.6  
DPL0.5  
DPL0.4  
DPL0.3  
DPL0.2  
DPL0.1  
DPL0.0  
00H  
DPL0.7-0 Data Pointer Low 0. This register is the low byte of the standard 8051 16-bit data pointer. DPL0 and DPH0  
bits 7-0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86H).  
Data Pointer High 0 (DPH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 83H  
DPH0.7  
DPH0.6  
DPH0.5  
DPH0.4  
DPH0.3  
DPH0.2  
DPH0.1  
DPH0.0  
00H  
DPH0.7-0 Data Pointer High 0. This register is the high byte of the standard 8051 16-bit data pointer. DPL0 and DPH0  
bits 7-0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86H).  
Data Pointer Low 1 (DPL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 84H  
DPL1.7  
DPL1.6  
DPL1.5  
DPL1.4  
DPL1.3  
DPL1.2  
DPL1.1  
DPL1.0  
00H  
DPL1.7-0 Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7-0 (SFR 86H) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer High 1 (DPH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 85H  
DPH1.7  
DPH1.6  
DPH1.5  
DPH1.4  
DPH1.3  
DPH1.2  
DPH1.1  
DPH1.0  
00H  
DPH1.7-0 Data Pointer High. This register is the high byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7-0 (SFR 86H) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer Select (DPS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 86H  
0
0
0
0
0
0
0
SEL  
00H  
SEL  
Data Pointer Select. This bit selects the active data pointer.  
0: Instructions that use the DPTR will use DPL0 and DPH0.  
1: Instructions that use the DPTR will use DPL1 and DPH1.  
bit 0  
MSC1212  
34  
SBAS278A  
www.ti.com  
Power Control (PCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 87H  
SMOD  
0
1
1
GF1  
GF0  
STOP  
IDLE  
30H  
SMOD  
bit 7  
Serial Port 0 Baud Rate Doubler Enable. The serial baud rate doubling function for Serial Port 0.  
0: Serial Port 0 baud rate will be a standard baud rate.  
1: Serial Port 0 baud rate will be double that defined by baud rate generation equation.  
GF1  
General-Purpose User Flag 1. This is a general-purpose flag for software control.  
bit 3  
GF0  
General-Purpose User Flag 0. This is a general-purpose flag for software control.  
bit 2  
STOP  
Stop Mode Select. Setting this bit will halt the oscillator and block external clocks. This bit will always read as a 0.  
bit 1  
Exit with RESET.  
IDLE  
Idle Mode Select. Setting this bit will freeze the CPU, Timer 0, 1, and 2, and the USARTs; other peripherals remain  
bit 0  
active. This bit will always be read as a 0. Exit with AI (A6H) and EWU (C6H) interrupts.  
Timer/Counter Control (TCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00H  
TF1  
bit 7  
Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count as defined by the current  
mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 1  
interrupt service routine.  
0: No Timer 1 overflow has been detected.  
1: Timer 1 has overflowed its maximum count.  
TR1  
Timer 1 Run Control. This bit enables/disables the operation of Timer 1. Halting this timer will preserve the  
current bit 6 count in TH1, TL1.  
0: Timer is halted.  
1: Timer is enabled.  
TF0  
bit 5  
Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current  
mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0  
interrupt service routine.  
0: No Timer 0 overflow has been detected.  
1: Timer 0 has overflowed its maximum count.  
TR0  
Timer 0 Run Control. This bit enables/disables the operation of Timer 0. Halting this timer will preserve the  
bit 4  
current count in TH0, TL0.  
0: Timer is halted.  
1: Timer is enabled.  
IE1  
bit 3  
Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 is detected. If IT1 = 1, this  
bit will remain set until cleared in software or the start of the External Interrupt 1 service routine. If IT1 = 0, this  
bit will inversely reflect the state of the INT1 pin.  
IT1  
Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge or level triggered interrupts.  
bit 2  
0: INT1 is level triggered.  
1: INT1 is edge triggered.  
IE0  
bit 3  
Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 is detected. If IT0 = 1, this  
bit will remain set until cleared in software or the start of the External Interrupt 0 service routine. If IT0 = 0, this  
bit will inversely reflect the state of the INT0 pin.  
IT0  
Interrupt 0 Type Select. This bit selects whether the INT0 pin will detect edge- or level-triggered interrupts.  
bit 2  
0: INT0 is level triggered.  
1: INT0 is edge triggered.  
MSC1212  
SBAS278A  
35  
www.ti.com  
Timer Mode Control (TMOD)  
7
6
5
4
3
2
1
0
TIMER 1  
TIMER 0  
Reset Value  
SFR 89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
GATE  
Timer 1 Gate Control. This bit enables/disables the ability of Timer 1 to increment.  
bit 7  
0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1  
1: Timer 1 will clock only when TR1 = 1 and pin INT1 = 1.  
.
C/T  
Timer 1 Counter/Timer Select.  
bit 6  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on T1 pin when TR1 (TCON.6, SFR 88H) is 1.  
M1, M0  
Timer 1 Mode Select. These bits select the operating mode of Timer 1.  
bits 5-4  
M1  
M0  
MODE  
0
0
1
1
0
1
0
1
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
Mode 2: 8-bit counter with auto reload.  
Mode 3: Timer 1 is halted, but holds its count.  
GATE  
Timer 0 Gate Control. This bit enables/disables the ability of Timer 0 to increment.  
bit 3  
0: Timer 0 will clock when TR0 = 1, regardless of the state of pin INT0 (software control).  
1: Timer 0 will clock only when TR0 = 1 and pin INT0 = 1 (hardware control).  
C/T  
Timer 0 Counter/Timer Select.  
bit 2  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88H) is 1.  
M1, M0  
Timer 0 Mode Select. These bits select the operating mode of Timer 0.  
bits 1-0  
M1  
M0  
MODE  
0
0
1
1
0
1
0
1
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
Mode 2: 8-bit counter with auto reload.  
Mode 3: Two 8-bit counters.  
Timer 0 LSB (TL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8AH  
TL0.7  
TL0.6  
TL0.5  
TL0.4  
TL0.3  
TL0.2  
TL0.1  
TL0.0  
00H  
TL0.7-0  
bits 7-0  
Timer 0 LSB. This register contains the least significant byte of Timer 0.  
Timer 1 LSB (TL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8BH  
TL1.7  
TL1.6  
TL1.5  
TL1.4  
TL1.3  
TL1.2  
TL1.1  
TL1.0  
00H  
TL1.7-0  
bits 7-0  
Timer 1 LSB. This register contains the least significant byte of Timer 1.  
Timer 0 MSB (TH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8CH  
TH0.7  
TH0.6  
TH0.5  
TH0.4  
TH0.3  
TH0.2  
TH0.1  
TH0.0  
00H  
TH0.7-0  
Timer 0 MSB. This register contains the most significant byte of Timer 0.  
bits 7-0  
MSC1212  
36  
SBAS278A  
www.ti.com  
Timer 1 MSB (TH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8DH  
TH1.7  
TH1.6  
TH1.5  
TH1.4  
TH1.3  
TH1.2  
TH1.1  
TH1.0  
00H  
TH1.7-0  
Timer 1 MSB. This register contains the most significant byte of Timer 1.  
bits 7-0  
Clock Control (CKCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8EH  
0
0
T2M  
T1M  
T0M  
MD2  
MD1  
MD0  
01H  
T2M  
bit 5  
Timer 2 Clock Select. This bit controls the division of the system clock that drives Timer 2. This bit has no effect  
when the timer is in baud rate generator or clock output modes. Clearing this bit to 0 maintains 8051  
compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 2 uses a divide by 12 of the crystal frequency.  
1: Timer 2 uses a divide by 4 of the crystal frequency.  
T1M  
bit 4  
Timer 1 Clock Select. This bit controls the division of the system clock that drives Timer 1. Clearing this bit to  
0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 1 uses a divide by 12 of the crystal frequency.  
1: Timer 1 uses a divide by 4 of the crystal frequency.  
T0M  
bit 3  
Timer 0 Clock Select. This bit controls the division of the system clock that drives Timer 0. Clearing this bit to  
0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 0 uses a divide by 12 of the crystal frequency.  
1: Timer 0 uses a divide by 4 of the crystal frequency.  
MD2, MD1, MD0 Stretch MOVX Select 2-0. These bits select the time by which external MOVX cycles are to be stretched.  
bits 2-0  
This allows slower memory or peripherals to be accessed without using ports or manual software  
intervention. The for RD or WR strobe will be stretched by the specified interval, which will be transparent  
to the software except for the increased time to execute the MOVX instruction. All internal MOVX  
instructions on devices containing MOVX SRAM are performed at the 2 instruction cycle rate.  
RD or WR  
STROBE WIDTH  
(SYS CLKs)  
RD or WR  
STROBE WIDTH  
(µs) AT 12MHz  
MD2  
MD1  
MD0  
STRETCH VALUE MOVX DURATION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2 Instruction Cycles  
3 Instruction Cycles (default)  
4 Instruction Cycles  
5 Instruction Cycles  
6 Instruction Cycles  
7 Instruction Cycles  
8 Instruction Cycles  
9 Instruction Cycles  
2
4
8
12  
16  
20  
24  
28  
0.167  
0.333  
0.667  
1.000  
1.333  
1.667  
2.000  
2.333  
Memory Write Select (MWS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8FH  
0
0
0
0
0
0
0
MXWS  
00H  
MXWS  
MOVX Write Select. This allows writing to the internal Flash program memory.  
bit 0  
0: No writes are allowed to the internal Flash program memory.  
1: Writing is allowed to the internal Flash program memory, unless PML (HCR0) or RSL (HCR0) are on.  
MSC1212  
SBAS278A  
37  
www.ti.com  
Port 1 (P1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 90H  
P1.7  
INT5/SCK  
P1.6  
INT4/MISO  
P1.5  
INT3/MOSI  
P1.4  
INT2/SS  
P1.3  
TXD1  
P1.2  
RXD1  
P1.1  
T2EX  
P1.0  
T2  
FFH  
P1.7-0  
bits 7-0  
General-Purpose I/O Port 1. This register functions as a general-purpose I/O port. In addition, all the pins have  
an alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port  
1 latch bit must contain a logic 1before the pin can be used in its alternate function capacity. To use the alternate  
function, set the appropriate mode in P1DDRL (SFR AEH), P1DDRH (SFR AFH).  
INT5/SCK  
bit 7  
External Interrupt 5.A falling edge on this pin will cause an external interrupt 5 if enabled.  
SPI Clock. The master clock for SPI data transfers.  
INT4/MISO External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if enabled.  
bit 6 Master In Slave Out. For SPI data transfers, this pin receives data for the master and transmits data from the slave.  
INT3/MOSI External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if enabled.  
bit 5  
Master Out Slave In. For SPI data transfers, this pin transmits master data and receives slave data.  
INT2/SS  
External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if enabled.  
bit 4  
Slave Select.  
During SPI operation, this pin provides the select signal for the slave device.  
TXD1  
Serial Port 1 Transmit. This pin transmits the serial Port 1 data in serial port modes 1, 2, 3, and emits the  
bit 3  
synchronizing clock in serial port mode 0.  
RXD1  
Serial Port 1 Receive. This pin receives the serial Port 1 data in serial port modes 1, 2, 3, and is a bidirectional  
bit 2  
data transfer pin in serial port mode 0.  
T2EX  
bit 1  
Timer 2 Capture/Reload Trigger. A 1 to 0 transition on this pin will cause the value in the T2 registers to be  
transferred into the capture registers if enabled by EXEN2 (T2CON.3, SFR C8H). When in auto-reload mode, a 1 to 0  
transition on this pin will reload the Timer 2 registers with the value in RCAP2L and RCAP2H if enabled by  
EXEN2 (T2CON.3, SFR C8H).  
T2  
Time 2 External Input. A 1 to 0 transition on this pin will cause Timer 2 to increment or decrement depending  
bit 0  
on the timer configuration.  
External Interrupt Flag (EXIF)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 91H  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
08H  
IE5  
External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5. This bit must be  
bit 7  
cleared manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE4  
External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. This bit must be cleared  
bit 6  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE3  
External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3. This bit must be cleared  
bit 5  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE2  
External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. This bit must be cleared  
bit 4  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
Memory Page (MPAGE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 92H  
00H  
MPAGE  
bits 7-0  
The 8051 uses Port 2 for the upper 8 bits of the external data memory access by MOVX A@RI and MOVX @RI,  
A instructions. The MSC1212 uses register MPAGE instead of Port 2. To access external data memory using the  
MOVX A@RI and MOVX @RI, A instructions, the user should preload the upper byte of the address into MPAGE (versus  
preloading into P2 for the standard 8051).  
Configuration Address Register (CADDR) (write only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 93H  
00H  
CADDR  
bits 7-0  
Configuration Address Register. This register supplies the address for reading bytes in the 128 bytes of Flash Configuration  
Memory. CAUTION: If this register is written to while executing from Flash Memory, the CDATA register will be incorrect.  
MSC1212  
38  
SBAS278A  
www.ti.com  
Configuration Data Register (CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 94H  
00H  
CDATA  
Configuration Data Register. This register will contain the data in the 128 bytes of Flash Configuration Memory  
bits 7-0  
that is located at the last written address in the CADDR register. This is a read-only register.  
Memory Control (MCON)  
7
6
0
5
0
4
3
2
1
0
Reset Value  
SFR 95H  
BPSEL  
RAMMAP  
00H  
BPSEL  
Breakpoint Address Selection  
bit 7  
Write: Select one of two Breakpoint registers: 0 or 1.  
0: Select breakpoint register 0.  
1: Select breakpoint register 1.  
Read: Provides the Breakpoint register that created the last interrupt: 0 or 1.  
RAMMAP Memory Map 1kB extended SRAM.  
bit 0 0: Address is: 0000H-03FFH (default) (Data Memory)  
1: Address is 8400H-87FFH (Data and Program Memory)  
Serial Port 0 Control (SCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 98H  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00H  
SM0-2  
bits 7-5  
Serial Port 0 Mode. These bits control the mode of serial Port 0. Modes 1, 2, and 3 have 1 start and 1 stop bit  
in addition to the 8 or 9 data bits.  
MODE SM0  
SM1  
SM2 FUNCTION  
LENGTH  
PERIOD  
(1)  
0
0
0
0
0
0
0
1
Synchronous  
Synchronous  
8 bits  
8 bits  
12 pCLK  
(1)  
4 pCLK  
1(2)  
0
1
1
0
x
Asynchronous  
Asynchronous  
10 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
(1)  
2
0
64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
(1)  
2
1
0
1
Asynchronous with  
Multiprocessor Communication  
11 bits  
64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
3(2)  
3(2)  
1
1
1
1
0
1
Asynchronous  
11 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
Timer 1 or 2 Baud Rate Equation  
Asynchronous with  
Multiprocessor Communication  
NOTE: (1) pCLK will be equal to tCLK, except that pCLK will stop for IDLE. (2) For modes 1 and 3, the selection of  
Timer 1 or 2 for baud rate is specified via the T2CON (C8H) register.  
REN_0  
bit 4  
Receive Enable. This bit enables/disables the serial Port 0 received shift register.  
0: Serial Port 0 reception disabled.  
1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_0  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 0 modes 2 and 3.  
bit 3  
RB8_0  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 0 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.  
TI_0  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 0 buffer has been completely shifted  
out. In serial port mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, this bit is set at the end  
of the last data bit. This bit must be manually cleared by software.  
RI_0  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 0 buffer. In  
serial port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample  
of the incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of  
RB8_0. This bit must be manually cleared by software.  
MSC1212  
SBAS278A  
39  
www.ti.com  
Serial Data Buffer 0 (SBUF0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 99H  
00H  
SBUF0  
Serial Data Buffer 0. Data for Serial Port 0 is read from or written to this location. The serial transmit and  
bits 7-0  
receive buffers are separate registers, but both are addressed at this location.  
SPI Control (SPICON). Any change resets the SPI interface, counters, and pointers. PDCON controls  
which is enabled.  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9AH  
SCK2  
SCK1  
SCK0  
FIFO  
ORDER  
MSTR  
CPHA  
CPOL  
00H  
SCK  
SCK Selection. Selection of tCLK divider for generation of SCK in Master mode.  
bits 7-5  
SCK2  
SCK1  
SCK0  
SCK PERIOD  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
tCLK/2  
tCLK/4  
tCLK/8  
tCLK/16  
tCLK/32  
tCLK/64  
t
CLK/128  
tCLK/256  
FIFO  
bit 4  
Enable FIFO in on-chip indirect memory.  
0: Both transmit and receive are double buffers  
1: Circular FIFO used for transmit and receive bytes  
ORDER  
bit 3  
Set Bit Order for Transmit and Receive.  
0: Most Significant Bits First  
1: Least Significant Bits First  
MSTR  
bit 2  
SPI Master Mode.  
0: Slave Mode  
1: Master Mode  
CPHA  
Serial Clock Phase Control.  
bit 1  
0: Valid data starting from half SCK period before the first edge of SCK  
1: Valid data starting from the first edge of SCK  
CPOL  
bit 0  
Serial Clock Polarity.  
0: SCK idle at logic LOW  
1: SCK idle at logic HIGH  
SPI Data Register (SPIDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9BH  
00H  
SPIDATA  
SPI Data Register. Data for SPI is read from or written to this location. The SPI transmit and receive buffers  
bits 7-0  
are separate registers, but both are addressed at this location.  
MSC1212  
40  
SBAS278A  
www.ti.com  
SPI Receive Control Register (SPIRCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9CH  
RXCNT7  
RXCNT6  
RXCNT5  
RXCNT4  
RXCNT3  
RXCNT2  
RXIRQ2  
RXCNT1  
RXIRQ1  
RXCNT0  
RXIRQ0  
00H  
RXFLUSH  
RXCNT  
Receive Counter. Read only bits which read the number of bytes in the receive buffer (0 to 128).  
bits 7-0  
RXFLUSH  
bit 7  
Flush Receive FIFO. Write only.  
0: No Action  
1: SPI Receive Buffer Set to Empty  
RXIRQ  
Read IRQ Level. Write only.  
bits 2-0  
000  
001  
010  
011  
100  
101  
110  
111  
Generate IRQ when Receive Count = 1 or more.  
Generate IRQ when Receive Count = 2 or more.  
Generate IRQ when Receive Count = 4 or more.  
Generate IRQ when Receive Count = 8 or more.  
Generate IRQ when Receive Count = 16 or more.  
Generate IRQ when Receive Count = 32 or more.  
Generate IRQ when Receive Count = 64 or more.  
Generate IRQ when Receive Count = 128 or more.  
SPI Transmit Control Register (SPITCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9DH  
TXCNT7  
TXCNT6  
TXCNT5  
CLK_EN  
TXCNT4  
TXCNT3  
DRV_EN  
TXCNT2  
TXIRQ2  
TXCNT1  
TXIRQ1  
TXCNT0  
TXIRQ0  
00H  
TXFLUSH  
DRV_DLY  
TXCNT  
Transmit Counter. Read only bits which read the number of bytes in the transmit buffer (0 to 128).  
bits 7-0  
TXFLUSH  
Flush Transmit FIFO. This bit is write only. When set, the SPI transmit pointer is set equal to the FIFO  
bit 7  
Output pointer. This bit is 0 for a read operation.  
CLK_EN  
SCK Driver Enable.  
bit 5  
0: Disable SCK Driver (Master Mode)  
1: Enable SCK Driver (Master Mode)  
DRV_DLY  
bit 4  
Drive Delay (refer to DRV_EN bit).  
0: Drive Output Immediately  
1: Drive Output After Current Byte Transfer  
DRV_EN  
Drive Enable.  
bit 3  
DRV_DLY DRV_EN MOSI or MISO OUTPUT CONTROL  
0
0
1
1
0
1
0
1
Tristate Immediately  
Drive Immediately  
Tristate After the Current Byte Transfer  
Drive After the Current Byte Transfer  
TXIRQ  
Transmit IRQ Level. Write only bits.  
bits 2-0  
000  
001  
010  
011  
100  
101  
110  
111  
Generate IRQ when Transmit count = 1 or less.  
Generate IRQ when Transmit count = 2 or less.  
Generate IRQ when Transmit count = 4 or less.  
Generate IRQ when Transmit count = 8 or less.  
Generate IRQ when Transmit count = 16 or less.  
Generate IRQ when Transmit count = 32 or less.  
Generate IRQ when Transmit count = 64 or less.  
Generate IRQ when Transmit count = 128 or less.  
MSC1212  
SBAS278A  
41  
www.ti.com  
SPI Buffer Start Address (SPISTART)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9EH  
1
80H  
SPISTART  
bits 6-0  
SPI FIFO Start Address. Write-only. This specifies the start address of the SPI data buffer. This is a  
circular FIFO that is located in the 128 bytes of indirect RAM. The FIFO starts at this address and ends  
at the address specified in SPIEND. Must be less than SPIEND. Writing clears SPI transmit and receive counters.  
SPITP  
bits 6-0  
SPI Transmit Pointer. Read-only. This is the FIFO address for SPI transmissions. This is where the next  
byte will be written into the SPI FIFO buffer. This pointer increments after each write to the SPI Data register  
unless that would make it equal to the SPI Receive pointer.  
SPI Buffer End Address (SPIEND)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9FH  
1
80H  
SPIEND  
SPI FIFO End Address. Write-only. This specifies the end address of the SPI data FIFO. This is a circular buffer  
bits 6-0  
that is located in the 128 bytes of indirect RAM. The buffer starts at SPISTART and ends at this address.  
SPIRP  
SPI Receive Pointer. Read-only. This is the FIFO address for SPI received bytes. This is the location of the next  
bits 6-0  
byte to be read from the SPI FIFO. This increments with each read from the SPI Data register until the RxCNT is zero.  
Port 2 (P2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A0H  
FFH  
P2  
bits 7-0  
Port 2. This port functions as an address bus during external memory access, and as a general-purpose I/O port.  
During external memory cycles, this port will contain the MSB of the address. Whether Port 2 is used as general-  
purpose I/O or for external memory access is determined by the Flash Configuration Register (HCR1.0).  
PWM Control (PWMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A1H  
PPOL  
PWMSEL  
SPDSEL  
TPCNTL.2  
TPCNTL.1  
TPCNTL.0  
00H  
PPOL  
bit 5  
Period Polarity. Specifies the starting level of the PWM pulse.  
0: ON Period. PWM Duty register programs the ON period.  
1: OFF Period. PWM Duty register programs the OFF period.  
PWMSEL PWM Register Select. Select which 16-bit register is accessed by PWMLOW/PWMHIGH.  
bit 4  
0: Period (must be 0 for TONE mode)  
1: Duty  
SPDSEL Speed Select.  
bit 3 0: 1MHz (the USEC Clock)  
1: SYSCLK  
TPCNTL Tone Generator/Pulse Width Modulation Control.  
bits 2-0  
TPCNTL.2  
TPCNTL.1  
TPCNTL.0  
MODE  
0
0
0
1
0
0
1
1
0
1
1
1
Disable (default)  
PWM  
TONESquare  
TONEStaircase  
Tone Low (TONELOW) /PWM Low (PWMLOW)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A2H  
PWM7  
PWM6  
PWM5  
PWM4  
TDIV4  
PWM3  
TDIV3  
PWM2  
TDIV2  
PWM1  
TDIV1  
PWM0  
TDIV0  
00H  
TDIV7  
TDIV6  
TDIV5  
PWMLOW Pulse Width Modulator Low Bits. These 8 bits are the least significant 8 bits of the PWM register.  
bits 7-0  
TDIV7-0  
Tone Divisor. The low order bits that define the half-time period. For staircase mode the output is high  
bits 7-0  
impedance for the last 1/4 of this period.  
MSC1212  
42  
SBAS278A  
www.ti.com  
Tone High (TONEHI)/PWM High (PWMHI)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A3H  
PWM15  
TDIV15  
PWM14  
TDIV14  
PWM13  
TDIV13  
PWM12  
TDIV12  
PWM11  
TDIV11  
PWM10  
TDIV10  
PWM9  
TDIV9  
PWM8  
TDIV8  
00H  
PWMHI  
Pulse Width Modulator High Bits. These 8 bits are the high order bits of the PWM register.  
bits 7-0  
TDIV15-8  
Tone Divisor. The high order bits that define the half time period. For staircase mode, the output is high  
bits 7-0  
impedance for the last 1/4 of this period.  
Pending Auxiliary Interrupt (PAI)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A5H  
0
0
0
0
PAI3  
PAI2  
PAI1  
PAI0  
00H  
PAI  
bits 3-0  
Pending Auxiliary Interrupt Register. The results of this register can be used as an index to vector to the appropriate  
interrupt routine. All of these interrupts vector through address 0033H.  
PAI3  
PAI2  
PAI1  
PAI0  
AUXILIARY INTERRUPT STATUS  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Pending Auxiliary IRQ  
Digital Low Voltage IRQ Pending  
Analog Low Voltage IRQ Pending  
SPI Receive IRQ Pending  
SPI Transmit IRQ Pending  
One Millisecond System Timer IRQ Pending  
Analog to Digital Conversion IRQ Pending  
Accumulator IRQ Pending  
One Second System Timer IRQ Pending  
Auxiliary Interrupt Enable (AIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A6H  
ESEC  
ESUM  
EADC  
EMSEC  
ESPIT  
ESPIR  
EALV  
EDLVB  
00H  
Interrupts are enabled by EICON.4 (SFR D8H). The other interrupts are controlled by the IE and EIE registers.  
ESEC  
bit 7  
Enable Seconds Timer Interrupt (lowest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of Seconds Timer Interrupt before masking.  
ESUM  
Enable Summation Interrupt.  
bit 6  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of Summation Interrupt before masking.  
EADC  
Enable ADC Interrupt.  
bit 5  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of ADC Interrupt before masking.  
EMSEC  
Enable Millisecond System Timer Interrupt.  
bit 4  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of Millisecond System Timer Interrupt before masking.  
ESPIT  
Enable SPI Transmit Interrupt.  
bit 3  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of SPI Transmit Interrupt before masking.  
ESPIR  
Enable SPI Receive Interrupt.  
bit 2  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of SPI Receive Interrupt before masking.  
EALV  
Enable Analog Low Voltage Interrupt.  
bit 1  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of Analog Low Voltage Interrupt before masking.  
EDLVB  
bit 0  
Enable Digital Low Voltage or Breakpoint Interrupt (highest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt 0 = masked, 1 = enabled.  
Read: Current value of Digital Low Voltage or Breakpoint Interrupt before masking.  
MSC1212  
SBAS278A  
43  
www.ti.com  
Auxiliary Interrupt Status Register (AISTAT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A7H  
SEC  
SUM  
ADC  
MSEC  
SPIT  
SPIR  
ALVD  
DLVD  
00H  
SEC  
bit 7  
Second System Timer Interrupt Status Flag (lowest priority AI).  
0: SEC interrupt inactive or masked.  
1: SEC Interrupt active.  
SUM  
Summation Register Interrupt Status Flag.  
bit 6  
0: SUM interrupt inactive or masked (if active, it is set inactive by reading the lowest byte of the Summation register).  
1: SUM interrupt active.  
ADC  
ADC Interrupt Status Flag.  
bit 5  
0: ADC interrupt inactive or masked (If active, it is set inactive by reading the lowest byte of the Data Output Register).  
1: ADC interrupt active (If active no new data will be written to the Data Output Register).  
MSEC  
bit 4  
Millisecond System Timer Interrupt Status Flag.  
0: MSEC interrupt inactive or masked.  
1: MSEC interrupt active.  
SPIT  
bit 3  
SPI Transmit Interrupt Status Flag.  
0: SPI transmit interrupt inactive or masked.  
1: SPI transmit interrupt active.  
SPIR  
bit 2  
SPI Receive Interrupt Status Flag.  
0: SPI receive interrupt inactive or masked.  
1: SPI receive interrupt active.  
ALVD  
bit 1  
Analog Low Voltage Detect Interrupt Status Flag.  
0: ALVD interrupt inactive or masked.  
1: ALVD interrupt active.  
DLVD  
bit 0  
Digital Low Voltage Detect or Breakpoint Interrupt Status Flag (highest priority AI).  
0: DLVD interrupt inactive or masked.  
1: DLVD interrupt active.  
Interrupt Enable (IE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A8H  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00H  
EA  
bit 7  
Global Interrupt Enable. This bit controls the global masking of all interrupts except those in AIE (SFR A6H).  
0: Disable interrupt sources. This bit overrides individual interrupt mask settings for this register.  
1: Enable all individual interrupt masks. Individual interrupts in this register will occur if enabled.  
ES1  
bit 6  
Enable Serial Port 1 Interrupt. This bit controls the masking of the serial Port 1 interrupt.  
0: Disable all serial Port 1 interrupts.  
1: Enable interrupt requests generated by the RI_1 (SCON1.0, SFR C0H) or TI_1 (SCON1.1, SFR C0H) flags.  
ET2  
bit 5  
Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.  
0: Disable all Timer 2 interrupts.  
1: Enable interrupt requests generated by the TF2 flag (T2CON.7, SFR C8H).  
ES0  
bit 4  
Enable Serial port 0 interrupt. This bit controls the masking of the serial Port 0 interrupt.  
0: Disable all serial Port 0 interrupts.  
1: Enable interrupt requests generated by the RI_0 (SCON0.0, SFR 98H) or TI_0 (SCON0.1, SFR 98H) flags.  
MSC1212  
44  
SBAS278A  
www.ti.com  
ET1  
bit 3  
Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.  
0: Disable Timer 1 interrupt.  
1: Enable interrupt requests generated by the TF1 flag (TCON.7, SFR 88H).  
EX1  
bit 2  
Enable External Interrupt 1. This bit controls the masking of external interrupt 1.  
0: Disable external interrupt 1.  
1: Enable interrupt requests generated by the INT1 pin.  
ET0  
bit 1  
Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupts.  
1: Enable interrupt requests generated by the TF0 flag (TCON.5, SFR 88H).  
EX0  
bit 0  
Enable External Interrupt 0. This bit controls the masking of external interrupt 0.  
0: Disable external interrupt 0.  
1: Enable interrupt requests generated by the INT0 pin.  
Breakpoint Control (BPCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A9H  
BP  
0
0
0
0
0
PMSEL  
EBP  
00H  
Writing to register sets the breakpoint condition specified by MCON, BPL, and BPH.  
BP  
bit 7  
Breakpoint Interrupt. This bit indicates that a break condition has been recognized by a hardware breakpoint register(s).  
Read: Status of Breakpoint Interrupt. Will indicate a breakpoint match for any of the breakpoint registers.  
Write: 0: No effect.  
1: Clear Breakpoint 1 for breakpoint register selected by MCON (SFR 95H).  
PMSEL  
Program Memory Select. Write this bit to select memory for address breakpoints of register selected in  
bit 1  
MCON (SFR 95H).  
0: Break on address in data memory.  
1: Break on address in program memory.  
EBP  
Enable Breakpoint. This bit enables this breakpoint register. Address of breakpoint register selected by  
bit 0  
MCON (SFR 95H).  
0: Breakpoint disabled.  
1: Breakpoint enabled.  
Breakpoint Low (BPL) Address for BP Register Selected in MCON (95H)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AAH  
BPL.7  
BPL.6  
BPL.5  
BPL.4  
BPL.3  
BPL.2  
BPL.1  
BPL.0  
00H  
BPL.7-0  
Breakpoint Low Address. The low 8 bits of the 16 bit breakpoint address.  
bits 7-0  
Breakpoint High Address (BPH) Address for BP Register Selected in MCON (95H)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ABH  
BPH.7  
BPH.6  
BPH.5  
BPH.4  
BPH.3  
BPH.2  
BPH.1  
BPH.0  
00H  
BPH.7-0  
Breakpoint High Address. The high 8 bits of the 16 bit breakpoint address.  
bits 7-0  
MSC1212  
SBAS278A  
45  
www.ti.com  
Port 0 Data Direction Low Register (P0DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ACH  
P03H  
P03L  
P02H  
P02L  
P01H  
P01L  
P00H  
P00L  
00H  
P0.3  
Port 0 bit 3 control.  
bits 7-6  
P03H  
P03L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.2  
Port 0 bit 2 control.  
bits 5-4  
P02H  
P02L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.1  
Port 0 bit 1 control.  
bits 3-2  
P01H  
P01L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.0  
Port 0 bit 0 control.  
bits 1-0  
P00H  
P00L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 0 also controlled by EA and Memory Access Control HCR1.1.  
Port 0 Data Direction High Register (P0DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR ADH  
P07H  
P07L  
P06H  
P06L  
P05H  
P05L  
P04H  
P04L  
00H  
P0.7  
Port 0 bit 7 control.  
bits 7-6  
P07H  
P07L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.6  
Port 0 bit 6 control.  
bits 5-4  
P06H  
P06L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.5  
Port 0 bit 5 control.  
bits 3-2  
P05H  
P05L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
P0.4  
Port 0 bit 4 control.  
bits 1-0  
P04H  
P04L  
0
0
1
1
0
1
0
1
Standard 8051(Pull-Up)  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 0 also controlled by EA and Memory Access Control HCR1.1.  
MSC1212  
46  
SBAS278A  
www.ti.com  
Port 1 Data Direction Low Register (P1DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AEH  
P13H  
P13L  
P12H  
P12L  
P11H  
P11L  
P10H  
P10L  
00H  
P1.3  
Port 1 bit 3 control.  
bits 7-6  
P13H  
P13L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.2  
Port 1 bit 2 control.  
bits 5-4  
P12H  
P12L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.1  
Port 1 bit 1 control.  
bits 3-2  
P11H  
P11L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.0  
Port 1 bit 0 control.  
bits 1-0  
P10H  
P10L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
Port 1 Data Direction High Register (P1DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AFH  
P17H  
P17L  
P16H  
P16L  
P15H  
P15L  
P14H  
P14L  
00H  
P1.7  
Port 1 bit 7 control.  
bits 7-6  
P17H  
P17L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.6  
Port 1 bit 6 control.  
bits 5-4  
P16H  
P16L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.5  
Port 1 bit 5 control.  
bits 3-2  
P15H  
P15L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.4  
Port 1 bit 4 control.  
bits 1-0  
P14H  
P14L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
MSC1212  
SBAS278A  
47  
www.ti.com  
Port 3 (P3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B0H  
P3.7  
RD  
P3.6  
WR  
P3.5  
T1  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
P3.0  
FFH  
TXD0  
RXD0  
P3.7-0  
bits 7-0  
General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In addition, all the pins have  
an alternative function listed below. Each of the functions is controlled by several other SFRs. The associated  
Port 3 latch bit must contain a logic 1before the pin can be used in its alternate function capacity.  
RD  
bit 7  
External Data Memory Read Strobe. This pin provides an active low read strobe to an external memory device.  
If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even if a 1  
is not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.  
WR  
bit 6  
External Data Memory Write Strobe. This pin provides an active low write strobe to an external memory  
device. If Port 0 or Port 2 is selected for external memory in the HCR1 register, this function will be enabled even  
if a 1 is not written to this latch bit. When external memory is selected, the settings of P3DRRH are ignored.  
T1  
bit 5  
Timer/Counter 1 External Input. A 1 to 0 transition on this pin will increment Timer 1.  
Timer/Counter 0 External Input. A 1 to 0 transition on this pin will increment Timer 0.  
External Interrupt 1. A falling edge/low level on this pin will cause an external interrupt 1 if enabled.  
External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.  
T0  
bit 4  
INT1  
bit 3  
INT0  
bit 2  
TXD0  
Serial Port 0 Transmit. This pin transmits the serial Port 0 data in serial port modes 1, 2, 3, and emits the  
bit 1  
synchronizing clock in serial port mode 0.  
RXD0  
Serial Port 0 Receive. This pin receives the serial Port 0 data in serial port modes 1, 2, 3, and is a bidirectional  
bit 0  
data transfer pin in serial port mode 0.  
Port 2 Data Direction Low Register (P2DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B1H  
P23H  
P23L  
P22H  
P22L  
P21H  
P21L  
P20H  
P20L  
00H  
P2.3  
Port 2 bit 3 control.  
bits 7-6  
P23H  
P23L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.2  
Port 2 bit 2 control.  
bits 5-4  
P22H  
P22L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.1  
Port 2 bit 1 control.  
bits 3-2  
P21H  
P21L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.0  
Port 2 bit 0 control.  
bits 1-0  
P20H  
P20L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 2 also controlled by EA and Memory Access Control HCR1.1.  
MSC1212  
48  
SBAS278A  
www.ti.com  
Port 2 Data Direction High Register (P2DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B2H  
P27H  
P27L  
P26H  
P26L  
P25H  
P25L  
P24H  
P24L  
00H  
P2.7  
Port 2 bit 7 control.  
bits 7-6  
P27H  
P27L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.6  
Port 2 bit 6 control.  
bits 5-4  
P26H  
P26L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.5  
Port 2 bit 5 control.  
bits 3-2  
P25H  
P25L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P2.4  
Port 2 bit 4 control.  
bits 1-0  
P24H  
P24L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 2 also controlled by EA and Memory Access Control HCR1.1.  
Port 3 Data Direction Low Register (P3DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B3H  
P33H  
P33L  
P32H  
P32L  
P31H  
P31L  
P30H  
P30L  
00H  
P3.3  
Port 3 bit 3 control.  
bits 7-6  
P33H  
P33L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.2  
Port 3 bit 2 control.  
bits 5-4  
P32H  
P32L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.1  
Port 3 bit 1 control.  
bits 3-2  
P31H  
P31L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.0  
Port 3 bit 0 control.  
bits 1-0  
P30H  
P30L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
MSC1212  
SBAS278A  
49  
www.ti.com  
Port 3 Data Direction High Register (P3DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B4H  
P37H  
P37L  
P36H  
P36L  
P35H  
P35L  
P34H  
P34L  
00H  
P3.7  
Port 3 bit 7 control.  
bits 7-6  
P37H  
P37L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.7 also controlled by EA and Memory Access Control HCR1.1.  
P3.6  
Port 3 bit 6 control.  
bits 5-4  
P36H  
P36L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.6 also controlled by EA and Memory Access Control HCR1.1.  
P3.5  
Port 3 bit 5 control.  
bits 3-2  
P35H  
P35L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.4  
Port 3 bit 4 control.  
bits 1-0  
P34H  
P34L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
DAC Low Byte (DACL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5H  
00H  
DACL7-0  
Least Significant Bit Register for DAC0-3 and DAC Control (0 and 2).  
bits 7-0  
DAC High Byte (DACH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6H  
00H  
DACH7-0  
Most Significant Byte Register for DAC0-3 and DAC Control (1 and 3).  
bits 7-0  
DAC Select Register (DACSEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B7H  
DSEL7  
DSEL6  
DSEL5  
DSEL4  
DSEL3  
DSEL2  
DSEL1  
DSEL0  
00H  
DSEL7-0  
DAC and DAC Control Select. The DACSEL register selects which DAC output register or which DAC control  
bits 7-0  
register is accessed by the DACL and DACH registers.  
DACSEL (B7H)  
DACH (B6H)  
DACL (B5H)  
RESET VALUE  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
DAC0 (high)  
DAC1 (high)  
DAC2 (high)  
DAC3 (high)  
DACCON1  
DACCON3  
DAC0 (low)  
DAC1 (low)  
DAC2 (low)  
DAC3 (low)  
DACCON0  
DACCON2  
LOADCON  
0000H  
0000H  
0000H  
0000H  
6363H  
0303H  
--00H  
MSC1212  
50  
SBAS278A  
www.ti.com  
DAC0 Control Register (DACCON0)  
DACSEL = 04H  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5H  
COR0  
EOD0  
IDAC0DIS  
0
0
SELREF0  
DOM0_1  
DOM0_0  
63H  
COR0  
Current Over Range on DAC0  
bit 7  
Write: 0 = Clear to release from high-impedance state back to normal mode unless an over-range condition exists.  
1 = NOP  
Read: 0 = No current over range for DAC0.  
1 = COR0 signal after 3ms filter (EOD0 = 1) or raw signal (EOD0 = 0).  
EOD0  
Enable Over-Current Detection  
bit 6  
0 = Disable over-current detection.  
1 = Enable over-current detection (default).  
IDAC0DIS IDAC0 Disable (for DOM0 = 00)  
bit 5  
0 = IDAC on mode for DAC0.  
1 = IDAC off mode for DAC0 (default).  
Not Used  
bits 4-3  
SELREF0 Select the Reference Voltage for DAC0 Voltage Reference.  
bit 2 0 = DAC0 VREF = AVDD (default).  
1 = DAC0 VREF = internal VREF  
.
DOM0_1-0 DAC Output Mode DAC0.  
bits 1-0  
DOM0  
OUTPUT MODE FOR DAC0  
00  
01  
10  
11  
Normal VDAC output, IDAC controlled by IDAC0DIS bit.  
Power-Down modeVDAC output off 1kto AGND, IDAC off.  
Power-Down modeVDAC output off 100kto AGND, IDAC off.  
Power-Down modeVDAC output off high impedance, IDAC off (default).  
DAC1 Control Register (DACCON1)  
DACSEL = 04H  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6H  
COR1  
EOD1  
IDAC1DIS  
0
0
SELREF1  
DOM1_1  
DOM1_0  
63H  
COR1  
Current Over Range on DAC1  
bit 7  
Write: 0 = Clear to release from high-impedance state back to normal mode unless an over-range condition exists.  
1 = NOP  
Read: 0 = No current over range for DAC1.  
1 = COR1 signal after 3ms filter (EOD1 = 1) or raw signal (EOD1 = 0).  
EOD1  
Enable Over-Current Detection  
bit 6  
0 = Disable over-current detection.  
1 = Enable over-current detection (default).  
IDAC1DIS IDAC1 Disable (for DOM1 = 00)  
bit 5  
0 = IDAC on mode for DAC1.  
1 = IDAC off mode for DAC1 (default).  
Not Used  
bits 4-3  
SELREF1 Select the Reference Voltage for DAC1 Voltage Reference.  
bit 2 0 = DAC1 VREF = AVDD (default).  
1 = DAC1 VREF = internal VREF  
.
DOM1_1-0 DAC Output Mode DAC0.  
bits 1-0  
DOM1  
OUTPUT MODE FOR DAC1  
00  
01  
10  
11  
Normal VDAC output, IDAC controlled by IDAC1DIS bit.  
Power-Down modeVDAC output off 1kto AGND, IDAC off.  
Power-Down modeVDAC output off 100kto AGND, IDAC off.  
Power-Down modeVDAC output off high impedance, IDAC off (default).  
MSC1212  
SBAS278A  
51  
www.ti.com  
DAC2 Control Register (DACCON2)  
DACSEL = 05H  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5H  
0
0
0
0
0
SELREF2  
DOM2_1  
DOM2_0  
03H  
SELREF2 Select the Reference Voltage for DAC2 Voltage Reference.  
bit 2 0 = DAC2 VREF = AVDD (default).  
1 = DAC2 VREF = internal VREF  
.
DOM2_1-0 DAC Output Mode DAC2.  
bits 1-0  
DOM2  
OUTPUT MODE FOR DAC2  
00  
01  
10  
11  
Normal VDAC output.  
Power-Down modeVDAC output off 1kto AGND, IDAC off.  
Power-Down modeVDAC output off 100kto AGND, IDAC off.  
Power-Down modeVDAC output off high impedance, IDAC off (default).  
DAC3 Control Register (DACCON3)  
DACSEL = 05H  
7
6
5
4
3
2
1
0
Reset Value  
SFR B6H  
0
0
0
0
0
SELREF3  
DOM3_1  
DOM3_0  
03H  
SELREF3 Select the Reference Voltage for DAC3 Voltage Reference.  
bit 2 0 = DAC2 VREF = AVDD (default).  
1 = DAC2 VREF = internal VREF  
.
DOM3_1-0 DAC Output Mode DAC3.  
bits 1-0  
DOM2  
OUTPUT MODE FOR DAC2  
00  
01  
10  
11  
Normal VDAC output.  
Power-Down modeVDAC output off 1kto AGND, IDAC off.  
Power-Down modeVDAC output off 100kto AGND, IDAC off.  
Power-Down modeVDAC output off high impedance, IDAC off (default).  
DAC Load Control Register (LOADCON)  
DACSEL = 06H  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5H  
D3LOAD1  
D3LOAD0  
D2LOAD1  
D2LOAD0  
D1LOAD1  
D1LOAD0  
D0LOAD1  
D0LOAD0  
00H  
D3LOAD1-0 DAC Load Options.  
bit 7-6  
DxLOAD  
OUTPUT MODE FOR DACx  
D2LOAD1-0  
bit 5-4  
00  
01  
10  
11  
Direct load: write to DACxL directly loads the DAC buffer and the DAC output (write to DACxH does not load DAC output).  
Delay load: the values last written to DACxL/DACxH will be transferred to the DAC output on the next MSEC timer tick.  
Delay load: the values last written to DACxL/DACxH will be transferred to the DAC output on the next HMSEC timer tick.  
Sync load: the values contained in the DACxL/DACxH registers will be transferred to the DAC output immediately after  
11B is written to this register.  
D1LOAD1-0  
bit 3-2  
D0LOAD1-0  
bit 1-0  
Interrupt Priority (IP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B8H  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
80H  
PS1  
bit 6  
Serial Port 1 Interrupt. This bit controls the priority of the serial Port 1 interrupt.  
0 = Serial Port 1 priority is determined by the natural priority order.  
1 = Serial Port 1 is a high priority interrupt.  
PT2  
bit 5  
Timer 2 Interrupt. This bit controls the priority of the Timer 2 interrupt.  
0 = Timer 2 priority is determined by the natural priority order.  
1 = Timer 2 priority is a high priority interrupt.  
PS0  
bit 4  
Serial Port 0 Interrupt. This bit controls the priority of the serial Port 0 interrupt.  
0 = Serial Port 0 priority is determined by the natural priority order.  
1 = Serial Port 0 is a high priority interrupt.  
MSC1212  
52  
SBAS278A  
www.ti.com  
PT1  
bit 3  
Timer 1 Interrupt. This bit controls the priority of the Timer 1 interrupt.  
0 = Timer 1 priority is determined by the natural priority order.  
1 = Timer 1 priority is a high priority interrupt.  
PX1  
bit 2  
External Interrupt 1. This bit controls the priority of external interrupt 1.  
0 = External interrupt 1 priority is determined by the natural priority order.  
1 = External interrupt 1 is a high priority interrupt.  
PT0  
bit 1  
Timer 0 Interrupt. This bit controls the priority of the Timer 0 interrupt.  
0 = Timer 0 priority is determined by the natural priority order.  
1 = Timer 0 priority is a high priority interrupt.  
PX0  
bit 0  
External Interrupt 0. This bit controls the priority of external interrupt 0.  
0 = External interrupt 0 priority is determined by the natural priority order.  
1 = External interrupt 0 is a high priority interrupt.  
Serial Port 1 Control (SCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C0H  
SM0_1  
SM1_1  
SM2_1  
REN_1  
TB8_1  
RB8_1  
TI_1  
RI_1  
00H  
SM0-2  
bits 7-5  
Serial Port 1 Mode. These bits control the mode of serial Port 1. Modes 1, 2, and 3 have 1 start and 1 stop bit  
in addition to the 8 or 9 data bits.  
MODE SM0  
SM1  
SM2 FUNCTION  
LENGTH  
PERIOD  
(1)  
0
0
0
0
0
0
0
1
Synchronous  
Synchronous  
8 bits  
8 bits  
12 pCLK  
(1)  
4 pCLK  
1(2)  
0
1
1
0
x
Asynchronous  
Asynchronous  
10 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
(1)  
2
0
64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
(1)  
2
1
0
1
Asynchronous with  
Multiprocessor Communication  
11 bits  
64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
3(2)  
3(2)  
1
1
1
1
0
1
Asynchronous  
11 bits  
11 bits  
Timer 1 or 2 Baud Rate Equation  
Timer 1 or 2 Baud Rate Equation  
Asynchronous with  
Multiprocessor Communication  
NOTE: (1) pCLK will be equal to tCLK, except that pCLK will stop for IDLE. (2) For modes 1 and 3, the selection of  
Timer 1 or 2 for baud rate is specified via the SCON register.  
REN_1  
bit 4  
Receive Enable. This bit enables/disables the serial Port 1 received shift register.  
0 = Serial Port 1 reception disabled.  
1 = Serial Port 1 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_1  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 1 modes 2 and 3.  
bit 3  
RB8_1  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 1 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_1 = 0, RB8_1 is the state of the stop bit. RB8_1 is not used in mode 0.  
TI_1  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 1 buffer has been completely shifted  
out. In serial port mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, this bit is set at the end  
of the last data bit. This bit must be cleared by software to transmit the next byte.  
RI_1  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 1 buffer. In  
serial port mode 0, RI_1 is set at the end of the 8th bit. In serial port mode 1, RI_1 is set after the last sample  
of the incoming stop bit subject to the state of SM2_1. In modes 2 and 3, RI_1 is set after the last sample of  
RB8_1. This bit must be cleared by software to receive the next byte.  
MSC1212  
SBAS278A  
53  
www.ti.com  
Serial Data Buffer 1 (SBUF1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C1H  
00H  
SBUF1.7-0 Serial Data Buffer 1. Data for serial Port 1 is read from or written to this location. The serial transmit and receive  
bits 7-0 buffers are separate registers, but both are addressed at this location.  
Enable Wake Up (EWU) Waking Up from IDLE Mode  
7
6
5
4
3
2
1
0
Reset Value  
SFR C6H  
EWUWDT  
EWUEX1  
EWUEX0  
00H  
Auxialiary interrupts will wake up from IDLE. They are enabled with EAI (EICON.5).  
EWUWDT Enable Wake Up Watchdog Timer. Wake using watchdog timer interrupt.  
bit 2  
0 = Do not wake up on watchdog timer interrupt.  
1 = Wake up on watchdog timer interrupt.  
EWUEX1  
bit 1  
Enable Wake Up External 1. Wake using external interrupt source 1.  
0 = Do not wake up on external interrupt source 1.  
1 = Wake up on external interrupt source 1.  
EWUEX0  
bit 0  
Enable Wake Up External 0. Wake using external interrupt source 0.  
0 = Do not wake up on external interrupt source 0.  
1 = Wake up on external interrupt source 0.  
System Clock Divider Register (SYSCLK)  
7
6
5
40  
3
2
1
0
Reset Value  
SFR C7H  
0
0
DIVMOD1  
DIVMOD0  
0
DIV2  
DIV1  
DIV0  
00H  
DIVMOD1-0 Clock Divide Mode  
bits 5-4  
Write:  
DIVMOD  
DIVIDE MODE  
Normal mode (default, no divide)  
Immediate mode: start divide immediately, return to Normal mode on IDLE wakeup condition..  
00  
01  
10  
Delay mode: same as Immediate mode, except that the mode changes with the millisecond interrupt (MSINT). If MSINT is  
enabled, the divide will start on the next MSINT and return to normal mode on the following MSINT. If MSINT is not  
enabled, the divide will start on the next MSINT condition (even if masked) but will not leave the divide mode until the  
MSINT counter overflows, which follows a wakeup condition.  
11  
Reserved  
Read:  
DIVMOD  
DIVISION MODE STATUS  
00  
01  
10  
11  
No divide  
Divider is in Immediate mode  
Divider is in Delay mode  
Reserved  
NOTE:  
Do not clear the DIVMOD register to exit Immediate  
or Delay modes. Exit these modes only through the  
appropriate interrupt (the interrupt can be either  
normally generated or software generated).  
DIV2-0  
bit 2-0  
Divide Mode  
DIV  
DIVISOR  
000  
001  
010  
011  
100  
101  
110  
111  
Divide by 2 (default)  
Divide by 4  
Divide by 8  
Divide by 16  
Divide by 32  
Divide by 1024  
Divide by 2048  
Divide by 4096  
MSC1212  
54  
SBAS278A  
www.ti.com  
Timer 2 Control (T2CON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C8H  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
00H  
TF2  
Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows from FFFFH. It must be cleared by software.  
bit 7  
TF2 will only be set if RCLK and TCLK are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.  
EXF2  
bit 6  
Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) will cause this flag to be set based on  
the EXEN2 (T2CON.3) bit. If set by a negative transition, this flag must be cleared to 0 by software.  
Setting this bit in software will force a timer interrupt if enabled.  
RCLK  
bit 5  
Receive Clock Flag. This bit determines the serial Port 0 timebase when receiving data in serial modes 1 or 3.  
0 = Timer 1 overflow is used to determine receiver baud rate for USART0.  
1 = Timer 2 overflow is used to determine receiver baud rate for USART0.  
Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of  
the external clock.  
TCLK  
bit 4  
Transmit Clock Flag. This bit determines the serial Port 0 timebase when transmitting data in serial modes 1 or 3.  
0 = Timer 1 overflow is used to determine transmitter baud rate for USART0.  
1 = Timer 2 overflow is used to determine transmitter baud rate for USART0.  
Setting this bit will force Timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of  
the external clock.  
EXEN2  
bit 3  
Timer 2 External Enable. This bit enables the capture/reload function on the T2EX pin if Timer 2 is not  
generating baud rates for the serial port.  
0 = Timer 2 will ignore all external events at T2EX.  
1 = Timer 2 will capture or reload a value if a negative transition is detected on the T2EX pin.  
TR2  
Timer 1 Run Control. This bit enables/disables the operation of Timer 2. Halting this timer will preserve the  
bit 2  
current count in TH2, TL2.  
0 = Timer 2 is halted.  
1 = Timer 2 is enabled.  
C/T2  
bit 1  
Counter/Timer Select. This bit determines whether Timer 2 will function as a timer or counter. Independent of  
this bit, Timer 2 runs at 2 clocks per tick when used in baud rate generator mode.  
0 = Timer 2 functions as a timer. The speed of Timer 2 is determined by the T2M bit (CKCON.5).  
1 = Timer 2 will count negative transitions on the T2 pin (P1.0).  
CP/RL2  
bit 0  
Capture/Reload Select. This bit determines whether the capture or reload function will be used for Timer 2. If  
either RCLK or TCLK is set, this bit will not function and the timer will function in an auto-reload mode  
following each overflow.  
0 = Auto-reloads will occur when Timer 2 overflows or a falling edge is detected on T2EX if EXEN2 = 1.  
1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1.  
Timer 2 Capture LSB (RCAP2L)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CAH  
00H  
RCAP2L  
Timer 2 Capture LSB. This register is used to capture the TL2 value when Timer 2 is configured in capture  
bits 7-0  
mode. RCAP2L is also used as the LSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.  
MSC1212  
SBAS278A  
55  
www.ti.com  
Timer 2 Capture MSB (RCAP2H)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CBH  
00H  
RCAP2H  
bits 7-0  
Timer 2 Capture MSB. This register is used to capture the TH2 value when Timer 2 is configured in capture  
mode. RCAP2H is also used as the MSB of a 16-bit reload value when Timer 2 is configured in auto-reload  
mode.  
Timer 2 LSB (TL2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CCH  
00H  
TL2  
Timer 2 LSB. This register contains the least significant byte of Timer 2.  
bits 7-0  
Timer 2 MSB (TH2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR CDH  
00H  
TH2  
Timer 2 MSB. This register contains the most significant byte of Timer 2.  
bits 7-0  
Program Status Word (PSW)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D0H  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00H  
CY  
Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (during addition) or a borrow  
bit 7  
(during subtraction). Otherwise it is cleared to 0 by all arithmetic operations.  
AC  
bit 6  
Auxiliary Carry Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry into (during addition),  
or a borrow (during substraction) from the high order nibble. Otherwise, it is cleared to 0 by all arithmetic  
operations.  
F0  
User Flag 0. This is a bit-addressable, general-purpose flag for software control.  
bit 5  
RS1, RS0 Register Bank Select 1-0. These bits select which register bank is addressed during register accesses.  
bits 4-3  
RS1  
RS0 REGISTER BANK ADDRESS  
0
0
1
1
0
1
0
1
0
1
2
3
00H-07H  
08H-0FH  
10H-17H  
18H-1FH  
OV  
Overflow Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry (addition), borrow  
bit 2  
(subtraction), or overflow (multiply or divide). Otherwise it is cleared to 0 by all arithmetic operations.  
F1  
User Flag 1. This is a bit-addressable, general-purpose flag for software control.  
bit 1  
P
Parity Flag. This bit is set to 1 if the modulo-2 sum of the 8 bits of the accumulator is 1 (odd parity); and  
bit 0  
cleared to 0 on even parity.  
ADC Offset Calibration Register Low Byte (OCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D1H  
00H  
OCL  
ADC Offset Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the  
bits 7-0  
ADC offset calibration. A value which is written to this location will set the ADC offset calibration value.  
MSC1212  
56  
SBAS278A  
www.ti.com  
ADC Offset Calibration Register Middle Byte (OCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D2H  
00H  
OCM  
ADC Offset Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains the ADC  
bits 7-0  
offset calibration. A value which is written to this location will set the ADC offset calibration value.  
ADC Offset Calibration Register High Byte (OCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D3H  
00H  
OCH  
ADC Offset Calibration Register High Byte. This is the high byte of the 24-bit word that contains the  
bits 7-0  
ADC offset calibration. A value which is written to this location will set the ADC offset calibration value.  
ADC Gain Calibration Register Low Byte (GCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D4H  
5AH  
GCL  
ADC Gain Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the ADC  
bits 7-0  
gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration Register Middle Byte (GCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D5H  
ECH  
GCM  
ADC Gain Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains  
bits 7-0  
the ADC gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration Register High Byte (GCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D6H  
5FH  
GCH  
ADC Gain Calibration Register High Byte. This is the high byte of the 24-bit word that contains the  
bits 7-0  
ADC gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Multiplexer Register (ADMUX)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D7H  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
01H  
INP3-0  
Input Multiplexer Positive Channel. This selects the positive signal input.  
bits 7-4  
INP3  
INP2  
INP1  
INP0  
POSITIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0 (default)  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (Requires ADMUX = FFH)  
MSC1212  
SBAS278A  
57  
www.ti.com  
INN3-0  
Input Multiplexer Negative Channel. This selects the negative signal input.  
bits 3-0  
INN3  
INN2  
INN1  
INN0  
NEGATIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1 (default)  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (Requires ADMUX = FFH)  
Enable Interrupt Control (EICON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D8H  
SMOD1  
1
EAI  
AI  
WDTI  
0
0
0
40H  
SMOD1  
bit 7  
Serial Port 1 Mode. When this bit is set the serial baud rate for Port 1 will be doubled.  
0 = Standard baud rate for Port 1 (default).  
1 = Double baud rate for Port 1.  
EAI  
bit 5  
Enable Auxiliary Interrupt. The Auxiliary Interrupt accesses nine different interrupts which are masked and  
identified by SFR registers PAI (SFR A5H), AIE (SFR A6H), and AISTAT (SFR A7H).  
0 = Auxiliary Interrupt disabled (default).  
1 = Auxiliary Interrupt enabled.  
AI  
bit 4  
Auxiliary Interrupt Flag. AI must be cleared by software before exiting the interrupt service routine,  
after the source of the interrupt is cleared. Otherwise, the interrupt occurs again. Setting AI in software generates  
an Auxiliary Interrupt, if enabled.  
0 = No Auxiliary Interrupt detected (default).  
1 = Auxiliary Interrupt detected.  
WDTI  
bit 3  
Watchdog Timer Interrupt Flag. WDTI must be cleared by software before exiting the interrupt service routine.  
Otherwise, the interrupt occurs again. Setting WDTI in software generates a watchdog time interrupt, if enabled.  
The Watchdog timer can generate an interrupt or reset. The interrupt is available only if the reset action is disabled  
in HCR0.  
0 = No Watchdog Timer Interrupt Detected (default).  
1 = Watchdog Timer Interrupt Detected.  
ADC Results Register Low Byte (ADRESL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D9H  
00H  
ADRESL  
The ADC Results Low Byte. This is the low byte of the 24-bit word that contains the ADC  
bits 7-0  
Converter Results. Reading from this register clears the ADC interrupt.  
ADC Results Register Middle Byte (ADRESM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DAH  
00H  
ADRESM  
The ADC Results Middle Byte. This is the middle byte of the 24-bit word that contains the ADC  
bits 7-0  
Converter Results.  
ADC Results Register High Byte (ADRESH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DBH  
00H  
ADRESH  
The ADC Results High Byte. This is the high byte of the 24-bit word that contains the ADC  
bits 7-0  
Converter Results.  
MSC1212  
58  
SBAS278A  
www.ti.com  
ADC Control Register 0 (ADCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DCH  
BOD  
EVREF  
VREFH  
EBUF  
PGA2  
PGA1  
PGA0  
30H  
BOD  
bit 6  
Burnout Detect. When enabled this connects a positive current source to the positive channel and a negative  
current source to the negative channel. If the channel is open circuit then the ADC results will be full-scale.  
0 = Burnout Current Sources Off (default).  
1 = Burnout Current Sources On.  
EVREF  
bit 5  
Enable Internal Voltage Reference. If the internal voltage reference is not used, it should be turned off to save  
power and reduce noise.  
0 = Internal Voltage Reference Off.  
1 = Internal Voltage Reference On (default).  
VREFH  
bit 4  
Voltage Reference High Select. The internal voltage reference can be selected to be 2.5V or 1.25V.  
0 = REFOUT/REF IN+ is 1.25V.  
1 = REFOUT/REF IN+ is 2.5V (default).  
EBUF  
Enable Buffer. Enable the input buffer to provide higher input impedance but limits the input voltage range and  
bit 3  
dissipates more power.  
0 = Buffer disabled (default).  
1 = Buffer enabled.  
PGA2-0  
Programmable Gain Amplifier. Sets the gain for the PGA from 1 to 128.  
bits 2-0  
PGA2  
PGA1  
PGA0  
GAIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 (default)  
2
4
8
16  
32  
64  
128  
ADC Control Register 1 (ADCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DDH  
POL  
SM1  
SM0  
CAL2  
CAL1  
CAL0  
x000 0000B  
POL  
Polarity. Polarity of the ADC result and Summation register.  
bit 6  
0 = Bipolar.  
1 = Unipolar.  
POL  
ANALOG INPUT  
DIGITAL OUTPUT  
+FSR  
ZERO  
FSR  
0x7FFFFF  
0x000000  
0x800000  
0
+FSR  
ZERO  
FSR  
0xFFFFFF  
0x000000  
0x000000  
1
SM1-0  
Settling Mode. Selects the type of filter or auto select which defines the digital filter settling characteristics.  
bits 5-4  
SM1  
SM0  
SETTLING MODE  
0
0
1
1
0
1
0
1
Auto  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
MSC1212  
SBAS278A  
59  
www.ti.com  
CAL2-0  
Calibration Mode Control Bits.  
bits 2-0  
CAL2 CAL1 CAL0  
CALIBRATION MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No Calibration (default)  
Self Calibration, Offset and Gain  
Self Calibration, Offset Only  
Self Calibration, Gain Only  
System Calibration, Offset Only  
System Calibration, Gain Only  
Reserved  
Reserved  
Read Value000B.  
ADC Control Register 2 (ADCON2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DEH  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
1BH  
DR7-0  
Decimation Ratio LSB.  
bits 7-0  
ADC Control Register 3 (ADCON3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DFH  
DR10  
DR9  
DR8  
06H  
DR10-8  
Decimation Ratio Most Significant 3 Bits. The output data rate = (ACLK + 1)/64/Decimation Ratio.  
bits 2-0  
Accumulator (A or ACC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E0H  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
00H  
ACC.7-0  
Accumulator. This register serves as the accumulator for arithmetic and logic operations.  
bits 7-0  
Summation/Shifter Control (SSCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E1H  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00H  
The Summation register is powered down when the ADC is powered down. If all zeroes are written to this register the 32-bit  
SUMR3-0 registers will be cleared. The Summation registers will do sign extend if Bipolar is selected in ADCON1.  
SSCON1-0 Summation/Shift Control.  
bits 7-6  
SSCON1 SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
DESCRIPTION  
0
0
0
1
0
1
0
0
0
0
1
1
0
0
1
x
0
1
0
x
0
0
0
x
0
0
0
0
0
0
0
0
0
Clear Summation Register  
CPU Summation on Write to SUMR0  
CPU Subtraction on Write to SUMR0  
Note (1) Note (1) Note (1) CPU Shift Only  
ADC Summation Only  
Note (1) Note (1) Note (1) Note (1) Note (1) Note (1) ADC Summation Completes then Shift Completes  
Note (1) Note (1) Note (1)  
x
x
x
NOTES: (1) Refer to register bit definition.  
SCNT2-0  
Summation Count. When the summation is complete an interrupt will be generated unless masked. Reading the  
bits 5-3  
SUMR0 register clears the interrupt.  
SCNT2 SCNT1 SCNT0  
SUMMATION COUNT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
MSC1212  
60  
SBAS278A  
www.ti.com  
SHF2-0  
Shift Count.  
bits 2-0  
SHF2  
SHF1  
SHF0  
SHIFT  
DIVIDE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
2
4
8
16  
32  
64  
128  
256  
Summation Register 0 (SUMR0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E2H  
00H  
SUMR0  
bits 7-0  
Summation Register 0. This is the least significant byte of the 32-bit summation register or bits 0 to 7.  
Write: will cause values in SUMR3-0 to be added to the summation register.  
Read: will clear the Summation Count Interrupt.  
Summation Register 1 (SUMR1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E3H  
00H  
SUMR1  
Summation Register 1. This is the most significant byte of the lowest 16 bits of the summation register or bits 8-15.  
bits 7-0  
Summation Register 2 (SUMR2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E4H  
00H  
SUMR2  
Summation Register 2. This is the most significant byte of the lowest 24 bits of the summation register or bits 16-23.  
bits 7-0  
Summation Register 3 (SUMR3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E5H  
00H  
SUMR3  
Summation Register 3. This is the most significant byte of the 32-bit summation register or bits 24-31.  
bits 7-0  
Offset DAC Register (ODAC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E6H  
00H  
ODAC  
bits 7-0  
Offset DAC Register. This register will shift the input by up to half of the ADC input range. The least  
significant bit is equal to the input voltage range divided by 256. The input range will depend on the setting  
of the PGA. The ODAC is a signed magnitude register with bit 7 providing the sign of the offset and bits 6-0  
providing the magnitude.  
bit 7  
Offset DAC Sign bit.  
0 = Positive  
1 = Negative  
VREF  
ODAC[6: 0]  
127  
(1)bit 7  
bit 6-0  
Offset =  
2PGA  
NOTE: The offset must be used after calibration or the calibration will nullify the effects.  
MSC1212  
SBAS278A  
61  
www.ti.com  
Low Voltage Detect Control (LVDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E7H  
ALVDIS  
ALVD2  
ALVD1  
ALVD0  
DLVDIS  
DLVD2  
DLVD1  
DLVD0  
00H  
ALVDIS  
Analog Low Voltage Detect Disable.  
bit 7  
0 = Enable Detection of Low Analog Supply Voltage.  
1 = Disable Detection of Low Analog Supply Voltage.  
ALVD2-0  
Analog Voltage Detection Level.  
bits 6-4  
ALVD2 ALVD1 ALVD0  
VOLTAGE LEVEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AVDD 2.7V (default)  
AVDD 3.0V  
AVDD 3.3V  
AVDD 4.0V  
AVDD 4.2V  
AVDD 4.5V  
AVDD 4.7V  
External Voltage AIN7 Compared to 1.2V  
DLVDIS  
Digital Low Voltage Detect Disable.  
bit 3  
0 = Enable Detection of Low Digital Supply Voltage.  
1 = Disable Detection of Low Digital Supply Voltage.  
DLVD2-0  
Digital Voltage Detection Level.  
bits 2-0  
DLVD2 DLVD1 DLVD0  
VOLTAGE LEVEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DVDD 2.7V (default)  
DVDD 3.0V  
DVDD 3.3V  
DVDD 4.0V  
DVDD 4.2V  
DVDD 4.5V  
DVDD 4.7V  
External Voltage AIN6 Compared to 1.2V  
Extended Interrupt Enable (EIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E8H  
1
1
1
EWDI  
EX5  
EX4  
EX3  
EX2  
E0H  
EWDI  
by  
Enable Watchdog Interrupt. This bit enables/disables the Watchdog interrupt. The Watchdog timer is enabled  
the WDTCON (SFR FFH) and PDCON (SFR F1H) registers.  
bit 4  
0 = Disable the Watchdog Interrupt  
1 = Enable Interrupt Request Generated by the Watchdog Timer  
EX5  
bit 3  
External Interrupt 5 Enable. This bit enables/disables external interrupt 5.  
0 = Disable External Interrupt 5  
1 = Enable External Interrupt 5  
EX4  
bit 2  
External Interrupt 4 Enable. This bit enables/disables external interrupt 4.  
0 = Disable External Interrupt 4  
1 = Enable External Interrupt 4  
EX3  
bit 1  
External Interrupt 3 Enable. This bit enables/disables external interrupt 3.  
0 = Disable External Interrupt 3  
1 = Enable External Interrupt 3  
EX2  
bit 0  
External Interrupt 2 Enable. This bit enables/disables external interrupt 2.  
0 = Disable External Interrupt 2  
1 = Enable External Interrupt 2  
MSC1212  
62  
SBAS278A  
www.ti.com  
Hardware Product Code Register 0 (HWPC0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E9H  
HWPC0.7  
HWPC0.6  
HWPC0.5  
HWPC0.4  
HWPC0.3  
1
MEMORY SIZE  
0000_001xxB  
HWPC0.7-0  
Hardware Product Code LSB. Read-only.  
MEMORY SIZE  
MODEL  
FLASH MEMORY  
bits 7-0  
0
0
1
1
0
1
0
1
MSC1212Y2  
MSC1212Y3  
MSC1212Y4  
MSC1212Y5  
4kB  
8kB  
16kB  
32kB  
Hardware Product Code Register 1 (HWPC1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EAH  
1
08H  
HWPC1.7-0  
Hardware Product Code MSB. Read-only.  
bits 7-0  
Hardware Version Register (HDWVER)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EBH  
Flash Memory Control (FMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EEH  
0
PGERA  
0
FRCM  
0
BUSY  
1
0
02H  
PGERA  
bit 6  
Page Erase. Available in both user and program modes.  
0 = Disable Page Erase Mode  
1 = Enable Page Erase Mode  
FRCM  
bit 4  
Frequency Control Mode. The bypass is only used for slow clocks to save power.  
0 = Bypass (default)  
1 = Use Delay Line. Saves power (recommended).  
BUSY  
bit 2  
Write/Erase BUSY Signal.  
0 = Idle or Available  
1 = Busy  
Flash Memory Timing Control Register (FTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EFH  
FER3  
FER2  
FER1  
FER0  
FWR3  
FWR2  
FWR1  
FWR0  
A5H  
Refer to Flash Timing Characteristics  
FER3-0  
bits 7-4  
Set Erase. Flash Erase Time = (1 + FER) (MSEC + 1) tCLK  
11ms industrial temperature range.  
.
5ms commercial temperature range.  
FWR3-0  
bits 3-0  
Set Write. Flash Write Time = (1 + FWR) (USEC + 1) 5 tCLK  
30µs to 40µs.  
.
MSC1212  
SBAS278A  
63  
www.ti.com  
B Register (B)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F0H  
B.7  
B.6  
B.5  
B.4  
B.3  
B.2  
B.1  
B.0  
00H  
B.7-0  
B Register. This register serves as a second accumulator for certain arithmetic operations.  
bits 7-0  
Power-Down Control Register (PDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F1H  
0
PDDAC  
1
PDPWM  
PDAD  
PDWDT  
PDST  
PDSPI  
7FH  
Turning peripheral modules off puts the MSC1212 in the lowest power mode.  
PDDAC  
bit 6  
Pulse Width Module Control.  
0 = DACs On  
1 = DACs Power Down  
PDPWM  
bit 4  
Pulse Width Module Control.  
0 = PWM On  
1 = PWM Power Down  
PDAD  
ADC Control.  
bit 3  
0 = ADC On  
1 = ADC, VREF, Summation registers, and Analog Brownout are powered down. Analog current = 0.  
PDWDT  
bit 2  
Watchdog Timer Control.  
0 = Watchdog Timer On  
1 = Watchdog Timer Power Down  
PDST  
bit 1  
System Timer Control.  
0 = System Timer On  
1 = System Timer Power Down  
PDSPI  
bit 0  
SPI System Control.  
0 = SPI System On  
1 = SPI System Power Down  
PSEN/ALE Select (PASEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F2H  
0
0
PSEN2  
PSEN1  
PSEN0  
0
ALE1  
ALE0  
00H  
PSEN2-0  
PSEN Mode Select.  
bits 5-3  
PSEN2  
PSEN1  
PSEN0  
0
0
1
1
1
0
1
0
1
1
X
X
X
0
PSEN  
CLK  
ADC MODCLK  
LOW  
1
HIGH  
ALE1-0  
ALE Mode Select.  
bits 1-0  
ALE1  
ALE0  
0
1
1
X
0
1
ALE  
LOW  
HIGH  
NOTE: X = dont care.  
MSC1212  
64  
SBAS278A  
www.ti.com  
Analog Clock (ACLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F6H  
0
FREQ6  
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03H  
FREQ6-0  
bits 6-0  
Clock Frequency 1. This value + 1 divides the system clock to create the ADC clock.  
ACLK frequency = fCLK/(FREQ + 1)  
fMOD = fCLK/(FREQ + 1)/64  
Data Rate = fMOD/Decimation  
System Reset Register (SRST)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F7H  
0
0
0
0
0
0
0
RSTREQ  
00H  
RSTREQ  
Reset Request. Setting this bit to 1 and then clearing to 0 will generate a system reset.  
bit 0  
Extended Interrupt Priority (EIP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F8H  
1
1
1
PWDI  
PX5  
PX4  
PX3  
PX2  
E0H  
PWDI  
bit 4  
Watchdog Interrupt Priority. This bit controls the priority of the watchdog interrupt.  
0 = The watchdog interrupt is low priority.  
1 = The watchdog interrupt is high priority.  
PX5  
bit 3  
External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.  
0 = External interrupt 5 is low priority.  
1 = External interrupt 5 is high priority.  
PX4  
bit 2  
External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.  
0 = External interrupt 4 is low priority.  
1 = External interrupt 4 is high priority.  
PX3  
bit 1  
External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.  
0 = External interrupt 3 is low priority.  
1 = External interrupt 3 is high priority.  
PX2  
bit 0  
External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.  
0 = External interrupt 2 is low priority.  
1 = External interrupt 2 is high priority.  
Seconds Timer Interrupt (SECINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F9H  
WRT  
SECINT6  
SECINT5  
SECINT4  
SECINT3  
SECINT2  
SECINT1  
SECINT0  
7FH  
This system clock is divided by the value of the 16-bit register MSECH:MSECL. Then that 1ms timer tick is divided by the register  
HMSEC which provides the 100ms signal used by this seconds timer. Therefore, this seconds timer can generate an interrupt  
which occurs from 100ms to 12.8 seconds. Reading this register will clear the Seconds Interrupt. This Interrupt can be monitored  
in the AIE register.  
WRT  
bit 7  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
0 = Delay Write Operation. The SEC value is loaded when the current count expires.  
1 = Write Immediately. The counter is loaded once the CPU completes the write operation.  
SECINT6-0 Seconds Count. Normal operation would use 100ms as the clock interval.  
bits 6-0  
Seconds Interrupt = (1 + SEC) (HMSEC + 1) (MSEC + 1) tCLK.  
MSC1212  
SBAS278A  
65  
www.ti.com  
Milliseconds Interrupt (MSINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FAH  
WRT  
MSINT6  
MSINT5  
MSINT4  
MSINT3  
MSINT2  
MSINT1  
MSINT0  
7FH  
The clock used for this timer is the 1ms clock which results from dividing the system clock by the values in registers MSECH:MSECL.  
Reading this register will clear the interrupt.  
WRT  
bit 7  
Write Control. Determines whether to write the value immediately or wait until the current count is finished. Read = 0.  
0 = Delay Write Operation. The MSINT value is loaded when the current count expires.  
1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.  
MSINT6-0 Seconds Count. Normal operation would use 1ms as the clock interval.  
bits 6-0 MS Interrupt Interval = (1 + MSINT) (MSEC + 1) tCLK  
One Microsecond Register (USEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FBH  
0
0
0
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03H  
FREQ4-0  
Clock Frequency 1. This value + 1 divides the system clock to create a 1µs Clock.  
bits 4-0  
USEC = CLK/(FREQ + 1). This clock is used to set Flash write time. See FTCON (SFR EFH).  
One Millisecond Low Register (MSECL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FCH  
MSECL7  
MSECL6  
MSECL5  
MSECL4  
MSECL3  
MSECL2  
MSECL1  
MSECL0  
9FH  
MSECL7-0 One Millisecond Low. This value in combination with the next register is used to create a 1ms Clock.  
bits 7-0 1ms Clock = (MSECH 256 + MSECL + 1) tCLK. This clock is used to set Flash erase time. See FTCON (SFR EFH).  
One Millisecond High Register (MSECH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FDH  
MSECH7  
MSECH6  
MSECH5  
MSECH4  
MSECH3  
MSECH2  
MSECH1  
MSECH0  
0FH  
MSECH7-0 One Millisecond High. This value in combination with the previous register is used to create a 1ms clock.  
bits 7-0 1ms = (MSECH 256 + MSECL + 1) tCLK  
.
One Hundred Millisecond Register (HMSEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FEH  
HMSEC7  
HMSEC6  
HMSEC5  
HMSEC4  
HMSEC3  
HMSEC2  
HMSEC1  
HMSEC0  
63H  
HMSEC7-0 One Hundred Millisecond. This clock divides the 1ms clock to create a 100ms clock.  
bits 7-0 100ms = (MSECH 256 + MSECL + 1) (HMSEC + 1) tCLK  
.
Watchdog Timer Register (WDTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FFH  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
00H  
EWDT  
Enable Watchdog (R/W).  
bit 7  
Write 1/Write 0 sequence sets the Watchdog Enable Counting bit.  
DWDT  
Disable Watchdog (R/W).  
bit 6  
Write 1/Write 0 sequence clears the Watchdog Enable Counting bit.  
RWDT  
Reset Watchdog (R/W).  
bit 5  
Write 1/Write 0 sequence restarts the Watchdog Counter.  
WDCNT4-0  
Watchdog Count (R/W).  
bits 4-0  
Watchdog expires in (WDCNT + 1) HMSEC to (WDCNT + 2) HMSEC, if the sequence is not asserted. There  
is an uncertainty of 1 count.  
MSC1212  
66  
SBAS278A  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Dec-2004  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Drawing  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
PAG  
MSC1212Y2PAGR  
MSC1212Y2PAGT  
MSC1212Y3PAGR  
MSC1212Y3PAGT  
MSC1212Y4PAGR  
MSC1212Y4PAGT  
MSC1212Y5PAGR  
MSC1212Y5PAGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
64  
64  
64  
64  
64  
64  
64  
64  
1500  
250  
None  
None  
None  
None  
None  
None  
None  
None  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
Call TI  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
Call TI  
1500  
250  
1500  
250  
2000  
250  
CU SNPB  
CU SNPB  
Level-3-235C-168 HR  
Level-3-235C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

MSC1212Y4PAGR

Precision Analog-to-Digital Converter (ADC)
BB

MSC1212Y4PAGR

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1212Y4PAGT

Precision Analog-to-Digital Converter (ADC)
BB

MSC1212Y4PAGT

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1212Y5

Precision Analog-to-Digital Converter (ADC)
BB

MSC1212Y5

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1212Y5PAGR

Precision Analog-to-Digital Converter (ADC)
BB

MSC1212Y5PAGR

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1212Y5PAGT

Precision Analog-to-Digital Converter (ADC)
BB

MSC1212Y5PAGT

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI

MSC1213

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs)
TI

MSC1213Y2

Precision Analog-to-Digital Converter (ADC) and Digital-to-Analog Converters (DACs) with 8051 Microcontroller and Flash Memory
TI