HCPL-0708-500E [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SURFACE MOUNT, SOP-8;
HCPL-0708-500E
型号: HCPL-0708-500E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SURFACE MOUNT, SOP-8

输出元件 光电
文件: 总12页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-0708  
High Speed CMOS Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Available in SO-8 package, the HCPL-0708 optocoupler  
utilizes the latest CMOS IC technology to achieve out-  
standing performance with very low power consump-  
tion. Basic building blocks of the HCPL-0708 are a high  
speed LED and a CMOS detector IC. The detector incor-  
+5 V CMOS compatibility  
15 ns typical pulse width distortion  
30 ns max. pulse width distortion  
40 ns max. propagation delay skew  
porates an integrated photodiode, a high-speed trans- High speed: 15 MBd  
impedance amplifier, and a voltage comparator with an  
output driver.  
60 ns max. propagation delay  
10 kV/µs minimum common mode rejection  
–40 to 100°C temperature range  
Functional Diagram  
Safety and regulatory approvals pending  
– UL recognized  
3750 V rms for 1 min. per UL 1577 for HCPL-0708  
– CSA component acceptance Notice #5  
– IEC/EN/DIN EN 60747-5-2  
NC  
1
2
8
7
V
DD  
approved for HCPL-0708 Option 060  
ANODE  
NC  
3
4
6
5
CATHODE  
NC  
V
O
Applications  
Scan drive in PDP  
GND  
Digital field bus isolation: DeviceNet, SDS, Profibus  
Multiplexed data transmission  
Computer peripheral interface  
Microprocessor system interface  
TRUTH TABLE  
LED  
V
, OUTPUT  
O
OFF  
ON  
H
L
*A 0.1 µF bypass capacitor must be  
connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
HCPL-0708 is UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
Part  
Number  
RoHS  
non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
UL 5000 Vrms/  
IEC/EN/DIN  
Compliant Compliant Package  
& Reel 1 Minute rating EN 60747-5-2 Quantity  
-000E  
no option SO-8  
X
X
X
100 per tube  
HCPL-0708 -500E  
-560E  
#500  
-
X
X
1500 per reel  
1500 per reel  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example1:  
HCPL-0708-500E to order product of Small Outline SO-8 package in Tape and Reel packaging and RoHS compliant.  
Example 2:  
HCPL-0708 to order product of Small Outline SO-8 package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and  
RoHS compliant will use ‘–XXXE.’  
Package Outline Drawing  
LAND PATTERN RECOMMENDATION  
8
7
2
6
5
4
5.994 0.203  
(0.236 0.008ꢀ  
XXXV  
YWW  
3.937 0.127  
(0.155 0.005ꢀ  
TYPE NUMBER  
(LAST 3 DIGITSꢀ  
7.49 (0.295ꢀ  
DATE CODE  
1
3
PIN ONE  
1.9 (0.075ꢀ  
0.406 0.076  
(0.016 0.003ꢀ  
1.270  
(0.050ꢀ  
BSC  
0.64 (0.025ꢀ  
0.432  
(0.017ꢀ  
*
7°  
5.080 0.127  
45° X  
(0.200 0.005ꢀ  
3.175 0.127  
(0.125 0.005ꢀ  
0 ~ 7°  
0.228 0.025  
(0.009 0.001ꢀ  
1.524  
(0.060ꢀ  
0.203 0.102  
(0.008 0.004ꢀ  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASHꢀ  
5.207 0.254 (0.205 0.010ꢀ  
*
0.305  
(0.012ꢀ  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHESꢀ.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHESꢀ MAX.  
OPTION NUMBER 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 milsꢀ MAX.  
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3°C + 1°Cꢁ–0.5°CꢁSEC.  
REFLOW HEATING RATE 2.5°C 0.5°CꢁSEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
100  
0
2.5°C 0.5°CꢁSEC.  
SOLDERING  
TIME  
30  
160°C  
150°C  
140°C  
200°C  
SEC.  
30  
SEC.  
3°C + 1°Cꢁ–0.5°C  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDSꢀ  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0ꢁ-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °CꢁSEC. MAX.  
150 - 200 °C  
RAMP-DOWN  
6 °CꢁSEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Regulatory Information  
The HCPL-0708 has been approved by the following organizations:  
UL  
Recognized under UL 1577, component recognition program, File E55361.  
CSA  
Approved under CSA Component Acceptance Notice #5, File CA88324.  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884Teil 2):2003-01 (Option 060 only)  
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Units  
Conditions  
Minimum External Air  
Gap (Clearance)  
L(I01)  
4.9  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External  
Tracking (Creepage)  
L(I02)  
CTI  
4.8  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
Insulation thickness between emitter and  
detector; also known as distance through  
insulation.  
Tracking Resistance  
(Comparative Tracking Index)  
≥175  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
the surface of a printed circuit board between the solder  
fillets of the input and output leads must be considered.  
There are recommended techniques such as grooves  
and ribs which may be used on a printed circuit board to  
achieve desired creepage and clearances. Creepage and  
clearance distances will also change depending on fac-  
tors such as pollution degree and insulation level.  
All Avago data sheets report the creepage and clearance  
inherent to the optocoupler component itself. These  
dimensions are needed as a starting point for the equip-  
ment designer when determining the circuit insulation  
requirements. However, once mounted on a printed  
circuit board, minimum creepage and clearance require-  
ments must be met as specified for individual equipment  
standards. For creepage, the shortest distance path along  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (Option 060)  
Description  
Symbol  
HCPL-0708 Option 060  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤150 V rms  
for rated mains voltage ≤300 V rms  
I-IV  
I-III  
for rated mains voltage ≤450 V rms  
Climatic Classification  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b†  
V
560  
V peak  
V peak  
IORM  
VPR  
1050  
VIORM x 1.875 = VPR, 100% Production  
Test with tm = 1 sec, Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a†  
VPR  
840  
V peak  
V peak  
VIORM x 1.5 = VPR, Type and Sample Test,  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage†  
VIOTM  
4000  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Thermal Derating curve, Figure 11.)  
Case Temperature  
Input Current  
Output Power  
TS  
150  
150  
600  
°C  
mA  
mW  
IS,INPUT  
PS,OUTPUT  
Insulation Resistance at TS, V10 = 500 V  
RIO  
≥109  
†Refer to the front of the optocoupler section of the Isolation and Control Component Designer’s Catalog, under Product Safety Regulations sec-  
tion IEC/EN/DIN EN 60747-5-2, for a detailed description.  
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
–55  
–40  
0
Max.  
Units  
°C  
Figure  
Storage Temperature  
125  
Ambient Operating Temperature[1]  
Supply Voltages  
TA  
+100  
°C  
VDD  
VO  
6
Volts  
Volts  
mA  
mA  
Output Voltage  
–0.5  
VDD2 +0.5  
Average Output Current  
Average Forward Input Current  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
IO  
2
IF  
20  
260°C for 10 sec., 1.6 mm below seating plane  
See Solder Reflow Temperature Profile Section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
–40  
4.5  
Max.  
+100  
5.5  
Units  
°C  
Figure  
Ambient Operating Temperature  
Supply Voltages  
TA  
VDD  
IF  
V
Input Current (ON)  
10  
16  
mA  
1, 2  
Electrical Specifications  
Over recommended temperature (T = –40°C to +100°C) and 4.5 V ≤ V ≤ 5.5 V.  
A
DD  
All typical specifications are at T = 25°C, V = +5 V.  
A
DD  
Parameter  
Symbol  
VF  
Min.  
1.3  
5
Typ.  
Max.  
Units  
Test Conditions  
IF = 12 mA  
IR = 10 µA  
Fig. Notes  
Input Forward Voltage  
1.5  
1.8  
V
V
1
Input Reverse  
BVR  
Breakdown Voltage  
Logic High Output  
Voltage  
VOH  
4.0  
4.8  
V
V
IF = 0, IO = –20 µA  
Logic Low Output  
Voltage  
VOL  
0.01  
0.1  
IF = 12 mA, IO = 20 µA  
Input Threshold Current  
ITH  
8.2  
mA  
mA  
IOL = 20 µA  
IF = 12 mA  
2
4
Logic Low Output  
Supply Current  
IDDL  
6.0  
4.5  
14.0  
Logic High Output  
Supply Current  
IDDH  
11.0  
mA  
IF = 0  
3
Switching Specifications  
Over recommended temperature (T = –40°C to +100°C) and 4.5 V ≤ V ≤ 5.5 V.  
A
DD  
All typical specifications are at T = 25°C, V = +5 V.  
A
DD  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Notes  
Propagation Delay Time  
to Logic Low Output  
tPHL  
20  
35  
60  
ns  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
5
1
Propagation Delay Time  
to Logic High Output  
tPLH  
13  
21  
14  
60  
ns  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
5
1
Pulse Width  
PW  
100  
0
ns  
ns  
Pulse Width Distortion  
|PWD|  
30  
40  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
2
3
2
3
Propagation Delay Skew  
tPSK  
ns  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
Output Rise Time  
(10 - 90%)  
tR  
20  
25  
15  
ns  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
Output Fall Time  
(90 - 10%)  
tF  
ns  
IF = 12 mA, CL = 15 pF  
CMOS Signal Levels  
Common Mode  
Transient Immunity at  
Logic High Output  
|CMH|  
10  
10  
kV/µs  
VCM = 1000 V, TA = 25°C,  
IF = 0 mA  
4
5
4
5
Common Mode  
Transient Immunity at  
Logic Low Output  
|CML|  
15  
kV/µs  
VCM = 1000 V, TA = 25°C,  
IF = 12 mA  
Package Characteristics  
All Typicals at T = 25°C.  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Input-Output Insulation  
II-O  
1
µA  
45% RH, t = 5 s  
V
I-O = 3 kV dc,  
TA = 25°C  
Input-Output Momentary  
Withstand Voltage  
VISO  
3750  
Vrms  
RH ≤ 50%, t = 1 min.,  
TA = 25°C  
Input-Output Resistance  
Input-Output Capacitance  
Notes:  
RI-O  
CI-O  
1012  
0.6  
VI-O = 500 V dc  
pF  
f = 1 MHz, TA = 25°C  
1. t  
propagation delay is measured from the 50% level on the risiing edge of the input pulse to the 2.5 V level of the falling edge of the V  
PHL  
O
signal. t  
propagation delay is measured from the 50% level on the falling edge of the input pulse to the 2.5 V level of the rising edge of the  
PLH  
V
O
signal.  
2. PWD is defined as |t  
- t |.  
PHL PLH  
3. t is equal to the magnitude of the worst case difference in t  
and/or t  
that will be seen between units at any given temperature within  
PSK  
PHL  
PLH  
the recommended operating conditions.  
4. CM is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.  
H
5. CM is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state.  
L
8
7
6
5
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1000  
100  
10  
V
= 5.0 V  
DD  
V
= 5.0 V  
DD  
= 20 µA  
I
OL  
I
F
T
= 25°C  
A
+
V
F
1.0  
0.1  
4
3
2
0.01  
0.001  
-40  
0
25  
85  
100  
-40  
0
25  
85  
100  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
V
– FORWARD VOLTAGE – V  
F
Figure 1. Typical input diode forward characteristic.  
Figure 2. Typical input threshold current vs.  
temperature.  
Figure 3. Typical logic high O/P supply current vs.  
temperature.  
8.0  
50  
V
= 5.0 V  
V
= 5.0 V  
DD  
DD  
= 25 °C  
45  
40  
35  
30  
25  
20  
15  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
T
A
T
phl  
T
plh  
PWD  
10  
5
0
-40  
0
25  
85  
100  
5
I
6
7
8
9
10 11 12 13 14  
T
– TEMPERATURE – °C  
– PULSE INPUT CURRENT – mA  
A
F
Figure 4. Typical logic low O/P supply current vs.  
temperature.  
Figure 5. Typical switching speed vs. pulse input  
current.  
Application Information  
Bypassing and PC Board Layout  
As shown in Figure 6, the only external component re-  
quired for proper operation is the bypass capacitor. Ca-  
pacitor values should be between 0.01 µF and 0.1 µF. For  
each capacitor, the total lead length between both ends  
of the capacitor and the power-supply pins should not  
exceed 20 mm. Figure 7 illustrates the recommended  
printed circuit board layout for the HPCL-0708.  
The HCPL-0708 optocoupler is extremely easy to use. No  
external interface circuitry is required because the HCPL-  
0708 uses high-speed CMOS IC technology allowing  
CMOS logic to be connected directly to the inputs and  
outputs.  
8
7
6
5
V
V
1
2
3
4
DD  
O
C
I
F
NC  
GND  
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 6. Recommended printed circuit board layout.  
V
V
DD  
O
I
F
C2  
GND  
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 7. Recommended printed circuit board layout.  
Propagation Delay, Pulse-Width Distortion and Propagation  
Delay Skew  
to high. Similarly, the propagation delay from high to  
Propagation Delay is a figure of merit which describes  
how quickly a logic signal propagates through a sys-  
low (t ) is the amount of time required for the input  
PHL  
signal to propagate to the output, causing the output to  
change from high to low. See Figure8.  
tem. The propagation delay from low to high (t ) is the  
amount of time required for an input signal to propagate  
to the output, causing the output to change from low  
PLH  
12 mA  
0 mA  
INPUT  
I
50%  
F
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
90%  
90%  
V
10%  
10%  
O
V
OL  
Figure 8.  
10  
Propagation delay skew is defined as the difference be-  
tween the minimum and maximum propagation delays,  
Pulse-width distortion (PWD) is the difference between  
and t and often determines the maximum data  
t
PHL  
PLH  
either t  
or t , for any given group of optocouplers  
rate capability of a transmission system. PWD can be  
expressed in percent by dividing the PWD (in ns) by the  
minimum pulse width (in ns) being transmitted. Typical-  
ly, PWD on the order of 20 - 30% of the minimum pulse  
width is tolerable; the exact figure depends on the par-  
ticular application.  
PLH  
PHL  
which are operating under the same conditions (i.e., the  
same drive current, supply voltage, output load, and op-  
erating temperature). As illustrated in Figure 9, if the in-  
puts of a group of optocouplers are switched either ON  
or OFF at the same time, t  
is the difference between  
PSK  
the shortest propagation delay, either t  
or t , and  
PLH  
PHL  
Propagation delay skew, t , is an important parameter  
PSK  
the longest propagation delay, either t  
or t  
.
PLH  
PHL  
to consider in parallel data applications where synchro-  
nization of signals on parallel data lines is a concern. If  
the parallel data is being sent through a group of opto-  
couplers, differences in propagation delays will cause the  
data to arrive at the outputs of the optocouplers at differ-  
ent times. If this difference in propagation delay is large  
enough it will determine the maximum rate at which  
parallel data can be sent through the optocouplers.  
As mentioned earlier, t  
can determine the maximum  
PSK  
parallel data transmission rate. Figure 10 is the timing  
diagram of a typical parallel data application with both  
the clock and data lines being sent through the opto-  
couplers. The figure shows data and clock signals at the  
inputs and outputs of the optocouplers. In this case the  
data is assumed to be clocked off of the rising edge of  
the clock.  
I
F
50%  
DATA  
INPUTS  
CLOCK  
2.5 V,  
CMOS  
V
O
t
PSK  
I
50%  
F
DATA  
OUTPUTS  
t
PSK  
2.5 V,  
CMOS  
CLOCK  
V
O
t
PSK  
Figure 9. Propagation delay skew waveform.  
Figure 10. Parallel data transmission example.  
throughoptocouplersinaparallelapplicationistwicet  
.
Propagation delay skew represents the uncertainty of  
where an edge might be after being sent through an op-  
tocoupler. Figure10 shows that there will be uncertainty  
in both the data and clock lines. It is important that these  
two areas of uncertainty not overlap, otherwise the clock  
signal might arrive before all of the data outputs have  
settled, or some of the data outputs may start to change  
before the clock signal has arrived. From these consider-  
ations,theabsoluteminimumpulsewidththatcanbesent  
PSK  
A cautious design should use a slightly longer pulse  
width to ensure that any additional uncertainty in the  
rest of the circuit does not cause a problem.  
The HCPL-0708 optocouplers offer the advantage of  
guaranteed specifications for propagation delays, pulse-  
width distortion, and propagation delay skew over the  
recommended temperature and power supply ranges.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV02-0877EN  
AV02-0877EN January 8, 2008  
1ꢀ  

相关型号:

HCPL-0708-560E

High Speed CMOS Optocoupler
AVAGO

HCPL-0708060

High Speed CMOS Optocoupler
AGILENT

HCPL-0708500

High Speed CMOS Optocoupler
AGILENT

HCPL-070A

Very Low Power Consumption High Gain Optocouplers
AGILENT

HCPL-070A#060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SOP-8
AVAGO

HCPL-070A#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.1Mbps, SOP-8
AVAGO

HCPL-070A#560

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SOP-8
AVAGO

HCPL-070A-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO

HCPL-070A-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SOIC-8
AVAGO

HCPL-070A-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO

HCPL-070A-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, SOIC-8
AVAGO

HCPL-070A-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO