HLMP-CM1A-560DD [AVAGO]

New 5mm Blue and Green LED Lamps; 新的5mm蓝和绿色LED灯
HLMP-CM1A-560DD
型号: HLMP-CM1A-560DD
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

New 5mm Blue and Green LED Lamps
新的5mm蓝和绿色LED灯

文件: 总12页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-Cx1A/1B/2A/2B/3A/3B  
New 5mm Blue and Green LED Lamps  
Data Sheet  
Description  
Features  
These high intensity blue and green T-1¾ package LEDs  
are untinted and non-diffused. Based on the most efficient  
and cost effective InGaN material technology and incor-  
porating second generation optics they produce well  
•ꢀ Well defined spatial radiation pattern  
•ꢀ High luminous output  
•ꢀ Untinted, Non-diffused  
defined spatial radiation patterns at specific viewing cone •ꢀ Available in Color:  
angles.  
– Blue 470nm  
– Green 525nm  
Advancedopticalgradeepoxyconstructionofferssuperior  
high temperature and moisture resistance performance in  
outdoor signal and sign applications. The epoxy contains  
UV inhibitor ro reduce the effects of long term exposure  
to direct sunlight.  
•ꢀ Viewing Angle: 15°, 23° and 30°  
•ꢀ Standoff or non-standoff  
•ꢀ Superior resistance to moisture  
Applications  
•ꢀ Commercial outdoor advertising  
•ꢀ Traffic Sign  
•ꢀ Variable Message Sign  
CAUTION: INGaN devices are Class 1C HBM ESD sensitive per JEDEC Standard. Please observe appropriate  
precautions during handling and processing. Refer to Application Note AN – 1142 for additional details.  
Package Dimensions  
Drawing A (Non-standoff)  
1.00 0.20  
0.039 0.008  
5.80 0.20  
8.70 0.20  
0.343 0.008  
0.228 0.008  
0.70 max  
0.028  
0.50 0.10 sq. typ.  
0.020 0.004  
5.00 0.20  
2.54 0.38  
0.197 0.008  
0.100 0.015  
Cathode  
31.60 min  
1.244  
1.00 min  
0.039  
cathode  
flat  
Drawing B (Standoff)  
1.00 0.20  
0.039 0.008  
1.30 0.15  
0.051 0.006  
5.80 0.20  
0.228 0.008  
8.70 0.20  
0.343 0.008  
0.70 max  
0.028  
0.50 0.10 sq. typ.  
0.020 0.004  
5.00 0.20  
2.54 0.38  
0.197 0.008  
0.100 0.015  
Cathode  
1.00 min  
0.039  
d
cathode  
flat  
31.60 min  
1.244  
Viewing Angle  
d
HLMP-Cx1B  
12.96 0.25  
(0.510 0.010ꢀ  
HLMP-Cx2B  
HLMP-Cx3B  
12.32 0.25  
(0.485 0.010ꢀ  
Notes:  
1. All dimensions are in millimeters (inchesꢀ  
2. Leads are mild steel with tin plating.  
3. The epoxy meniscus is 1.50mm max  
12.00 0.25  
(0.472 0.010ꢀ  
2
Device Selection Guide  
Luminous Intensity I (mcd) at 20  
v
[1,2,5]  
mA  
Typical Viewing  
Standoff /  
Non Standoff  
Package  
drawing  
[4]  
Part Number  
Color  
angle, 2θ (°)  
Min  
Max  
½
HLMP-CB1A-XY0DD  
HLMP-CB1A-XYBDD  
HLMP-CB1A-XYCDD  
HLMP-CB1B-XY0DD  
HLMP-CB1B-XYBDD  
HLMP-CB1B-XYCDD  
HLMP-CB2A-VW0DD  
HLMP-CB2A-VWBDD  
HLMP-CB2A-VWCDD  
HLMP-CB2B-VW0DD  
HLMP-CB2B-VWBDD  
HLMP-CB2B-VWCDD  
HLMP-CB3A-UV0DD  
HLMP-CB3A-UVBDD  
HLMP-CB3A-UVCDD  
HLMP-CB3B-UV0DD  
HLMP-CB3B-UVBDD  
HLMP-CB3B-UVCDD  
HLMP-CM1A-560DD  
HLMP-CM1B-560DD  
HLMP-CM2A-230DD  
HLMP-CM2B-230DD  
HLMP-CM3A-Z10DD  
HLMP-CM3A-Z1BDD  
HLMP-CM3A-Z1CDD  
HLMP-CM3B-Z10DD  
HLMP-CM3B-Z1BDD  
HLMP-CM3B-Z1CDD  
Notes:  
Blue  
15°  
23°  
30°  
7200  
12000  
Non Standoff  
A
B
A
B
A
B
Standoff  
4200  
3200  
7200  
5500  
Non Standoff  
Standoff  
Non Standoff  
Standoff  
Green  
15°  
23°  
30°  
45000  
21000  
12000  
76000  
35000  
21000  
Non Standoff  
Standoff  
A
B
A
B
A
Non Standoff  
Standoff  
Non Standoff  
Standoff  
B
1. The luminous intensity is measured on the mechanical axis of the lamp package and it is tested with pulsing condition.  
2. The optical axis is closely aligned with the package mechanical axis.  
3. Dominant wavelength, λ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.  
d
4.  
θ is the off-axis angle where the luminous intensity is half the on-axis intensity.  
½
5. Tolerance for each bin limit is 15ꢁ  
3
Part Numbering System  
HLMP  C x xx  x x x xx  
Packaging Option  
DD: Ammo Pack  
Color Bin Selection  
0: Full Distribution  
B: Color Bin 2 & 3  
C: Color Bin 3 & 4  
Maximum Intensity Bin  
0: No maximum intensity limit (refer to selection guide)  
Minimum Intensity Bin  
Refer to Device Selection Guide  
Viewing Angle and Lead Standoffs  
1A: 15° without lead standoff  
1B: 15° with lead standoff  
2A: 23° without lead standoff  
2B: 23° with lead standoff  
3A: 30° without lead standoff  
3B: 30° with lead standoff  
Color  
B: Blue 470  
M: Green 525  
Note: please refer to AB 5337 for complete information on part numbering system  
Absolute Maximum Ratings  
T = 25°C  
J
Parameter  
Blue / Green  
30  
100 [2]  
Unit  
mA  
mA  
mW  
V
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
116  
Reverse Voltage  
5
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
110  
°C  
-40 to + 85  
-40 to + 100  
°C  
°C  
Notes:  
1. Derate linearly as shown in figure 4.  
2. Duty Factor 10ꢁ, frequency 1KHz.  
4
Electrical / Optical Characteristics  
T = 25°C  
J
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
Green / Blue  
VF  
V
IF = 20 mA  
2.8  
5
3.2  
3.8  
Reverse Voltage  
VR  
V
IR = 10 µA  
Dominant Wavelength[1]  
Green  
Blue  
λd  
nm  
IF = 20 mA  
519.0  
460.0  
525.0  
470.0  
539.0  
480.0  
Peak Wavelength  
Green  
Blue  
λPEAK  
nm  
nm  
Peak of Wavelength of Spectral  
Distribution at IF = 20 mA  
516  
464  
Spectral Half Width  
Δλ1/2  
IF = 20mA  
Green  
Blue  
30  
23  
Thermal Resistance  
Luminous Efficacy [2]  
Green  
Blue  
RθJ-PIN  
240  
°C/W  
lm/W  
LED Junction-to-Pin  
ηV  
Emitted Luminous Flux /  
Emitted Radiant Flux  
518  
78  
Thermal coefficient of λd  
Green  
Blue  
nm/°C  
IF = 20 mA ; +25°C ≤ TJ ≤ +100°C  
0.028  
0.024  
Notes:  
1. The dominant wavelength is derived from the chromaticity Diagram and represents the color of the lamp  
2. The radiant intensity, I in watts per steradian, may be found from the equation I = I /η where I is the luminous intensity in candelas and η is  
e
e
V
V
V
V
the luminous efficacy in lumens/watt.  
5
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100  
80  
60  
40  
20  
0
BLUE  
GREEN  
380  
430  
480  
530  
580  
630  
0
1
2
3
4
5
WAVELENGTH - nm  
FORWARD VOLTAGE-V  
Figure 1. Relative Intensity vs Wavelength  
Figure 2. Forward Current vs Forward Voltage  
35  
30  
25  
20  
15  
10  
5
3.5  
BLUE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
GREEN  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
DC FORWARD CURRENT-mA  
T
A - AMBIENT TEMPERATURE - °C  
Figure 3. Relative Intensity vs Forward Current  
Figure 4. Maximum Forward Current vs Ambient Temperature  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5
GREEN  
BLUE  
0
-5  
-10  
0
20  
40  
60  
80  
100  
-90  
-60  
-30  
0
30  
60  
90  
FORWARD CURRENT-mA  
ANGULAR DISPLACEMENT -DEGREE  
Figure 5. Relative Dominant Wavelength Shift vs Forward Current  
Figure 6. Radiation Pattern for 15°  
6
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREE  
ANGULAR DISPLACEMENT - DEGREE  
Figure 7. Radiation Pattern for 23°  
Figure 8. Radiation Pattern for 30°  
10  
0.3  
0.2  
0.1  
0
Blue  
Green  
Blue  
Green  
1
-0.1  
-0.2  
-0.3  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TJ - JUNCTION TEMPERATURE  
TJ - JUNCTION TEMPERATURE  
Figure 9. Relative Light Output vs Junction Temperature  
Figure 10. Relative Forward Voltage vs Junction Temperature  
7
Intensity Bin Limit Table (1.3:1 Iv bin ratio)  
Intensity (mcd) at 20mA  
Bin  
U
V
Min  
3200  
Max  
4200  
4200  
5500  
W
X
Y
5500  
7200  
7200  
9300  
9300  
12000  
16000  
21000  
27000  
35000  
45000  
59000  
76000  
Z
12000  
16000  
21000  
27000  
35000  
45000  
59000  
1
2
3
4
5
6
Tolerance for each bin limit is 15ꢁ  
Green Color Bin Table  
Min Max Corner  
Bin Dom Dom Point Chromaticity Coordinate  
Blue Color Bin Table  
Min Max Corner  
Bin Dom Dom Point Chromaticity Coordinate  
1
2
3
4
5
519 523  
523 527  
527 531  
531 535  
535 539  
x
y
x
y
x
y
x
y
x
y
0.0667 0.1200 0.1450 0.0979  
0.8323 0.7375 0.7319 0.8316  
0.0979 0.1450 0.1711 0.1305  
0.8316 0.7319 0.7218 0.8189  
0.1305 0.1711 0.1967 0.1625  
0.8189 0.7218 0.7077 0.8012  
0.1625 0.1967 0.2210 0.1929  
0.8012 0.7077 0.6920 0.7816  
0.1929 0.2210 0.2445 0.2233  
0.7816 0.6920 0.6747 0.7600  
1
460 464  
464 468  
468 472  
472 476  
476 480  
x
y
x
y
x
y
x
y
x
y
0.1440 0.1818 0.1766 0.1374  
0.0297 0.0904 0.0966 0.0374  
0.1374 0.1766 0.1699 0.1291  
0.0374 0.0966 0.1062 0.0495  
0.1291 0.1699 0.1616 0.1187  
0.0495 0.1062 0.1209 0.0671  
0.1187 0.1616 0.1517 0.1063  
0.0671 0.1209 0.1423 0.0945  
0.1063 0.1517 0.1397 0.0913  
0.0945 0.1423 0.1728 0.1327  
2
3
4
5
Tolerance for each bin limit is 0.5 nm.  
Tolerance for each bin limit is 0.5 nm  
Note:  
1. All bin categories are established for classification of products. Products may not be available in all bin categories. Please contact your Avago  
representative for further information.  
8
Precautions:  
Lead Forming:  
The leads of an LED lamp may be preformed or cut to  
Note:  
1. PCB with different size and design (component densityꢀ will have  
different heat mass (heat capacityꢀ. This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
length prior to insertion and soldering on PC board.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
Avago Technologies LED Configuration  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
Soldering and Handling:  
CATHODE  
Care must be taken during PCB assembly and soldering  
process to prevent damage to the LED component.  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat source  
(soldering iron’s tipꢀ to the body is 1.59mm. Soldering  
the LED using soldering iron tip closer than 1.59mm  
might damage the LED.  
InGaN Device  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during wave  
soldering process.  
ESD precaution must be properly applied on the  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
1.59mm  
If PCB board contains both through hole (THꢀ LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
Recommended PC board plated through holes (PTHꢀ  
Recommended soldering condition:  
size for LED component leads.  
Wave  
Soldering  
Manual Solder  
Dipping  
[1, 2]  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
Pre-heat temperature 105°C Max.  
-
0.45 x 0.45 mm  
0.636 mm  
0.98 to 1.08 mm  
(0.039 to 0.043 inchꢀ  
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
260°C Max.  
5 sec Max.  
-
(0.018x 0.018 inchꢀ (0.025 inchꢀ  
0.50 x 0.50 mm 0.707 mm  
(0.020x 0.020 inchꢀ (0.028 inchꢀ  
260°C Max.  
5 sec Max  
1.05 to 1.15 mm  
(0.041 to 0.045 inchꢀ  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
Note:  
1. Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
2. It is recommended to use only bottom preheaters in order to reduce  
thermal stress experienced by LED.  
Refer to application note AN5334 for more information about  
soldering and handling of high brightness TH LED lamps.  
Wave soldering parameters must be set and maintained  
according to the recommended temperature and dwell  
time. Customer is advised to perform daily check on the  
soldering profile to ensure that it is always conforming  
to recommended soldering conditions.  
9
Example of Wave Soldering Temperature Profile for TH LED  
260°C Max  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
Flux: Rosin flux  
Solder bath temperature: 255°C 5°C  
(maximum peak temperature = 260°C)  
105°C Max  
Dwell time: 3.0 sec - 5.0 sec  
(maximum = 5sec)  
60 sec Max  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
TIME (sec)  
Ammo Packs Drawing  
6.35 ꢀ.3ꢁ  
ꢁ.25ꢁ ꢁ.ꢁ5ꢀ  
ꢀ2.7ꢁ ꢀ.ꢁꢁ  
ꢁ.5ꢁꢁ ꢁ.ꢁ3ꢂ  
CATHODE  
2ꢁ.5 ꢀ.ꢁꢁ  
ꢁ.8ꢁ7ꢁ ꢁ.ꢁ3ꢂꢃ  
ꢂ.ꢀ25 ꢁ.625  
ꢁ.35ꢂ5 ꢁ.ꢁ2ꢃ5  
ꢀ8.ꢁꢁ ꢁ.5ꢁ  
ꢁ.7ꢁ85 ꢁ.ꢁꢀꢂ5  
ꢃ.ꢁꢁ ꢁ.2ꢁ  
ꢁ.ꢀ575 ꢁ.ꢁꢁ75  
ꢁ.7ꢁ ꢁ.2ꢁ  
ꢁ.ꢁ275 ꢁ.ꢁꢁ75  
TYP.  
Ø
ꢀ2.7ꢁ ꢁ.3ꢁ  
ꢁ.5ꢁꢁ ꢁ.ꢁꢀ2  
A
A
VIEW AA  
Note: The ammo-packs drawing is applicable for packaging option –DD & -ZZ and regardless standoff or non-standoff  
10  
Packaging Box for Ammo Packs  
FROM LEFT SIDE OF BOX  
ADHESIVE TAPE MUST BE  
FACING UPWARDS.  
LABEL ON THIS  
SIDE OF BOX  
ANODE LEAD LEAVES  
THE BOX FIRST.  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
Packaging Label  
(iꢀ Avago Mother Label: (Available on packaging box of ammo pack and shipping boxꢀ  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 260C  
(Q) QTY: Quantity  
CAT: Intensity Bin  
BIN: Color Bin  
(1T) Lot: Lot Number  
LPN:  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
11  
(iiꢀ Avago Baby Label (Only available on bulk packagingꢀ  
RoHS Compliant  
e3 max temp 260C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
BIN: Color Bin  
Supplier Code:  
DATECODE: Date Code  
DISCLAIMER: Avago’s products and software are not specifically designed, manufactured or authorized for  
sale as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a  
nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to  
make claims against avago or its suppliers, for all loss, damage, expense or liability in connection with such use.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.  
AV02-2228EN - May 22, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY