HCPL-4562#520 [AVAGO]

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8;
HCPL-4562#520
型号: HCPL-4562#520
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8

输出元件 光电
文件: 总17页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-4562, HCNW4562  
High Bandwidth, Analog/Video Optocouplers  
Data Sheet  
Description  
Features  
Wide bandwidth[1]:  
17 MHz (HCPL-4562)  
9 MHz (HCNW4562)  
The HCPL-4562 and HCNW4562 optocouplers provide  
wide bandwidth isolation for analog signals. They are ideal  
for video isolation when combined with their application  
circuit (Figure4). High linearity and low phase shift are  
achieved through an AlGaAs LED combined with a high  
speed detector. These single channel optocouplers are  
available in 8-Pin DIP and Widebody package  
configurations.  
High voltage gain[1]:  
2.0 (HCPL-4562)  
3.0 (HCNW4562)  
Low GV temperature coefficient: -0.3%/°C  
Highly linear at low drive currents  
High-speed AlGaAs emitter  
Functional Diagram  
Safety approval:  
UL Recognized  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
V
V
CC  
B
– 3750Vrms for 1 minute (5000Vrms for 1 minute for  
HCPL-4562#020 and HCNW4562) per UL 1577  
CSA Approved  
IEC/EN/DIN EN 60747-5-2 Approved  
– VIORM = 1414 Vpeak for HCNW4562  
O
GND  
Available in 8-pin DIP and widebody packages  
Applications  
Video isolation for the following standards/formats:  
NTSC, PAL, SECAM, S-VHS, ANALOG RGB  
Low drive current feedback element in switching  
power supplies, e.g., for ISDN networks  
A/D converter signal isolation  
Analog signal ground isolation  
High voltage insulation  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Selection Guide  
Single Channel Packages  
8-Pin DIP  
Widebody  
(400 Mil)  
(300 Mil)  
HCPL-4562  
HCNW4562  
Ordering Information  
HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is UL  
Recognized with 5000 Vrms for 1 minute per UL1577.  
Option  
Part  
Number  
RoHS  
non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
UL 5000 Vrms/  
IEC/EN/DIN  
Compliant Compliant Package  
& Reel 1 Minute rating EN 60747-5-2  
Quantity  
-000E  
-300E  
-500E  
no option 300 mil DIP-8  
#300  
#500  
#020  
#320  
#520  
#060  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
42 per tube  
42 per tube  
750 per reel  
X
X
X
X
X
X
X
HCPL-4562 -020E  
-320E  
X
X
X
X
-520E  
-060E  
-000E  
X
X
X[1]  
X[2]  
X[2]  
X[2]  
no option 400 mil  
X
X
X
HCNW4562 -300E  
-500E  
#300  
#500  
Widebody  
DIP-8  
X
X
X
X
X
Notes:  
1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval.  
2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval.  
To order, choose a part number from the part number  
column and combine with the desired option from the  
option column to form an order entry.  
Schematic  
I
CC  
8
V
CC  
I
F
2
+
ANODE  
Example 1:  
V
HCPL-4562-520E to order product of Gull Wing Surface  
Mount package in Tape and Reel packaging with UL 5000  
Vrms/1 minute rating and RoHS compliant.  
F
I
O
6
5
3
V
O
CATHODE  
Example 2:  
GND  
I
B
HCNW4562 to order product of 8-Pin Widebody DIP  
package in Tube packaging with IEC/EN/DIN EN 60747-5-  
2 VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1  
minute rating and non RoHS compliant.  
7
V
B
Option datasheets are available. Contact your Avago sales  
representative or authorized distributor for information.  
Remarks: The notation#XXXis used for existing products,  
while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
2
Package Outline Drawings  
8-Pin DIP Package (HCPL-4562)  
7.62 0.25  
(0.300 0.010ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
8
1
7
6
5
6.35 0.25  
(0.250 0.010ꢀ  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070ꢀ MAX.  
1.19 (0.047ꢀ MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003ꢀ  
- 0.002ꢀ  
3.56 0.13  
(0.140 0.005ꢀ  
(0.010  
4.70 (0.185ꢀ MAX.  
0.51 (0.020ꢀ MIN.  
2.92 (0.115ꢀ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢀ.  
1.080 0.320  
(0.043 0.013ꢀ  
0.65 (0.025ꢀ MAX.  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010ꢀ  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)  
LAND PATTERN RECOMMENDATION  
1.016 (0.040ꢀ  
9.65 0.25  
(0.380 0.010ꢀ  
6
5
8
1
7
6.350 0.25  
(0.250 0.010ꢀ  
10.9 (0.430ꢀ  
2.0 (0.080ꢀ  
2
3
4
1.27 (0.050ꢀ  
9.65 0.25  
1.780  
(0.070ꢀ  
MAX.  
(0.380 0.010ꢀ  
1.19  
(0.047ꢀ  
MAX.  
7.62 0.25  
(0.300 0.010ꢀ  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005ꢀ  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
1.080 0.320  
(0.043 0.013ꢀ  
0.635 0.25  
(0.025 0.010ꢀ  
12° NOM.  
0.635 0.130  
(0.025 0.005ꢀ  
2.54  
(0.100ꢀ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
3
8-Pin Widebody DIP Package (HCNW4562)  
11.00  
(0.433ꢀ  
11.15 0.15  
(0.442 0.006ꢀ  
MAX.  
9.00 0.15  
(0.354 0.006ꢀ  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400ꢀ  
TYP.  
1.55  
(0.061ꢀ  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
5.10  
(0.201ꢀ  
MAX.  
3.10 (0.122ꢀ  
3.90 (0.154ꢀ  
0.51 (0.021ꢀ MIN.  
2.54 (0.100ꢀ  
TYP.  
1.78 0.15  
(0.070 0.006ꢀ  
0.40 (0.016ꢀ  
0.56 (0.022ꢀ  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)  
11.15 0.15  
(0.442 0.006ꢀ  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 0.15  
(0.354 0.006ꢀ  
13.56  
(0.534ꢀ  
1
3
2
4
2.29  
1.3  
(0.09ꢀ  
(0.051ꢀ  
12.30 0.30  
1.55  
(0.061ꢀ  
MAX.  
(0.484 0.012ꢀ  
11.00  
MAX.  
(0.433ꢀ  
4.00  
MAX.  
(0.158ꢀ  
1.78 0.15  
(0.070 0.006ꢀ  
1.00 0.15  
(0.039 0.006ꢀ  
0.75 0.25  
(0.030 0.010ꢀ  
+ 0.076  
- 0.0051  
2.54  
(0.100ꢀ  
BSC  
0.254  
+ 0.003ꢀ  
- 0.002ꢀ  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 milsꢀ MAX.  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°Cꢁ–0.5°CꢁSEC.  
REFLOW HEATING RATE 2.5°C 0.5°CꢁSEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C 0.5°CꢁSEC.  
SOLDERING  
TIME  
30  
160°C  
150°C  
140°C  
200°C  
SEC.  
30  
SEC.  
3°C + 1°Cꢁ–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDSꢀ  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
*
260 +0ꢁ-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °CꢁSEC. MAX.  
RAMP-DOWN  
6 °CꢁSEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
*
Recommended peak temperature for widebody  
400 mils package is 245°C  
Regulatory Information  
The devices contained in this data sheet have been approved by the following organizations:  
UL  
IEC/EN/DIN EN 60747-5-2  
Recognized under UL 1577, Component Recognition  
Program, File E55361.  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
(HCNW4562 only)  
CSA  
Approved under CSA Component Acceptance Notice #5,  
File CA 88324.  
5
Insulation and Safety Related Specifications  
8-Pin DIP  
Widebody  
(400 Mil)  
Value  
(300 Mil)  
Value  
7.1  
Parameter  
Symbol  
L(101)  
Units  
mm  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
9.6  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal  
Plastic Gap  
L(102)  
7.4  
10.0  
1.0  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Through insulation distance,  
conductor to conductor, usually the  
direct distance between the photo-  
emitter and photodetector inside the  
optocoupler cavity.  
0.08  
(Internal Clearance)  
Minimum Internal  
Tracking (Internal  
Creepage)  
Tracking Resistance  
(Comparative  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measured from input terminals to  
output terminals, along internal cavity.  
CTI  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Tracking Index)  
Isolation Group  
Material Group  
(DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 600 V rms  
for rated mains voltage ≤ 1000 V rms  
Climatic Classification  
I-IV  
I-III  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
Partial Discharge < 5 pC  
V
1414  
Vpeak  
Vpeak  
IORM  
VPR  
VPR  
2652  
2121  
8000  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test,  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values  
Vpeak  
VIOTM  
Vpeak  
(Maximum values allowed in the event of a failure,  
also see Figure 17, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
RS  
150  
400  
700  
°C  
mA  
mW  
Ω
Insulation Resistance at TS, VIO = 500 V  
≥ 109  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN  
60747-5-2, for a detailed description.  
Note:Isolationcharacteristicsareguaranteedonlywithinthesafetymaximumratingswhichmustbeensuredbyprotectivecircuitsin  
application.  
6
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Device  
Min.  
-55  
-40  
Max.  
125  
85  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Average Forward Input Current  
TA  
°C  
IF(avg)  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCPL-4562  
HCNW4562  
HCNW4562  
12  
mA  
25  
Peak Forward Input Current  
IF(PEAK)  
18.6  
40  
mA  
Effective Input Current  
IF(EFF)  
VR  
12.9  
1.8  
3
mA rms  
V
Reverse LED Input Voltage (Pin 3-2)  
Input Power Dissipation  
PIN  
40  
mW  
mA  
mA  
V
Average Output Current (Pin 6)  
Peak Output Current (Pin 6)  
Emitter-Base Reverse Voltage (Pin 5-7)  
Supply Voltage (Pin 8-5)  
IO(AVG)  
IO(PEAK)  
8
16  
V
EBR  
5
V
CC  
-0.3  
-0.3  
30  
V
Output Voltage (Pin 6-5)  
VO  
IB  
20  
V
Base Current (Pin 7)  
5
mA  
mW  
°C  
Output Power Dissipation  
PO  
TLS  
100  
260  
2
Lead Solder Temperature  
1.6 mm Below Seating Plane, 10 Seconds up to  
Seating Plane, 10 Seconds  
HCPL-4562  
HCNW4562  
260  
°C  
Reflow Temperature Profile  
TRP  
Option  
300  
See Package Outline  
Drawings Section  
Recommended Operating Conditions  
Parameter  
Operating Temperature  
Quiescent Input Current  
Symbol  
T
A
Device  
Min.  
-10  
Max.  
70  
6
Units  
°C  
Note  
HCPL-4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
IFQ  
mA  
10  
10  
17  
Peak Input Current  
IF(PEAK)  
mA  
7
Electrical Specifications (DC)  
T = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified.  
A
Parameter  
Base Photo  
Current  
Symbol  
Device  
Min. Typ.*  
Max. Units  
Test Conditions  
Fig.  
Note  
IPB  
13  
31  
65  
µA  
IF = 10 mA  
IF = 6 mA  
VPB ≥ 5 V  
2, 6  
HCPL-4562  
19.2  
-0.3  
IPB  
∆IPB/  
∆T  
%/°C 2 mA < IF < 10 mA,  
VPB ≥ 5 V  
2
Temperature  
Coefficient  
IPB  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
0.25  
0.15  
1.3  
1.6  
5
%
V
2 mA < IF < 10 mA  
6 mA < IF < 14 mA  
IF = 5 mA  
2, 6  
5
3
Nonlinearity  
Input Forward  
Voltage  
VF  
1.1  
1.2  
1.8  
3
1.6  
1.8  
IF = 10 mA  
Input Reverse  
Breakdown  
Voltage  
BVR  
V
IR = 10 µA  
IR = 100 µA  
Transistor  
CurrentGain  
Current  
hFE  
CTR  
VOUT  
60  
160  
IC = 1 mA,  
VCE = 1.25 V  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
45  
52  
%
V
VCE = 1.25 V,  
8, 9  
4
Transfer Ratio  
DC Output  
Voltage  
VPB ≥ 5 V  
4.25  
5.0  
GV = 2, VCC = 9 V  
4,  
15  
8
Small Signal Characteristics (AC)  
T = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified.  
A
Parameter  
Symbol  
GV  
Device  
Min. Typ.* Max. Units  
Test Conditions  
V = 1 VP-P  
Fig.  
Note  
Voltage Gain  
HCPL-4562  
HCNW4562  
0.8  
2.0  
3.0  
4.2  
1
6
IN  
(0.1 MHz)  
∆GV/∆T  
GV Temperature  
Coefficient  
Base Photo  
Current  
-0.3  
%/°C V = 1 VP-P  
,
1, 11  
IN  
fREF = 0.1 MHz  
∆iPB  
HCPL-4562  
HCNW4562  
1.1  
3.0  
-dB V = 1 VP-P  
,
3, 10,  
12  
IN  
(6 MHz)  
0.36  
fREF = 0.1 MHz  
Variation  
-3 dB Frequency  
(iPB)  
iPB  
(-3 dB)  
GV  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
HCNW4562  
HCPL-4562  
6
6
15  
13  
MHz V = 1 VP-P  
,
3, 10,  
12  
7
7
IN  
fREF = 0.1 MHz  
-3 dB Frequency  
(GV)  
17  
MHz VIN = 1 VP-P  
,
1, 11  
(-3 dB)  
∆GV  
9
fREF = 0.1 MHz  
Gain Variation  
1.1  
0.54  
0.8  
1.5  
1.15  
2.27  
1.0  
3.0  
-dB T = 25°C  
V = 1 VP-P,  
1, 11  
A
IN  
(6 MHz)  
f REF = 0.1 MHz  
T = -10°C  
A
T = 70°C  
A
∆GV  
HCPL-4562  
HCNW4562  
HCPL-4562  
-dB V = 1 VP-P,  
IN  
(10 MHz)  
fREF = 0.1 MHz  
IFac = 0.7 mA p-p,  
Differential  
Gain at  
%
3, 7  
3, 7  
8
9
IFdc = 3 to 9 mA  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
f = 3.58 MHz  
HCNW4562  
HCPL-4562  
HCNW4562  
0.9  
1
Differential  
Phase at  
deg. IFac = 0.7 mA p-p,  
IFdc = 3 to 9 mA  
f = 3.58 MHz  
0.6  
IFac = 1 mA p-p,  
IFdc = 7 to 13 mA  
Total Harmonic  
Distortion  
THD  
VO(noise)  
IMRR  
HCPL-4562  
HCNW4562  
2.5  
0.75  
950  
%
V = 1 VP-P  
,
4
1
10  
11  
IN  
f = 3.58 MHz, GV = 2  
Output Noise  
Voltage  
µV rms 10 Hz to 10 MHz  
Isolation Mode  
Rejection Ratio  
HCPL-4562  
HCNW4562  
122  
119  
dB f = 120 Hz, GV = 2  
14  
9
Package Characteristics  
All Typicals at T = 25°C  
A
Parameter  
Sym.  
Device  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output  
Momentary  
Withstand  
Voltage*  
V
HCPL-4562  
HCNW4562  
HCPL-4562  
(Option 020)  
3750  
5000  
5000  
V rms  
RH ≤50%,  
t = 1 min.,  
5, 12  
5, 13  
5, 13  
ISO  
T = 25°C  
A
Input-Output  
Resistance  
RI-O  
HCPL-4562  
HCNW4562  
1012  
1013  
Ω
VI-O = 500 Vdc  
5
5
1012  
1011  
T = 25°C  
A
TA = 100°C  
f = 1 MHz  
Input-Output  
Capacitance  
CI-O  
HCPL-4562  
HCNW4562  
0.6  
0.5  
pF  
0.6  
*The Input-Output MomentaryWithstandVoltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety  
specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,publication number 5963-2203E.  
Notes:  
1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/V ; IFQ = 6mA (HCPL-4562), IFQ = 10 mA (HCNW4562).  
IN  
2. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (HCPL-4562).  
3. Maximum variation from the best fit line of IPB vs. IF expressed as a percentage of the peak-to-peak full scale output.  
4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times100%.  
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
6. Flat-band, small-signal voltage gain.  
7. The frequency at which the gain is 3dB below the flat-band gain.  
8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range.  
9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given  
range.  
10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD  
of the isolated video circuit is measured using a 2.6 kΩ load in series with the 50 Ω input impedance of the spectrum analyzer.  
11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler’s ability to reject signals or noise that may exist between input and  
output terminals, is defined by 20 log10 [(VOUT/V )/(VOUT/V )], where VIM is the isolation mode voltage signal.  
IM  
12. In accordance with UL 1577, each optocouplerINis proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detec-  
tion current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related  
Characteristics Table, if applicable.  
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detec-  
tion current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related  
Characteristics Table, if applicable.  
10  
162 Ω (HCPL-4562)  
90.9 Ω (HCNW4562)  
Figure 1. Gain and bandwidth test circuit  
162 Ω (HCPL-4562)  
90.9 Ω (HCNW4562)  
Figure 2. Base photo current test circuit  
Figure 3. Base photo current frequency response test circuit  
Figure 4. Recommended isolated video interface circuit  
11  
HCNW4562  
HCPL-4562  
100  
10  
I
F
+
V
F
T
= 70 °C  
A
1.0  
T
T
= 25 °C  
= -10 °C  
A
A
0.1  
0.01  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
V
– FORWARD VOLTAGE – V  
F
Figure 5. Input current vs. forward voltage  
HCNW4562  
HCPL-4562  
80  
70  
60  
50  
40  
T
V
= 25 °C  
A
30  
> 5 V  
PB  
20  
10  
0
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 6. Base photo current vs. input current  
HCNW4562  
HCPL-4562  
2
1
0
1.02  
1
PHASE  
0.98  
0.96  
-1  
-2  
-3  
NORMALIZED  
= 6 mA  
GAIN  
I
F
f = 3.58 MHz  
= 25 °C  
0.94  
0.92  
T
A
SEE FIG. 3  
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 7. Small-signal response vs. input current  
12  
HCNW4562  
HCPL-4562  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
NORMALIZED  
= 25 °C  
T
A
I
= 6.0 mA  
F
V
V
= 1.25 V  
> 5 V  
CE  
PB  
-10  
0
10 20 30 40 50 60 70  
T – TEMPERATURE – °C  
Figure 8. Current transfer ratio vs. temperature  
HCNW4562  
HCPL-4562  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
V
= 5.0 V  
CE  
V
V
= 1.25 V  
= 0.4 V  
CE  
CE  
NORMALIZED  
= 25 °C  
T
A
I
V
V
= 6 mA  
F
= 1.25 V  
> 5 V  
CE  
PB  
0
2
4
6
8
10 12 14 16 18 20  
I
– INPUT CURRENT – mA  
F
Figure 9. Current transfer ratio vs. input current  
HCNW4562  
HCPL-4562  
-0.9  
-1.1  
FREQUENCY = 6 MHz  
-1.3  
-1.5  
-1.7  
FREQUENCY = 10 MHz  
-1.9  
-2.1  
T
F
= 25 °C  
A
-2.3  
-2.5  
-2.7  
= 0.1 MHz  
REF  
1
2
3
4
5
6
7
8
9 10 11 12  
I
– QUIESCENT INPUT CURRENT – mA  
FQ  
Figure 10. Base photo current variation vs. bias conditions  
13  
HCNW4562  
HCPL-4562  
3
2
T
= -10 °C  
A
1
0
T
T
= 25 °C  
= 70 °C  
A
A
-1  
-2  
-3  
-4  
NORMALIZED  
= 25 °C  
f = 0.1 MHz  
T
A
-5  
-6  
-7  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f – FREQUENCY – KHz  
Figure 11. Normalized voltage gain vs. frequency  
HCNW4562  
HCPL-4562  
0.5  
0
-0.5  
-1.0  
NORMALIZED  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
T
= 25 °C  
A
f = 0.1 MHz  
-4.0  
-4.5  
0.01 0.1 1.0 10 100 1000 10,000 100,000  
f – FREQUENCY – KHz  
Figure 12. Normalized base photo current vs. frequency  
HCNW4562  
HCPL-4562  
0
I
PHASE  
PB  
SEE FIGURE 3  
-25  
-50  
-75  
T
= 25 °C  
A
-100  
-125  
-150  
-175  
VIDEO INTERFACE  
CIRCUIT PHASE  
SEE FIGURE 4  
-200  
-225  
-250  
0
2
4
6
8
10 12 14 16 18 20  
f – FREQUENCY – MHz  
Figure 13. Phase vs. frequency  
14  
HCNW4562  
HCPL-4562  
150  
120  
90  
T
= 25 °C  
A
-20 dBꢁDECADE SLOPE  
60  
G
v
30 IMRR = 20 LOG  
10  
v
v
IM  
OUT  
/
0
0.01 0.1  
1.0  
10  
100 1000 10,000  
f – FREQUENCY – KHz  
Figure 14. Isolation mode rejection ratio vs. frequency  
HCPL-4562  
6.0  
HCNW4562  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
50 100 150 200 250 300 350 400 450  
h
– TRANSISTOR CURRENT GAIN  
FE  
Figure 15. DC output voltage vs. transistor current gain  
HCNW4562  
V
1000  
CC  
P
I
(mWꢀ  
S
900  
800  
700  
600  
500  
400  
300  
200  
I
= 2 mA  
C
(mAꢀ  
Q4  
S
R
9
ADDITIONAL  
BUFFER  
STAGE  
Q
4
Q
Q
3
5
R
11  
V
OUT  
LOW  
IMPEDANCE  
LOAD  
R
100  
0
R
10  
12  
0
25  
50 75 100 125 150 175  
T
– CASE TEMPERATURE – °C  
S
Figure 16. Output buffer stage for low imped-  
ance loads  
Figure 17. Thermal derating curve, dependence of  
safety limiting value with case temperature per IEC/  
EN/DIN EN 60747-5-2  
15  
iFp-p  
               
VIN/R4  
(2)  
IPBQ  
               
(6)  
IBXQ  
               
(7)  
IC
                                                         
9.0 mA  
(8)  
Conversion from HCPL-4562 to HCNW4562  
In order to obtain similar circuit performance when  
converting from the HCPL-4562 to the HCNW4562,  
it is recommended to increase the Quiescent Input  
Current, IFQ, from 6 mA to 10 mA. If the application circuit  
in Figure 4 is used, then potentiometer R4 should be  
adjusted appropriately.  
Figure 15 shows the dependency of the DC output  
voltage on hFEX  
.
For 9 V < VCC < 12 V, select the value of R11 such that  
VO  
4.25 V  
470  
Q4  
R11  
Design Considerations of the Application Circuit  
The voltage gain of the second stage (Q3) is  
approximately equal to:  
The appÏication circuit in Figure 4 incorporates  
several features that help maximize the bandwidth  
performance of the HCPL-4562/HCNW4562. Most  
important of these features is peaked response of the  
detector circuit that helps extend the frequency range  
over which the voltage gain is relatively constant. The  
number of gain stages, the overall circuit topology, and  
the choice of DC bias points are all consequences of  
the desire to maximize bandwidth performance.  
R9  
R10  
1
(9)  
*
1
1 + s R9 CCQ  
+
3
2RfT
11  
4
Increasing R11 (R11 includes the parallel combination of  
R11 and the load impedance) or reducing R9 (keeping  
R9/R10 ratio constant) will improve the bandwidth.  
To use the circuit, first select R1 to set VE for the desired  
LED quiescent current by:  
If it is necessary to drive a low impedance load,  
bandwidth may also be preserved by adding an  
additional emitter following the buffer stage (Q5 in  
Figure 16), in which case R11 can be increased to  
set ICQ4 2 mA.  
VE  
GV VE R10  
IFQ  
=
(1)  
R4  
(IPB/IF) R7R9  
For a constant value VINp-p, the circuit topology  
(adjusting the gain with R4) preserves linearity by  
keeping the modulation factor (MF) dependent only  
on VE.  
Finally, adjust R4 to achieve the desired voltage gain.  
VOUT IPB R7R9  
GV �  
(10)  
VIN  
IF R4R10  
p-p  
IPB  
IF  
where typically  
= 0.0032  
iF
iPBp-p  
VINpp-p
VE  
p-p  
=
(3)  
IFQ  
IPBQ  
Definition:  
GV = Voltage Gain  
Modulation  
IFQ = Quiescent LED forward current  
iFp-p = Peak-to-peak small signal LED forward  
current  
iFVIN
p-p  
(p-p)  
Factor (MF):  
=
(4)  
2 IFQ  
2 VE  
VINp-p = Peak-to-peak small signal input voltage  
For a given GV, VE, and VCC, DC output voltage will vary  
only with hFEX  
iPBp-p = Peak-to-peak small signal  
base photo current  
.
IPBQ = Quiescent base photo current  
R
VO = VCC – VBE  
9 [VBE X - (IPBQ - IBXQ) R7]  
R10  
(5)  
4
VBEX = Base-Emitter voltage of HCPL-4562/  
HCNW4562 transistor  
Where:  
IBXQ = Quiescent base current of HCPL-4562/  
HCNW4562 transistor  
GV VE R10  
R7R9  
hFEX = Current Gain (IC/IB) of HCPL-4562/  
HCNW4562 transistor  
and,  
VE = Voltage across emitter degeneration  
resistor R4  
VCC - 2 VBE  
R6 hFE X  
f
= Unity gain frequency of Q5  
4
T
CCQ = Effective capacitance from collector of Q3  
3
to ground  
16  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0571EN  
AV02-1361EN - June 23, 2008  

相关型号:

HCPL-4562-000E

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8
AVAGO

HCPL-4562-020

High Bandwidth, Analog/Video Optocouplers
AVAGO

HCPL-4562-020E

Transistor Output Optocoupler, 1-Element, 5000V Isolation,
AGILENT

HCPL-4562-300

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-4562-300E

Transistor Output Optocoupler, 1-Element, 3750V Isolation,
AGILENT

HCPL-4562-320E

Transistor Output Optocoupler, 1-Element, 3750V Isolation,
AGILENT

HCPL-4562-520

1 CHANNEL LINEAR OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-4661

High CMR, High Speed TTL Compatible Optocouplers
AGILENT

HCPL-4661

High CMR Line Receiver Optocouplers
HP

HCPL-4661

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-4661

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

HCPL-4661#060

Logic IC Output Optocoupler, 2-Element, 3750V Isolation, 10MBps, 0.300 INCH, DIP-8
AVAGO