HLMP-EG3H-VX0DD [AVAGO]

T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs;
HLMP-EG3H-VX0DD
型号: HLMP-EG3H-VX0DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs

文件: 总11页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-EGxx, HLMP-ELxx  
T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs  
Data Sheet  
Description  
Features  
These Precision Optical Performance AlInGaP LEDs  
provide superior light output for excellent readability in  
sunlight and are extremely reliable. AlInGaP LED tech-  
nology provides extremely stable light output over long  
periods of time. Precision Optical Performance lamps  
utilize the aluminum indium gallium phosphide (AlInGaP)  
technology.  
xꢀ Viewing angle: 15°, 23° and 30°  
xꢀ Well defined spatial radiation pattern  
xꢀ High brightness material  
xꢀ Available in Red and Amber  
– Red AlInGaP 626 nm  
– Amber AlInGaP 590 nm  
These LED lamps are untinted. T-1¾ packages incorpo-  
rating second generation optics producing well defined  
spatial radiation patterns at specific viewing cone angles.  
xꢀ Superior resistance to moisture  
xꢀ Standoff and non-standoff Package  
These lamps are made with an advanced optical grade  
epoxy offering superior high temperature and high  
moisture resistance performance in outdoor signal and  
sign application. The maximum LED junction tempera-  
ture limit of +130° C enables high temperature operation  
in bright sunlight conditions. The epoxy contains uv  
inhibitor to reduce the effects of long term exposure to  
direct sunlight.  
Applications  
xꢀ Traffic management:  
– Traffic signals  
– Pedestrian signals  
– Work zone warning lights  
– Variable message signs  
xꢀ Solar Power signs  
xꢀ Commercial outdoor advertising  
– Signs  
Benefits  
xꢀ Superior performance for outdoor environment  
xꢀ Suitable for auto-insertion onto PC board  
– Marquee  
Package Dimension  
A: Non-standoff  
B: Standoff  
5.00 0.20  
(0.197 0.00ꢀ8  
5.00 0.20  
(0.197 0.00ꢀ8  
1.14 0.20  
(0.045 0.00ꢀ8  
ꢀ.71 0.20  
(0.343 0.00ꢀ8  
ꢀ.71 0.20  
(0.343 0.00ꢀ8  
d
1.14 0.20  
(0.045 0.00ꢀ8  
2.35 (0.0938  
MAX.  
0.70 (0.02ꢀ8  
MAX.  
1.50 0.15  
(0.059 0.0068  
31.60  
MIN.  
31.60  
MIN.  
(1.2448  
(1.2448  
0.70 (0.02ꢀ8  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 0.10  
(0.020 0.0048  
0.50 0.10  
(0.020 0.0048  
SQ. TYP.  
SQ. TYP.  
1.00  
MIN.  
1.00  
(0.0398  
MIN.  
(0.0398  
5.ꢀ0 0.20  
(0.22ꢀ 0.00ꢀ8  
5.ꢀ0 0.20  
(0.22ꢀ 0.00ꢀ8  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 0.3ꢀ  
(0.100 0.0158  
2.54 0.3ꢀ  
(0.100 0.0158  
Part Number  
Dimension ‘d’  
HLMP-EG1H-xxxxx  
12.30 0.25mm  
12.64 0.25mm  
12.10 0.25mm  
12.14 0.25mm  
12.10 0.25mm  
HLMP-EL1H-xxxxx  
HLMP-EG2H-xxxxx  
HLMP-EL2H-xxxxx  
HLMP-EG3H-xxxxx/HLMP-EL3H-xxxxx  
Notes:  
1. All dimensions in millimeters (inches).  
2. Tolerance is 0.20 mm unless other specified.  
3. Leads are mild steel with tin plating.  
4. The epoxy meniscus is 1.21 mm max.  
5. For identification of polarity after the leads are trimmed off, please  
refer to the illustration below:  
CATHODE  
ANODE  
2
Device Selection Guide  
Luminous Intensity Iv (mcd) at  
20 mA  
Color and Dominant  
[1,2,5]  
Wavelength O (nm)  
Typical Viewing  
angle (°)  
d
[3]  
[4]  
Part Number  
Typ  
Min  
Max  
Standoff  
HLMP-EG1G-Y10DD  
HLMP-EG1H-Y10DD  
HLMP-EL1G-Y10DD  
HLMP-EL1H-Y10DD  
HLMP-EG2G-XZ0DD  
HLMP-EG2H-XZ0DD  
HLMP-EL2G-WY0DD  
HLMP-EL2H-WY0DD  
HLMP-EG3G-VX0DD  
HLMP-EG3H-VX0DD  
HLMP-EL3G-VX0DD  
HLMP-EL3H-VX0DD  
Notes:  
Red 626  
9300  
9300  
9300  
9300  
7200  
7200  
5500  
5500  
4200  
4200  
4200  
4200  
21000  
21000  
21000  
21000  
16000  
16000  
12000  
12000  
9300  
No  
Yes  
15  
23  
30  
Red 626  
Amber 590  
Amber 590  
Red 626  
No  
Yes  
No  
Yes  
Red 626  
Amber 590  
Amber 590  
Red 626  
No  
Yes  
No  
Yes  
Red 626  
9300  
Amber 590  
Amber 590  
No  
9300  
Yes  
9300  
1. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. Dominant wavelength, O , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4.  
T is the off-axis angle where the luminous intensity is half the on-axis intensity.  
½
5. Tolerance for each bin limit is 15ꢀ  
Part Numbering System  
HLMP – E x xx – x x x xx  
Packaging Option  
DD: Ammopack  
Color Bin Selection  
0 : Full Distribution  
K: Color bin 2 and 4  
L: Color bin 4 and 6  
Maximum Intensity Bin  
Refer to Device Selection Guide  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Viewing Angle and Lead Standoff  
1G : 15 without standoff  
1H : 15 with standoff  
2G : 23 without standoff  
2H : 23 with standoff  
3G : 30 without standoff  
3H : 30 with standoff  
Color  
G : Red  
L : Amber  
Package  
E: 5 mm Standard Round  
Note: Refer to AB 5337 for complete information on the part numbering system.  
3
Absolute Maximum Ratings  
T = 25° C  
J
Parameter  
Red/ Amber  
50  
100 [2]  
Unit  
mA  
mA  
mW  
°C  
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
120  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
130  
-40 to +100  
-40 to +100  
°C  
°C  
Notes:  
1. Derate linearly as shown in Figure 4.  
2. Duty Factor 30ꢀ, frequency 1 kHz.  
Electrical / Optical Characteristics  
T = 25° C  
J
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
Red & Amber  
VF  
1.8  
2.1  
2.4  
V
IF = 20 mA  
Reverse Voltage [3]  
Red & Amber  
VR  
5
V
IR = 100 PA  
Dominant Wavelength [1]  
Od  
nm  
IF = 20 mA  
Red  
Amber  
618.0  
584.5  
626.0  
590.0  
630.0  
594.5  
Peak Wavelength  
Red  
OPEAK  
nm  
Peak of Wavelength of Spec-  
tral Distribution at IF = 20 mA  
634  
594  
Amber  
Thermal resistance  
Luminous Efficacy [2]  
RTJ-PIN  
240  
°C/W  
lm/W  
LED junction to pin  
Kv  
Emitted Luminous Power/  
Emitted Radiant Power  
Red  
Amber  
190  
490  
Thermal coefficient of Od  
nm/°C  
IF = 20 mA;  
+25° C ≤ TJ ≤ +100° C  
Red  
Amber  
0.05  
0.09  
Notes:  
1. The dominant wavelength is derived from the Chromaticity Diagram and represents the color of the lamp.  
2. The radiant intensity, I in watts per steradian, maybe found from the equation I = I / K where I is the luminous intensity in candela and K is  
e
e
v
V
v
V
the luminous efficacy in lumens/ watt.  
3. Indicates product final testing condition, long term reverse bias is not recommended.  
4
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
100  
80  
60  
40  
20  
0
Amber  
Red  
500  
550  
600  
650  
700  
0
1
2
3
WAVELENGTH - nm  
FORWARD VOLTAGE-V  
Figure 1. Relative Intensity vs Wavelength  
Figure 2. Forward Current vs Forward Voltage  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DC FORWARD CURRENT - mA  
TA - AMBIENT TEMPERATURE - C  
Figure 3. Relative Intensity vs Forward Current  
Figure 4. Maximum Forward Current vs Ambient Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREES  
ANGULAR DISPLACEMENT - DEGREES  
Figure 5. Representative Radiation pattern for 15° Viewing Angle Lamp  
Figure 6. Representative Radiation pattern for 23° Viewing Angle Lamp  
5
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
1
Amber  
Red  
0.1  
-90  
-60  
-30  
0
30  
60  
90  
-40 -20  
0
20  
40  
60  
80 100 120 140  
ANGULAR DISPLACEMENT - DEGREES  
TJ - JUNCTION TEMPERATURE  
Figure 7. Representative Radiation pattern for 30° Viewing Angle Lamp  
Figure 8. Relative Light Output vs Junction Temperature  
0.6  
Amber  
Red  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TJ - JUNCTION TEMPERATURE  
Figure 9. Forward Voltage Shift vs Junction Temperature  
6
Intensity Bin Limit Table (1.3 : 1 Iv Bin Ratio)  
Intensity (mcd) at 20 mA  
Red Color Range  
Min  
Dom  
Max  
Dom  
X min  
Y Min  
X max  
Y max  
Bin  
U
V
Min  
Max  
618.0  
630.0  
0.6872  
0.6690  
0.3126  
0.3149  
0.6890  
0.7080  
0.2943  
0.2920  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
Tolerance for each bin limit is 0.5 nm  
W
X
Amber Color Range  
Y
Min  
Dom  
Max  
Dom  
Z
Bin  
Xmin  
Ymin  
Xmax Ymax  
1
1
584.5  
587.0  
589.5  
592.0  
587.0  
589.5  
592.0  
594.5  
0.5420 0.4580 0.5530 0.4400  
0.5370 0.4550 0.5570 0.4420  
0.5570 0.4420 0.5670 0.4250  
0.5530 0.4400 0.5720 0.4270  
0.5720 0.4270 0.5820 0.4110  
0.5670 0.4250 0.5870 0.4130  
0.5870 0.4130 0.5950 0.3980  
0.5820 0.4110 0.6000 0.3990  
Tolerance for each bin limit is 15ꢀ  
2
4
6
V Bin Table (V at 20 mA)  
F
Bin ID  
VD  
Min  
Max  
2.0  
2.2  
2.4  
1.8  
2.0  
2.2  
VA  
VB  
Tolerance for each bin limit is 0.5 nm  
Tolerance for each bin limit is 0.05 V  
Note:  
All bin categories are established for classification of products. Products  
may not be available in all bin categories. Please contact your Avago  
representative for further information.  
Avago Color Bin on CIE 1931 Chromaticity Diagram  
0.480  
0.460  
1
0.440  
Amber 2  
0.420  
4
6
0.400  
0.380  
0.360  
0.340  
0.320  
0.300  
0.280  
Red  
0.500  
0.550  
0.600  
0.650  
0.700  
0.750  
0.800  
X
7
Precautions:  
Lead Forming:  
Note:  
x The leads of an LED lamp may be preformed or cut to  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 260°C and the solder  
contact time does not exceeding 5sec. Over-stressing the LED during  
soldering process might cause premature failure to the LED due to  
delamination.  
length prior to insertion and soldering on PC board.  
x For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
x If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
Avago Technologies LED Configuration  
Soldering and Handling:  
x Care must be taken during PCB assembly and soldering  
process to prevent damage to the LED component.  
x LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat source  
(soldering iron’s tip) to the body is 1.59mm. Soldering  
the LED using soldering iron tip closer than 1.59mm  
might damage the LED.  
Anode  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
x Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during wave  
soldering process.  
1.59 mm  
Note: In order to further assist customer in designing jig accurately  
that fit Avago Technologies’ product, 3D model of the product is  
available upon request.  
x ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
x At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
x Recommended soldering condition:  
x If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Wave Soldering Manual Solder  
[1, 2]  
Dipping  
Pre-heat temperature 105 °C Max.  
-
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
260 °C Max.  
5 sec Max.  
-
260 °C Max.  
5 sec Max  
x Recommended PC board plated through holes (PTH)  
size for LED component leads.  
LED component  
lead size  
Plated through  
hole diameter  
Note:  
1) Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2) It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
Diagonal  
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.039 to 0.043 inch)  
(0.018x 0.018 inch) (0.025 inch)  
0.50 x 0.50 mm 0.707 mm  
(0.020x 0.020 inch) (0.028 inch)  
1.05 to 1.15 mm  
(0.041 to 0.045 inch)  
x Wave soldering parameters must be set and maintained  
according to the recommended temperature and dwell  
time. Customer is advised to perform daily check on the  
soldering profile to ensure that it is always conforming  
to recommended soldering conditions.  
x Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
8
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED lamps.  
Example of Wave Soldering Temperature Profile for TH LED  
260 °C Max  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
Flux: Rosin flux  
Solder bath temperature: 255°C 5°C  
(maximum peak temperature = 260°C)  
105 °C Max  
Dwell time: 3.0 sec - 5.0 sec  
(maximum = 5sec)  
60sec Max  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
TIME (sec)  
Ammo Packs Drawing  
6.35 1.30  
0.250 0.051  
12.70 1.00  
0.500 0.039  
CATHODE  
20.5 1.00  
0.8070 0.0394  
9.125 0.625  
0.3595 0.0245  
18.00 0.50  
0.7085 0.0195  
4.00 0.20  
0.1575 0.0075  
0.70 0.20  
0.0275 0.0075  
ø
TYP.  
12.70 0.30  
0.500 0.012  
A
A
VIEW A-A  
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff  
9
Packaging Box for Ammo Packs  
Note: The dimension for ammo pack is applicable for the device with standoff and without standoff.  
Packaging Label:  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 260C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
10  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3  
max temp 260C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2 VB  
(Applicable for part number with color bins but without  
VF bin OR part number with VF bins and no color bin)  
OR  
(ii) Color bin incorporated with VF Bin  
(Applicable for part number that have both color bin  
and VF bin)  
VB: VF bin “VB”  
2: Color bin 2 only  
DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for sale  
as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a  
nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to  
make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.  
AV02-3139EN - May 30, 2013  

相关型号:

HLMP-EG3S-VX0DD

T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs
AVAGO

HLMP-EG3T-VX0DD

T-1¾ (5 mm) High Brightness AlInGaP Red and Amber LEDs
AVAGO

HLMP-EG55

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GG000

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GG0DD

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GG400

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GG4DD

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GGK00

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GGKDD

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GH000

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GH0DD

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT

HLMP-EG55-GH400

T-1 3/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps
AGILENT