ACPL-072L-XXXE [AVAGO]

Logic IC Output Optocoupler, 1-Element;
ACPL-072L-XXXE
型号: ACPL-072L-XXXE
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Logic IC Output Optocoupler, 1-Element

文件: 总10页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-772L and ACPL-072L  
3.3V/5V High Speed CMOS Optocoupler  
Data Sheet  
Description  
Features  
•ꢀ Dualꢀvoltageꢀoperationꢀ(3.3Vꢀandꢀ5V)ꢀ  
theꢀ ACPL-772Lꢀ orꢀ ACPL-072Lꢀ optocouplersꢀ utilizeꢀ theꢀ •ꢀ Allowꢀlevelꢀshiftingꢀfunctionalityꢀ  
Availableꢀinꢀeitherꢀanꢀ8-pinꢀDIPꢀorꢀSO-8ꢀstyleꢀrespectively,ꢀ  
latestꢀCMOSꢀICꢀtechnologyꢀtoꢀachieveꢀoutstandingꢀspeedꢀ  
performanceꢀ ofꢀ minimumꢀ 25MBdꢀ dataꢀ rateꢀ andꢀ 6nsꢀ  
maximumꢀpulseꢀwidthꢀdistortion.  
•ꢀ SupportꢀhighꢀSpeedꢀdatarateꢀofꢀ25ꢀMBdꢀ  
•ꢀ WideꢀTemperatureꢀoperationꢀ  
•ꢀ CMOSꢀoutputꢀandꢀbufferꢀinputꢀ  
BasicꢀbuildingꢀblocksꢀofꢀthisꢀfamilyꢀofꢀproductsꢀareꢀaꢀCMOSꢀ  
LEDꢀdriverꢀIC,ꢀaꢀhighꢀspeedꢀLEDꢀandꢀaꢀCMOSꢀdetectorꢀIC.ꢀAꢀ  
CMOSꢀlogicꢀinputꢀsignalꢀcontrolsꢀtheꢀLEDꢀdriverꢀIC,ꢀwhichꢀ  
suppliesꢀcurrentꢀtoꢀtheꢀLED.ꢀTheꢀdetectorꢀICꢀincorporatesꢀ  
anꢀintegratedꢀphotodiode,ꢀaꢀhighꢀspeedꢀtransimpedanceꢀ  
amplifier,ꢀandꢀaꢀvoltageꢀcomparatorꢀwithꢀanꢀoutputꢀdriver.  
•ꢀ CompatibleꢀwithꢀCMOSꢀandꢀTTLꢀlogicꢀlevel  
•ꢀ Lowerꢀpowerꢀconsumptionꢀwithꢀ3.3Vꢀsupply  
•ꢀ Goodꢀ ACꢀ performanceꢀ withꢀ lowerꢀ pulseꢀ widthꢀ  
distortion  
•ꢀ Lead-freeꢀoptionꢀavailable  
Specifications  
Functional Diagram  
•ꢀ 3.3Vꢀandꢀ5VꢀCMOSꢀCompatibility  
•ꢀ HighꢀSpeed:ꢀDCꢀtoꢀ25ꢀMBd  
•ꢀ 6nsꢀmax.ꢀPulseꢀWidthꢀDistortionꢀ  
•ꢀ 40ꢀnsꢀmax.ꢀProp.ꢀDelayꢀ  
**V  
DD1  
1
2
8
7
V
**  
DD2  
V
NC*  
I
•ꢀ 20ꢀnsꢀmax.ꢀꢀProp.ꢀDelayꢀSkew  
•ꢀ 10ꢀkV/msꢀmin.ꢀCommonꢀModeꢀRejection  
•ꢀ -40ꢀ°Cꢀꢀtoꢀ105ꢀ°CꢀTemperatureꢀRange  
•ꢀ SafetyꢀandꢀRegulatoryꢀApprovalsꢀPendingꢀꢀ  
ULꢀRecognised  
I
O
3
4
6
5
NC*  
V
O
LED1  
GND  
GND  
2
1
SHIELD  
-ꢀ 5000V ꢀforꢀ1ꢀmin.ꢀperꢀUL1577ꢀforꢀACPL-772Lꢀꢀ  
rms  
forꢀoptionꢀ020  
*ꢀ Pinꢀ3ꢀisꢀtheꢀanodeꢀofꢀtheꢀinternalꢀLEDꢀandꢀmustꢀbeꢀleftꢀunconnectedꢀ  
forꢀ guaranteedꢀ datasheetꢀ performance.ꢀ Pinꢀ 7ꢀ isꢀ notꢀ connectedꢀ  
internally.  
**ꢀ Aꢀ0.1uFꢀbypassꢀcapacitorꢀmustꢀbeꢀconnectedꢀbetweenꢀpinsꢀ1ꢀandꢀ4,ꢀ  
andꢀ5ꢀandꢀ8.  
-ꢀ 3750V ꢀforꢀ1ꢀmin.ꢀperꢀUL1577ꢀforꢀACPL-072Lꢀ  
rms  
CSAꢀComponentꢀAcceptanceꢀNoticeꢀ#5ꢀ  
IEC/EN/DINꢀENꢀ60747-5-2ꢀ  
–ꢀ V  
–ꢀ V  
ꢀ=ꢀ630ꢀV  
ꢀ=ꢀ560ꢀV  
ꢀforꢀACPL-772LꢀOptionꢀ060  
ꢀforꢀACPL-072LꢀOptionꢀ060  
IORM  
peak  
TRUTH TABLE (POSITIVE LOGIC)  
IORM  
peak  
Applications  
VI, INPUT  
LED1  
OFF  
ON  
VO, OUTPUT  
•ꢀ DigitalꢀFieldbusꢀIsolation:ꢀCC-Link,ꢀDeviceNet,ꢀProfibus,ꢀ  
SDS  
•ꢀ MultiplexedꢀDataꢀTransmission  
•ꢀ GeneralꢀInstrumentꢀandꢀDataꢀAcquisition  
•ꢀ ComputerꢀPeripheralꢀinterface  
H
L
H
L
•ꢀ MicroprocessorꢀSystemꢀInterface  
CAUTION:ꢀItꢀisꢀadvisedꢀthatꢀnormalꢀstaticꢀprecautionsꢀbeꢀtakenꢀinꢀhandlingꢀandꢀassemblyꢀ  
ofꢀthisꢀcomponentꢀtoꢀpreventꢀdamageꢀand/orꢀdegradation,ꢀwhichꢀmayꢀbeꢀinducedꢀbyꢀESD.  
Package Dimensions  
ACPL-772L 8-Pin DIP Package  
9.65 ꢀ.ꢁ5  
(ꢀ.38ꢀ ꢀ.ꢀ0ꢀꢂ  
7.6ꢁ ꢀ.ꢁ5  
(ꢀ.3ꢀꢀ ꢀ.ꢀ0ꢀꢂ  
OPTION ꢀ6ꢀ CODE*  
DATE CODE  
TYPE NUMBER  
8
0
7
6
5
6.35 ꢀ.ꢁ5  
(ꢀ.ꢁ5ꢀ ꢀ.ꢀ0ꢀꢂ  
A XXXXV  
YYWW  
3
4
0.78 (ꢀ.ꢀ7ꢀꢂ MAX.  
0.09 (ꢀ.ꢀ47ꢂ MAX.  
+ ꢀ.ꢀ76  
- ꢀ.ꢀ50  
ꢀ.ꢁ54  
5˚ TYP.  
+ ꢀ.ꢀꢀ3ꢂ  
- ꢀ.ꢀꢀꢁꢂ  
(ꢀ.ꢀ0ꢀ  
3.56 ꢀ.03  
(ꢀ.04ꢀ ꢀ.ꢀꢀ5ꢂ  
4.7ꢀ (ꢀ.085ꢂ MAX.  
ꢀ.50 (ꢀ.ꢀꢁꢀꢂ MIN.  
ꢁ.9ꢁ (ꢀ.005ꢂ MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHESꢂ.  
*OPTION 3ꢀꢀ AND 5ꢀꢀ NOT MARKED.  
0.ꢀ8ꢀ ꢀ.3ꢁꢀ  
ꢀ.65 (ꢀ.ꢀꢁ5ꢂ MAX.  
(ꢀ.ꢀ43 ꢀ.ꢀ03ꢂ  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.ꢁ5 mm (0ꢀ milsꢂ MAX.  
ꢁ.54 ꢀ.ꢁ5  
(ꢀ.0ꢀꢀ ꢀ.ꢀ0ꢀꢂ  
ACPL-772L Package with Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
9.65 ꢀ.ꢁ5  
(ꢀ.38ꢀ ꢀ.ꢀ0ꢀꢂ  
0.ꢀ06 (ꢀ.ꢀ4ꢀꢂ  
0ꢀ.9 (ꢀ.43ꢀꢂ  
ꢁ.ꢀ (ꢀ.ꢀ8ꢀꢂ  
6
5
8
0
7
6.35ꢀ ꢀ.ꢁ5  
(ꢀ.ꢁ5ꢀ ꢀ.ꢀ0ꢀꢂ  
3
4
0.ꢁ7 (ꢀ.ꢀ5ꢀꢂ  
9.65 ꢀ.ꢁ5  
(ꢀ.38ꢀ ꢀ.ꢀ0ꢀꢂ  
0.78ꢀ  
(ꢀ.ꢀ7ꢀꢂ  
MAX.  
0.09  
(ꢀ.ꢀ47ꢂ  
MAX.  
7.6ꢁ ꢀ.ꢁ5  
(ꢀ.3ꢀꢀ ꢀ.ꢀ0ꢀꢂ  
+ ꢀ.ꢀ76  
- ꢀ.ꢀ50  
ꢀ.ꢁ54  
3.56 ꢀ.03  
(ꢀ.04ꢀ ꢀ.ꢀꢀ5ꢂ  
+ ꢀ.ꢀꢀ3ꢂ  
- ꢀ.ꢀꢀꢁꢂ  
(ꢀ.ꢀ0ꢀ  
0.ꢀ8ꢀ ꢀ.3ꢁꢀ  
(ꢀ.ꢀ43 ꢀ.ꢀ03ꢂ  
ꢀ.635 ꢀ.ꢁ5  
(ꢀ.ꢀꢁ5 ꢀ.ꢀ0ꢀꢂ  
0ꢁ ˚ NOM.  
ꢀ.635 ꢀ.03ꢀ  
(ꢀ.ꢀꢁ5 ꢀ.ꢀꢀ5ꢂ  
ꢁ.54  
(ꢀ.0ꢀꢀꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = ꢀ.0ꢀ mm (ꢀ.ꢀꢀ4 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.ꢁ5 mm (0ꢀ milsꢂ MAX.  
ACPL-072L Small Outline SO-8 Package  
LAND PATTERN RECOMMENDATION  
8
7
6
5
5.994 ꢀ.ꢁꢀ3  
(ꢀ.ꢁ36 ꢀ.ꢀꢀ8ꢂ  
XXXV  
YWW  
3.937 ꢀ.0ꢁ7  
(ꢀ.055 ꢀ.ꢀꢀ5ꢂ  
TYPE NUMBER  
7.49 (ꢀ.ꢁ95ꢂ  
(LAST 3 DIGITSꢂ  
DATE CODE  
0
3
4
PIN ONE  
0.9 (ꢀ.ꢀ75ꢂ  
ꢀ.4ꢀ6 ꢀ.ꢀ76  
(ꢀ.ꢀ06 ꢀ.ꢀꢀ3ꢂ  
0.ꢁ7ꢀ  
(ꢀ.ꢀ5ꢀꢂ  
BSC  
ꢀ.64 (ꢀ.ꢀꢁ5ꢂ  
ꢀ.43ꢁ  
(ꢀ.ꢀ07ꢂ  
*
7˚  
5.ꢀ8ꢀ ꢀ.0ꢁ7  
(ꢀ.ꢁꢀꢀ ꢀ.ꢀꢀ5ꢂ  
45 ˚ X  
3.075 ꢀ.0ꢁ7  
(ꢀ.0ꢁ5 ꢀ.ꢀꢀ5ꢂ  
ꢀ ~ 7 ˚  
ꢀ.ꢁꢁ8 ꢀ.ꢀꢁ5  
(ꢀ.ꢀꢀ9 ꢀ.ꢀꢀ0ꢂ  
0.5ꢁ4  
(ꢀ.ꢀ6ꢀꢂ  
ꢀ.ꢁꢀ3 ꢀ.0ꢀꢁ  
(ꢀ.ꢀꢀ8 ꢀ.ꢀꢀ4ꢂ  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASHꢂ  
5.ꢁꢀ7 ꢀ.ꢁ54 (ꢀ.ꢁꢀ5 ꢀ.ꢀ0ꢀꢂ  
*
ꢀ.3ꢀ5  
(ꢀ.ꢀ0ꢁꢂ  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = ꢀ.0ꢀ mm (ꢀ.ꢀꢀ4 INCHESꢂ MAX.  
OPTION NUMBER 5ꢀꢀ NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS ꢀ.05 mm (6 milsꢂ MAX.  
Device Selection Guide  
8-PinꢀDIPꢀ  
(300ꢀMil)  
SmallꢀOutlineꢀꢀ  
SO-8  
ACPL-772L  
ACPL-072L  
Ordering Information  
SpecifyꢀPartꢀNumberꢀfollowedꢀbyꢀOptionꢀNumberꢀ(ifꢀdesired)  
Example:  
ACPL-x72L-XXX  
020ꢀ=ꢀUL1577ꢀ(ACPL-772Lꢀonly)  
060ꢀ=ꢀIEC/EN/DINꢀENꢀ60747-5-2  
300ꢀ=ꢀGullꢀWingꢀSurfaceꢀMountꢀOptionꢀ(ACPL-772Lꢀonly)  
500ꢀ=ꢀTapeꢀandꢀReelꢀPackagingꢀOption  
XXXE=ꢀLeadꢀFreeꢀOption  
NoꢀOptionꢀandꢀOptionꢀ300ꢀcontainꢀ50ꢀunitsꢀ(ACPL-772L),ꢀ100ꢀunitsꢀ(ACPL-072L)ꢀperꢀtube.  
Optionꢀ500ꢀcontainsꢀ1000ꢀunitsꢀ(ACPL-772L),ꢀ1500ꢀunitsꢀ(ACPL-072L)ꢀperꢀreel.  
Optionꢀdataꢀsheetsꢀavailable.ꢀPleaseꢀcontactꢀsalesꢀrepresentativeꢀorꢀauthorizedꢀdistributor.  
3
Solder Reflow Temperature Profile  
3ꢀꢀ  
PREHEATING RATE 3˚C + 0 ˚C/- .5 ˚C/SEC.  
REFLOW HEATING RATE ꢁ.5˚C ꢀ.5 ˚C/SEC.  
PEAK  
TEMP.  
ꢁ45˚C  
PEAK  
TEMP.  
ꢁ4˚C  
PEAK  
TEMP.  
ꢁ3ꢀ˚C  
ꢁꢀꢀ  
0ꢀꢀ  
ꢁ.5˚ C ꢀ.5˚C/SEC.  
SOLDERING  
TIME  
ꢁꢀꢀ˚C  
3ꢀ  
06ꢀ ˚C  
05ꢀ ˚C  
04ꢀ ˚C  
SEC.  
3ꢀ  
SEC.  
3˚C + 0 ˚C/- .5 ˚C  
PREHEATING TIME  
05ꢀ ˚C, 9ꢀ + 3ꢀ SEC.  
5ꢀ SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
5ꢀ  
0ꢀꢀ  
05ꢀ  
TIME (SECONDSꢂ  
ꢁꢀꢀ  
ꢁ5ꢀ  
Note:ꢀUseꢀofꢀnon-chlorineꢀactivatedꢀfluxesꢀisꢀhighlyꢀrecommended.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 ˚C of ACTUAL  
PEAKTEMPERATURE  
t
p
ꢁꢀ-4ꢀ SEC.  
ꢁ6ꢀ +ꢀ/-5  
˚
C
T
T
p
L
ꢁ07 ˚C  
RAMP-UP  
˚C/SEC. MAX.  
RAMP-DOWN  
3
6 ˚C/SEC. MAX.  
05ꢀ - ꢁꢀꢀ ˚C  
T
smax  
T
smin  
t
s
t
L
6ꢀ to 05ꢀ SEC.  
PREHEAT  
6to08SEC.  
ꢁ5  
t ꢁ5 ˚C to PEAK  
TIME  
NO TES:  
THE TIME FROM ꢁ5  
= ꢁꢀꢀ C, T  
˚
C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 05ꢀ  
smin  
T
˚
˚C  
smax  
Note:ꢀUseꢀofꢀnon-chlorineꢀactivatedꢀfluxesꢀisꢀhighlyꢀrecommended.  
Regulatory Information  
TheꢀACPL-772LꢀandꢀACPL-072Lꢀareꢀpendingꢀapprovalꢀfromꢀtheꢀfollowingꢀorganizations:  
IEC/EN/DIN EN 60747-5-2ꢀ  
Approvedꢀunder:ꢀ  
IECꢀ60747-5-2:1997ꢀ+ꢀA1:2002ꢀ  
ENꢀ60747-5-2:2001ꢀ+ꢀA1:2002ꢀ  
DINꢀENꢀ60747-5-2ꢀ(VDEꢀ0884ꢀTeilꢀ2):2003-01.ꢀ  
(optionꢀ060ꢀonly)  
ULꢀ  
ApprovedꢀunderꢀULꢀ1577,ꢀcomponentꢀrecognitionꢀprogramꢀup,ꢀFileꢀE55361.  
CSAꢀ  
ApprovedꢀunderꢀCSAꢀComponentꢀAcceptanceꢀNoticeꢀ#5,ꢀFileꢀCAꢀ88324.  
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
ACPL-772L  
Option 060  
ACPL-072L  
Option 060 Units  
Description  
Symbol  
Installation classification per DIN VDE 0ꢀꢀ0/ꢀ.89, Table ꢀ  
for rated mains voltage ꢀ50 Vrms  
I – IV  
I – IV  
I – III  
I – IV  
I – III  
for rated mains voltage 300 Vrms  
for rated mains voltage ꢂ50 Vrms  
Climatic Classification  
55/ꢀ00/ꢁꢀ  
55/ꢀ00/ꢁꢀ  
Pollution Degree (DIN VDE 0ꢀꢀ0/ꢀ.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b**  
V
V
630  
ꢀꢀ8ꢀ  
560  
V
peak  
IORM  
ꢀ050  
V
peak  
PR  
V
IORM  
x ꢀ.875=V , ꢀ00% Production Test with t =ꢀ sec, Partial discharge < 5 pC  
PR m  
Input to Output Test Voltage, Method a**  
x ꢀ.5=V , Type and Sample Test, t =60 sec, Partial discharge < 5 pC  
V
V
9ꢂ5  
8ꢂ0  
V
peak  
PR  
V
IORM  
PR  
m
Highest Allowable Overvoltage (Transient Overvoltage t = ꢀ0 sec)  
6000  
ꢂ000  
V
peak  
ini  
IOTM  
Safety-limiting values – maximum values allowed in the event of a failure, also see Figure ꢁ.  
Case Temperature  
Input Current  
Output Power  
T
ꢀ75  
ꢁ30  
600  
ꢀ50  
ꢀ50  
600  
°C  
mA  
mW  
S
I
S, INPUT  
P
S, OUTPUT  
W
Insulation Resistance at T , V = 500 V  
R
IO  
>ꢀ09  
>ꢀ09  
S
IO  
*ꢀ Isolationcharacteristicsareguaranteedonlywithinthesafetymaximumratingswhichmustbeensuredbyprotectivecircuitsinapplication.ꢀ  
SurfaceꢀmountꢀclassificationꢀisꢀclassꢀAꢀinꢀaccordanceꢀwithꢀCECCOO802.  
**ꢀ ReferꢀtoꢀtheꢀoptocouplerꢀsectionꢀofꢀtheꢀIsolationꢀandꢀControlꢀComponentsꢀDesigner’sꢀCatalog,ꢀunderꢀProductꢀSafetyꢀRegulationsꢀsectionꢀIEC/EN/  
DINꢀENꢀ60747-5-2,ꢀforꢀaꢀdetailedꢀdescriptionꢀofꢀMethodꢀaꢀandꢀMethodꢀbꢀpartialꢀdischargeꢀtestꢀprofiles.  
Note:ꢀTheseꢀoptocouplersꢀareꢀsuitableꢀforꢀ“safeꢀelectricalꢀisolation”ꢀonlyꢀwithinꢀtheꢀsafetyꢀlimitꢀdata.ꢀꢀMaintenanceꢀofꢀtheꢀsafetyꢀdataꢀshallꢀbeꢀensuredꢀ  
byꢀmeansꢀofꢀprotectiveꢀcircuits.  
Note:ꢀTheꢀsurfaceꢀmountꢀclassificationꢀisꢀClassꢀAꢀinꢀaccordanceꢀwithꢀCECCꢀ00802.  
Table 2. Insulation and Safety Related Specifications  
Value  
Parameter  
Symbol ACPL-772L ACPL-072L  
Units  
Conditions  
Minimum External Air Gap (Clearance)  
L(ꢀ0ꢀ)  
7.ꢀ  
ꢂ.9  
mm  
Measured from input terminals to output termi-  
nals, shortest distance through air.  
Minimum External Tracking (Creepage)  
L(ꢀ0ꢁ)  
7.ꢂ  
ꢂ.8  
mm  
mm  
Measured from input terminals to output termi-  
nals, shortest distance path along body.  
Minimum Internal Plastic Gap (Internal Clearance)  
0.08  
0.08  
Through insulation distance conductor to conduc-  
tor, usually the straight line distance thickness  
between the emitter and detector.  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
CTI  
>ꢀ75  
IIIa  
>ꢀ75  
IIIa  
V
DIN IEC ꢀꢀꢁ/VDE 0303 Part ꢀ  
Material Group (DIN VDE 0ꢀꢀ0, ꢀ/89, Table ꢀ)  
All Avago Technologies data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting  
point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage  
and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed  
circuit board between the solder fillets of the input and output leads must be considered.  
There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage  
and clearance distances will also change depending on factors such as pollution degree and insulation level.  
5
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
–55  
–ꢂ0  
0
Max.  
+ꢀꢁ5  
+ꢀ05  
6.0  
Units  
°C  
Storage Temperature  
T
S
[ꢀ]  
Ambient Operating Temperature  
T
A
°C  
Supply Voltages  
Input Voltage  
Output Voltage  
V
V
V
, V  
Volts  
Volts  
Volts  
DDꢀ DDꢁ  
–0.5  
–0.5  
V
DDꢀ  
DDꢁ  
+0.5  
+0.5  
I
V
O
Average Output Current  
ACPL-07ꢁL  
ACPL-77ꢁL  
I
I
5
ꢀ0  
mA  
mA  
O
O
Lead Solder Temperature  
ꢁ60°C for ꢀ0 sec., ꢀ.6 mm below seating plane  
Please See Solder Reflow Temperature Profile Section  
Solder Reflow Temperature Profile  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
–ꢂ0  
3.0  
Max.  
+ꢀ05  
3.6  
Units  
°C  
V
Ambient Operating Temperature  
Supply Voltages ( 3.3V operation)  
Supply Voltages ( 5V operation)  
Logic High Input Voltage  
Logic Low Input Voltage  
T
A
V
V
V
V
, V  
DDꢀ DDꢁ  
, V  
DDꢀ DDꢁ  
ꢂ.5  
5.5  
V
ꢁ.0  
V
DDꢀ  
V
IH  
IL  
0.0  
0.8  
ꢀ.0  
V
Input Signal Rise and Fall Times  
t , t  
r f  
ms  
Table 5. Electrical Specifications  
Testꢀconditionsꢀthatꢀareꢀnotꢀspecifiedꢀcanꢀbeꢀanywhereꢀwithinꢀtheꢀrecommendedꢀoperatingꢀrange.ꢀꢀ  
Theꢀ followingꢀ specificationsꢀ coverꢀ theꢀ followingꢀ powerꢀ supplyꢀ combinations:ꢀ ꢀ (4.5V≤V ≤5.5V,ꢀ 4.5V≤V ≤5.5V),ꢀ  
DD1  
DD2  
(3V≤V ≤3.6V,ꢀ3V≤V ≤3.6V),ꢀ(4.5V≤V ≤5.5V,ꢀ3V≤V ≤3.6V)ꢀandꢀ(3V≤V ≤3.6V,ꢀ4.5V≤V ≤5.5V).  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
AllꢀtypicalꢀspecificationsꢀareꢀatꢀT =+25°Cꢀ,ꢀV ꢀ=ꢀV ꢀ=ꢀ+3.3V.ꢀ  
A
DD1  
DD2  
Parameter  
Symbol  
Min.  
Typ.  
8.8  
ꢀ.ꢂ  
ꢂ.3  
ꢂ.5  
Max. Units  
Test Conditions  
V = 0 V  
[ꢁ]  
Logic Low Input Supply Current  
I
I
I
I
I
ꢀ5  
5
mA  
mA  
mA  
mA  
mA  
V
DDꢀL  
DDꢀH  
DDꢁL  
DDꢁH  
I
I
[ꢁ]  
Logic High Input Supply Current  
Output Supply Current  
V = V  
I DDꢀ  
ꢀ0  
ꢀ0  
ꢀ0  
Input Current  
–ꢀ0  
ꢁ.9  
Logic High Output Voltage  
V
OH  
3.3  
ꢁ.9  
0
I = –ꢁ0 mA, V = V  
O I IH  
ꢀ.9  
V
I = –ꢂ mA, V = V  
O I IH  
Logic Low Output Voltage  
V
OL  
0.ꢀ  
ꢀ.0  
V
I = ꢁ0 mA, V = V  
O I IL  
0.35  
V
I = ꢂ mA, V = V  
O I IL  
6
Table 6. Switching Specifications  
Testꢀconditionsꢀthatꢀareꢀnotꢀspecifiedꢀcanꢀbeꢀanywhereꢀwithinꢀtheꢀrecommendedꢀoperatingꢀrange.  
Theꢀ followingꢀ specificationsꢀ coverꢀ theꢀ followingꢀ powerꢀ supplyꢀ combinations:ꢀ ꢀ (4.5V≤V ≤5.5V,ꢀ 4.5V≤V ≤5.5V),ꢀ  
DD1  
DD2  
(3V≤V ≤3.6V,ꢀ3V≤V ≤3.6V),ꢀ(4.5V≤V ≤5.5V,ꢀ3V≤V ≤3.6V)ꢀandꢀ(3V≤V ≤3.6V,ꢀ4.5V≤V ≤5.5V).  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
AllꢀtypicalꢀspecificationsꢀareꢀatꢀT =+25°C,ꢀV ꢀ=ꢀV ꢀ=ꢀ+3.3V.  
A
DD1  
DD2  
Parameter  
Propogation Delay Time to Logic Low Output  
Symbol  
Min.  
Typ.  
ꢁ3.5  
ꢁ5.5  
Max.  
Units  
ns  
Test Conditions  
[3]  
[3]  
t
PHL  
t
PLH  
t
PW  
ꢂ0  
ꢂ0  
C = ꢀ5 pF, CMOS Signal Levels  
L
Propogation Delay Time to Logic High Output  
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
[ꢂ]  
Pulse Width  
ꢂ0  
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
[5]  
Maximum Data Rate  
ꢁ5  
6
MBd  
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
[6]  
Pulse Width Distortion | t - t  
|
|PWD |  
C = ꢀ5 pF, CMOS Signal Levels  
L
PHL PLH  
[7]  
Propagation Delay Skew  
t
PSK  
ꢁ0  
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
Output Rise Time (ꢀ0% – 90%)  
Output Fall Time (90% - ꢀ0%)  
t
t
9
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
R
8
ns  
C = ꢀ5 pF, CMOS Signal Levels  
L
F
[8]  
Common Mode Transient Immunity at Logic High Output  
| CM |  
ꢀ0  
ꢀ0  
ꢁ0  
kV/ms V = ꢀ000 V, T = ꢁ5°C,  
CM A  
H
V = V , V > 0.8 V  
DDꢀ  
I
DDꢀ  
O
[8]  
Common Mode Transient Immunity at Logic Low Output  
| CM |  
ꢁ0  
kV/ms V = ꢀ000 V, T = ꢁ5°C,  
CM A  
L
V = 0 V, V < 0.8 V  
I
O
Table 7. Package Characteristics  
AllꢀtypicalꢀspecificationsꢀareꢀatꢀT ꢀ=ꢀ25°C.  
A
Parameters  
Symbol Min. Typ.  
Max. Units Test Conditions  
V rms RH 50%, t = ꢀ min, T = ꢁ5°C  
Input-Output Momentary  
With-stand Voltage  
07ꢁL  
77ꢁL  
V
ISO  
3750  
3750  
5000  
A
[7,8,9]  
77ꢁL with  
0ꢁ0 option  
[9]  
ꢀꢁ  
W
pF  
pF  
Input-Output Resistance  
R
C
C
ꢀ0  
V
= 500 V dc  
I-O  
I-O  
I-O  
I
Input-Output Capacitance  
0.6  
f = ꢀ MHz  
[ꢀꢁ]  
Input Capacitance  
3.0  
Input IC Junction-to-Case  
Thermal Resistance  
77ꢁL  
07ꢁL  
77ꢁL  
07ꢁL  
qjci  
ꢀꢂ5  
ꢀ60  
ꢀꢂ0  
ꢀ35  
°C/W Thermocouple located at center underside of package  
Output IC Junction-to-Case  
Thermal Resistance  
qjco  
°C/W  
Package Power Dissipation  
P
PD  
ꢀ50  
mW  
Notes:  
1.ꢀ AbsoluteMaximumambientoperatingtemperaturemeansthedevicewillnotbedamagedifoperatedundertheseconditions.Itdoesnotꢀ  
guaranteeꢀfunctionality.  
2.ꢀ TheꢀLEDꢀisꢀONꢀwhenꢀV ꢀisꢀlowꢀandꢀOFFꢀwhenꢀV ꢀisꢀhigh.  
I
I
3.ꢀ t ꢀpropagationꢀdelayꢀisꢀmeasuredꢀfromꢀtheꢀ50%ꢀlevelꢀonꢀtheꢀfallingꢀedgeꢀofꢀtheꢀV ꢀsignalꢀtoꢀtheꢀ50%ꢀlevelꢀofꢀtheꢀfallingꢀedgeꢀofꢀtheꢀV ꢀsignal.ꢀt ꢀ  
PHL  
I
O
PLH  
propagationꢀdelayꢀisꢀmeasuredꢀfromꢀtheꢀ50%ꢀlevelꢀonꢀtheꢀrisingꢀedgeꢀofꢀtheꢀV ꢀsignalꢀtoꢀtheꢀ50%ꢀlevelꢀofꢀtheꢀrisingꢀedgeꢀofꢀtheꢀV ꢀsignal.  
I
O
4.ꢀ Theꢀminimumꢀpulseꢀwidthꢀisꢀtheꢀshortestꢀpulseꢀwidthꢀatꢀwhichꢀtheꢀspecifiedꢀpulseꢀwidthꢀdistortionꢀisꢀguaranteed.  
5.ꢀ Theꢀmaximumꢀdataꢀrateꢀisꢀtheꢀfastestꢀdataꢀrateꢀatꢀwhichꢀtheꢀspecifiedꢀpulseꢀwidthꢀdistortionꢀisꢀguaranteed.  
6.ꢀ PWDꢀisꢀdefinedꢀasꢀ|t ꢀ-ꢀt |.ꢀ%PWDꢀ(percentꢀpulseꢀwidthꢀdistortion)ꢀisꢀequalꢀtoꢀtheꢀPWDꢀdividedꢀbyꢀpulseꢀwidth.  
PHL PLH  
7.ꢀ t ꢀisꢀequalꢀtoꢀtheꢀmagnitudeꢀofꢀtheꢀworstꢀcaseꢀdifferenceꢀinꢀt ꢀand/orꢀt ꢀthatꢀwillꢀbeꢀseenꢀbetweenꢀunitsꢀatꢀanyꢀgivenꢀtemperatureꢀwithinꢀtheꢀ  
PSK  
PHL  
PLH  
recommendedꢀoperatingꢀconditions.  
8.ꢀ CM ꢀisꢀtheꢀmaximumꢀcommonꢀmodeꢀvoltageꢀslewꢀrateꢀthatꢀcanꢀbeꢀsustainedꢀwhileꢀmaintainingꢀV ꢀ>ꢀ0.8ꢀV .ꢀCMLꢀisꢀtheꢀmaximumꢀcommonꢀ  
H
O
DD2  
modeꢀvoltageꢀslewꢀrateꢀthatꢀcanꢀbeꢀsustainedꢀwhileꢀmaintainingꢀV ꢀ<ꢀ0.8ꢀV.ꢀTheꢀcommonꢀmodeꢀvoltageꢀslewꢀratesꢀapplyꢀtoꢀbothꢀrisingꢀandꢀfallingꢀ  
O
commonꢀmodeꢀvoltageꢀedges.  
9.ꢀꢀ Deviceꢀconsideredꢀaꢀtwo-terminalꢀdevice:ꢀpinsꢀ1,ꢀ2,ꢀ3,ꢀandꢀ4ꢀshortedꢀtogetherꢀandꢀpinsꢀ5,ꢀ6,ꢀ7,ꢀandꢀ8ꢀshortedꢀtogether.  
7
10.ꢀInꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀACPL-072Lꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀ≥ꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
RMS  
currentꢀlimit,ꢀI ꢀ≤ꢀ5ꢀmA).ꢀEachꢀACPL-772Lꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀ≥ꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀcurrentꢀ  
I-O  
RMS  
limit,ꢀI ꢀ≤ꢀ5ꢀmA).  
I-O  
11.ꢀTheInput-OutputMomentaryWithstandVoltageisadielectricvoltageratingthatshouldnotbeinterpretedasaninput-outputcontinuousꢀ  
voltageꢀrating.ꢀForꢀtheꢀcontinuousꢀvoltageꢀratingꢀrefersꢀtoꢀyourꢀequipmentꢀlevelꢀsafetyꢀspecificationꢀorꢀAvagoꢀTechnologiesꢀApplicationꢀNoteꢀ1074ꢀ  
entitledꢀ“OptocouplerꢀInput-OutputꢀEnduranceꢀVoltage.”  
12.ꢀC ꢀisꢀtheꢀcapacitanceꢀmeasuredꢀatꢀpinꢀ2ꢀ(V ).  
I
I
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
31  
29  
27  
25  
23  
21  
19  
17  
15  
PWD  
Tplh  
Tphl  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
TAꢀ(oC)  
60  
80 100  
o
TAꢀ( C)  
Figure 1. Typical propagation delays vs temperature  
Figure 2. Typical pulse width distortion vs temperature  
32  
30  
28  
26  
24  
12  
11  
10  
9
8
7
6
Tplh  
Tphl  
22  
RiseꢀTime  
FallꢀTime  
5
4
20  
15  
25  
35  
45  
55  
-20  
0
20  
40  
60  
80  
100  
CLꢀ(pF)  
TA(oC)  
Figure 4. Typical propagation delays vs load capacitance  
Figure 3. Typical rise and fall time vs temperature  
6
5
Surface Mount SO-8 Product  
1,000  
Standard 8-pin DIP Product  
PWD  
4
1000  
800  
600  
400  
200  
0
Isꢀ(mA)  
Isꢀ(mA)  
800  
600  
400  
200  
0
Psꢀ(mW)  
3
2
1
0
Psꢀ(mW)  
0
25  
50  
75 100 125 150 175  
15  
25  
35  
CL ꢀ(pF)  
45  
55  
0
25 50 75 100 125 150 175  
TAꢀ-ꢀCaseꢀTemperatureꢀ-ꢀ˚C  
T
A
ꢀ-ꢀCaseꢀTemperatureꢀ-ꢀC  
Figure 6. Thermal derating curve, dependence of safety limiting value  
with case temperature per IEC/EN/DIN EN 60747-5-2  
Figure 5. Typical pulse width distortion vs load capacitance  
8
Application Information  
Propagation Delay, Pulse-Width Distortion and Propaga-  
tion Delay Skew  
Bypassing and PC Board Layout  
Propagationꢀ Delayꢀ isꢀ aꢀ figureꢀ ofꢀ meritꢀ whichꢀ describesꢀ  
howquicklyalogicsignalpropagatesthroughasystem.ꢀ  
Theꢀ ACPL-x72Lꢀ optocouplersꢀ areꢀ extremelyꢀ easyꢀ toꢀ use.ꢀ  
NoexternalinterfacecircuitryisrequiredbecauseACPl-  
x72Lꢀ usesꢀ highꢀ speedꢀ CMOSꢀ ICꢀ technologyꢀ allowingꢀ  
CMOSꢀ logicꢀ toꢀ beꢀ connectedꢀ directlyꢀ toꢀ theꢀ inputsꢀ andꢀ  
outputs.  
Theꢀ propagationꢀ delayꢀ fromꢀ aꢀ lowꢀ toꢀ highꢀ (t )ꢀ isꢀ theꢀ  
PLH  
amountꢀofꢀtimeꢀrequiredꢀforꢀanꢀinputꢀsignalꢀtoꢀpropagateꢀ  
toꢀtheꢀoutput,ꢀcausingꢀtheꢀoutputꢀtoꢀchangeꢀfromꢀlowꢀtoꢀ  
high.Similarly,thepropagationdelayfromhightolowꢀ  
(t )ꢀisꢀtheꢀamountꢀofꢀtimeꢀrequiredꢀforꢀtheꢀinputꢀsignalꢀ  
PHL  
Asꢀ shownꢀ inꢀ Figureꢀ 7,ꢀ theꢀ onlyꢀ externalꢀ componentsꢀ  
requiredforproperoperationaretwoꢀbypassꢀcapacitors.ꢀ  
Capacitorꢀ valuesꢀ shouldꢀ beꢀ betweenꢀ 0.01mFꢀ andꢀ 0.1mF.ꢀ  
Forꢀ eachꢀ capacitor,ꢀ theꢀ totalꢀ leadꢀ lengthꢀ betweenꢀ bothꢀ  
endsofthecapacitorandpowersupplypinsshouldnotꢀ  
exceedꢀ 20mm.ꢀ Figureꢀ 8ꢀ illustratesꢀ theꢀ recommendedꢀ  
printedꢀcircuitꢀboardꢀlayoutꢀforꢀACPL-x72L.  
toꢀpropagateꢀtoꢀtheꢀoutput,ꢀcausingꢀtheꢀoutputꢀtoꢀchangeꢀ  
fromꢀhighꢀtoꢀlow.ꢀꢀPleaseꢀseeꢀFigureꢀ9.  
INPUT  
5 V CMOS  
0 V  
V
50%  
I
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
90%  
90%  
V
V
10%  
10%  
O
8
7
6
5
V
DD1  
1
2
3
4
DD2  
V
OL  
C1  
C2  
V
I
NC  
Figure 9. Signal plot shows how propagation delay is defined  
Pulse-widthꢀ distortionꢀ (PWD)ꢀ isꢀ theꢀ differenceꢀ betweenꢀ  
NC  
V
O
GND  
GND  
1
2
t
ꢀ andꢀ t ꢀ andꢀ oftenꢀ determinesꢀ theꢀ maximumꢀ dataꢀ  
PLH  
PHL  
rateꢀ capabilityꢀ ofꢀ aꢀ transmissionꢀ system.ꢀ ꢀ PWDꢀ canꢀ beꢀ  
expressedinpercentbydividingthePWD(inns)bytheꢀ  
minimumꢀpulseꢀwidthꢀ(inꢀns)ꢀbeingꢀtransmitted.ꢀꢀTypically,ꢀ  
PWDꢀ onꢀ theꢀ orderꢀ ofꢀ 20-30%ꢀ ofꢀ theꢀ minimumꢀ pulseꢀ  
widthꢀ isꢀ tolerable.Theꢀ PWDꢀ specificationꢀ forꢀ ACPL-x72Lꢀ  
isꢀ 6nsꢀ (15%)ꢀ maximumꢀ acrossꢀ recommendedꢀ operatingꢀ  
conditions.  
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 7. Recommended Circuit Diagram  
V
DD1  
V
DD2  
V
I
C1  
C2  
V
O
GND  
GND  
1
2
C1, C2 = 0.01 µF TO 0.1 µF  
Figure 8. Recommended Printed Circuit Board Layout  
9
Propagationdelayskew,t ,isanimportantparameterꢀ Asꢀ mentionedꢀ earlier,ꢀ t ꢀ canꢀ determineꢀ theꢀ maximumꢀ  
PSK  
PSK  
toꢀ considerꢀ inꢀ parallelꢀ dataꢀ applicationsꢀ whereꢀ parallelꢀ dataꢀ transmissionꢀ rate.ꢀ Figureꢀ 11ꢀ isꢀ theꢀ timingꢀ  
synchronizationꢀ ofꢀ signalsꢀ onꢀ parallelꢀ dataꢀ linesꢀ isꢀ aꢀ diagramꢀ ofꢀ aꢀ typicalꢀ parallelꢀ dataꢀ applicationꢀ withꢀ  
concern.Iftheparalleldataissentthroughagroupofꢀ bothꢀ theꢀ clockꢀ andꢀ dataꢀ linesꢀ beingꢀ sentꢀ throughꢀ theꢀ  
optocouplers,ꢀdifferencesꢀinꢀpropagationꢀdelaysꢀwillꢀcauseꢀ optocouplers.ꢀTheꢀfigureꢀshowsꢀdataꢀandꢀclockꢀsignalsꢀatꢀ  
thedatatoarriveattheoutputsoftheoptocouplersatꢀ theinputsandoutputsoftheoptocouplers.Inthiscaseꢀ  
differentꢀ times.ꢀ ꢀ Ifꢀ thisꢀ differenceꢀ inꢀ propagationꢀ delayꢀ theꢀdataꢀisꢀassumesꢀtoꢀbeꢀclockedꢀoffꢀofꢀtheꢀrisingꢀedgeꢀofꢀ  
isꢀ largeꢀ enoughꢀ itꢀ willꢀ determineꢀ theꢀ maximumꢀ rateꢀ atꢀ theꢀclock.  
whichꢀparallelꢀdataꢀcanꢀbeꢀsentꢀthroughꢀtheꢀoptocouplers.  
DATA  
Propagationꢀ delayꢀ skewꢀ isꢀ definedꢀ asꢀ theꢀ differenceꢀ  
INPUTS  
betweenꢀtheꢀminimumꢀandꢀmaximumꢀpropagationꢀdelays,ꢀ  
eithert ꢀort ꢀforanygivengroupofoptocouoplersꢀ  
PLH  
PHL  
CLOCK  
whichareoperatingunderthesameconditions(i.e.,theꢀ  
sameꢀ driveꢀ current,ꢀ supplyꢀ voltage,ꢀ outputꢀ load,ꢀ andꢀ  
operatingtemperature).AsillustratedinFigure10,iftheꢀ  
inputsꢀofꢀaꢀgroupꢀofꢀoptocouplersꢀareꢀswitchedꢀeitherꢀONꢀ  
DATA  
orOFFatthesametime,t ꢀisthedifferencebetweenꢀ  
PSK  
theꢀshortestꢀpropagationꢀdelay,ꢀeitherꢀt ꢀorꢀt ꢀandꢀtheꢀ  
PLH  
PHL  
OUTPUTS  
CLOCK  
t
PSK  
longestꢀpropagationꢀdelay,ꢀeitherꢀt ꢀandꢀt  
.
PLH  
PHL  
V
I
50%  
t
PSK  
Figure 11. Parallel data transmission example.  
2.5 V,  
CMOS  
V
O
Propagationꢀ delayꢀ skewꢀ representsꢀ theꢀ uncertaintyꢀ  
ofꢀ whereꢀ anꢀ edgeꢀ mightꢀ beꢀ afterꢀ beingꢀ sentꢀ throughꢀ  
anꢀ optocoupler.ꢀ Figureꢀ 11ꢀ showsꢀ thatꢀ thereꢀ willꢀ beꢀ  
uncertaintyꢀ inꢀ bothꢀ theꢀ dataꢀ andꢀ clockꢀ lines.ꢀ ꢀ Itꢀ isꢀ  
importantꢀthatꢀtheseꢀtwoꢀareasꢀofꢀuncertaintyꢀnotꢀoverlap,ꢀ  
otherwiseꢀ theꢀ clockꢀ signalꢀ mightꢀ arriveꢀ beforeꢀ allꢀ theꢀ  
dataꢀ outputsꢀ haveꢀ settled,ꢀ orꢀ someꢀ ofꢀ theꢀ dataꢀ outputsꢀ  
maystarttochangebeforetheclocksignalhasarrived.ꢀ  
Fromtheseconsiderations,theabsoluteminimumpulseꢀ  
widthꢀthatꢀcanꢀbeꢀsentꢀthroughꢀoptocouplersꢀinꢀaꢀparallelꢀ  
t
PSK  
V
50%  
I
2.5 V,  
CMOS  
V
O
applicationistwicet .Acautiousdesignshoulduseaꢀ  
PSK  
slightlylongerpulsewidthtoensurethatanyadditionalꢀ  
uncertaintyꢀ inꢀ theꢀ restꢀ ofꢀ theꢀ circuitꢀ doesꢀ notꢀ causeꢀ aꢀ  
problem.  
Figure 10. Propagation delay skew waveform  
Theꢀ ACPL-x72Lꢀ optocouplerꢀ offersꢀ theꢀ advantageꢀ ofꢀ  
guaranteedspecificationsforpropagationdelays,pulse-  
widthꢀ distortion,ꢀ andꢀ propagationꢀ delayꢀ skewꢀ overꢀ theꢀ  
recommendedꢀtemperatureꢀandꢀpowerꢀsupplyꢀranges.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © ꢁ006 Avago Technologies Limited. All rights reserved.  
AV0ꢀ-0ꢂ6ꢁEN - October ꢀ7, ꢁ006  

相关型号:

ACPL-074L

Single-channel and Dual-channel High Speed 15 MBd CMOS optocoupler with Glitch-Free Power-Up Feature
AVAGO

ACPL-074L-560E

2 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 15Mbps, ROHS COMPLIANT, SURFACE MOUNT, SOP-8
AVAGO

ACPL-077L-560E

LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-0820

High Current Dual Line-Driver IC 1.5 APP driving current
AVAGO

ACPL-0820-000E

DUAL LINE DRIVER, PDSO8, ROHS COMPLIANT, SOP-8
AVAGO

ACPL-1770L-100

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-1770L-200

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-1772L-100

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-1772L-200

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-1772L-300

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-177KL-200

4 CHANNEL LOGIC OUTPUT OPTOCOUPLER, HERMETIC SEALED, DIP-16
AVAGO

ACPL-177XL

Hermetically Sealed 3.3V, Low IF, Wide VCC, High Gain Optocouplers
AVAGO