HLMP-CW12-YZ0DD [AVAGO]

T-1 3/4 SINGLE COLOR LED, HIGH INTENSITY WHITE, 5mm, PLASTIC PACKAGE-2;
HLMP-CW12-YZ0DD
型号: HLMP-CW12-YZ0DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

T-1 3/4 SINGLE COLOR LED, HIGH INTENSITY WHITE, 5mm, PLASTIC PACKAGE-2

文件: 总14页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-CWxx  
Precision Optical Performance  
White LED Lamps  
Data Sheet  
HLMP-CW11, HLMP-CW12, HLMP-CW26, HLMP-CW27, HLMP-CW36, HLMP-CW37,  
HLMP-CW46, HLMP-CW47, HLMP-CW76, HLMP-CW77, HLMP-FW66, HLMP-FW67  
Description  
Features  
These high intensity white LED lamps are based on  
InGaN material technology. A blue LED die is coated by  
phosphor to produce white. The typical resulting color is  
described by the coordinates x = 0.31, y = 0.31 using the  
Well defined spatial radiation pattern  
High luminous white emission  
Viewing angle: 15°, 23° and 30°, 50°, 70°, 85°  
1931 CIE Chromaticity Diagram. These T-1 ¾ lamps are Standoff or non-standoff leads  
untinted, non-diffused, and incorporate precise optics  
which produce well-defined spatial radiation patterns at  
Superior resistance to moisture  
specific viewing cone angle.  
Applications  
Indoor electronic signs and signals  
Small area illumination  
Benefits  
Reduced power consumption, higher reliability,  
and increased optical/mechanical design flexibility  
compared to incandescent bulbs and other alternative  
white light sources.  
Legend backlighting  
General purpose indicators  
Caution: InGaN devices are Class 1C HBM ESD Sensitive per JEDEC Standard. Please observe appropriate  
precautions during handling and processing. Refer to Application Note AN-1142 for additional details.  
Package Dimensions  
For 5mm Round 15°, 23° & 30° Package  
Package Dimension B  
Package Dimension A  
5.00 ± 0.20  
(0.197 ± 0.008)  
5.00 ± 0.20  
(0.197 ± 0.008)  
1.14 ± 0.20  
8.71 ± 0.20  
(0.343 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
(0.045 ± 0.008)  
DIMENSION H  
1.14 ± 0.20  
(0.045 ± 0.008)  
2.35 (0.093)  
MAX.  
0.70 (0.028)  
MAX.  
1.50 ± 0.15  
(0.059 ± 0.006)  
31.60  
MIN.  
31.60  
(1.244)  
MIN.  
(1.244)  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.50 ± 0.10  
(0.020 ± 0.004)  
SQ. TYP.  
1.00  
MIN.  
SQ. TYP.  
1.00  
(0.039)  
MIN.  
(0.039)  
5.80 ± 0.20  
(0.228 ± 0.008)  
5.80 ± 0.20  
(0.228 ± 0.008)  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 ± 0.38  
(0.100 ± 0.015)  
2.54 ± 0.38  
(0.100 ± 0.015)  
DIMENSIONH:  
15°: 12.24 ± 0.25mm (0.482 ± 0.01 inches)  
23°: 12.50 ± 0.25mm (0.492 ± 0.01 inches)  
30°: 12.00 ± 0.25mm (0.472 ± 0.01 inches)  
For 5mm Round 50° and 70° Package  
Package Dimension C  
Package Dimension D  
5.00 ± 0.20  
(0.197 ± 0.008)  
5.00 ± 0.20  
(0.197 ± 0.008)  
1.14 ± 0.20  
(0.045 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
8.71 ± 0.20  
(0.343 ± 0.008)  
DIMENSION H  
1.14 ± 0.20  
(0.045 ± 0.008)  
2.35 (0.093)  
MAX.  
0.70 (0.028)  
MAX.  
1.50 ± 0.15  
31.60  
(1.244)  
31.60  
MIN.  
(0.059 ± 0.006)  
MIN.  
(1.244)  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.50 ± 0.10  
(0.020 ± 0.004)  
SQ. TYP.  
1.00  
MIN.  
SQ. TYP.  
1.00  
MIN.  
(0.039)  
(0.039)  
5.80 ± 0.20  
(0.228 ± 0.008)  
5.80 ± 0.20  
(0.228 ± 0.008)  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54 ± 0.38  
(0.100 ± 0.015)  
2.54 ± 0.38  
(0.100 ± 0.015)  
DIMENSION H:  
Notes:  
1 . All dimensions are in millimeters /inches.  
2 . Epoxy meniscus may extend about 1mm  
(0.040") down the leads.  
50°: 11.98 ± 0.25mm (0.4715 ± 0.01 inches)  
70°: 11.09 ± 0.25mm (0.4365 ± 0.01 inches)  
3 . If heat-sinking application is required, the  
terminal for heat sink is anode.  
For Flat Top 85° Package  
Package Dimension E  
Package Dimension F  
5.00±0.20  
5.00±0.20  
[ 0.197±0.008 ]  
[ 0.197±0.008 ]  
7.00±0.20  
[ 0.278±0.008 ]  
11.02±0.25  
[ 0.434±0.010 ]  
1.14±0.20  
[ 0.045±0.008 ]  
1.14±0.20  
[ 0.045±0.008 ]  
31.60 MIN.  
[ 1.244 ]  
31.60 MIN.  
[ 1.244 ]  
CATHODE  
LEAD  
CATHODE  
LEAD  
1.00  
MIN.  
0.50±0.10  
[ 0.020±0.004 ]  
1.00  
MIN.  
0.50±0.10  
[ 0.020±0.004 ]  
SQ. TYP.  
SQ. TYP.  
[ 0.038 ]  
[ 0.038 ]  
5.72±0.20  
[ 0.225±0.008 ]  
5.72±0.20  
[ 0.225±0.008 ]  
CATHODE  
FLAT  
CATHODE  
FLAT  
2.54±0.38  
[ 0.100±0.015 ]  
2.54±0.38  
[ 0.100±0.015 ]  
Notes:  
1. All dimensions are in millimeters /inches.  
2. Epoxy meniscus may extend about 1mm (0.040”) down the leads.  
3. If heat-sinking application is required, the terminal for heat sink is anode.  
Part Numbering System  
HLMP - x W xx - x x x x x  
Packaging Option  
00: Flexi Ammo packs  
DD: Ammo Packs  
Color Bin Selection  
0: Open distribution  
B: Color Bin 2 & 3  
Maximum Intensity Bin  
0: No maximum intensity limit  
Minimum Intensity Bin  
Refer to Devise Selection Guide  
Viewing Angle and Standoff Option  
11: 15° without standoff  
12: 15° with standoff  
26: 23° without standoff  
27: 23° with standoff  
36: 30° without standoff  
37: 30° with standoff  
46: 50° without standoff  
47: 50° with standoff  
76: 70° without standoff  
77: 70° with standoff  
66: 85° Flat top without standoff  
67: 85° Flat top with standoff  
Package  
C: 5mm Round  
F: 5mm Flat Top  
Note: Please refer to AB 5337 for complete information about part numbering system.  
Device Selection Guide  
Luminous Intensity (mcd) at 20mA  
Typical Viewing  
Part Number  
Angle 2θ (Degree)  
Min.  
7200  
9300  
9300  
7200  
9300  
9300  
4200  
5500  
5500  
4200  
5500  
3200  
3200  
4200  
4200  
3200  
4200  
4200  
1500  
1900  
1900  
1900  
1500  
1900  
1900  
1150  
1150  
1500  
1500  
1150  
1500  
1500  
520  
Max.  
21000  
21000  
16000  
21000  
16000  
16000  
12000  
9300  
9300  
12000  
9300  
9300  
9300  
7200  
7200  
9300  
7200  
7200  
4200  
3200  
3200  
5500  
4200  
3200  
3200  
3200  
3200  
2500  
2500  
3200  
2500  
2500  
1500  
1150  
1150  
1500  
1150  
1150  
Standoff  
No  
Package Dimension  
1/2  
HLMP-CW11-X10xx  
HLMP-CW11-Y1Bxx  
HLMP-CW11-YZ0xx  
HLMP-CW12-X10xx  
HLMP-CW12-YZ0xx  
HLMP-CW12-YZBxx  
HLMP-CW26-VY0xx  
HLMP-CW26-WX0xx  
HLMP-CW26-WXBxx  
HLMP-CW27-VY0xx  
HLMP-CW27-WX0xx  
HLMP-CW36-UX0xx  
HLMP-CW36-UXBxx  
HLMP-CW36-VW0xx  
HLMP-CW36-VWBxx  
HLMP-CW37-UX0xx  
HLMP-CW37-VW0xx  
HLMP-CW37-VWBxx  
HLMP-CW46-RU0xx  
HLMP-CW46-ST0xx  
HLMP-CW46-STBxx  
HLMP-CW46-SVBxx  
HLMP-CW47-RU0xx  
HLMP-CW47-ST0xx  
HLMP-CW47-STBxx  
HLMP-CW76-QT0xx  
HLMP-CW76-QTBxx  
HLMP-CW76-RS0xx  
HLMP-CW76-RSBxx  
HLMP-CW77-QT0xx  
HLMP-CW77-RS0xx  
HLMP-CW76-RSBxx  
HLMP-FW66-MQ0xx  
HLMP-FW66-NP0xx  
HLMP-FW66-NPBxx  
HLMP-FW67-MQ0xx  
HLMP-FW67-NP0xx  
HLMP-FW67-NPBxx  
15  
15  
15  
15  
15  
15  
23  
23  
23  
23  
23  
30  
30  
30  
30  
30  
30  
30  
50  
50  
50  
50  
50  
50  
50  
70  
70  
70  
70  
70  
70  
70  
85  
85  
85  
85  
85  
85  
A
A
A
B
B
B
A
A
A
B
B
A
A
A
A
B
B
B
C
C
C
C
D
D
D
C
C
C
C
D
D
D
E
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
680  
No  
E
680  
No  
E
520  
Yes  
Yes  
Yes  
F
680  
F
680  
F
Note: Please refer to AN 5352 for detail information on the features of stand-off and non stand-off LEDs.  
Absolute Maximum Rating, T = 25°C  
A
Parameter  
White  
Unit  
mA  
mA  
mW  
V
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
30  
100 [2]  
120  
Reverse Voltage  
5 (IR = 10 μA)  
110  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
°C  
-40 to +85  
-40 to +100  
°C  
°C  
Notes:  
1. Derate linearly as shown in Figure 2  
2. Duty Factor 10%, frequency 1kHz.  
Optical/ Electrical Performance at 25°C  
Parameter  
Symbol  
VF  
Min  
Typ  
Max  
Units  
V
Test Condition  
IF = 20 mA  
Forward Voltage  
Reverse Voltage  
Thermal Resistance  
Chromaticity Coordinate  
3.2  
4.0  
VR  
5.0  
V
IR = 10 µA  
J-PIN  
240  
˚C/W  
LED junction to anode lead  
IF = 20 mA  
X
y
0.31  
0.31  
Capacitance  
Note:  
C
70  
VF = 0,cf= 1MHz  
1. The chromaticity coordinates are derived from the CIE 1931 Chromaticity Diagram and represent the perceived color of the device.  
1.0  
35  
30  
25  
20  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
0.0  
0
0
20  
40  
60  
80  
100  
380  
480  
580  
680  
780  
WAVELENGTH - nm  
TA - AMBIENT TEMPERATURE - °C  
Figure 1. Relative Intensity vs Wavelength  
Figure 2. Forward Current vs Ambient Temperature  
0.025  
0.020  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1mA  
0.015  
5mA  
0.010  
10mA  
0.005  
0.000  
20mA  
-0.005  
30mA  
-0.010  
0
10  
20  
30  
-0.005  
0.000  
0.005  
0.010  
0.015  
FORWARD CURRENT - mA  
X-COORDINATES  
Figure 3. Relative Intensity vs DC Forward Current  
Figure 4. Chromaticity shift vs Forward Current  
30  
25  
20  
15  
10  
5
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VF - FORWARD VOLTAGE - VOLTS  
Figure 5. Forward Current vs Forward Voltage  
1
0.5  
0
1
0.5  
0
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT (°)  
ANGULAR DISPLACEMENT (°)  
Figure 6. Radiation Pattern for HLMP-CW1x  
Figure 7. Radiation Pattern for HLMP-CW2x  
1
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.5  
0.1  
0
0
-90  
-60  
-30  
0
30  
60  
90  
100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°  
ANGULAR DISPLACEMENT (°)  
ANGULAR DISPLACEMENT - DEGREES  
Figure 8. Radiation Pattern for HLMP-CW3x  
Figure 9. Radiation Pattern for HLMP-CW4x  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.0  
0.5  
0.0  
0.1  
0
100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREES  
ANGULAR REPLACEMENT - DEGREE  
Figure 10. Radiation Pattern for HLMP-CW7x  
Figure 11. Radiation Pattern for HLMP-FW6x  
Intensity Bin Limit Table at 20mA  
Color Bin Limit Table  
Intensity (mcd) at 20 mA  
Rank  
Limits (Chromaticity Coordinates)  
Bin  
M
N
P
Min  
520  
Max  
680  
1
X
Y
X
Y
X
Y
X
Y
0.330  
0.360  
0.287  
0.295  
0.264  
0.267  
0.283  
0.305  
0.330  
0.318  
0.296  
0.276  
0.280  
0.248  
0.287  
0.295  
0.356  
0.351  
0.330  
0.318  
0.296  
0.276  
0.330  
0.339  
0.361  
0.385  
0.330  
0.339  
0.283  
0.305  
0.330  
0.360  
680  
880  
2
3
4
880  
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
Q
R
1150  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
S
T
U
V
W
X
Tolerance for each bin limit is ± 0.01  
Note:  
Y
1. Bin categories are established for classification of products. Products  
may not be available in all bin categories. Please contact your Avago  
Technologies representative for information on currently available  
bins.  
Z
1
Tolerance for each bin limit is ± 15%  
Relative Light Output vs Junction Temperature  
Color Bin Limits with Respect to CIE 1931 Chromaticity  
Diagram  
10  
0.40  
1
0.35  
1
4
BLACK  
BODY  
CURVE  
2
0.30  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
3
TJ - JUNCTION TEMPERATURE - ˚C  
0.25  
0.20  
0.26  
0.30  
0.34  
0.38  
X-COORDINATE  
Note:  
Bin categories are established for classification of products. Products  
may not be available in all bin categories.  
Please contact your Avago representative for information on currently  
available bins.  
10  
Note:  
Precautions:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
Lead Forming:  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
2. Avago Technologies’ high brightness LED are using high efficiency  
LED die with single wire bond as shown below. Customer is advised  
to take extra precaution during wave soldering to ensure that the  
maximum wave temperature does not exceed 250°C and the solder  
contact time does not exceeding 3sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
Avago Technologies LED configuration  
Soldering and Handling:  
Care must be taken during PCB assembly and  
soldering process to prevent damage to the LED  
component.  
Anode  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat  
source (soldering iron’s tip) to the body is 1.59mm.  
Soldering the LED using soldering iron tip closer than  
1.59mm might damage the LED.  
InGaN Device  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
1.59mm  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Recommended soldering condition:  
Wave  
Manual Solder  
Dipping  
[1, 2]  
Soldering  
Pre-heat temperature  
Preheat time  
10ꢃ °C Max.  
ꢄ0 sec Max  
ꢀꢃ0 °C Max.  
ꢁ sec Max.  
-
-
Recommended PC board plated through holes (PTH)  
Peak temperature  
Dwell time  
ꢀꢄ0 °C Max.  
ꢃ sec Max  
size for LED component leads.  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
Note:  
1) Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2) It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
0.ꢂꢃ x 0.ꢂꢃ mm  
(0.01ꢆx 0.01ꢆ inch)  
0.ꢄꢁꢄ mm  
(0.0ꢀꢃ inch)  
0.ꢇꢆ to 1.0ꢆ mm  
(0.0ꢁꢇ to 0.0ꢂꢁ inch)  
0.ꢃ0 x 0.ꢃ0 mm  
0.ꢅ0ꢅ mm  
1.0ꢃ to 1.1ꢃ mm  
(0.0ꢀ0x 0.0ꢀ0 inch)  
(0.0ꢀꢆ inch)  
(0.0ꢂ1 to 0.0ꢂꢃ inch)  
Wave soldering parameters must be set and  
maintained according to the recommended  
temperature and dwell time. Customer is advised  
to perform daily check on the soldering profile to  
ensure that it is always conforming to recommended  
soldering conditions.  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
11  
Refer to application note AN5334 for more information about soldering and handling of high brightness TH LED  
lamps.  
Example of Wave Soldering Temperature Profile for TH LED  
Recommended solder:  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
250  
200  
150  
100  
50  
Flux: Rosin flux  
Solder bath temperature:  
245°C 5°C (maximum peak  
temperature = 250°C)  
Dwell time: 1.5 sec - 3.0 sec  
(maximum = 3sec)  
Note: Allow for board to be  
sufficiently cooled to room  
temperature before exerting  
mechanical force.  
PREHEAT  
0
80  
90  
10  
30  
40  
50  
70  
100  
20  
60  
TIME (MINUTES)  
Ammo Packs Drawing  
12.70 1.00  
0.50 0.0394  
6.35 1.30  
0.25 0.0512  
CATHODE  
20.50 1.00  
0.807 0.039  
9.125 0.625  
0.3593 0.0246  
18.00 0.50  
0.7087 0.0197  
ø\C7;4.00 0.20TYP.  
0.1575 0.008  
A
A
12.70 0.30  
0.50 0.0118  
VIEW A-A  
0.70 0.20  
0.0276 0.0079  
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff  
1ꢀ  
Packaging Box for Ammo Packs  
FROM LEFT SIDE OF BOX  
ADHESIVETAPE MUST BE  
FACING UPWARDS.  
LABEL ONTHIS  
SIDE OF BOX  
ANODE LEAD LEAVES  
THE BOX FIRST.  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
Packaging Label  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
e1 max temp 250C  
(1P) Item: Part Number  
(1T) Lot: Lot Number  
LPN  
(Q) QTY: Quantity  
CAT: Intensity Bin  
(9D) MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID  
BIN: Refer to below information  
REV:  
DeptID:  
Made In: Country of Origin  
1ꢁ  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e1 max temp 250C  
PART #: Part Number  
LOT#: Lot Number  
MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and no  
color bin)  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color bin  
and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR  
AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAIN-  
TENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICA-  
TIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS  
SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © ꢀ00ꢃ-ꢀ00ꢆ Avago Technologies Limited. All rights reserved.  
AV0ꢀ-0ꢁꢄꢆEN - April 1, ꢀ00ꢆ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY