ATF-54143 [AVAGO]

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package; 低噪声增强模式伪HEMT的表面贴装塑料封装
ATF-54143
型号: ATF-54143
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
低噪声增强模式伪HEMT的表面贴装塑料封装

文件: 总16页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATF-54143  
Low Noise Enhancement Mode Pseudomorphic HEMT  
in a Surface Mount Plastic Package  
Data Sheet  
Description  
Features  
High linearity performance  
Enhancement Mode Technology  
Low noise figure  
Excellent uniformity in product specifications  
800 micron gate width  
Avago Technologies’ ATF-54143 is a high dynamic range,  
low noise, E-PHEMT housed in a 4-lead SC-70 (SOT-343)  
surface mount plastic package.  
[1]  
The combination of high gain, high linearity and low  
noise makes the ATF-54143 ideal for cellular/PCS base  
stations, MMDS, and other systems in the 450 MHz to 6  
GHz frequency range.  
Low cost surface mount small plastic package SOT-  
343 (4 lead SC-70)  
Tape-and-Reel packaging option available  
Lead-free option available.  
Surface Mount Package SOT-343  
Specifications  
2 GHz; 3V, 60 mA (Typ.)  
rd  
36.2 dBm output 3 order intercept  
20.4 dBm output power at 1 dB gain compression  
0.5 dB noise figure  
Pin Connections and Package Marking  
DRAIN  
16.6 dB associated gain  
SOURCE  
Applications  
SOURCE  
GATE  
Low noise amplifier for cellular/PCS base stations  
LNA for WLAN, WLL/RLL and MMDS applications  
Note:  
General purpose discrete E-PHEMT for other ultra low  
Top View. Package marking provides orientation and identification  
noise applications  
“4F” = Device Code  
“x” = Date code character  
identifies month of manufacture.  
Note:  
1. Enhancement mode technology requires positive Vgs, thereby  
eliminating the need for the negative gate voltage associated with  
conventional depletion mode devices.  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model (Class A)  
ESD Human Body Model (Class 1A)  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
[1]  
ATF-54143 Absolute Maximum Ratings  
Absolute  
Maximum  
Symbol  
Parameter  
Units  
VDS  
Drain - Source Voltage[2]  
Gate - Source Voltage[2]  
Gate Drain Voltage[2]  
V
5
VGS  
V
-5 to 1  
-5 to 1  
120  
VGD  
V
IDS  
Drain Current[2]  
mA  
mW  
dBm  
dBm  
mA  
°C  
Pdiss  
Total Power Dissipation[3]  
RF Input Power (Vds=3V, Ids=60mA)  
RF Input Power (Vd=0, Ids=0A)  
Gate Source Current  
725  
20 [5]  
Pin max. (ON mode)  
Pin max. (OFF mode)  
20  
2[5]  
IGS  
TCH  
Channel Temperature  
150  
TSTG  
θjc  
Storage Temperature  
Thermal Resistance[4]  
°C  
-65 to 150  
162  
°C/W  
Notes:  
120  
100  
80  
60  
40  
20  
0
0.7V  
0.6V  
1. Operation of this device in excess of any one of these parameters  
may cause permanent damage.  
2. Assumes DC quiescent conditions.  
3. Source lead temperature is 25°C. Derate 6.2 mW/°C for T > 33°C.  
4. Thermal resistance measured using 150°C Liquid Crystal Measure-  
ment method.  
L
0.5V  
5. The device can handle +20 dBm RF Input Power provided I is  
GS  
limited to 2 mA. I at P  
See application section for additional information.  
drive level is bias circuit dependent.  
GS  
1dB  
0.4V  
0.3V  
0
1
2
3
4
5
6
7
V
DS  
(V)  
Figure 1. Typical I-V Curves.  
(VGS = 0.1 V per step)  
[6, 7]  
Product Consistency Distribution Charts  
160  
200  
160  
120  
80  
160  
Cpk = 0.77  
Cpk = 1.35  
Cpk = 1.67  
Stdev = 0.073  
Stdev = 1.41  
Stdev = 0.4  
120  
120  
-3 Std  
80  
-3 Std  
+3 Std  
+3 Std  
80  
40  
0
40  
0
40  
0
30  
32  
34  
36  
38  
40  
42  
14  
15  
16  
17  
18  
19  
0.25  
0.45  
0.65  
NF (dB)  
0.85  
1.05  
GAIN (dB)  
OIP3 (dBm)  
Figure 3. Gain @ 2 GHz, 3 V, 60 mA.  
USL = 18.5, LSL = 15, Nominal = 16.6  
Figure 2. OIP3 @ 2 GHz, 3 V, 60 mA.  
LSL = 33.0, Nominal = 36.575  
Figure 4. NF @ 2 GHz, 3 V, 60 mA.  
USL = 0.9, Nominal = 0.49  
Notes:  
6. Distribution data sample size is 450 samples taken from 9 different wafers. Future wafers allocated to this product may have nominal values  
anywhere between the upper and lower limits.  
7. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match  
based on production test equipment. Circuit losses have been de-embedded from actual measurements.  
2
ATF-54143 Electrical Specifications  
T = 25°C, RF parameters measured in a test circuit for a typical device  
A
[2]  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.  
Max.  
Vgs  
Vth  
Idss  
Gm  
Operational Gate Voltage  
Threshold Voltage  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 4 mA  
Vds = 3V, Vgs = 0V  
V
0.4  
0.59  
0.38  
1
0.75  
0.52  
5
V
0.18  
Saturated Drain Current  
Transconductance  
μA  
Vds = 3V, gm = ΔIdss/ΔVgs; mmho  
ΔVgs = 0.75-0.7 = 0.05V  
230  
410  
560  
Igss  
NF  
Gate Leakage Current  
Noise Figure[1]  
Vgd = Vgs = -3V  
μA  
200  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dB  
dB  
0.5  
0.3  
0.9  
Ga  
Associated Gain[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dB  
dB  
15  
16.6  
23.4  
18.5  
OIP3  
Output 3rd Order  
Intercept Point[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dBm  
dBm  
33  
36.2  
35.5  
P1dB  
Notes:  
1dB Compressed  
Output Power[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dBm  
dBm  
20.4  
18.4  
1. Measurements obtained using production test board described in Figure 5.  
2. Typical values measured from a sample size of 450 parts from 9 wafers.  
50 Ohm  
Input  
Output  
50 Ohm  
Input  
Output  
Transmission  
Line Including  
Gate Bias T  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.30  
Γ_ang = 150°  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.035  
Γ_ang = -71°  
(0.4 dB loss)  
Transmission  
Line Including  
Drain Bias T  
(0.3 dB loss)  
DUT  
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a  
trade-off between an optimal noise match and associated impedance matching circuit losses. Circuit losses have been de-embedded from actual measure-  
ments.  
3
ATF-54143 Typical Performance Curves  
0.7  
19  
18  
17  
16  
15  
14  
13  
12  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
3V  
4V  
0.3  
3V  
4V  
3V  
4V  
0.2  
0
20  
40  
I
60  
(mA)  
80  
100  
0
20  
40  
I
60  
(mA)  
80  
100  
0
20  
40  
I
60  
(mA)  
80  
100  
ds  
ds  
ds  
Figure 6. Fmin vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 8. Gain vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
ds  
ds  
Figure 7. Fmin vs. I and V Tuned for  
ds ds  
Max OIP3 and Min NF at 900 MHz.  
ds  
ds  
42  
37  
32  
27  
22  
17  
12  
25  
24  
23  
22  
21  
20  
19  
18  
40  
35  
30  
25  
20  
15  
3V  
4V  
3V  
4V  
3V  
4V  
0
20  
40  
60  
(mA)  
80  
100  
0
20  
40  
60  
(mA)  
80  
100  
0
20  
40  
60  
(mA)  
80  
100  
I
I
ds  
I
ds  
ds  
Figure 10. OIP3 vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 11. OIP3 vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
Figure 9. Gain vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
ds  
ds  
ds  
ds  
ds  
ds  
24  
22  
20  
18  
16  
14  
12  
23  
22  
21  
20  
19  
18  
17  
16  
15  
35  
30  
25  
20  
15  
10  
5
25 C  
-40 C  
85 C  
3V  
4V  
3V  
4V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
[1]  
[1]  
I
(mA)  
I
(mA)  
dq  
FREQUENCY (GHz)  
dq  
Figure 12. P1dB vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 14. Gain vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 13. P1dB vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
dq  
ds  
dq  
ds  
Notes:  
1.  
I
represents the quiescent drain current without RF drive applied. Under low values of I , the application of RF drive will cause I to increase  
ds d  
dq  
substantially as P1dB is approached.  
2. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
4
ATF-54143 Typical Performance Curves, continued  
45  
40  
35  
30  
25  
20  
15  
10  
21  
20.5  
20  
2
1.5  
1.0  
0.5  
0
25 C  
-40 C  
85 C  
19.5  
19  
18.5  
18  
25 C  
-40 C  
85 C  
25 C  
-40 C  
85 C  
17.5  
17  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Fmin[2] vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 16. OIP3 vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 17. P1dB vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
60 mA  
40 mA  
80 mA  
0.2  
0
0
1
2
3
4
5
6
7
FREQUENCY (GHz)  
[1]  
Figure 18. Fmin vs. Frequency and I  
at 3V.  
ds  
ATF-54143 Reflection Coefficient Parameters tuned for Maximum Output IP3, V = 3V, I = 60 mA  
DS  
DS  
[1]  
[2]  
Freq  
Γ
Out_Mag.  
ΓOut_Ang.  
OIP3  
P1dB  
(GHz)  
(Mag)  
(Degrees)  
(dBm)  
(dBm)  
0.9  
0.017  
0.026  
0.013  
0.025  
115  
-85  
35.54  
36.23  
37.54  
35.75  
18.4  
2.0  
20.38  
20.28  
18.09  
3.9  
173  
102  
5.8  
Note:  
1. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.  
2. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
5
ATF-54143 Typical Scattering Parameters, V = 3V, I = 40 mA  
DS  
DS  
Freq.  
GHz  
S
S
S
S
22  
MSG/MAG  
dB  
11  
21  
Mag.  
12  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.5  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.99  
0.83  
0.72  
0.70  
0.65  
0.63  
0.62  
0.61  
0.61  
0.63  
0.66  
0.69  
0.71  
0.72  
0.76  
0.83  
0.85  
0.88  
0.89  
0.87  
0.88  
0.87  
0.87  
0.92  
-17.6  
-76.9  
-114  
27.99  
25.47  
22.52  
21.86  
19.09  
17.38  
17.00  
15.33  
13.91  
11.59  
9.65  
8.01  
6.64  
5.38  
4.20  
2.84  
1.42  
0.23  
25.09  
18.77  
13.37  
12.39  
9.01  
7.40  
7.08  
5.84  
4.96  
3.80  
3.04  
2.51  
2.15  
1.86  
1.62  
1.39  
1.18  
1.03  
0.91  
0.78  
0.64  
0.52  
0.44  
0.38  
168.5  
130.1  
108  
103.9  
87.4  
76.6  
74.2  
62.6  
51.5  
0.009  
0.036  
0.047  
0.049  
0.057  
0.063  
0.065  
0.072  
0.080  
0.094  
0.106  
0.118  
0.128  
0.134  
0.145  
0.150  
0.149  
0.150  
0.149  
0.143  
0.132  
0.121  
0.116  
0.109  
80.2  
52.4  
40.4  
38.7  
33.3  
30.4  
29.8  
26.6  
22.9  
14  
0.59  
0.44  
0.33  
0.31  
0.24  
0.20  
0.19  
0.15  
0.12  
0.10  
0.14  
0.17  
0.20  
0.22  
0.27  
0.37  
0.45  
0.51  
0.54  
0.61  
0.65  
0.70  
0.73  
0.76  
-12.8  
-54.6  
-78.7  
-83.2  
-99.5  
-108.6  
-110.9  
-122.6  
-137.5  
176.5  
138.4  
117.6  
98.6  
73.4  
52.8  
38.3  
25.8  
12.7  
-4.1  
34.45  
27.17  
24.54  
24.03  
21.99  
20.70  
20.37  
19.09  
17.92  
15.33  
12.99  
11.50  
10.24  
8.83  
8.17  
8.57  
7.47  
7.50  
6.60  
4.57  
3.47  
2.04  
-120.6  
-146.5  
-162.1  
-165.6  
178.5  
164.2  
138.4  
116.5  
97.9  
80.8  
62.6  
45.2  
28.2  
31  
11.6  
-6.7  
4.2  
-6.1  
-24.5  
-42.5  
-60.8  
-79.8  
-96.9  
-112.4  
-129.7  
-148  
-164.8  
-178.4  
170.1  
156.1  
-17.6  
-29.3  
-40.6  
-56.1  
-69.3  
-81.6  
-95.7  
-110.3  
-124  
-134.6  
-144.1  
-157.4  
13.9  
-0.5  
-15.1  
-31.6  
-46.1  
-54.8  
-62.8  
-73.6  
-0.86  
-2.18  
-3.85  
-5.61  
-7.09  
-8.34  
-20.1  
-34.9  
-45.6  
-55.9  
-68.7  
1.05  
1.90  
Typical Noise Parameters, V = 3V, I = 40 mA  
DS  
DS  
40  
Freq  
GHz  
F
Γ
Γ
R
G
min  
dB  
opt  
Mag.  
opt  
Ang.  
n/50  
a
dB  
35  
30  
25  
20  
15  
10  
5
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.17  
0.22  
0.24  
0.42  
0.45  
0.51  
0.59  
0.69  
0.90  
1.14  
1.17  
1.24  
1.57  
1.64  
1.8  
0.34  
0.32  
0.32  
0.29  
0.29  
0.30  
0.32  
0.34  
0.45  
0.50  
0.52  
0.58  
0.60  
0.69  
0.80  
34.80  
53.00  
60.50  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.05  
0.09  
0.16  
0.18  
0.33  
0.56  
0.87  
1.34  
27.83  
23.57  
22.93  
18.35  
17.91  
16.39  
15.40  
13.26  
11.89  
10.95  
10.64  
9.61  
MAG  
108.10  
111.10  
136.00  
169.90  
-151.60  
-119.50  
-101.60  
-99.60  
-79.50  
-57.90  
-39.70  
-22.20  
S
21  
0
-5  
10  
-15  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 19. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 40 mA.  
8.36  
7.77  
7.68  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of  
the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes con-  
necting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter  
via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.  
6
ATF-54143 Typical Scattering Parameters, V = 3V, I = 60 mA  
DS  
DS  
Freq.  
GHz  
S
S
S
S
22  
MSG/MAG  
dB  
11  
21  
12  
Mag.  
Ang.  
dB  
Mag.  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.5  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.99  
0.81  
0.71  
0.69  
0.64  
0.62  
0.62  
0.60  
0.60  
0.62  
0.66  
0.69  
0.70  
0.72  
0.76  
0.83  
0.85  
0.88  
0.89  
0.88  
0.88  
0.88  
0.88  
0.92  
-18.9  
-80.8  
-117.9  
-124.4  
-149.8  
-164.9  
-168.3  
176.2  
162.3  
137.1  
115.5  
97.2  
80.2  
62.2  
45.0  
28.4  
13.9  
-0.2  
28.84  
26.04  
22.93  
22.24  
19.40  
17.66  
17.28  
15.58  
14.15  
11.81  
9.87  
8.22  
6.85  
5.58  
4.40  
3.06  
1.60  
0.43  
27.66  
20.05  
14.01  
12.94  
9.34  
7.64  
7.31  
6.01  
5.10  
3.90  
3.11  
2.58  
2.20  
1.90  
1.66  
1.42  
1.20  
1.05  
0.93  
0.80  
0.66  
0.54  
0.46  
0.40  
167.6  
128.0  
106.2  
102.2  
86.1  
75.6  
73.3  
61.8  
51.0  
0.01  
0.03  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.08  
0.09  
0.11  
0.12  
0.13  
0.14  
0.15  
0.15  
0.15  
0.15  
0.15  
0.14  
0.13  
0.12  
0.12  
0.11  
80.0  
52.4  
41.8  
40.4  
36.1  
33.8  
33.3  
30.1  
26.5  
17.1  
6.8  
-3.9  
-15.8  
-28.0  
-39.6  
-55.1  
-68.6  
-80.9  
-94.9  
-109.3  
-122.9  
-133.7  
-143.2  
-156.3  
0.54  
0.40  
0.29  
0.27  
0.21  
0.17  
0.17  
0.13  
0.11  
0.10  
0.14  
0.18  
0.20  
0.23  
0.29  
0.38  
0.46  
0.51  
0.55  
0.61  
0.66  
0.70  
0.73  
0.76  
-14.0  
-58.8  
-83.8  
-88.5  
-105.2  
-114.7  
-117.0  
-129.7  
-146.5  
165.2  
131.5  
112.4  
94.3  
70.1  
50.6  
36.8  
24.4  
11.3  
-5.2  
34.42  
28.25  
25.44  
24.13  
22.71  
21.05  
20.86  
19.34  
18. 04  
1 4.87  
13.27  
11.72  
10.22  
9.02  
8.38  
8.71  
7.55  
7.55  
6.70  
5.01  
3.73  
2.54  
30.8  
11.7  
-6.4  
-24.0  
-41.8  
-59.9  
-78.7  
-95.8  
-111.1  
-128.0  
-146.1  
-162.7  
-176.6  
171.9  
157.9  
-14.6  
-30.6  
-45.0  
-54.5  
-62.5  
-73.4  
-0.65  
-1.98  
-3.62  
-5.37  
-6.83  
-8.01  
-20.8  
-35.0  
-45.8  
-56.1  
-68.4  
1.57  
2.22  
Typical Noise Parameters, V = 3V, I = 60 mA  
DS  
DS  
40  
Freq  
GHz  
F
dB  
Γ
Γ
R
G
dB  
min  
opt  
opt  
n/50  
a
35  
30  
25  
20  
15  
10  
5
Mag.  
Ang.  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.15  
0.20  
0.22  
0.42  
0.45  
0.52  
0.59  
0.70  
0.93  
1.16  
1.19  
1.26  
1.63  
1.69  
1.73  
0.34  
0.32  
0.32  
0.27  
0.27  
0.26  
0.29  
0.36  
0.47  
0.52  
0.55  
0.60  
0.62  
0.70  
0.79  
42.3  
62.8  
67.6  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.05  
0.10  
0.18  
0.20  
0.37  
0.62  
0.95  
1.45  
28.50  
24.18  
23.47  
18.67  
18.29  
16.65  
15.56  
13.53  
12.13  
11.10  
10.95  
9.73  
MAG  
116.3  
120.1  
145.8  
178.0  
-145.4  
-116.0  
-98.9  
-96.5  
-77.1  
-56.1  
-38.5  
-21.5  
S
21  
0
-5  
10  
-15  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 20. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 60 mA.  
8.56  
7.97  
7.76  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of  
the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes con-  
necting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter  
via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.  
7
ATF-54143 Typical Scattering Parameters, V = 3V, I = 80 mA  
DS  
DS  
Freq.  
GHz  
S
S
S
S
22  
MSG/MAG  
dB  
11  
21  
12  
Mag.  
Ang.  
dB  
Mag.  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.5  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.98  
0.80  
0.72  
0.70  
0.66  
0.65  
0.64  
0.64  
0.63  
0.66  
0.69  
0.72  
0.73  
0.74  
0.78  
0.84  
0.86  
0.88  
0.89  
0.87  
0.87  
0.86  
0.86  
0.91  
-20.4  
-85.9  
-123.4  
-129.9  
-154.6  
-169.5  
-172.8  
172.1  
158.5  
133.8  
112.5  
94.3  
77.4  
59.4  
42.1  
25.6  
11.4  
-2.6  
28.32  
25.32  
22.10  
21.40  
18.55  
16.81  
16.42  
14.69  
13.24  
10.81  
8.74  
7.03  
5.63  
4.26  
2.98  
1.51  
0.00  
-1.15  
-2.18  
-3.48  
-5.02  
-6.65  
-7.92  
-8.92  
26.05  
18.45  
12.73  
11.75  
8.46  
6.92  
6.62  
5.42  
4.59  
3.47  
2.74  
2.25  
1.91  
1.63  
1.41  
1.19  
1.00  
0.88  
0.78  
0.67  
0.56  
0.47  
0.40  
0.36  
167.1  
126.8  
105.2  
101.3  
85.4  
74.9  
72.6  
61.1  
50.1  
0.01  
0.04  
0.05  
0.05  
0.06  
0.07  
0.07  
0.09  
0.10  
0.12  
0.13  
0.14  
0.15  
0.16  
0.17  
0.16  
0.16  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
79.4  
53.3  
43.9  
42.7  
38.6  
35.7  
35.0  
30.6  
0.26  
0.29  
0.30  
0.30  
0.30  
0.29  
0.29  
0.29  
0.29  
0.33  
0.39  
0.42  
0.44  
0.47  
0.52  
0.59  
0.64  
0.68  
0.70  
0.73  
0.76  
0.78  
0.79  
0.81  
-27.6  
-104.9  
-138.8  
-144.3  
-165.0  
-177.6  
179.4  
164.4  
150.2  
126.1  
107.8  
91.8  
75.5  
55.5  
37.8  
24.0  
11.8  
-0.8  
34.16  
26.64  
24.06  
23.71  
21.49  
19.95  
19.76  
17.80  
16.62  
14.61  
12.03  
10.52  
9.12  
7.78  
7.12  
6.96  
6.11  
5.67  
5.08  
3.67  
2.65  
25.5  
13.4  
1.2  
29.9  
11.1  
-6.5  
-11.3  
-24.5  
-38.1  
-51.1  
-66.8  
-79.8  
-91.7  
-105.6  
-119.5  
-132.3  
-141.7  
-150.4  
-163.0  
-23.5  
-41.1  
-58.7  
-76.4  
-92.0  
-105.9  
-121.7  
-138.7  
-153.9  
-165.9  
-175.9  
171.2  
-17.0  
-33.3  
-47.3  
-55.6  
-63.4  
-74.2  
-16.7  
-31.7  
-44.9  
-54.9  
-64.2  
-76.2  
1.48  
0.49  
1.29  
Typical Noise Parameters, V = 3V, I = 80 mA  
DS  
DS  
40  
Freq  
GHz  
F
dB  
Γ
Γ
R
G
dB  
min  
opt  
opt  
n/50  
a
35  
30  
25  
20  
15  
10  
5
Mag.  
Ang.  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.19  
0.24  
0.25  
0.43  
0.42  
0.51  
0.61  
0.70  
0.94  
1.20  
1.26  
1.34  
1.74  
1.82  
1.94  
0.23  
0.24  
0.25  
0.28  
0.29  
0.30  
0.35  
0.41  
0.52  
0.56  
0.58  
0.62  
0.63  
0.71  
0.79  
66.9  
84.3  
87.3  
0.04  
0.04  
0.04  
0.04  
0.04  
0.03  
0.03  
0.06  
0.13  
0.23  
0.26  
0.46  
0.76  
1.17  
1.74  
27.93  
24.13  
23.30  
18.55  
18.15  
16.44  
15.13  
12.97  
11.42  
10.48  
10.11  
8.86  
MAG  
S
21  
134.8  
138.8  
159.5  
-173  
-141.6  
-113.5  
-97.1  
-94.8  
-75.8  
-55.5  
-37.7  
-20.8  
0
-5  
10  
-15  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 21. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 80 mA.  
7.59  
6.97  
6.65  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of  
the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes con-  
necting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter  
via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.  
8
ATF-54143 Typical Scattering Parameters, V = 4V, I = 60 mA  
DS  
DS  
Freq.  
GHz  
S
S
S
S
22  
MSG/MAG  
dB  
11  
21  
12  
Mag.  
Ang.  
dB  
Mag.  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.5  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.99  
0.81  
0.71  
0.69  
0.64  
0.62  
0.61  
0.60  
0.60  
0.62  
0.65  
0.68  
0.70  
0.72  
0.76  
0.83  
0.86  
0.88  
0.90  
0.87  
0.88  
0.88  
0.87  
0.92  
-18.6  
-80.2  
-117.3  
-123.8  
-149.2  
-164.5  
-167.8  
176.6  
162.6  
137.4  
115.9  
97.6  
80.6  
62.6  
45.4  
28.5  
14.1  
-0.4  
28.88  
26.11  
23.01  
22.33  
19.49  
17.75  
17.36  
15.66  
14.23  
11.91  
10.00  
8.36  
7.01  
5.76  
4.60  
3.28  
1.87  
0.69  
27.80  
20.22  
14.15  
13.07  
9.43  
7.72  
7.38  
6.07  
5.15  
3.94  
3.16  
2.62  
2.24  
1.94  
1.70  
1.46  
1.24  
1.08  
0.96  
0.82  
0.68  
0.55  
0.46  
0.40  
167.8  
128.3  
106.4  
102.4  
86.2  
75.7  
73.3  
61.9  
51.1  
0.01  
0.03  
0.04  
0.04  
0.05  
0.06  
0.06  
0.07  
0.07  
0.09  
0.10  
0.11  
0.12  
0.13  
0.14  
0.15  
0.15  
0.15  
0.15  
0.15  
0.14  
0.13  
0.12  
0.11  
80.1  
52.4  
41.7  
40.2  
36.1  
34.0  
33.5  
30.7  
27.3  
18.7  
9.0  
-1.4  
-12.9  
-24.7  
-36.1  
-51.8  
-65.4  
-78.0  
-92.2  
-107.3  
-121.2  
-132.2  
-142.3  
-155.6  
0.58  
0.42  
0.31  
0.29  
0.22  
0.18  
0.18  
0.14  
0.11  
0.07  
0.09  
0.12  
0.15  
0.17  
0.23  
0.32  
0.41  
0.47  
0.51  
0.58  
0.63  
0.69  
0.72  
0.75  
-12.6  
-52.3  
-73.3  
-76.9  
-89.4  
-95.5  
-97.0  
-104.0  
-113.4  
-154.7  
152.5  
127.9  
106.9  
78.9  
34.44  
28.29  
25.49  
25.14  
22.76  
21.09  
20.90  
19.38  
18.67  
15.46  
13.20  
11.73  
10.47  
9.31  
8.69  
9.88  
9.17  
8.57  
8.06  
4.90  
3.86  
2.65  
30.9  
11.7  
-6.6  
-24.3  
-42.3  
-60.5  
-79.6  
-97.0  
-112.8  
-130.2  
-148.8  
-166.0  
179.8  
168.4  
154.3  
56.8  
42.1  
29.4  
16.0  
-14.9  
-31.4  
-46.0  
-54.8  
-62.8  
-73.7  
-0.39  
-1.72  
-3.38  
-5.17  
-6.73  
-7.93  
-1.1  
-17.6  
-32.6  
-43.7  
-54.2  
-67.2  
1.33  
2.26  
Typical Noise Parameters, V = 4V, I = 60 mA  
DS  
DS  
40  
Freq  
GHz  
F
dB  
Γ
Γ
R
G
dB  
min  
opt  
opt  
n/50  
a
35  
30  
25  
20  
15  
10  
5
Mag.  
Ang.  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.17  
0.25  
0.27  
0.45  
0.49  
0.56  
0.63  
0.73  
0.96  
1.20  
1.23  
1.33  
1.66  
1.71  
1.85  
0.33  
0.31  
0.31  
0.27  
0.27  
0.26  
0.28  
0.35  
0.47  
0.52  
0.54  
0.60  
0.63  
0.71  
0.82  
34.30  
60.30  
68.10  
0.03  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.11  
0.19  
0.21  
0.38  
0.64  
0.99  
1.51  
28.02  
24.12  
23.43  
18.72  
18.35  
16.71  
15.58  
13.62  
12.25  
11.23  
11.02  
9.94  
MAG  
MSG  
S
MAG  
21  
115.00  
119.80  
143.50  
176.80  
-145.90  
-116.20  
-98.80  
-96.90  
-77.40  
-56.20  
-38.60  
-21.30  
0
-5  
10  
-15  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 22. MSG/MAG and |S21|2 vs.  
Frequency at 4V, 60 mA.  
8.81  
8.22  
8.12  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based  
on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true  
Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of  
the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes con-  
necting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter  
via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.  
9
also provide a termination for low frequency mixing  
products. These mixing products are as a result of two  
or more in-band signals mixing and producing third  
order in-band distortion products. The low frequency or  
difference mixing products are bypassed by C3 and C6.  
For best suppression of third order distortion products  
based on the CDMA 1.25 MHz signal spacing, C3 and C6  
should be 0.1 μF in value. Smaller values of capacitance  
will not suppress the generation of the 1.25 MHz differ-  
ence signal and as a result will show up as poorer two  
tone IP3 results.  
ATF-54143 Applications Information  
Introduction  
Avago Technologies’ ATF-54143 is a low noise  
enhancement mode PHEMT designed for use in low  
cost commercial applications in the VHF through 6 GHz  
frequency range. As opposed to a typical depletion  
mode PHEMT where the gate must be made negative  
with respect to the source for proper operation, an  
enhancement mode PHEMT requires that the gate  
be made more positive than the source for normal  
operation. Therefore a negative power supply voltage is  
not required for an enhancement mode device. Biasing  
an enhancement mode PHEMT is much like biasing the  
typical bipolar junction transistor. Instead of a 0.7V base  
to emitter voltage, the ATF-54143 enhancement mode  
PHEMT requires about a 0.6V potential between the  
gate and source for a nominal drain current of 60 mA.  
Bias Networks  
One of the major advantages of the enhancement mode  
technology is that it allows the designer to be able to dc  
ground the source leads and then merely apply a positive  
voltage on the gate to set the desired amount of quiescent  
drain current I .  
d
Whereas a depletion mode PHEMT pulls maximum  
Matching Networks  
drain current when V = 0V, an enhancement mode  
gs  
The techniques for impedance matching an en-  
hancement mode device are very similar to those for  
matching a depletion mode device. The only difference  
is in the method of supplying gate bias. S and Noise  
Parameters for various bias conditions are listed in  
this data sheet. The circuit shown in Figure 23 shows a  
typical LNA circuit normally used for 900 and 1900 MHz  
applications (Consult the Avago Technologies website  
for application notes covering specific applications).  
High pass impedance matching networks consisting  
of L1/C1 and L4/C4 provide the appropriate match for  
noise figure, gain, S11 and S22. The high pass structure  
also provides low frequency gain reduction which can  
be beneficial from the standpoint of improving out-of-  
band rejection at lower frequencies.  
PHEMT pulls only a small amount of leakage current  
when V =0V. Only when V is increased above V ,  
gs  
gs  
to  
the device threshold voltage, will drain current start to  
flow. At a V of 3V and a nominal V of 0.6V, the drain  
ds  
gs  
current I will be approximately 60 mA. The data sheet  
d
suggests a minimum and maximum  
V
gs  
over which  
the desired amount of drain current will be achieved.  
It is also important to note that if the gate terminal is  
left open circuited, the device will pull some amount of  
drain current due to leakage current creating a voltage  
differential between the gate and source terminals.  
Passive Biasing  
Passive biasing of the ATF-54143 is accomplished by  
the use of a voltage divider consisting of R1 and R2. The  
voltage for the divider is derived from the drain voltage  
which provides a form of voltage feedback through the  
use of R3 to help keep drain current constant. Resistor  
R5 (approximately 10k) provides current limiting for  
the gate of enhancement mode devices such as the  
ATF-54143. This is especially important when the device  
OUTPUT  
C4  
INPUT  
C1  
Q1  
Z
o
Z
o
L4  
J2  
J1  
L1  
L2  
L3  
C2  
C3  
C5  
R4  
R5  
R3  
is driven to P or P  
.
1dB  
SAT  
C6  
Resistor R3 is calculated based on desired V , I and  
ds ds  
available power supply voltage.  
R1  
R2  
V
dd  
Figure 23. Typical ATF-54143 LNA with Passive Biasing.  
R3 = V – V  
(1)  
DD  
ds  
p
I
+ I  
BB  
Capacitors C2 and C5 provide a low impedance in-band  
RF bypass for the matching networks. Resistors R3 and  
R4 provide a very important low frequency termina-  
tion for the device. The resistive termination improves  
low frequency stability. Capacitors C3 and C6 provide  
the low frequency RF bypass for resistors R3 and R4.  
Their value should be chosen carefully as C3 and C6  
ds  
V
is the power supply voltage.  
is the device drain to source voltage.  
DD  
V
ds  
I
is the desired drain current.  
ds  
10  
I
is the current flowing through the R1/R2 resistor  
combined series value of these resistors also sets the  
amount of extra current consumed by the bias network.  
The equations that describe the circuit’s operation are  
as follows.  
BB  
voltage divider network.  
The values of resistors R1 and R2 are calculated with the  
following formulas  
V = V + (I R4) (1)  
E
ds  
ds  
R1 = V  
(2)  
gs  
p
I
BB  
V
– V  
(2)  
DD  
E
R3 =  
p
I
ds  
(V – V ) R1  
R2 = ds  
gs  
(3)  
V = V – V  
BE  
(3)  
(4)  
B
E
V
gs  
R1  
R1 + R2  
V =  
B
V
Example Circuit  
DD  
p
V
V
= 5V  
= 3V  
= 60 mA  
DD  
V
= I (R1 + R2) (5)  
BB  
ds  
DD  
I
ds  
V
= 0.59V  
Rearranging equation (4) provides the following  
formula:  
gs  
Choose I to be at least 10X the normal expected gate  
BB  
leakage current. I was chosen to be 2 mA for this  
example. Using equations (1), (2), and (3) the resistors  
are calculated as follows  
BB  
R (V – V ) (4A)  
1
DD  
B
R2 =  
V
B
R1 = 295  
R2 = 1205  
R3 = 32.3  
and rearranging equation (5) provides the following  
formula:  
V
DD  
(5A)  
Active Biasing  
R1 =  
9
Active biasing provides a means of keeping the  
quiescent bias point constant over temperature and  
constant over lot to lot variations in device dc per-  
formance. The advantage of the active biasing of an  
enhancement mode PHEMT versus a depletion mode  
PHEMT is that a negative power source is not required.  
The techniques of active biasing an enhancement  
mode device are very similar to those used to bias a  
bipolar junction transistor.  
I
(
1 + V – V  
B
p
)
BB  
DD  
V
B
Example Circuit  
= 5V  
V
DD  
V
ds  
= 3V  
I
= 60 mA  
ds  
C4  
OUTPUT  
R4 = 10  
= 0.7V  
C1  
INPUT  
Q1  
Zo  
Zo  
V
BE  
L1  
L4  
L2  
L3  
Equation (1) calculates the required voltage at the  
C2  
C3  
C5  
R4  
emitter of the PNP transistor based on desired V and  
R5  
R6  
ds  
I
through resistor R4 to be 3.6V. Equation (2) calcu-  
ds  
lates the value of resistor R3 which determines the  
C7  
Q2  
C6  
drain current I . In the example R3=23.3. Equation  
ds  
Vdd  
(3) calculates the voltage required at the junction of  
resistors R1 and R2. This voltage plus the step-up of  
the base emitter junction determines the regulated  
R7  
R3  
R2  
R1  
Figure 24. Typical ATF-54143 LNA with Active Biasing.  
V
. Equations (4) and (5) are solved simultaneously  
ds  
to determine the value of resistors R1 and R2. In the  
example R1=1450and R2=1050. R7 is chosen to  
be 1k. This resistor keeps a small amount of current  
flowing through Q2 to help maintain bias stability. R6 is  
chosen to be 10k. This value of resistance is necessary  
to limit Q1 gate current in the presence of high RF drive  
An active bias scheme is shown in Figure 24. R1 and  
R2 provide a constant voltage source at the base of a  
PNP transistor at Q2. The constant voltage at the base  
of Q2 is raised by 0.7 volts at the emitter. The constant  
emitter voltage plus the regulated V  
supply are  
DD  
present across resistor R3. Constant voltage across R3  
provides a constant current supply for the drain current.  
Resistors R1 and R2 are used to set the desired Vds. The  
level (especially when Q1 is driven to P  
pression point).  
gain com-  
1dB  
11  
ATF-54143 Die Model  
Advanced_Curtice2_Model  
MESFETM1  
NFET=yes  
PFET=no  
Vto=0.3  
Rf=  
Crf=0.1 F  
Gsfwd=  
Gsrev=  
Gdfwd=  
Gdrev=  
R1=  
R2=  
Vbi=0.8  
Vbr=  
Vjr=  
Is=  
Ir=  
Imax=  
Xti=  
N=  
Fnc=1 MHz  
R=0.08  
P=0.2  
C=0.1  
Taumdl=no  
wVgfwd=  
wBvgs=  
wBvgd=  
wBvds=  
wldsmax=  
wPmax=  
AllParams=  
Gscap=2  
Cgs=1.73 pF  
Cgd=0.255 pF  
Gdcap=2  
Beta=0.9  
Lambda=82e-3  
Alpha=13  
Tau=  
Fc=0.65  
Rgd=0.25 Ohm  
Rd=1.0125 Ohm  
Rg=1.0 Ohm  
Rs=0.3375 Ohm  
Ld=  
Lg=0.18 nH  
Ls=  
Cds=0.27 pF  
Rc=250 Ohm  
Tnom=16.85  
Idstc=  
Ucrit=-0.72  
Vgexp=1.91  
Gamds=1e-4  
Vtotc=  
Betatce=  
Rgs=0.25 Ohm  
Eg=  
ATF-54143 curtice ADS Model  
INSIDE Package  
VAR  
VAR1  
K=5  
Var  
Egn  
TLINP  
TL1  
TLINP  
TL2  
Z2=85  
Z1=30  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
C
A=0.0000  
F=1 GHz  
TanD=0.001  
A=0.0000  
F=1 GHz  
TanD=0.001  
GaAsFET  
C1  
FET1  
GATE  
SOURCE  
C=0.13 pF  
Mode1=MESFETM1  
Mode=Nonlinear  
L
L6  
L
L1  
Port  
G
Num=1  
TLINP  
TL7  
TLINP  
TL8  
TLINP  
TL4  
TLINP  
TL3  
Z=Z1 Ohm Z=Z2 Ohm  
Port  
S2  
L=0.175 nH  
R=0.001  
L=0.477 nH  
R=0.001  
Z=Z2/2 OhmZ=Z1 Ohm  
L=5.0 mil L=15.0 mil  
Num=4  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
L=25 mil  
K=K  
A=0.000  
F=1 GHz  
K=K  
K=1  
C
C2  
A=0.0000 A=0.0000  
F=1 GHz F=1 GHz  
TanD=0.001 TanD=0.001  
C=0.159 pF  
DRAIN  
TanD=0.001 TanD=0.001  
SOURCE  
L
TLINP  
TL5  
TLINP  
TL6  
Port  
D
Num=3  
L7  
L=0.746 nH  
R=0.001  
L
Port  
TLINP  
Z=Z2 Ohm Z=Z1 Ohm  
L=26.0 mil L=15.0 mil  
TLINP  
L4  
MSub  
S1  
TL9  
TL10  
L=0.4 nH  
R=0.001  
Num=2  
Z=Z2 Ohm  
L=10.0 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
K=K  
K=1  
Z=Z1 Ohm  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
TanD=0.001  
MSUB  
MSub1  
A=0.0000 A=0.0000  
F=1 GHz F=1 GHz  
TanD=0.001 TanD=0.001  
H=25.0 mil  
Er=9.6  
Mur=1  
Cond=1.0E+50  
Hu=3.9e+034 mil  
T=0.15 mil  
TanD=0  
Rough=0 mil  
12  
Designing with S and Noise Parameters and the Non-Linear  
Model  
For Further Information  
The information presented here is an introduction  
to the use of the ATF-54143 enhancement mode  
PHEMT. More detailed application circuit information  
is available from Avago Technologies. Consult the web  
page or your local Avago Technologies sales representa-  
tive.  
The non-linear model describing the ATF-54143  
includes both the die and associated package model.  
The package model includes the effect of the pins but  
does not include the effect of the additional source  
inductance associated with grounding the source leads  
through the printed circuit board. The device S and  
Noise Parameters do include the effect of 0.020 inch  
thickness printed circuit board vias. When comparing  
simulation results between the measured S parameters  
and the simulated non-linear model, be sure to include  
the effect of the printed circuit board to get an accurate  
comparison. This is shown schematically in Figure 25.  
VIA2  
V3  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
VIA2  
V1  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
DRAIN  
SOURCE  
W=40.0 mil  
ATF-54143  
W=40.0 mil  
VIA2  
V4  
MSub  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
MSUB  
MSub1  
H=25.0 mil  
Er=9.6  
Mur=1  
Cond=1.0E+50  
Hu=3.9e+034 mil  
T=0.15 mil  
TanD=0  
SOURCE  
GATE  
VIA2  
V2  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
Rough=0 mil  
Figure 25. Adding Vias to the ATF-54143 Non-Linear Model for Comparison to Measured S and Noise Parameters.  
13  
Noise Parameter Applications Information  
Typically for FETs, the higher G usually infers that an  
impedance much higher than 50ý is required for the  
F
values at 2 GHz and higher are based on measure-  
o
min  
ments while the F  
lated. The F  
below 2 GHz have been extrapo-  
mins  
device to produce F . At VHF frequencies and even  
values are based on a set of 16 noise  
min  
min  
lower L Band frequencies, the required impedance can  
be in the vicinity of several thousand ohms. Matching  
to such a high impedance requires very hi-Q compo-  
nents in order to minimize circuit losses. As an example  
at 900 MHz, when airwwound coils (Q>100) are used for  
matching networks, the loss can still be up to 0.25 dB  
which will add directly to the noise figure of the device.  
Using muiltilayer molded inductors with Qs in the 30  
to 50 range results in additional loss over the airwound  
coil. Losses as high as 0.5 dB or greater add to the  
figure measurements made at 16 different impedances  
using an ATN NP5 test system. From these measure-  
ments, a true F  
is calculated. F  
represents the true  
min  
min  
minimum noise figure of the device when the device is  
presented with an impedance matching network that  
transforms the source impedance, typically 50ý, to an  
impedance represented by the reflection coefficient G .  
o
The designer must design a matching network that will  
present G to the device with minimal associated circuit  
o
losses. The noise figure of the completed amplifier is  
equal to the noise figure of the device plus the losses  
of the matching network preceding the device. The  
typical 0.15 dB F  
of the device creating an amplifier  
min  
noise figure of nearly 0.65 dB. A discussion concerning  
calculated and measured circuit losses and their effect  
on amplifier noise figure is covered in Avago Technolo-  
gies Application 1085.  
noise figure of the device is equal to F  
only when  
min  
the device is presented with G . If the reflection coef-  
o
ficient of the matching network is other than G , then  
o
the noise figure of the device will be greater than F  
based on the following equation.  
min  
2
NF = Fmin + 4 Rn  
Zo (|1 +  
|
s  
o  
|
o|2)(1- |  
s|2)  
Where R /Z is the normalized noise resistance, G is  
n
o
o
the optimum reflection coefficient required to produce  
and G is the reflection coefficient of the source  
F
min  
s
impedance actually presented to the device. The losses  
of the matching networks are non-zero and they will  
also add to the noise figure of the device creating a  
higher amplifier noise figure. The losses of the matching  
networks are related to the Q of the components and  
associated printed circuit board loss. G is typically fairly  
o
low at higher frequencies and increases as frequency is  
lowered. Larger gate width devices will typically have a  
lower G as compared to narrower gate width devices.  
o
14  
Ordering Information  
Part Number  
No. of Devices  
3000  
Container  
7Reel  
ATF-54143-TR1G  
ATF-54143-TR2G  
ATF-54143-BLKG  
10000  
13”Reel  
100  
antistatic bag  
Package Dimensions  
Outline 43 (SO%-343/SC70 4 lead)  
Recommended PCB Pad Layout for  
Avago’s SC70 4L/SOT-343 Products  
1.30 (.051)  
BSC  
1.30  
(0.051)  
1.00  
(0.039)  
HE  
E
2.00  
(0.079)  
0.60  
(0.024)  
1.15 (.045) BSC  
b1  
0.9  
(0.035)  
D
1.15  
(0.045)  
mm  
(inches)  
A
A2  
Dimensions in  
A1  
b
C
L
DIMENSIONS (mm)  
SYMBOL  
E
D
HE  
A
A2  
A1  
b
MIN.  
1.15  
1.85  
1.80  
0.80  
0.80  
0.00  
0.15  
0.55  
0.10  
0.10  
MAX.  
1.35  
2.25  
2.40  
1.10  
1.00  
0.10  
0.40  
0.70  
0.20  
0.46  
NOTES:  
1. All dimensions are in mm.  
2. Dimensions are inclusive of plating.  
3. Dimensions are exclusive of mold flash & metal burr.  
4. All specifications comply to EIAJ SC70.  
5. Die is facing up for mold and facing down for trim/form,  
ie: reverse trim/form.  
b1  
c
L
6. Package surface to be mirror finish.  
15  
Device Orientation  
REEL  
4 mm  
4Fx  
CARRIER  
TAPE  
8 mm  
4Fx  
4Fx  
4Fx  
USER  
FEED  
DIRECTION  
TOP VIEW  
END VIEW  
COVER TAPE  
Tape Dimensions For Outline 4T  
P
2
P
P
D
o
E
F
W
C
D
1
t (CARRIER TAPE THICKNESS)  
1
T (COVER TAPE THICKNESS)  
t
K
10 MAX.  
10 MAX.  
o
A
B
o
o
DESCRIPTION  
SYMBOL  
SIZE (mm)  
2.40 0.10  
2.40 0.10  
1.20 0.10  
4.00 0.10  
1.00 + 0.25  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
0.094 0.004  
0.094 0.004  
0.047 0.004  
0.157 0.004  
0.039 + 0.010  
o
o
o
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
1.55 0.10  
4.00 0.10  
1.75 0.10  
0.061 + 0.002  
0.157 0.004  
0.069 0.004  
P
o
E
CARRIER TAPE  
COVER TAPE  
DISTANCE  
WIDTH  
THICKNESS  
W
8.00 + 0.30 - 0.10 0.315 + 0.012  
t
0.254 0.02  
0.0100 0.0008  
1
WIDTH  
TAPE THICKNESS  
C
T
5.40 0.10  
0.062 0.001  
0.205 + 0.004  
0.0025 0.0004  
t
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 0.05  
0.079 0.002  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes AV01-0620EN  
AV02-0488EN - June 8, 2012  

相关型号:

ATF-54143-BLK

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AGILENT

ATF-54143-BLKG

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AVAGO

ATF-54143-TR1

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AGILENT

ATF-54143-TR1G

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AVAGO

ATF-54143-TR2

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AGILENT

ATF-54143-TR2G

Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package
AVAGO

ATF-541M4

Low Noise Enhancement Mode Pseudomorphic HEMT in a Miniature Leadless Package
AGILENT

ATF-541M4

Low Noise Enhancement Mode Pseudomorphic HEMT in a Miniature Leadless Package
HP

ATF-541M4-BLK

Low Noise Enhancement Mode Pseudomorphic HEMT in a Miniature Leadless Package
AGILENT

ATF-541M4-BLK

Low Noise Enhancement Mode Pseudomorphic HEMT in a Miniature Leadless Package
HP

ATF-541M4-BLKG

RF Small Signal Field-Effect Transistor, 1-Element, X Band, Silicon, N-Channel, High Electron Mobility FET, 1.4 MM X 1.2 MM, 0.7 MM HEIGHT, MINIATURE PACKAGE-4
AGILENT

ATF-541M4-TR1

Low Noise Enhancement Mode Pseudomorphic HEMT in a Miniature Leadless Package
AGILENT