HLMP-CM25-X10DD [AVAGO]

Precision Optical Performance Blue and Green; 精密光学性能的蓝色和绿色
HLMP-CM25-X10DD
型号: HLMP-CM25-X10DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Precision Optical Performance Blue and Green
精密光学性能的蓝色和绿色

可见光LED 光电
文件: 总10页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-CBxx, HLMP-CMxx  
Precision Optical Performance Blue and Green  
Data Sheet  
Description  
Features  
This high intensity blue and green LEDs are based on the  
most efficient and cost effective InGaN material tech-  
nology. This LED lamps is untinted and non-diffused, T-  
1 ¾ packages incorporating second-generation optics  
Well defined spatial radiation pattern  
High luminous output  
Untinted, Non-diffused  
producing well defined spatial radiation patterns at Viewing angle: 15º, 23º and 30º  
specific viewing cone angles.  
Standoff or non-standoff leads  
These lamps are made with an advanced optical grade  
epoxy, offering superior temperature and moisture re-  
sistance in outdoor signal and sign applications. The  
package epoxy contains both UV-A and UV-B inhibitors  
to reduce the effects of long term exposure to direct  
sunlight.  
Superior resistance to moisture  
Applications  
Traffic signals  
Commercial outdoor advertising  
Front panel backlighting  
Front panel indicator  
Package Dimensions  
5.00 0.20  
5.00 0.20  
(0.197 0.008)  
(0.197 0.008)  
8.71 0.20  
1.14 0.20  
8.71 0.20  
(0.343 0.008)  
(0.045 0.008)  
(0.343 0.008)  
d
1.14 0.20  
2.35 (0.093)  
MAX.  
(0.045 0.008)  
1.50 0.15  
0.70 (0.028)  
MAX.  
(0.059 0.006)  
31.60  
31.60  
MIN.  
MIN.  
(1.244)  
(1.244)  
0.70 (0.028)  
MAX.  
CATHODE  
LEAD  
CATHODE  
LEAD  
0.50 0.10  
(0.020 0.004)  
0.50 0.10  
SQ. TYP.  
SQ. TYP.  
1.00  
MIN.  
1.00  
MIN.  
(0.020 0.004)  
(0.039)  
(0.039)  
5.80 0.20  
5.80 0.20  
(0.228 0.008)  
CATHODE  
FLAT  
(0.228 0.008)  
CATHODE  
FLAT  
2.54 0.38  
(0.100 0.015)  
2.54 0.38  
(0.100 0.015)  
PACKAGE DIMENSION A  
PACKAGE DIMENSION B  
HLMP-Cx25  
HLMP-Cx14  
HLMP-Cx35  
d = 12.6 0.25 d = 12.52 0.25 d = 11.96 0.25  
(0.496 0.010) (0.493 0.010) (0.471 0.010)  
Notes:  
1. Measured just above flange.  
2. All dimensions are in millimeters (inches).  
3. Epoxy meniscus may extend about 1mm (0.040”) down the leads.  
Caution: InGaN devices are Class 1C HBM ESD sensitive per JEDEC standard. Please observe appropriate  
precautions during handling and processing. Refer to Avago Application Note AN 1142 for details.  
Device Selection Guide  
Intensity ꢁmcdꢂ at 20 mA  
Typical Viewing Angle,  
2�ꢀ ꢁDegreeꢂ  
Leads with  
Stand-Offs  
Part Number  
Color  
Blue  
Min.  
Max.  
HLMP-CB13-UX0xx  
HLMP-CB14-UX0xx  
HLMP-CB22-SV0xx  
HLMP-CB25-SV0xx  
HLMP-CB34-RU0xx  
HLMP-CB35-RU0xx  
HLMP-CM13-Z30xx  
HLMP-CM14-Z30xx  
HLMP-CM22-X10xx  
HLMP-CM25-X10xx  
HLMP-CM34-X10xx  
15º  
15º  
23º  
23º  
30º  
30º  
15º  
15º  
23º  
23º  
30º  
30º  
3200  
3200  
1900  
1900  
1500  
1500  
12000  
12000  
7200  
7200  
7200  
7200  
9300  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
Blue  
9300  
Blue  
5500  
Blue  
5500  
Blue  
4200  
Blue  
4200  
Green  
Green  
Green  
Green  
Green  
Green  
35000  
35000  
21000  
21000  
21000  
21000  
HLMP-CM35-X10xx  
Notes:  
1. Tolerance for luminous intensity measurement is 15ꢀ  
2. The optical axis is closely aligned with the package mechanical axis.  
3. LED light output is bright enough to cause injuries to the eyes. Precautions must be taken to prevent looking directly at the LED without proper  
safety equipment.  
4. 2θ1/2 is the off-axis angle where the luminous intensity is ½ the on axis intensity.  
Part Numbering System  
HLMP - x x xx - x x x xx  
Packaging Option  
DD: Ammopacks  
Color Bin Selection  
0 : Full Distribution  
Maximum Intensity Bin  
Refer to Device Selection Guide  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Viewing Angle  
13: 15º without standoff  
14: 15º with standoff  
22: 23º without standoff  
25: 23º with standoff  
34: 30º without standoff  
35: 30º with standoff  
Color  
B: Blue 470nm  
M: Green 525nm  
Package  
C: 5mm round Lamps  
Note: Please refer to AB 5337 for complete information on part numbering system.  
Absolute Maximum Rating ꢁT = 25ꢃCꢂ  
A
Parameters  
Value  
Unit  
mA  
mA  
mW  
°C  
DC forward current [1]  
Peak pulsed forward current [2]  
Power dissipation  
30  
100  
116  
LED junction temperature  
Operating temperature range  
Storage temperature range  
110  
-40 to +85  
-40 to +100  
°C  
°C  
Notes:  
1. Derate linearly as shown in figure 2.  
2. Duty factor 10ꢀ, frequency 1KHz.  
Electrical/Optical Characteristics ꢁT = 25Cꢂ  
A
Blue and Green  
Parameters  
Symbol  
VF  
Min  
2.8  
5.0  
Typ  
Max  
Units  
V
Test Condition  
Forward Voltage  
Reverse Voltage[1]  
Thermal resistance  
3.2  
3.8  
IF = 20 mA  
VR  
V
IR = 10 µA  
J-PIN  
λd  
240  
°C/W  
nm  
LED Junction to cathode lead  
IF = 20 mA  
Dominant wavelength [2]  
Blue  
Green  
460  
520  
470  
525  
480  
540  
λPEAK  
Dλ1/2  
ηv  
nm  
Peak of wavelength of spectral distribu-  
tion at IF = 20 mA  
Peak wavelength  
Blue  
464  
516  
Green  
Wavelength width at spectral distribu-  
tion 1/2 power point at IF = 20 mA  
Spectral half width  
Blue  
Green  
22  
35  
lm/W  
mlm  
Emitted luminous power/Emitted  
radiant power  
Luminous Efficacy [3]  
Blue  
Green  
78  
545  
φV  
If = 20mA  
Luminous Flux  
Blue  
830  
Green  
3500  
ηe  
lm/W  
Luminous Flux/Electrical Power at IF =  
20mA  
Luminous Efficiency[4]  
Blue  
Green  
13  
56  
Notes:  
1. The reverse voltage of the product is equivalent to the forward voltage of the protective chip at I = 10 µA  
R
2. The dominant wavelength λd is derived from the Chromaticy Diagram and represents the color pf the lamp.  
3. The radiant intensity, Ie in watts/steradian, may be found from the equation Ie = Iv/η , where Iv is the luminous intensity in candelas and η is the  
v
v
luminous efficacy in lumens/watt.  
4. η = φ / I x V where φ is the emitted luminous flux, I is electrical forward current and V is the forward voltage.  
e
V
F
F
V
F
F
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
35  
30  
25  
20  
15  
10  
5
Blue  
Green  
0
380  
430  
480  
530  
580  
630  
680  
730  
780  
0
20  
40  
60  
80  
100  
T - AMBIENT TEMPERATURE - °C  
WAVELENGTH - nm  
A
Figure 1. Relative Intensity vs. Wavelength  
Figure 2. Forward Current vs. Ambient Temperature  
35  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
Green  
6
4
Blue  
2
0
-2  
-4  
0
0
1
2
3
4
0
5
10  
15  
20  
25  
30  
35  
FORWARD CURRENT - mA  
FORWARD VOLTAGE - V  
Figure 3. Forward Current vs. Forward Voltage  
Figure 4. Relative Dominant Wavelength vs. DC Forward Current  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
25  
30  
35  
DC FORWARD CURRENT - mA  
Figure 5. Relative Intensity vs. DC Forward Current  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREES  
ANGULAR DISPLACEMENT - DEGREES  
Figure 6. Spatial Radiation Pattern for 15° lamps  
Figure 7. Spatial Radiation Pattern for 23° lamps  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
30  
60  
90  
120  
150  
180  
ANGULAR DISPLACEMENT - DEGREES  
Figure 8. Spatial Radiation Pattern for 30° lamps  
Note:  
All bin categories are established for classification of products.  
Products may not be available in all bin categories. Please contact  
your Avago representative for further information  
Intensity Bin Limit Table  
Green Color Bin Table  
Bin Min Dom Max Dom Xmin  
Ymin  
Xmax Ymax  
Intensity ꢁmcdꢂ at 20 mA  
1
2
3
4
5
520.0  
524.0  
528.0  
532.0  
536.0  
524.0  
528.0  
532.0  
536.0  
540.0  
0.0743 0.8338 0.1856 0.6556  
0.1650 0.6586 0.1060 0.8292  
0.1060 0.8292 0.2068 0.6463  
0.1856 0.6556 0.1387 0.8148  
0.1387 0.8148 0.2273 0.6344  
0.2068 0.6463 0.1702 0.7965  
0.1702 0.7965 0.2469 0.6213  
0.2273 0.6344 0.2003 0.7764  
0.2003 0.7764 0.2659 0.6070  
0.2469 0.6213 0.2296 0.7543  
Bin  
R
Min  
Max  
1500  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
27000  
1900  
2500  
3200  
4200  
5500  
7200  
9300  
12000  
16000  
21000  
27000  
35000  
S
T
U
V
W
X
Y
Z
1
Tolerance for each bin limit is 0.5nm  
2
Blue Color Bin Table  
3
Tolerance for each bin limit is +/- 15ꢀ  
Bin Min Dom Max Dom Xmin  
Ymin  
Xmax Ymax  
0.1440 0.0297 0.1766 0.0966  
0.1818 0.0904 0.1374 0.0374  
1
2
3
4
5
460.0  
464.0  
468.0  
472.0  
476.0  
464.0  
468.0  
472.0  
476.0  
480.0  
0.1374 0.0374 0.1699 0.1062  
0.1766 0.0966 0.1291 0.0495  
0.1291 0.0495 0.1616 0.1209  
0.1699 0.1062 0.1187 0.0671  
0.1187 0.0671 0.1517 0.1423  
0.1616 0.1209 0.1063 0.0945  
0.1063 0.0945 0.1397 0.1728  
0.1517 0.1423 0.0913 0.1327  
Tolerance for each bin limit is 0.5nm  
Relative Light Output vs. Junction Temperature  
10  
Green  
Blue  
1
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TJ - JUNCTION TEMPERATURE- °C  
Note:  
Precautions:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
Lead Forming:  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
Avago Technologies LED configuration  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
CATHODE  
Soldering and Handling:  
Care must be taken during PCB assembly and  
soldering process to prevent damage to the LED  
component.  
InGaN Device  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during  
wave soldering process.  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat  
source (soldering iron’s tip) to the body is 1.59mm.  
Soldering the LED using soldering iron tip closer than  
1.59mm might damage the LED.  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
1.59mm  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
Recommended PC board plated through holes (PTH)  
size for LED component leads.  
Recommended soldering condition:  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
Wave  
Soldering  
Manual Solder  
Dipping  
0.45 x 0.45 mm  
(0.018x 0.018 inch) (0.025 inch) (0.039 to 0.043 inch)  
0.636 mm  
0.98 to 1.08 mm  
[1, 2]  
Pre-heat temperature 105 °C Max.  
-
0.50 x 0.50 mm 0.707 mm 1.05 to 1.15 mm  
(0.020x 0.020 inch) (0.028 inch) (0.041 to 0.045 inch)  
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
250 °C Max.  
3 sec Max.  
-
260 °C Max.  
5 sec Max  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
Note:  
1) Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2) It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
Refer to Application Note 5334 for more information about soldering  
and handling of high brightness TH LED lamps.  
Wave soldering parameters must be set and  
maintained according to the recommended  
temperature and dwell time. Customer is advised  
to perform daily check on the soldering profile to  
ensure that it is always conforming to recommended  
soldering conditions.  
Example of Wave Soldering Temperature Profile for TH LED  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
LAMINAR WAVE  
HOT AIR KNIFE  
TURBULENT WAVE  
250  
Flux: Rosin flux  
Solder bath temperature:  
245°C± 5°C (maximum peak  
temperature = 250°C)  
200  
150  
100  
Dwell time: 1.5 sec - 3.0 sec  
(maximum = 3sec)  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
50  
PREHEAT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (MINUTES)  
Ammo Packs Drawing  
12.70±1.00  
0.50±0.0394  
6.35±1.30  
0.25±0.0512  
CATHODE  
20.50±1.00  
0.807±0.039  
9.125±0.625  
0.3593±0.0246  
18.00±0.50  
0.7087±0.0197  
4.00±0.20TYP.  
0.1575±0.008  
A
A
12.70±0.30  
0.50±0.0118  
VIEW A-A  
0.70±0.20  
0.0276±0.0079  
Note: The ammo-packs drawing is applicable for packaging option -DD & -ZZ and regardless standoff or non-standoff.  
Packaging Box for Ammo Packs  
FROM LEFT SIDE OF BOX  
ADHESIVE TAPE MUST BE  
FACING UPWARDS.  
LABEL ON THIS  
SIDE OF BOX  
ANODE LEAD LEAVES  
THE BOX FIRST.  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
Packaging Label  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 250C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3 max temp 250C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
BIN: VB (represent VF bin “VBonly)  
(ii) Color bin incorporate with VF Bin  
BIN: 2VB  
(Applicable for part number with color bins but  
without VF bin OR part number with VF bins and no  
color bin)  
OR  
(ii) Color bin incorporated with VF Bin  
VB: VF bin “VB”  
(Applicable for part number that have both color bin  
and VF bin)  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR  
AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAIN-  
TENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS.  
CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUP-  
PLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © ꢀ00ꢃ-ꢀ00ꢆ Avago Technologies. All rights reserved.  
AV0ꢀ-0ꢄꢅꢆEN - November ꢀ1, ꢀ00ꢆ  

相关型号:

HLMP-CM26

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26

T-13/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AVAGO

HLMP-CM26-N0A00

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-N0ADD

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-N0C00

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-N0CDD

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-N0D00

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-N0DDD

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-P0A00

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-P0ADD

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-P0C00

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT

HLMP-CM26-P0CDD

T-1 3/4 (5 mm) Extra Bright Precision Optical Performance InGaN LED Lamps
AGILENT