AZ100E111 [AZM]

ECL/PECL 1:9 Differential Clock Driver; ECL / PECL 1 : 9差分时钟驱动器
AZ100E111
型号: AZ100E111
厂家: ARIZONA MICROTEK, INC    ARIZONA MICROTEK, INC
描述:

ECL/PECL 1:9 Differential Clock Driver
ECL / PECL 1 : 9差分时钟驱动器

时钟驱动器
文件: 总6页 (文件大小:92K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ARIZONA MICROTEK, INC.  
AZ10E111  
AZ100E111  
ECL/PECL 1:9 Differential Clock Driver  
FEATURES  
PACKAGE AVAILABILITY  
Low Skew  
Differential Design  
Clock Enable  
VBB Output  
Operating Range of 4.2V to 5.46V  
75kΩ Internal Input Pulldown Resistors  
Direct Replacement for ON Semi  
MC10E111 & MC100E111  
PACKAGE  
PART NUMBER  
MARKING  
NOTES  
AZM10E111  
<Date Code>  
AZM100E111  
<Date Code>  
PLCC 28  
AZ10E111FN  
1,2  
PLCC 28  
AZ100E111FN  
1,2  
1
2
Add R2 at end of part number for 13 inch (2.5K parts) Tape & Reel.  
Date code format: “YY” for year followed by “WW” for week.  
DESCRIPTION  
The AZ10/100E111 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. The IN  
signal is fanned-out to nine identical differential outputs. An Enable input is also provided. A HIGH disables the  
device by forcing all Q outputs LOW and all Q¯ outputs HIGH.  
The AZ100E111 provides a VBB output for single-ended use or a DC bias reference for AC coupling to the  
device. For single–ended input applications, the VBB reference should be connected to one side of the IN/I¯N¯  
differential input pair. The input signal is then fed to the other IN/I¯N¯ input. The VBB pin should be used only as a  
bias for the E111 as its sink/source capability is limited. When used, the VBB pin should be bypassed to ground via a  
0.01μF capacitor.  
The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and  
layout serve to minimize gate-to-gate skew within-device, and empirical modeling is used to determine process  
control limits that ensure consistent tpd distributions from lot-to-lot. The net result is a dependable, low skew device.  
To ensure that the tight skew specification is met, both sides of the differential output must be terminated into  
50Ω, even if only one side is used. In most applications all nine differential pairs will be used and therefore  
terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on  
the same package side (i.e. sharing the same VCCO) as the pair(s) being used on that side, in order to maintain  
minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10-20ps) of  
the output(s) being used that, while not being catastrophic to most designs, will mean a loss of skew margin.  
NOTE: Specifications in the ECL/PECL tables are valid when thermal equilibrium is established.  
1630 S. STAPLEY DR., SUITE 127 MESA, ARIZONA 85204 USA (480) 962-5881 FAX (480) 890-2541  
www.azmicrotek.com  
AZ10E111  
AZ100E111  
VCCO  
Q0  
25  
Q0  
24  
Q1  
23  
Q1  
21  
Q2  
20  
Q2  
19  
LOGIC SYMBOL  
22  
V
Q3  
Q3  
26  
EE  
18  
Q0  
Q0  
EN  
27  
28  
1
17  
16  
15  
Q1  
Q1  
IN  
Q4  
Pinout: 28-Lead PLCC  
(Top View)  
VCCO  
VCC  
Q2  
Q2  
14  
Q4  
2
IN  
IN  
IN  
VBB  
3
13  
12  
Q3  
Q3  
Q5  
Q5  
4
NC  
Q4  
Q4  
EN  
5
6
7
8
9
10  
11  
Q5  
Q5  
VCCO  
Q7  
Q6  
Q8  
Q8  
Q7  
Q6  
Q6  
Q6  
PIN DESCRIPTION  
FUNCTION  
Differential Input Pair  
Enable  
Q0, Q¯¯0 - Q8, Q¯¯8 Differential Outputs  
PIN  
Q7  
Q7  
IN, I¯N¯  
E¯N¯  
Q8  
Q8  
V
BB  
VBB  
VBB Output  
VCC , VCCO  
VEE  
Positive Supply  
Negative Supply  
Absolute Maximum Ratings are those values beyond which device life may be impaired.  
Symbol  
Characteristic  
Rating  
Unit  
VCC  
VI  
VEE  
VI  
PECL Power Supply (VEE = 0V)  
0 to +8.0  
0 to +6.0  
-8.0 to 0  
-6.0 to 0  
50  
Vdc  
Vdc  
Vdc  
Vdc  
PECL Input Voltage  
ECL Power Supply  
ECL Input Voltage  
Output Current  
(VEE = 0V)  
(VCC = 0V)  
(VCC = 0V)  
--- Continuous  
--- Surge  
IOUT  
mA  
100  
TA  
TSTG  
Operating Temperature Range  
Storage Temperature Range  
-40 to +85  
-65 to +150  
°C  
°C  
10K ECL DC Characteristics (VEE = -4.94V to -5.46V, VCC = VCCO = GND)  
-40°C  
Typ  
0°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
VOH  
Output HIGH Voltage1  
Output LOW Voltage1  
Input HIGH Voltage  
Input LOW Voltage  
Reference Voltage  
Input HIGH Current  
Input LOW Current  
Power Supply Current  
-1080  
-1950  
-1230  
-1950  
-1430  
-890  
-1650 -1950  
-890 -1170  
-1500 -1950  
-1300 -1380  
150  
0.5  
60  
-1020  
-840  
-1630 -1950  
-840 -1130  
-1480 -1950  
-1270 -1350  
150  
0.5  
60  
-980  
-810  
-1630 -1950  
-810 -1060  
-1480 -1950  
-1250 -1310  
150  
0.5  
60  
-910  
-720  
-1595  
-720  
-1445  
-1190  
150  
mV  
mV  
mV  
mV  
mV  
μA  
VOL  
VIH  
VIL  
VBB  
IIH  
0.5  
IIL  
IEE  
μA  
mA  
48  
48  
48  
48  
60  
1.  
Each output is terminated through a 50Ω resistor to VCC – 2V.  
November 2006 * REV - 3  
www.azmicrotek.com  
2
AZ10E111  
AZ100E111  
10K PECL DC Characteristics (VEE = GND, VCC = VCCO = +5.0V)  
-40°C  
Typ  
0°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Unit  
Min  
3920  
3050  
3770  
3050  
3570  
Max  
4110  
3350  
4110  
3500  
3700  
150  
Min  
3980  
3050  
3830  
3050  
3620  
Max  
4160  
3370  
4160  
3520  
3730  
150  
Min  
4020  
3050  
3870  
3050  
3650  
Max  
4190  
3370  
4190  
3520  
3750  
150  
Min  
4090  
3050  
3940  
3050  
3690  
Max  
4280  
3405  
4280  
3555  
3810  
150  
VOH  
VOL  
VIH  
VIL  
VBB  
IIH  
Output HIGH Voltage1,2  
Output LOW Voltage1,2  
Input HIGH Voltage1  
Input LOW Voltage1  
Reference Voltage1  
Input HIGH Current  
Input LOW Current  
Power Supply Current  
mV  
mV  
mV  
mV  
mV  
μA  
0.5  
0.5  
0.5  
0.5  
IIL  
IEE  
μA  
mA  
48  
60  
48  
60  
48  
60  
48  
60  
1.  
2.  
For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value.  
Each output is terminated through a 50Ω resistor to VCC – 2V.  
100K ECL DC Characteristics (VEE = -4.2V to -5.46V, VCC = VCCO = GND)  
-40°C  
Typ  
-1085 -1005  
0°C  
Typ  
-955  
25°C  
Typ  
-955  
85°C  
Typ  
-955  
Symbol  
Characteristic  
Unit  
Min  
Max  
-880  
Min  
-1025  
Max  
-880  
Min  
-1025  
Max  
-880  
Min  
-1025  
Max  
-880  
VOH  
Output HIGH Voltage1  
Output LOW Voltage1  
Input HIGH Voltage  
Input LOW Voltage  
Reference Voltage  
Input HIGH Current  
Input LOW Current  
Power Supply Current  
mV  
mV  
mV  
mV  
mV  
μA  
VOL  
VIH  
VIL  
VBB  
IIH  
-1830 -1695 -1555 -1810 -1705 -1620 -1810 -1705 -1620 -1810 -1705 -1620  
-1165  
-1810  
-1380  
-880  
-1475 -1810  
-1260 -1380  
150  
0.5  
60  
-1165  
-880  
-1475 -1810  
-1260 -1380  
150  
0.5  
60  
-1165  
-880  
-1475 -1810  
-1260 -1380  
150  
0.5  
60  
-1165  
-880  
-1475  
-1260  
150  
0.5  
IIL  
IEE  
μA  
mA  
48  
48  
48  
55  
69  
1.  
Each output is terminated through a 50Ω resistor to VCC – 2V.  
100K PECL DC Characteristics (VEE = GND, VCC = VCCO = +5.0V)  
-40°C  
Typ  
3995  
3305  
0°C  
Typ  
4045  
3295  
25°C  
Typ  
4045  
3295  
85°C  
Typ  
4045  
3295  
Symbol  
Characteristic  
Unit  
Min  
3915  
3170  
3835  
3190  
3620  
Max  
4120  
3445  
4120  
3525  
3740  
150  
Min  
3975  
3190  
3835  
3190  
3620  
Max  
4120  
3380  
4120  
3525  
3740  
150  
Min  
3975  
3190  
3835  
3190  
3620  
Max  
4120  
3380  
4120  
3525  
3740  
150  
Min  
3975  
3190  
3835  
3190  
3620  
Max  
4120  
3380  
4120  
3525  
3740  
150  
VOH  
VOL  
VIH  
VIL  
VBB  
IIH  
Output HIGH Voltage1,2  
Output LOW Voltage1,2  
Input HIGH Voltage1  
Input LOW Voltage1  
Reference Voltage1  
Input HIGH Current  
Input LOW Current  
Power Supply Current  
mV  
mV  
mV  
mV  
mV  
μA  
0.5  
0.5  
0.5  
0.5  
IIL  
IEE  
μA  
mA  
48  
60  
48  
60  
48  
60  
55  
69  
1.  
2.  
For supply voltages other that 5.0V, use the ECL table values and ADD supply voltage value.  
Each output is terminated through a 50Ω resistor to VCC – 2V.  
November 2006 * REV - 3  
www.azmicrotek.com  
3
AZ10E111  
AZ100E111  
AC Characteristics (VEE =10E(-4.94V to -5.46V), 100E(-4.2V to -5.46V); VCC =VCCO =GND or VEE =GND;  
VCC =VCCO = 10E(+4.94V to +5.46V), 100E(+4.2V to +5.46V) )  
-40°C  
Typ  
0°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Propagation Delay  
to Output  
IN (Diff)1  
380  
280  
400  
400  
250  
50  
680  
780  
900  
900  
460  
410  
450  
450  
200  
0
560  
610  
850  
850  
480  
430  
450  
450  
200  
0
580  
630  
850  
850  
510  
460  
450  
450  
200  
0
610  
660  
850  
850  
tPLH / tPHL  
IN (SE)2  
Enable3  
Disable3  
ps  
tS  
tH  
tR  
tSKEW  
Setup Time E¯N¯ to IN5  
0
0
0
0
ps  
ps  
ps  
ps  
mV  
Hold Time  
IN to E¯N¯ 6  
-200  
100  
25  
-200  
100  
25  
-200  
100  
25  
-200  
100  
25  
Release Time E¯N¯ to IN7  
Within-Device Skew4  
350  
300  
300  
300  
75  
50  
50  
50  
VPP (AC) Minimum Input Swing8  
250  
250  
250  
250  
VCC  
1.6  
-
VCC  
0.4  
-
VCC  
1.6  
-
VCC  
0.4  
-
VCC  
1.6  
-
VCC  
0.4  
-
VCC  
1.6  
-
VCC  
0.4  
-
VCMR  
Common Mode Range9  
V
tr / tf  
1.  
Rise/Fall Time  
250  
650  
275  
600  
275  
600  
275  
600  
ps  
The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the  
differential output signals.  
2.  
3.  
The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.  
Enable is defined as the propagation delay from the 50% point of a negative transition on E¯N¯ to the 50% point of a positive transition on Q (or a  
negative transition on Q¯). Disable is defined as the propagation delay from the 50% point of a positive transition on E¯N¯ to the 50% point of a  
negative transition on Q (or a positive transition on Q¯).  
4.  
5.  
The within-device skew is defined as the worst-case difference between any two similar delay paths within a single device.  
The setup time is the minimum time that E¯N¯ must be asserted prior to the next transition of IN/ I¯N¯ to prevent an output response greater than  
±75mV to that IN/ I¯N¯ transition (see Figure 1).  
6.  
7.  
8.  
9.  
The hold time is the minimum time that E¯N¯ must remain asserted after a negative going IN or a positive going I¯N¯ to prevent an output response  
greater than ±75 mV to that IN/ I¯N¯ transition (see Figure 2).  
The release time is the minimum time that E¯N¯ must be de-asserted prior to the next IN/ I¯N¯ transition to ensure an output response that meets the  
specified IN to Q propagation delay and output transition times (see Figure 3).  
VPP(min) is defined as the minimum peak-to-peak input differential voltage which will cause no increase in the propagation delay. The VPP(min)  
is AC limited for the E111, because differential input as low as 50 mV will still produce full ECL levels at the output.  
VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The VIL level  
must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to VPP(min).  
IN  
IN  
IN  
IN  
IN  
IN  
H
EN  
EN  
EN  
November 2006 * REV - 3  
www.azmicrotek.com  
4
AZ10E111  
AZ100E111  
PACKAGE DIAGRAM  
PLCC 28  
NOTES:  
MILLIMETERS  
INCHES  
1.  
DATUMS –L-, -M-, AND –N- DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM –T-, SEATING PLANE.  
DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALOWABLE MOLD FLASH IS  
0.010mm (0.250in.) PER SIDE.  
DIM  
A
B
C
E
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
MIN  
0.485  
0.485  
0.165  
0.090  
0.013  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
2.  
3.  
2.29  
2.79  
F
0.33  
0.48  
4.  
DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
G
H
J
K
R
U
V
W
X
T
1.27 BSC  
0.050 BSC  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
0.81  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
0.032  
5.  
6.  
CONTROLLING DIMENSION: INCH.  
THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKGE BOTTOM BY UP TO 0.012mm  
(0.300in.). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, THE BAR  
BURRS, GATE BURRS AND INTERLEAD FLASH,  
BUT INCLUDING ANY MISMATCH BETWEEN  
THE TOP AND BOTTOM OF THE PLASTIC  
BODY.  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10O  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
10O  
7.  
DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE SMALLER THAN 0.025mm  
(0.635in.).  
Z
G1  
K1  
2O  
2O  
10.42  
1.02  
10.92  
0.410  
0.040  
0.430  
November 2006 * REV - 3  
www.azmicrotek.com  
5
AZ10E111  
AZ100E111  
Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc.  
makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona  
Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license  
rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems  
intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.  
November 2006 * REV - 3  
www.azmicrotek.com  
6

相关型号:

AZ100E111FN

ECL/PECL 1:9 Differential Clock Driver
AZM

AZ100E116FN

ECL/PECL Quint Differential Line Receiver
AZM

AZ100E131

ECL/PECL 4-bit D Flip-Flop
AZM

AZ100E131FN

ECL/PECL 4-bit D Flip-Flop
AZM

AZ100E142

ECL/PECL 9-bit Shift Register
AZM

AZ100E142FN

ECL/PECL 9-bit Shift Register
AZM

AZ100EL01

ECL/PECL 4-Input OR/NOR
AZM

AZ100EL01D

ECL/PECL 4-Input OR/NOR
AZM

AZ100EL01T

ECL/PECL 4-Input OR/NOR
AZM

AZ100EL07

ECL/PECL 2-Input XOR/XNOR
AZM

AZ100EL07D

ECL/PECL 2-Input XOR/XNOR
AZM

AZ100EL07DR1

ECL/PECL 2-Input XOR/XNOR
ETC