ACPL-772L-000E [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, DIP-8;
ACPL-772L-000E
型号: ACPL-772L-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, DIP-8

输出元件 光电
文件: 总11页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-772L and ACPL-072L  
3.3V/5V High Speed CMOS Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Dual voltage operation (3.3V and 5V)  
Available in either an 8-pin DIP or SO-8 style respectively,  
the ACPL-772L or ACPL-072L optocouplers utilize the Allow level shifting functionality  
latest CMOS IC technology to achieve outstanding speed  
performance of minimum 25MBd data rate and 6ns  
maximum pulse width distortion.  
Support high Speed datarate of 25 MBd  
Wide Temperature operation  
CMOS output and buffer input  
Basic building blocks of this family of products are a  
CMOS LED driver IC, a high speed LED and a CMOS  
detector IC. A CMOS logic input signal controls the LED  
driver IC, which supplies current to the LED. The detector  
IC incorporates an integrated photodiode, a high speed  
transimpedance amplifier, and a voltage comparator with  
an output driver.  
Compatible with CMOS and TTL logic level  
Lower power consumption with 3.3V supply  
Good AC performance with lower pulse width  
distortion  
Lead-free option available  
Specifications  
Functional Diagram  
3.3V and 5V CMOS Compatibility  
High Speed: DC to 25 MBd  
**V  
DD1  
1
2
8
7
V
**  
6ns max. Pulse Width Distortion  
40 ns max. Prop. Delay  
20 ns max. Prop. Delay Skew  
10 kV/ms min. Common Mode Rejection  
-40 °C to 105 °C Temperature Range  
DD2  
V
NC*  
I
I
O
3
4
6
5
NC*  
V
O
LED1  
Safety and Regulatory Approvals:  
UL Recognised  
GND  
GND  
1
2
SHIELD  
-
5000V for 1 min. per UL1577 for ACPL-772L  
rms  
for option 020  
*
Pin 3 is the anode of the internal LED and must be left unconnected  
for guaranteed datasheet performance. Pin 7 is not connected  
internally.  
-
3750V for 1 min. per UL1577 for ACPL-072L  
rms  
CSA Component Acceptance Notice #5  
IEC/EN/DIN EN 60747-5-2  
** A 0.1uF bypass capacitor must be connected between pins 1 and 4,  
and 5 and 8.  
– V  
= 630 V  
for ACPL-772L Option 060  
IORM  
peak  
– V  
= 560 V  
for ACPL-072L Option 060  
IORM  
peak  
TRUTH TABLE (POSITIVE LOGIC)  
Applications  
V , INPUT  
LED1  
OFF  
ON  
V , OUTPUT  
I
O
Digital Fieldbus Isolation: DeviceNet, Profibus, SDS  
Multiplexed Data Transmission  
General Instrument and Data Acquisition  
Computer Peripheral interface  
H
L
H
L
Microprocessor System Interface  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation, which may be induced by ESD.  
Device Selection Guide  
8-Pin DIP  
(300 Mil)  
Small Outline  
SO-8  
ACPL-772L  
ACPL-072L  
Ordering Information  
ACPL-072L and ACPL-772L are UL Recognized with 3750 Vrms for 1 minute per UL1577.  
UL 5000  
Vrms/ 1  
Option  
IEC/EN/DIN  
EN 60747-  
5-2  
Part  
RoHS  
Compliant  
-000E  
-300E  
-500E  
-020E  
-320E  
-520E  
-060E  
-360E  
-560E  
-000E  
-500E  
-060E  
-560E  
Non RoHS  
Compliant  
Surface Gull  
Tape  
& Reel rating  
Minute  
number  
Package  
Mount  
Wing  
Quantity  
-
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
-
X
X
X
X
-
X
X
X
-
300mil  
DIP-8  
ACPL-772L  
-
X
X
X
X
-
X
X
-
X
X
X
-
-
X
X
X
X
X
X
X
X
X
X
X
No option  
-500  
ACPL-072L  
SO-8  
-060  
X
X
-560  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-772L-560E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN  
EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-072L to order product of Small Outline SO-8 package in tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
2
Package Dimensions  
ACPL-772L 8-Pin DIP Package  
9.65 0.25  
(0.380 0.010)  
7.62 0.25  
(0.300 0.010)  
OPTION 060 CODE*  
DATE CODE  
TYPE NUMBER  
8
1
7
6
5
6.35 0.25  
(0.250 0.010)  
A XXXXV  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
3.56 0.13  
(0.140 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
*OPTION 300 AND 500 NOT MARKED.  
1.080 0.320  
(0.043 0.013)  
0.65 (0.025) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
2.54 0.25  
(0.100 0.010)  
ACPL-772L Package with Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
9.65 0.25  
(0.380 0.010)  
1.016 (0.040)  
6
8
1
7
5
6.350 0.25  
(0.250 0.010)  
10.9 (0.430)  
3
2
4
2.0 (0.080)  
1.27 (0.050)  
9.65 0.25  
1.780  
(0.070)  
MAX.  
(0.380 0.010)  
1.19  
(0.047)  
MAX.  
7.62 0.25  
(0.300 0.010)  
+ 0.076  
0.254  
- 0.051  
3.56 0.13  
(0.140 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 0.320  
(0.043 0.013)  
0.635 0.25  
(0.025 0.010)  
12 ° NOM.  
0.635 0.130  
(0.025 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
ACPL-072L Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
5.994 0.203  
(0.236 0.008)  
XXXV  
YWW  
3.937 0.127  
(0.155 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
3
4
PIN ONE  
1.9 (0.075)  
0.406 0.076  
(0.016 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
(0.017)  
*
7 °  
5.080 0.127  
(0.200 0.005)  
45 ° X  
3.175 0.127  
(0.125 0.005)  
0 ~ 7 °  
0.228 0.025  
(0.009 0.001)  
1.524  
(0.060)  
0.203 0.102  
(0.008 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 0.254 (0.205 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
OPTION NUMBER 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
4
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3˚C + 1 ˚C/- 0.5 ˚C/SEC.  
REFLOW HEATING RATE 2.5˚C 0.5 ˚C/SEC.  
PEAK  
TEMP.  
245˚C  
PEAK  
TEMP.  
240˚C  
PEAK  
TEMP.  
230˚C  
200  
100  
2.5˚ C 0.5˚C/SEC.  
SOLDERING  
TIME  
200˚C  
30  
160 ˚C  
150 ˚C  
140 ˚C  
SEC.  
30  
SEC.  
3˚C + 1 ˚C/- 0.5 ˚C  
PREHEATING TIME  
150 ˚C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
TIME (SECONDS)  
200  
250  
Note: Non-halide flux should be used  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 ˚C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5  
˚
C
T
T
p
L
217 ˚C  
RAMP-UP  
˚C/SEC. MAX.  
RAMP-DOWN  
3
6 ˚C/SEC. MAX.  
150 - 200 ˚C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60to180SEC.  
25  
t 25 ˚C to PEAK  
TIME  
NO TES:  
THE TIME FROM 25  
= 200 C, T  
˚
C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 150  
smin  
T
˚
˚C  
smax  
Note: Non-halide flux should be used  
Regulatory Information  
Both ACPL-072L and ACPL-772L are approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01.  
(option 060 only)  
UL  
Approved under UL 1577, component recognition  
program up, File E55361.  
CSA  
Approved under CSA Component Acceptance Notice #5,  
File CA 88324.  
5
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
ACPL-772L  
ACPL-072L  
Description  
Symbol  
Option 060 Option 060 Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 Vrms  
I – IV  
I – IV  
I – III  
I – IV  
I – III  
for rated mains voltage 300 Vrms  
for rated mains voltage 450 Vrms  
Climatic Classification  
55/105/21 55/105/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
2
2
VIORM  
VPR  
630  
1181  
560  
1050  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b**  
VIORM x 1.875=VPR, 100% Production Test with tm=1 sec,  
Partial discharge < 5 pC  
Input to Output Test Voltage, Method a**  
VIORM x 1.5=VPR, Type and Sample Test, tm=60 sec, Partial discharge < 5 pC  
VPR  
945  
840  
Vpeak  
Vpeak  
Highest Allowable Overvoltage (Transient Overvoltage tini = 10 sec)  
VIOTM  
6000  
4000  
Safety-limiting values – maximum values allowed in the event of a failure,  
also see Figure 2.  
Case Temperature  
Input Current  
TS  
175  
230  
600  
150  
150  
600  
°C  
mA  
mW  
IS, INPUT  
PS, OUTPUT  
Output Power  
W
Insulation Resistance at TS, VIO = 500 V  
RIO  
>109  
>109  
*
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
Surface mount classification is class A in accordance with CECCOO802.  
** Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section IEC/EN/  
DIN EN 60747-5-2, for a detailed description of Method a and Method b partial discharge test profiles.  
Note: These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be ensured  
by means of protective circuits.  
Note: The surface mount classification is Class A in accordance with CECC 00802.  
Table 2. Insulation and Safety Related Specifications  
Value  
ACPL-  
Parameter  
Symbol  
772L  
ACPL-072L  
Units  
Conditions  
Minimum External  
Air Gap (Clearance)  
L(101)  
7.1  
4.9  
mm  
Measured from input terminals to output termi-  
nals, shortest distance through air.  
Minimum External  
Tracking (Creepage)  
L(102)  
7.4  
4.8  
mm  
mm  
Measured from input terminals to output termi-  
nals, shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance conductor to con-  
ductor, usually the straight line distance thickness  
between the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
>175  
IIIa  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
All Avago Technologies data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as  
a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board,  
minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance  
path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered.  
There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances.  
Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.  
6
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
–55  
–40  
0
Max.  
Units  
°C  
Storage Temperature  
Ambient Operating Temperature[1]  
Supply Voltages  
TS  
+125  
TA  
+105  
°C  
VDD1, VDD2  
6.0  
Volts  
Volts  
Volts  
mA  
Input Voltage  
VI  
–0.5  
–0.5  
VDD1 +0.5  
VDD2 +0.5  
10  
Output Voltage  
VO  
IO  
Average Output Current  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
260°C for 10 sec., 1.6 mm below seating plane  
Please See Solder Reflow Temperature Profile Section  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
–40  
3.0  
Max.  
+105  
3.6  
Units  
°C  
V
Ambient Operating Temperature  
Supply Voltages ( 3.3V operation)  
Supply Voltages ( 5V operation)  
Logic High Input Voltage  
Logic Low Input Voltage  
VDD1, VDD2  
VDD1, VDD2  
VIH  
4.5  
5.5  
V
2.0  
VDD1  
0.8  
V
VIL  
0.0  
V
Input Signal Rise and Fall Times  
tr, tf  
1.0  
ms  
Table 5. Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
The following specifications cover the following power supply combinations: (4.5V≤V ≤5.5V, 4.5V≤V ≤5.5V),  
DD1  
DD2  
(3V≤V ≤3.6V, 3V≤V ≤3.6V), (4.5V≤V ≤5.5V, 3V≤V ≤3.6V) and (3V≤V ≤3.6V, 4.5V≤V ≤5.5V).  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
All typical specifications are at T =+25°C , V  
= V = +3.3V.  
DD2  
A
DD1  
Parameter  
Symbol  
IDD1L  
IDD1H  
IDD2L  
IDD2H  
II  
Min.  
Typ.  
8.8  
1.4  
4.3  
4.5  
Max.  
Units  
mA  
mA  
mA  
mA  
mA  
V
Test Conditions  
Logic Low Input Supply Current[2]  
Logic High Input Supply Current[2]  
Output Supply Current  
15  
5
VI = 0 V  
VI = VDD1  
10  
10  
10  
Input Current  
–10  
Logic High Output Voltage  
VOH  
VDD2 -0.4  
VDD2 -1.4  
VDD2  
VDD2 -0.4  
0
IO = –20 mA, VI = VIH  
IO = –4 mA, VI = VIH  
IO = 20 mA, VI = VIL  
IO = 4 mA, VI = VIL  
V
Logic Low Output Voltage  
VOL  
0.1  
1.0  
V
0.35  
V
7
Table 6. Switching Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
The following specifications cover the following power supply combinations: (4.5V≤V ≤5.5V, 4.5V≤V ≤5.5V),  
DD1  
DD2  
(3V≤V ≤3.6V, 3V≤V ≤3.6V), (4.5V≤V ≤5.5V, 3V≤V ≤3.6V) and (3V≤V ≤3.6V, 4.5V≤V ≤5.5V).  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
All typical specifications are at T =+25°C, V  
= V = +3.3V.  
DD2  
A
DD1  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
Propogation Delay Time  
to Logic Low Output [3]  
tPHL  
23.5  
40  
ns  
CL = 15 pF, CMOS Signal Levels  
Propogation Delay Time  
to Logic High Output [3]  
tPLH  
tPW  
25.5  
40  
ns  
CL = 15 pF, CMOS Signal Levels  
Pulse Width [4]  
40  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
Maximum Data Rate [5]  
Pulse Width Distortion [6]  
25  
6
MBd  
ns  
|PWD |  
2
| tPHL - tPLH  
|
Propagation Delay Skew [7]  
tPSK  
tR  
20  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
Output Rise Time  
(10% – 90%)  
9
Output Fall Time  
(90% - 10%)  
tF  
8
ns  
CL = 15 pF, CMOS Signal Levels  
Common Mode Transient  
| CMH  
|
10  
10  
20  
20  
kV/ms VCM = 1000 V, TA = 25°C,  
Immunity at Logic High Output [8]  
VI = VDD1, VO > 0.8 VDD1  
Common Mode Transient  
Immunity at Logic Low Output [8]  
| CML |  
kV/ms VCM = 1000 V, TA = 25°C,  
VI = 0 V, VO < 0.8 V  
Table 7. Package Characteristics  
All typical specifications are at T = 25°C.  
A
Parameters  
Symbol  
Min.  
Typ.  
Max. Units Test Conditions  
Input-Output Momentary  
With-stand Voltage [7,8,9]  
072L  
772L  
VISO  
3750  
3750  
5000  
V rms RH 50%, t = 1 min, TA = 25°C  
772L with  
020 option  
Input-Output Resistance [9]  
Input-Output Capacitance  
Input Capacitance [12]  
R I-O  
C I-O  
C I  
1012  
0.6  
V I-O = 500 V dc  
f = 1 MHz  
W
pF  
pF  
3.0  
Input IC Junction-to-Case  
Thermal Resistance  
772L  
072L  
772L  
072L  
PPD  
qjci  
145  
160  
140  
135  
°C/W Thermocouple located at center  
underside of package  
Output IC Junction-to-Case  
Thermal Resistance  
qjco  
°C/W  
Package Power Dissipation  
150  
mW  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not  
guarantee functionality.  
2. The LED is ON when V is low and OFF when V is high.  
I
I
3.  
t propagation delay is measured from the 50% level on the falling edge of the V signal to the 50% level of the falling edge of the V signal. t  
PHL I O PLH  
propagation delay is measured from the 50% level on the rising edge of the V signal to the 50% level of the rising edge of the V signal.  
I
O
4. The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
5. The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
6. PWD is defined as |t - t |. %PWD (percent pulse width distortion) is equal to the PWD divided by pulse width.  
PHL PLH  
7.  
t
PSK  
is equal to the magnitude of the worst case difference in t  
and/or t  
that will be seen between units at any given temperature within the  
PHL  
PLH  
recommended operating conditions.  
8
8. CM is the maximum common mode voltage slew rate that can be sustained while maintaining V > 0.8 V . CML is the maximum common  
H
O
DD2  
mode voltage slew rate that can be sustained while maintaining V < 0.8 V. The common mode voltage slew rates apply to both rising and falling  
O
common mode voltage edges.  
9. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
10. In accordance with UL1577, each ACPL-072L is proof tested by applying an insulation test voltage ≥ 4500 V  
for 1 second (leakage detection  
RMS  
current limit, I ≤ 5 mA). Each ACPL-772L is proof tested by applying an insulation test voltage ≥ 4500 V  
for 1 second (leakage detection current  
I-O  
RMS  
limit, I ≤ 5 mA).  
I-O  
11. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Avago Technologies Application Note 1074  
entitled “Optocoupler Input-Output Endurance Voltage.”  
12. C is the capacitance measured at pin 2 (V ).  
I
I
31  
29  
27  
25  
23  
21  
19  
17  
15  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
PWD  
Tplh  
Tphl  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
T A ( o C)  
60  
80  
100  
o
T A  
( C)  
Figure 1. Typical propagation delays vs temperature  
Figure 2. Typical pulse width distortion vs temperature  
12  
11  
10  
9
32  
30  
28  
26  
24  
8
7
6
Tplh  
Tphl  
Rise Time  
Fall Time  
22  
20  
5
4
-20  
15  
25  
35  
C (pF)  
L
45  
55  
0
20  
40  
60  
80  
100  
o
T A ( C)  
Figure 4. Typical propagation delays vs load capacitance  
Figure 3. Typical rise and fall time vs temperature  
6
5
4
3
2
1
0
PWD  
Surface Mount SO-8 Product  
Standard 8-pin DIP Product  
1,000  
1000  
Is (mA)  
Is (mA)  
800  
600  
400  
200  
800  
600  
400  
200  
0
Ps (mW)  
Ps (mW)  
0
0
25  
50  
75  
100 125 150 175  
15  
25  
35  
(pF)  
45  
55  
0
25 50  
75 100 125 150 175  
T
A
- Case Temperature - C  
TA - Case Temperature - °C  
C L  
Figure 6. Thermal derating curve, dependence of safety limiting value with  
case temperature per IEC/EN/DIN EN 60747-5-2  
Figure 5. Typical pulse width distortion vs load capacitance  
9
Application Information  
Propagation Delay, Pulse-Width Distortion and Propa-  
gation Delay Skew  
Bypassing and PC Board Layout  
Propagation Delay is a figure of merit which describes  
how quickly a logic signal propagates through a system.  
The ACPL-x72L optocouplers are extremely easy to use.  
No external interface circuitry is required because ACPL-  
x72L uses high speed CMOS IC technology allowing  
CMOS logic to be connected directly to the inputs and  
outputs.  
The propagation delay from a low to high (t ) is the  
PLH  
amount of time required for an input signal to propagate  
to the output, causing the output to change from low to  
high. Similarly, the propagation delay from high to low  
(t ) is the amount of time required for the input signal  
to propagate to the output, causing the output to change  
from high to low. Please see Figure 9.  
PHL  
As shown in Figure 7, the only external components  
required for proper operation are two bypass capacitors.  
Capacitor values should be between 0.01mF and 0.1mF.  
For each capacitor, the total lead length between both  
ends of the capacitor and power supply pins should not  
exceed 20mm. Figure 8 illustrates the recommended  
printed circuit board layout for ACPL-x72L.  
INPUT  
5 V CMOS  
0 V  
V I  
50%  
tPLH  
90%  
tPHL  
V OH  
2.5 V CMOS  
V
OL  
OUTPUT  
V O  
90%  
10%  
10%  
V DD1  
V I  
8
V DD2  
1
2
3
4
C1  
C2  
7 NC  
Figure 9. Signal plot shows how propagation delay is defined  
NC  
6
5
V O  
Pulse-width distortion (PWD) is the difference between  
and t and often determines the maximum data  
t
PHL  
PLH  
GND1  
GND 2  
rate capability of a transmission system. PWD can be  
expressed in percent by dividing the PWD (in ns) by the  
minimum pulse width (in ns) being transmitted. Typically,  
PWD on the order of 20-30% of the minimum pulse  
width is tolerable. The PWD specification for ACPL-x72L  
is 6ns (15%) maximum across recommended operating  
conditions.  
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 7. Recommended Circuit Diagram  
V DD1  
VDD2  
V I  
C1  
C2  
V
O
GND 1  
GND 2  
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 8. Recommended Printed Circuit Board Layout  
10  
Propagation delay skew, t , is an important parameter As mentioned earlier, t  
can determine the maximum  
PSK  
PSK  
to consider in parallel data applications where parallel data transmission rate. Figure 11 is the timing  
synchronization of signals on parallel data lines is a diagram of a typical parallel data application with  
concern. If the parallel data is sent through a group both the clock and data lines being sent through the  
of optocouplers, differences in propagation delays optocouplers. The figure shows data and clock signals at  
will cause the data to arrive at the outputs of the the inputs and outputs of the optocouplers. In this case  
optocouplers at different times. If this difference in the data is assumes to be clocked off of the rising edge of  
propagation delay is large enough it will determine the the clock.  
maximum rate at which parallel data can be sent through  
the optocouplers.  
DATA  
Propagation delay skew is defined as the difference  
between the minimum and maximum propagation  
INPUTS  
CLOCK  
delays, either t  
or t  
for any given group of  
PLH  
PHL  
optocouoplers which are operating under the same  
conditions (i.e., the same drive current, supply voltage,  
output load, and operating temperature). As illustrated  
in Figure 10, if the inputs of a group of optocouplers are  
DATA  
switched either ON or OFF at the same time, t  
difference between the shortest propagation delay,  
is the  
PSK  
OUTPUTS  
CLOCK  
tPSK  
either t  
either t  
or t  
and t  
and the longest propagation delay,  
PLH  
PLH  
PHL  
PHL  
.
tPSK  
V I  
50%  
Figure 11. Parallel data transmission example.  
Propagation delay skew represents the uncertainty  
of where an edge might be after being sent through  
an optocoupler. Figure 11 shows that there will be  
uncertainty in both the data and clock lines. It is  
important that these two areas of uncertainty not  
overlap, otherwise the clock signal might arrive before  
all the data outputs have settled, or some of the data  
outputs may start to change before the clock signal  
has arrived. From these considerations, the absolute  
minimum pulse width that can be sent through  
2.5 V,  
CMOS  
V O  
tPSK  
V I  
50%  
2.5 V,  
CMOS  
V O  
optocouplers in a parallel application is twice t . A  
PSK  
cautious design should use a slightly longer pulse width  
to ensure that any additional uncertainty in the rest of  
the circuit does not cause a problem.  
Figure 10. Propagation delay skew waveform  
The ACPL-x72L optocoupler offers the advantage of  
guaranteed specifications for propagation delays, pulse-  
width distortion, and propagation delay skew over the  
recommended temperature and power supply ranges.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes AV01-0462EN  
AV02-0324EN - January 19, 2010  

相关型号:

ACPL-772L-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, DIP-8
AVAGO

ACPL-772L-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-772L-320E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

ACPL-772L-360

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-772L-360E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

ACPL-772L-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 25Mbps, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

ACPL-772L-XXXE

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-782T

Automotive Isolation Amplifier with R2Coupler Isolation
AVAGO

ACPL-782T-000E

Automotive Isolation Amplifier with R2Coupler™ Isolation
AVAGO

ACPL-782T-300E

Automotive Isolation Amplifier with R2Coupler Isolation
AVAGO

ACPL-785E

Hermetically Sealed Analog Isolation Amplifi er
AVAGO

ACPL-785E-200

ISOLATION AMPLIFIER
AVAGO