ACNW3130-500 [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER;
ACNW3130-500
型号: ACNW3130-500
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER

输出元件 光电
文件: 总20页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-3130/J313 ACNW3130  
Very High CMR 2.5 Amp Output Current  
IGBT Gate Driver Optocoupler  
Data Sheet  
Description  
Features  
•ꢀ Highꢀspeedꢀresponse.  
J313ꢀandꢀtheꢀANCW3130ꢀcontainꢀanꢀAlGaAsꢀLED.ꢀTheꢀLEDꢀ •ꢀ VeryꢀhighꢀCMR.  
Theꢀ ACPL-3130ꢀ containsꢀ aꢀ GaAsPꢀ LEDꢀ whileꢀ theꢀ ACPL-  
isꢀopticallyꢀcoupledꢀtoꢀanꢀintegratedꢀcircuitꢀwithꢀaꢀpowerꢀ  
outputꢀ stage.ꢀ Theseꢀ optocouplersꢀ areꢀ ideallyꢀ suitedꢀ forꢀ  
drivingꢀpowerꢀIGBTsꢀandꢀMOSFETsꢀusedꢀinꢀmotorꢀcontrolꢀ  
inverterꢀ applications.Theꢀ highꢀ operatingꢀ voltageꢀ rangeꢀ  
oftheoutputstageprovidesthedrivevoltagesrequiredꢀ  
byꢀ gateꢀ controlledꢀ devices.ꢀ Theꢀ voltageꢀ andꢀ currentꢀ  
suppliedꢀbyꢀtheseꢀoptocouplersꢀmakeꢀthemꢀideallyꢀsuitedꢀ  
forꢀdirectlyꢀdrivingꢀIGBTsꢀwithꢀratingsꢀupꢀtoꢀ1200ꢀV/100ꢀA.ꢀ  
ForꢀIGBTsꢀwithꢀhigherꢀratings,ꢀtheꢀACPL-3130ꢀseriesꢀcanꢀbeꢀ  
usedꢀtoꢀdriveꢀaꢀdiscreteꢀpowerꢀstageꢀwhichꢀdrivesꢀtheꢀIGBTꢀ  
gate.ꢀTheꢀANCW3130ꢀhasꢀtheꢀhighestꢀinsulationꢀvoltageꢀofꢀ  
•ꢀ Bootstrappableꢀsupplyꢀcurrent.  
•ꢀ SafetyꢀApprovalꢀ(pending):  
ULꢀRecognizedꢀ  
-ꢀ3750ꢀV ꢀforꢀ1ꢀmin.ꢀforꢀACPL-3130/J313.ꢀ  
rms  
-ꢀ5000ꢀV ꢀforꢀ1ꢀmin.ꢀForꢀACNW3130  
rms  
CSAꢀApproval  
IEC/EN/DINꢀENꢀ60747-5-2ꢀApprovedꢀ  
-ꢀV  
-ꢀV  
-ꢀV  
ꢀ=ꢀ630ꢀV  
ꢀ=ꢀ891ꢀV  
ꢀforꢀACPL-3130ꢀ(Optionꢀ060)ꢀ  
ꢀforꢀACPL-J313ꢀ  
peak  
IORM  
IORM  
IORM  
peak  
peak  
ꢀ=ꢀ1414ꢀV  
ꢀforꢀACNW3130  
V
=1414ꢀV  
intheIEC/EN/DINEN60747-5-2.ꢀTheꢀ  
IORM  
peak  
Specifications  
peak  
ACPL-J313ꢀhasꢀanꢀinsulationꢀvoltageꢀofꢀV  
andꢀtheꢀV  
ꢀ=ꢀ891ꢀV  
IORM  
ꢀ=ꢀ630ꢀV  
ꢀisꢀalsoꢀavailableꢀwithꢀtheꢀACPL-  
IORM  
peak  
•ꢀ 2.5ꢀAꢀmaximumꢀpeakꢀoutputꢀcurrent.  
•ꢀ 2.0ꢀAꢀminimumꢀpeakꢀoutputꢀcurrent.  
3130ꢀ(Optionꢀ060).  
•ꢀ 40ꢀkV/µsꢀminimumꢀCommonꢀModeꢀRejectionꢀ(CMR)ꢀatꢀ  
Functional Diagram  
V
ꢀ=ꢀ1500ꢀV  
CM  
•ꢀ 0.5  
                                                        
Vmaximumlowleveloutputvoltageꢀ(V )ꢀeliminatesꢀ  
OL  
N/C  
ANODE  
CATHODE  
N/C  
1
8
V
V
V
V
CC  
O
needꢀforꢀnegativeꢀgateꢀdrive  
•ꢀ I ꢀ=ꢀ5ꢀmAꢀmaximumꢀsupplyꢀcurrent  
CC  
2
3
4
7
6
5
•ꢀ Underꢀ Voltageꢀ Lock-Outꢀ protectionꢀ (UVLO)ꢀ withꢀ  
hysteresis  
•ꢀ WideꢀoperatingꢀV ꢀrange:ꢀ15ꢀtoꢀ30ꢀVolts  
O
CC  
•ꢀ 500ꢀnsꢀmaximumꢀswitchingꢀspeeds  
EE  
SHIELD  
•ꢀ Industrialꢀtemperatureꢀrange:ꢀ-40°Cꢀtoꢀ100°C  
ACPL-3130 and ACPL-J313  
Applications  
•ꢀ IGBT/MOSFETꢀgateꢀdrive  
•ꢀ AC/BrushlessꢀDCꢀmotorꢀdrives  
•ꢀ Industrialꢀinverters  
N/C  
1
8
V
V
CC  
O
2
3
4
7
6
5
ANODE  
CATHODE  
N/C  
•ꢀ SwitchingꢀPowerꢀSuppliesꢀ(SPS)  
N/C  
V
EE  
SHIELD  
ACNW3130  
Note:ꢀAꢀ0.1ꢀµFꢀbypassꢀcapacitorꢀmustꢀbeꢀconnectedꢀbetweenꢀpinsꢀV ꢀandꢀV  
.
EE  
CC  
CAUTION:ꢀItꢀisꢀadvisedꢀthatꢀnormalꢀstaticꢀprecautionsꢀbeꢀtakenꢀinꢀhandlingꢀandꢀassemblyꢀ  
ofꢀthisꢀcomponentꢀtoꢀpreventꢀdamageꢀand/orꢀdegradationꢀwhichꢀmayꢀbeꢀinducedꢀbyꢀESD.  
Truth Table  
V
– V  
V – V  
CC EE  
CC  
EE  
“POSITIVE GOING” “NEGATIVE GOING”  
LED  
OFF  
ON  
(i.e., TURN-ON)  
(i.e., TURN-OFF)  
VO  
LOW  
0 - 30 V  
0 - 30 V  
0 - ꢀꢀ V  
0 - 9.5 V  
LOW  
ON  
ꢀꢀ - ꢀ3.5 V  
ꢀ3.5 - 30 V  
9.5 - ꢀ2 V  
ꢀ2 - 30 V  
TRANSITION  
HIGH  
ON  
Ordering Information  
Specifyꢀpartꢀnumberꢀfollowedꢀbyꢀoptionꢀnumberꢀ(ifꢀdesired).  
Example:  
ACPL-3130-XXXE  
060ꢀ=ꢀIEC/EN/DINꢀENꢀ60747-5-2,ꢀVIORMꢀ=ꢀ630VPEAKꢀ(ACPL-3130ꢀonly)  
300ꢀ=ꢀGullꢀWingꢀSurfaceꢀMountꢀOption  
500ꢀ=ꢀTapeꢀandꢀReelꢀPackagingꢀOption  
XXXEꢀ=ꢀLeadꢀFreeꢀOption.  
Optionꢀ500ꢀcontainsꢀ1000ꢀunitsꢀ(ACPL-3130/J313),ꢀ750ꢀunitsꢀ(ACNW3130)ꢀperꢀreel.  
Otherꢀoptionsꢀcontainꢀ50ꢀunitsꢀ(ACPL-3130/J313),ꢀ42ꢀunitsꢀ(ACNW3130)ꢀperꢀtube  
Optionꢀdataꢀsheetsꢀavailable.ꢀContactꢀAvagoꢀTechnologiesꢀsalesꢀrepresentative,ꢀauthorizedꢀdistributor,ꢀorꢀvisitꢀourꢀWEBꢀ  
siteꢀatꢀhttp://www.avagotech.com/optocouplers.  
Package Outline Drawings  
ACPL-3130 Outline Drawing (Standard DIP Package)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"V" = OPTION 060  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.65 (0.025) MAX.  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
2
ACPL-3130 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.0ꢁ6 (0.040ꢂ  
6
5
8
7
6.350 0.ꢀ5  
(0.ꢀ50 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
ꢀ.0 (0.080ꢂ  
3
4
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ5  
(0.300 0.0ꢁ0ꢂ  
+ 0.076  
- 0.05ꢁ  
0.ꢀ54  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
+ 0.003ꢂ  
- 0.00ꢀꢂ  
(0.0ꢁ0  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁꢀ ˚ NOM.  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢀ.54  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = 0.ꢁ0 mm (0.004 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.ꢀ5 mm (ꢁ0 milsꢂ MAX.  
ACPL-J313 Outline Drawing  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.80 ± 0.25  
(0.386 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
DATE CODE  
A XXXX  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
2.54 ± 0.25  
(0.100 ± 0.010)  
3
ACPL-J313 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.80 0.ꢀ5  
(0.386 0.0ꢁ0ꢂ  
ꢁ.0ꢁ6 (0.040ꢂ  
6
5
8
7
6.350 0.ꢀ5  
(0.ꢀ50 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
ꢀ.0 (0.080ꢂ  
3
4
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ5  
(0.300 0.0ꢁ0ꢂ  
+ 0.076  
- 0.05ꢁ  
0.ꢀ54  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
+ 0.003ꢂ  
- 0.00ꢀꢂ  
(0.0ꢁ0  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁꢀ ˚ NOM.  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢀ.54  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = 0.ꢁ0 mm (0.004 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (ꢀ0 milsꢂ MAX.  
ACNW3130 Outline Drawing (8-Pin Wide Body Package)  
11.00  
(0.433)  
11.15 ± 0.15  
(0.442 ± 0.006)  
MAX.  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
ACNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7 TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
ACNW3130 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
6
7
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
(0.09)  
1.3  
(0.051)  
12.30 ± 0.30  
1.55  
(0.061)  
MAX.  
(0.484 ± 0.012)  
11.00  
MAX.  
(0.433)  
4.00  
(0.158)  
MAX.  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7 NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
Recommended Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3 °C + 1 C/–0.5 °C/SEC.  
REFLOW HEATING RATE 2.5 °C ± 0.5 C/SEC.  
PEAK  
TEMP.  
245 °C  
PEAK  
TEMP.  
240 °C  
PEAK  
TEMP.  
230 °C  
200  
2.5 °C ± 0.5 °C/SEC.  
SOLDERING  
TIME  
200 °C  
30  
160 °C  
150 °C  
140 °C  
SEC.  
30  
SEC.  
3 °C + 1 °C/–0.5 °C  
100  
PREHEATING TIME  
150 °C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note:ꢀUseꢀofꢀnonꢀchlorine-activatedꢀfluxesꢀisꢀhighlyꢀrecommended.  
5
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
t
p
15 SEC.  
260 +0/-5 °C  
T
p
217 °C  
T
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
25  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60to180SEC.  
t 25 C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note:ꢀUseꢀofꢀnonꢀchlorine-activatedꢀfluxesꢀisꢀhighlyꢀrecommended.  
Regulatory Information  
TheꢀACPL-3130/J313ꢀandꢀACNW3130ꢀareꢀpendingꢀapprovalꢀbyꢀtheꢀfollowingꢀorganizations:  
IEC/EN/DIN EN 60747-5-2 (ACPL-3130 Option 060 only, ACPL-J313 and ACNW3130)ꢀ  
Approvalꢀunder:ꢀ  
IECꢀ60747-5-2ꢀ:1997ꢀ+ꢀA1:2002ꢀ  
ENꢀ60747-5-2:2001ꢀ+ꢀA1:2002ꢀ  
DINꢀENꢀ60747-5-2ꢀ(VDEꢀ0884ꢀTeilꢀ2):2003-01  
ULꢀ  
ApprovalꢀunderꢀULꢀ1577,ꢀcomponentꢀrecognitionꢀprogram,ꢀFileꢀE55361.  
CSAꢀ  
ApprovalꢀunderꢀCSAꢀComponentꢀAcceptanceꢀNoticeꢀ#5,ꢀFileꢀCAꢀ88324.  
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
Description  
Symbol  
ACPL-3130 Option 060 ACPL-J313  
ACNW3130 Unit  
Installation classification per DIN VDE 0ꢀꢀ0/ꢀ.89, Table ꢀ  
for rated mains voltage ꢀ50 V  
for rated mains voltage 300 V  
for rated mains voltage ꢁ50 V  
for rated mains voltage ꢂ00 V  
I – IV  
I – IV  
I – III  
I – IV  
I – IV  
I – III  
I – III  
I – IV  
I – IV  
I – IV  
I – IV  
I – III  
55/ꢀ00/2ꢀ  
2
rms  
rms  
rms  
rms  
for rated mains voltage ꢀ000 V  
rms  
Climatic Classification  
55/ꢀ00/2ꢀ  
55/ꢀ00/2ꢀ  
Pollution Degree (DIN VDE 0ꢀꢀ0/ꢀ.89)  
Maximum Working Insulation Voltage  
2
2
V
V
ꢂ30  
ꢀꢀ8ꢀ  
89ꢀ  
ꢀꢂꢃ0  
ꢀꢁꢀꢁ  
2ꢂ52  
V
peak  
IORM  
Input to Output Test Voltage, Method b* V x ꢀ.8ꢃ5=V ,  
V
peak  
IORM  
PR  
PR  
ꢀ00% Production Test with t =ꢀ sec, Partial discharge < 5 pC  
m
Input to Output Test Voltage, Method a* V x ꢀ.5=V ,  
V
V
9ꢁ5  
ꢀ33ꢂ  
ꢂ000  
2ꢀ2ꢀ  
8000  
V
peak  
IORM  
PR  
PR  
Type and Sample Test, t =ꢂ0 sec, Partial discharge < 5 pC  
m
Highest Allowable Overvoltage  
(Transient Overvoltage tini = ꢀ0 sec)  
ꢂ000  
V
peak  
IOTM  
Safety-limiting values – maximum values allowed in the event of a failure, also see Figure ꢁꢀ and ꢁ2.  
Case Temperature  
Input Current  
T
ꢀꢃ5  
230  
ꢂ00  
>ꢀ0  
ꢀꢃ5  
ꢁ00  
ꢂ00  
ꢀ50  
ꢁ00  
ꢃ00  
°C  
S
I
mA  
mW  
W
S, INPUT  
Output Power  
P
R
S, OUTPUT  
9
9
9
Insulation Resistance at T , V = 500 V  
>ꢀ0  
>ꢀ0  
S
IO  
S
*ꢀReferꢀtoꢀtheꢀoptocouplerꢀsectionꢀofꢀtheꢀIsolationꢀandꢀControlꢀComponentsꢀDesigner’sꢀCatalog,ꢀunderꢀProductꢀSafetyꢀRegulationsꢀsection,ꢀ(IEC/EN/DINꢀ  
ENꢀ60747-5-2)ꢀforꢀaꢀdetailedꢀdescriptionꢀofꢀMethodꢀaꢀandꢀMethodꢀbꢀpartialꢀdischargeꢀtestꢀprofiles.  
Note:ꢀTheseꢀoptocouplersꢀareꢀsuitableꢀfor“safeꢀelectricalꢀisolation”ꢀonlyꢀwithinꢀtheꢀsafetyꢀlimitꢀdata.ꢀMaintenanceꢀofꢀtheꢀsafetyꢀdataꢀshallꢀbeꢀensuredꢀbyꢀ  
meansꢀofꢀprotectiveꢀcircuits.ꢀSurfaceꢀmountꢀclassificationꢀisꢀClassꢀAꢀinꢀaccordanceꢀwithꢀCECCꢀ00802.  
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol ACPL-3130 ACPL-J313 ACNW3130 Units  
Conditions  
Minimum External Air Gap L(ꢀ0ꢀ)  
(Clearance)  
ꢃ.ꢀ  
ꢃ.ꢁ  
8.0  
0.5  
9.ꢂ  
mm  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Tracking L(ꢀ02)  
(Creepage)  
ꢃ.ꢁ  
ꢀ0.0  
ꢀ.0  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between  
the emitter and detector.  
Tracking Resistance (Com- CTI  
parative Tracking Index)  
> ꢀꢃ5  
IIIa  
> ꢀꢃ5  
IIIa  
> 200  
IIIa  
V
DIN IEC ꢀꢀ2/VDE 0303 Part ꢀ  
Isolation Group  
Material Group (DIN VDE 0ꢀꢀ0, ꢀ/89, Table ꢀ)  
AllꢀAvagoꢀdataꢀsheetsꢀreportꢀtheꢀcreepageꢀandꢀclearanceꢀinherentꢀtoꢀtheꢀoptocouplerꢀcomponentꢀitself.ꢀTheseꢀdimensionsꢀareꢀneededꢀasꢀaꢀstartingꢀ  
pointꢀforꢀtheꢀequipmentꢀdesignerꢀwhenꢀdeterminingꢀtheꢀcircuitꢀinsulationꢀrequirements.ꢀHowever,ꢀonceꢀmountedꢀonꢀaꢀprintedꢀcircuitꢀboard,ꢀminimumꢀ  
creepageꢀandꢀclearanceꢀrequirementsꢀmustꢀbeꢀmetꢀasꢀspecifiedꢀforꢀindividualꢀequipmentꢀstandards.ꢀForꢀcreepage,ꢀtheꢀshortestꢀdistanceꢀpathꢀalongꢀ  
theꢀsurfaceꢀofꢀaꢀprintedꢀcircuitꢀboardꢀbetweenꢀtheꢀsolderꢀfilletsꢀofꢀtheꢀinputꢀandꢀoutputꢀleadsꢀmustꢀbeꢀconsidered.ꢀThereꢀareꢀrecommendedꢀtechniquesꢀ  
suchꢀasꢀgroovesꢀandꢀribsꢀwhichꢀmayꢀbeꢀusedꢀonꢀaꢀprintedꢀcircuitꢀboardꢀtoꢀachieveꢀdesiredꢀcreepageꢀandꢀclearances.ꢀCreepageꢀandꢀclearanceꢀdistancesꢀ  
willꢀalsoꢀchangeꢀdependingꢀonꢀfactorsꢀsuchꢀasꢀpollutionꢀdegreeꢀandꢀinsulationꢀlevel.  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
Max.  
ꢀ25  
ꢀ00  
25  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Average Input Current  
T
S
T
A
-ꢁ0  
°C  
I
I
mA  
A
F(AVG)  
F(TRAN)  
Peak Transient Input Current  
(<ꢀ µs pulse width, 300pps)  
ꢀ.0  
Reverse Input Voltage  
ACPL-3ꢀ30  
V
R
5
V
ACPL-J3ꢀ3  
ACNW3ꢀ30  
3
V
3
V
“High”Peak Output Current  
“Low”Peak Output Current  
Supply Voltage  
I
I
2.5  
2.5  
35  
500  
A
2
2
OH(PEAK)  
A
OL(PEAK)  
V – V  
0
0
V
CC EE  
Input Current (Rise/Fall Time)  
Output Voltage  
t
/t  
ns  
V
r(IN) f(IN)  
V
V
CC  
O(PEAK)  
Output Power Dissipation  
Total Power Dissipation  
Lead Solder Temperature  
P
P
250  
295  
mW  
mW  
3
O
T
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
2ꢂ0°C for ꢀ0 sec., ꢀ.ꢂ mm below seating plane  
2ꢂ0°C for ꢀ0 sec., up to seating plane  
See Package Outline Drawings section  
Solder Reflow Temperature Profile  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
V - V  
Min.  
ꢀ5  
Max.  
30  
Units  
V
Note  
Power Supply  
CC EE  
Input Current (ON)  
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
I
ꢀꢂ  
mA  
F(ON)  
ꢀ0  
ꢀ0  
mA  
V
Input Voltage (OFF)  
V
- 3.0  
- ꢁ0  
0.8  
ꢀ00  
F(OFF)  
Operating Temperature  
T
°C  
A
8
Table 5. Electrical Specifications (DC)  
Overꢀrecommendedꢀoperatingꢀconditionsꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C,ꢀI  
EE  
ꢀ=ꢀ7ꢀtoꢀ16ꢀmA,ꢀV  
ꢀ=ꢀ-3.0ꢀtoꢀ0.8ꢀV,ꢀV ꢀ=ꢀ15ꢀtoꢀ30ꢀV,ꢀ  
A
F(ON)  
A
F(OFF) CC  
EE  
V ꢀ=ꢀGround)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalꢀvaluesꢀatꢀT ꢀ=ꢀ25°CꢀandꢀV ꢀ-ꢀV ꢀ=ꢀ30ꢀV,ꢀunlessꢀotherwiseꢀnoted.  
CC  
Parameter  
Symbol Device  
Min.  
0.5  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level Output Current  
I
OH  
ꢀ.5  
A
V = V – ꢁ  
2, 3, 2ꢀ  
5
O
CC  
2.0  
A
V = V – ꢀ5  
2
O
CC  
Low Level Output Current  
I
OL  
0.5  
2.0  
A
V = V + 2.5  
5, ꢂ, 22  
5
O
EE  
2.0  
A
V = V + ꢀ5  
2
O
EE  
High Level Output Voltage  
Low Level Output Voltage  
High Level Supply Current  
V
V
V -ꢁ  
V -3  
V
I = -ꢀ00 mA  
ꢀ, 3, 23  
ꢁ, ꢂ, 2ꢁ  
ꢃ, 8  
ꢂ, ꢃ  
OH  
CC  
CC  
O
0.ꢀ  
2.5  
0.5  
5.0  
V
I = ꢀ00 mA  
O
OL  
I
I
I
mA  
Output open,  
CCH  
I = ꢃ to ꢀꢂ mA  
F
Low Level Supply Current  
2.5  
5.0  
mA  
Output open,  
CCL  
FLH  
V = -3.0 to +0.8 V  
F
Threshold Input Current  
Low to High  
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
2.3  
ꢀ.0  
2.3  
5.0  
5.0  
8.0  
mA  
mA  
mA  
V
I = 0 mA, V > 5 V  
9, ꢀꢃ, 25  
ꢀ0, ꢀ8, 25  
ꢀꢀ, ꢀꢃ, 25  
O
O
I = 0 mA, V > 5 V  
O
O
I = 0 mA, V > 5 V  
O
O
Threshold Input Voltage  
High to Low  
V
V
0.8  
I = 0 mA, V > 5 V  
O O  
FHL  
Input Forward Voltage  
ACPL-3ꢀ30 ꢀ.2  
ACPL-J3ꢀ3 ꢀ.2  
ACNW3ꢀ30 ꢀ.2  
ꢀ.5  
ꢀ.8  
V
I = ꢀ0 mA  
F
ꢀ9  
20  
20  
F
ꢀ.ꢂ  
ꢀ.95  
ꢀ.95  
V
I = ꢀ0 mA  
F
ꢀ.ꢂ  
V
I = ꢀ0 mA  
F
Temperature Coefficient of  
Input Forward Voltage  
DV /DT ACPL-3ꢀ30  
-ꢀ.ꢂ  
-ꢀ.3  
-ꢀ.3  
mV/°C  
I = ꢀ0 mA  
F
F
A
ACPL-J3ꢀ3  
ACNW3ꢀ30  
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
mV/°C  
I = ꢀ0 mA  
F
mV/°C  
I = ꢀ0 mA  
F
Input Reverse Breakdown Voltage BV  
5
3
3
V
I = ꢀ0 µA  
R
R
V
I = ꢀ00 µA  
R
V
I = ꢀ00 µA  
R
Input Capacitance  
C
ꢂ0  
pF  
pF  
pF  
V
f = ꢀ MHz, V = 0 V  
F
IN  
ꢃ0  
f = ꢀ MHz, V = 0 V  
F
ꢃ0  
f = ꢀ MHz, V = 0 V  
F
UVLO Threshold  
UVLO Hysteresis  
V
V
ꢀꢀ.0  
9.5  
ꢀ2.3  
ꢀ0.ꢃ  
ꢀ.ꢂ  
ꢀ3.5  
ꢀ2.0  
I = ꢀ0 mA, V > 5 V  
F
2ꢂ, 38  
2ꢂ, 38  
2ꢂ, 38  
UVLO+  
O
V
I = ꢀ0 mA, V > 5 V  
F O  
UVLO–  
UVLO  
V
I = ꢀ0 mA, V > 5 V  
F O  
HYS  
9
Table 6. Switching Specifications (AC)  
Overꢀrecommendedꢀoperatingꢀconditionsꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C,ꢀI  
EE  
ꢀ=ꢀ7ꢀtoꢀ16ꢀmA,ꢀV  
ꢀ=ꢀ-3.0ꢀtoꢀ0.8ꢀV,ꢀV ꢀ=ꢀ15ꢀtoꢀ30ꢀV,ꢀ  
A
F(ON)  
A
F(OFF) CC  
EE  
V ꢀ=ꢀGround)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalꢀvaluesꢀatꢀT ꢀ=ꢀ25°CꢀandꢀV ꢀ-ꢀV ꢀ=ꢀ30ꢀV,ꢀunlessꢀotherwiseꢀnoted.  
CC  
Parameter  
Symbol  
Min.  
0.ꢀ0  
0.ꢀ0  
Typ.  
0.30  
0.30  
Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay Time to High Output Level  
Propagation Delay Time to Low Output Level  
t
0.50 µs  
0.50 µs  
Rg = ꢀ0 W,  
ꢀ2,ꢀ3, ꢀꢂ  
ꢀꢁ, ꢀ5,  
ꢀꢂ, 2ꢃ  
PLH  
PHL  
Cg = ꢀ0 nF,  
t
f = ꢀ0 kHz,  
Duty Cycle = 50%  
Pulse Width Distortion  
PWD  
0.3  
µs  
ꢀꢃ  
Propagation Delay Difference Between Any Two Parts PDD  
or Channels  
(t – t  
PHL PLH  
)
-0.35  
0.35 µs  
39, ꢁ0 ꢀ2  
2ꢃ  
Rise Time  
t
t
t
t
0.ꢀ  
0.ꢀ  
0.8  
0.ꢂ  
50  
µs  
µs  
µs  
µs  
R
Fall Time  
F
UVLO Turn On Delay  
UVLO Turn Off Delay  
I = ꢀ0 mA, V > 5 V  
2ꢂ  
2ꢂ  
UVLO ON  
UVLO OFF  
F
O
I = ꢀ0 mA, V > 5 V  
F
O
Output High Level Common Mode Transient Immunity |CM |  
ꢁ0  
ꢁ0  
kV/µs T = 25°C,  
2ꢃ  
ꢀ3, ꢀꢁ  
H
A
I = ꢀ0 to ꢀꢂ mA,  
F
V = ꢀ500 V  
CM  
V = 30 V  
CC  
Output Low Level Common Mode Transient Immunity |CM |  
50  
kV/µs T = 25°C, V = 0 V,  
2ꢃ  
ꢀ3, ꢀ5  
L
A
F
V = ꢀ500 V  
CM  
V = 30 V  
CC  
Table 7. Package Characteristics  
Overꢀrecommendedꢀtemperatureꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalsꢀatꢀT ꢀ=ꢀ25°C.  
A
A
Parameter  
Symbol Device  
Min.  
3ꢃ50  
3ꢃ50  
Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
8, ꢀꢀ  
9, ꢀꢀ  
ꢀ0, ꢀꢀ  
ꢀꢀ  
Input-Output Momentary Withstand  
Voltage**  
V
ISO  
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
V
rms  
RH < 50%,  
t = ꢀ min.,  
T = 25°C  
A
V
rms  
ACNW3ꢀ30 5000  
ACPL-3ꢀ30  
V
rms  
ꢀ2  
W
W
W
Resistance Input-Output)  
R
ꢀ0  
V = 500 V  
I-O  
I-O  
ꢀ2  
ACPL-J3ꢀ3  
ꢀ0  
V = 500 V  
I-O  
ꢀ2  
ꢀ3  
ACNW3ꢀ30 ꢀ0  
ꢀ0  
V = 500 V,  
I-O  
T = 25°C  
A
ꢀꢀ  
W
ꢀ0  
V = 500 V,  
I-O  
A
T = ꢀ00°C  
Capacitance Input-Output)  
C
ACPL-3ꢀ30  
ACPL-J3ꢀ3  
ACNW3ꢀ30  
0.ꢂ  
0.8  
0.5  
ꢁꢂꢃ  
ꢁꢁ2  
ꢀ2ꢂ  
pF  
Freq=ꢀ MHz  
Freq=ꢀ MHz  
Freq=ꢀ MHz  
I-O  
pF  
0.ꢂ  
pF  
LED-to-Case Thermal Resistance  
LED-to-Detector Thermal Resistance  
Detector-to-Case Thermal Resistance  
q
q
q
°C/W  
°C/W  
°C/W  
Thermocouple  
located at center  
underside of package  
32  
32  
32  
LC  
LD  
DC  
** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For  
the continuous voltage rating refer to your equipment level safety specification or Avago Application Note ꢀ0ꢃꢁ entitled “Optocoupler Input-Output Endurance  
Voltage.”  
ꢀ0  
Notes:  
1.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ0.3ꢀmA/°C.  
2.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ10ꢀµs,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ0.2%.ꢀThisꢀvalueꢀisꢀintendedꢀtoꢀallowꢀforꢀcomponentꢀtolerancesꢀforꢀdesignsꢀwithꢀI  
Oꢀpeakꢀ  
minimumꢀ=ꢀ2.0ꢀA.ꢀSeeꢀApplicationsꢀsectionꢀforꢀadditionalꢀdetailsꢀonꢀlimitingꢀI ꢀpeak.  
OH  
3.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ4.8ꢀmW/°C.  
4.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ5.4ꢀmW/°C.ꢀTheꢀmaximumꢀLEDꢀjunctionꢀtemperatureꢀshouldꢀnotꢀexceedꢀ125°C.  
5.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ50ꢀµs,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ0.5%.  
6.ꢀ InꢀthisꢀtestꢀV ꢀisꢀmeasuredꢀwithꢀaꢀdcꢀloadꢀcurrent.ꢀWhenꢀdrivingꢀcapacitiveꢀloadsꢀV ꢀwillꢀapproachꢀV ꢀasꢀI ꢀapproachesꢀzeroꢀamps.  
OH  
OH  
CC  
OH  
7.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ1ꢀms,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ20%.  
8.ꢀ InꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀ≤ꢀ5ꢀµA).  
I-O  
9.ꢀ InꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀ≤ꢀ5ꢀµA).  
I-O  
10.ꢀInꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢀ6000ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀꢀ≤ꢀ5ꢀµA).  
I-O  
11.ꢀDeviceꢀconsideredꢀaꢀtwo-terminalꢀdevice:ꢀpinsꢀ1,ꢀ2,ꢀ3,ꢀandꢀ4ꢀshortedꢀtogetherꢀandꢀpinsꢀ5,ꢀ6,ꢀ7,ꢀandꢀ8ꢀshortedꢀtogether.  
12.ꢀTheꢀdifferenceꢀbetweenꢀt ꢀandꢀt ꢀbetweenꢀanyꢀtwoꢀACPL-3130,ꢀACPL-J313ꢀorꢀACNW3130ꢀpartsꢀunderꢀtheꢀsameꢀtestꢀcondition.  
PHL  
PLH  
13.ꢀPinsꢀ1ꢀandꢀ4ꢀneedꢀtoꢀbeꢀconnectedꢀtoꢀLEDꢀcommon.  
14.ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀtheꢀhighꢀstateꢀisꢀtheꢀmaximumꢀtolerableꢀdV /dtꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀV ,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀ  
CM  
CM  
willꢀremainꢀinꢀtheꢀhighꢀstateꢀ(i.e.,ꢀV ꢀ>ꢀ15.0ꢀV).  
O
15.ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀaꢀlowꢀstateꢀisꢀtheꢀmaximumꢀtolerableꢀdV /dtꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀV ,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀ  
CM  
CM  
willꢀremainꢀinꢀaꢀlowꢀstateꢀ(i.e.,ꢀV ꢀ<ꢀ1.0ꢀV).  
O
16.ꢀThisꢀloadꢀconditionꢀapproximatesꢀtheꢀgateꢀloadꢀofꢀaꢀ1200ꢀV/75AꢀIGBT.  
17.ꢀPulseꢀWidthꢀDistortionꢀ(PWD)ꢀisꢀdefinedꢀasꢀ|t ꢀ-ꢀt |ꢀforꢀanyꢀgivenꢀdevice.  
PHL PLH  
-1  
-2  
-3  
-4  
0
-1  
-2  
2.0  
1.8  
1.6  
1.4  
I
I
V
V
= 7 to 16 mA  
I = 7 to 16 mA  
F
F
= -100 mA  
= 15 to 30 V  
= 0 V  
V
V
V
= (V  
- 4 V)  
OUT  
CC  
EE  
OUT  
CC  
100  
25  
-40 °C  
°C  
C
= 15 to 30 V  
CC  
°
= 0 V  
EE  
I
V
V
= 7 to 16 mA  
= 15 to 30 V  
F
CC  
-3  
-4  
-5  
-6  
1.2  
1.0  
= 0 V  
EE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
I
- OUTPUT HIGH CURRENT - A  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - °C  
A
OH  
A
Figure 1. V vs. Temperature.  
Figure 2. I vs. Temperature.  
Figure 3. V vs. I .  
OH  
OH  
OH  
OH  
0.25  
4
4
V
V
V
= -3.0 to 0.8 V  
= 15 to 30 V  
= 0 V  
F(OFF)  
CC  
EE  
V
(OFF) = -3.0 TO 0.8 V  
V
V
V
V
(OFF) = -3.0 TO 0.8 V  
F
F
I
= 100 mA  
= 15 TO 30 V  
= 0 V  
= 2.5 V  
= 15 TO 30 V  
OUT  
OUT  
CC  
0.20  
0.15  
0.10  
0.05  
V
V
3
CC  
EE  
3
2
= 0 V  
EE  
2
1
0
1
0
100  
25  
°C  
C
°
-40 °C  
0
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - °C  
I
- OUTPUT LOW CURRENT - A  
OL  
A
A
Figure 4. V vs. Temperature.  
Figure 5. I vs. Temperature.  
Figure 6. V vs. I .  
OL OL  
OL  
OL  
ꢀꢀ  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
5
4
3
2
V
V
= 15 TO 30 V  
= 0 V  
I
I
I
I
CC  
EE  
CCH  
CCL  
CCH  
CCL  
OUTPUT = OPEN  
V
V
= 30 V  
= 0 V  
= 10 mA for I  
CC  
EE  
I
I
T
V
= 10 mA for I  
CCH  
F
F
2.0  
1.5  
2.0  
1.5  
= 0 mA for I  
CCL  
1
0
I
I
F
F
CCH  
CCL  
= 25 °C  
A
EE  
= 0 mA for I  
= 0 V  
-40 -20  
0
2 0  
40  
60  
80 100  
15  
20  
25  
30  
-40 -20  
0
2 0  
40  
60  
80 100  
T
- TEMPERATURE - °C  
V
CC  
- SUPPLY VOLTAGE - V  
T
- TEMPERATURE - °C  
A
A
Figure 7. I vs. Temperature.  
Figure 8. I vs. V .  
Figure 9. I vs. Temperature. (ACPL-3130)  
CC  
CC  
CC  
FLH  
5
5
4
3
500  
I
T
= 10 mA  
F
V
V
= 15 TO 30 V  
= 0 V  
T
T
V
V
= 15 TO 30 V  
= 0 V  
CC  
EE  
PLH  
PHL  
CC  
EE  
= 25 °C  
A
4
3
Rg = 10   
OUTPUT = OPEN  
OUTPUT = OPEN  
400  
300  
Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
2
1
0
2
1
0
200  
100  
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
15  
20  
25  
30  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - ° C  
A
V
- SUPPLY VOLTAGE - V  
CC  
A
Figure 10. I vs. Temperature. (ACPL-J313)  
Figure 11. I vs. Temperature. (ACNW3130)  
Figure 12. Propagation Delay vs. V .  
FLH  
FLH  
CC  
500  
500  
500  
I
= 10 mA  
V
T
I
= 30 V, V  
= 0 V  
EE  
V
= 30 V, V  
= 0 V  
EE  
F
CC  
= 25 °C  
CC  
Rg = 10 , Cg = 10 nF  
= 25 °C  
VCC = 30 V, V EE = 0 V  
Rg = 10, Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
A
= 10 mA  
T
F
A
400  
300  
400  
300  
400  
300  
Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
200  
100  
T
T
T
T
TPLH  
TPHL  
PLH  
PHL  
PLH  
PHL  
6
8
10  
12  
14  
16  
0
10  
20  
30  
40  
50  
-40 -20  
0
2 0  
40  
60  
80 100  
I
- FORWARD LED CURRENT - mA  
Rg - SERIES LOAD RESISTANCE - Ω  
T
- TEMPERATURE - °C  
F
A
Figure 13. Propagation Delay vs. I .  
Figure 14. Propagation Delay vs. Temperature.  
Figure 15. Propagation Delay vs. Rg.  
F
ꢀ2  
35  
30  
500  
400  
300  
V
T
= 30 V, V  
= 0 V  
EE  
CC  
= 25 °C  
A
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
I
= 10 mA  
F
Rg = 10  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
5
0
T
T
PLH  
PHL  
0
0
1
2
3
4
5
0
1
2
3
4
5
0
20  
40  
60  
80  
100  
I
- FORWARD LED CURRENT - mA  
F
I
- FORWARD LED CURRENT - mA  
Cg - LOAD CAPACITANCE - nF  
F
Figure 16. Propagation Delay vs. Cg.  
Figure 17. Transfer Characteristics (ACPL-3130 / Figure 18. Transfer Characteristics (ACPL-J313)  
ACNW3130)  
1000  
1000  
T
= 25°C  
A
T
= 25°C  
A
100  
10  
100  
10  
I
F
I
F
+
+
V
V
F
F
-
-
1.0  
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
V
- FORWARD VOLTAGE - VOLTS  
V
- FORWARD VOLTAGE - VOLTS  
F
F
Figure 19. I vs. V . (ACPL-3130)  
Figure 20. I vs. V . (ACPL-J313 / ACNW3130)  
F
F
F
F
1
2
3
4
8
0.1 µF  
+
4 V  
7
6
5
I
= 7 to  
F
V
= 15  
+
CC  
to 30 V  
16 mA  
I
OH  
Figure 21. I Test Circuit.  
OH  
1
2
3
4
8
0.1 µF  
I
OL  
7
6
5
V
= 15  
+
CC  
to 30 V  
-
2.5 V  
+
-
Figure 22. I Test Circuit.  
OL  
ꢀ3  
1
2
3
4
8
1
2
3
4
8
0.1 µF  
0.1 µF  
100 mA  
V
OH  
7
6
5
7
6
5
I
= 7 to  
F
V
= 15  
V
= 15  
+
+
-
CC  
to 30 V  
CC  
to 30 V  
16 mA  
Ð
V
OL  
100 mA  
Figure 24. V Test Circuit.  
Figure 23. V Test Circuit.  
OL  
OH  
1
2
8
1
2
8
0.1 µF  
0.1 µF  
7
7
6
5
V
= 15  
+
-
+
CC  
I
I
= 10 mA  
F
V
F
CC  
-
V
> 5 V  
to 30 V  
V
> 5 V  
O
O
3
4
6
5
3
4
Figure 26. UVLO Test Circuit.  
Figure 25. I Test Circuit.  
FLH  
1
8
7
6
5
I
0.1 µF  
F
I
= 7 to 16 mA  
F
V
= 15  
CC  
+
-
to 30 V  
2
3
4
t
t
f
r
500  
+
-
V
O
90%  
10 KHz  
50% DUTY  
CYCLE  
10  
50%  
10%  
V
10 nF  
OUT  
t
t
PHL  
PLH  
Figure 27. t , t , t , and t Test Circuit and Waveforms.  
PLH PHL  
r
f
V
CM  
V  
t  
V
CM  
1
2
3
4
8
7
6
5
=
t  
I
F
0.1 µF  
A
B
0 V  
t  
+
+
-
V
5 V  
O
-
V
= 30 V  
CC  
V
OH  
OL  
V
O
SWITCH AT A: I = 10 mA  
F
V
O
V
SWITCH AT B: I = 0 mA  
F
+
V
= 1500 V  
CM  
Figure 28. CMR Test Circuit and Waveforms.  
ꢀꢁ  
Applications Information  
Selecting the Gate Resistor (R ) to Minimize IGBT Switching  
g
Losses. (Discussion applies to ACPL-3130, ACPL-J313 and  
ACNW3130)  
Eliminating Negative IGBT Gate Drive (Discussion applies to  
ACPL-3130, ACPL-J313, and ACNW3130)  
Step 1: Calculate Rg minimum from the I peak specification. The  
OL  
Toꢀ keepꢀ theꢀ IGBTꢀ firmlyꢀ off,ꢀ theꢀ ACPL-3130ꢀ hasꢀ aꢀ veryꢀ  
lowmaximumꢀVOLspecificationof0.5ꢀV.ꢀTheACPL-3130ꢀ  
IGBT and R in Figure 30 can be analyzed as a simple RC circuit  
g
with a voltage supplied by the ACPL-3130.  
realizesꢀ thisꢀ veryꢀ lowꢀ V ꢀ byꢀ usingꢀ aꢀ DMOSꢀ transistorꢀ  
OL  
withꢀ 1ꢀ Wꢀ (typical)ꢀ onꢀ resistanceꢀ inꢀ itsꢀ pullꢀ downꢀ circuit.ꢀ  
VCC VEE VOL  
Rg ≥  
WhentheꢀACPL-3130ꢀisꢀinꢀtheꢀlowꢀstate,ꢀtheꢀIGBTꢀgateꢀisꢀ  
IOLPEAK  
shortedꢀ toꢀ theꢀ emitterꢀ byꢀ R ꢀ +ꢀ 1ꢀ W.ꢀ Minimizingꢀ R ꢀ andꢀ  
g
g
theꢀleadꢀinductanceꢀfromꢀtheꢀACPL-3130ꢀtoꢀtheꢀIGBTꢀgateꢀ  
andꢀ emitterꢀ (possiblyꢀ byꢀ mountingꢀ theꢀ ACPL-3130ꢀ onꢀ aꢀ  
smallꢀPCꢀboardꢀdirectlyꢀaboveꢀtheꢀIGBT)ꢀcanꢀeliminateꢀtheꢀ  
needꢀforꢀnegativeꢀIGBTꢀgateꢀdriveꢀinꢀmanyꢀapplicationsꢀasꢀ  
shownꢀinꢀFigureꢀ29.ꢀCareꢀshouldꢀbeꢀtakenꢀwithꢀsuchꢀaꢀPCꢀ  
boardꢀdesignꢀtoꢀavoidꢀroutingꢀtheꢀIGBTꢀcollectorꢀorꢀemitterꢀ  
tracesclosetotheACPL-3130inputasthiscanresultinꢀ  
unwantedꢀ couplingꢀ ofꢀ transientꢀ signalsꢀ intoꢀ theꢀ ACPL-  
3130anddegradeperformance.(IftheIGBTdrainmustꢀ  
beꢀroutedꢀnearꢀtheꢀACPL-3130ꢀinput,ꢀthenꢀtheꢀLEDꢀshouldꢀ  
beꢀ reverse-biasedꢀ whenꢀ inꢀ theꢀ offꢀ state,ꢀ toꢀ preventꢀ theꢀ  
transientꢀsignalsꢀcoupledꢀfromꢀtheꢀIGBTꢀdrainꢀfromꢀturningꢀ  
onꢀtheꢀACPL-3130.)  
15 + 5 2  
=
2.5  
= 7.2Ω = 8Ω  
Theꢀ V ꢀ valueꢀ ofꢀ 2ꢀ Vꢀ inꢀ theꢀ previousꢀ equationꢀ isꢀ aꢀ  
OL  
conservativeꢀvalueꢀofꢀV ꢀatꢀtheꢀpeakꢀcurrentꢀofꢀ2.5Aꢀ(seeꢀ  
OL  
Figureꢀ6).ꢀAtꢀlowerꢀR ꢀvaluesꢀtheꢀvoltageꢀsuppliedꢀbyꢀtheꢀ  
g
ACPL-3130ꢀ isꢀ notꢀ anꢀ idealꢀ voltageꢀ step.ꢀ Thisꢀ resultsꢀ inꢀ  
lowerꢀpeakꢀcurrentsꢀ(moreꢀmargin)ꢀthanꢀpredictedꢀbyꢀthisꢀ  
analysis.ꢀWhenꢀnegativeꢀgateꢀdriveꢀisꢀnotꢀusedꢀV ꢀinꢀtheꢀ  
EE  
previousꢀequationꢀisꢀequalꢀtoꢀzeroꢀvolts.  
+5 V  
1
2
3
4
8
V
= 18 V  
CC  
+ HVDC  
270  
0.1 µF  
+
-
7
6
5
Rg  
Q1  
Q2  
3-PHASE  
AC  
CONTROL  
INPUT  
74XXX  
OPEN  
COLLECTOR  
- HVDC  
Figure 29. Recommended LED Drive and Application Circuit.  
+5 V  
1
8
V
= 15 V  
CC  
+ HVDC  
270 Ω  
0.1 µF  
+
-
2
7
Rg  
Q1  
Q2  
3-PHASE  
AC  
CONTROL  
3
6
5
INPUT  
V
= -5 V  
EE  
+
-
74XXX  
4
OPEN  
COLLECTOR  
- HVDC  
Figure 30. ACPL-3130 Typical Application Circuit with Negative IGBT Gate Drive.  
ꢀ5  
Step 2: Check the ACPL-3130 Power Dissipation and Increase R if  
g
Necessary. The ACPL-3130 total power dissipation (P ) is equal to  
T
the sum of the emitter power (P ) and the output power (P ):  
E
O
P = P +PO  
T
E
P = I V  
DutyCycle  
E
F
F
PO = PO(BIAS) +PO(SWITCHING) = ICC V +E  
(
Rg ;Qg  
)
f
CC  
SW  
PE Parameter  
Description  
I
F
LED Current  
V
F
LED On Voltage  
Duty Cycle  
Maximum LED Duty Cycle  
Description  
PO Parameter  
I
CC  
Supply Current  
V
V
Positive Supply Voltage  
Negative Supply Voltage  
CC  
EE  
E
Energy Dissipated in the ACPL-3ꢀ30 for each IGBT  
Switching Cycle (See Figure 3ꢀ)  
SW(Rg,Qg)  
f
Switching Frequency  
ForꢀtheꢀcircuitꢀinꢀFigureꢀ30ꢀwithꢀI ꢀ(worstꢀcase)ꢀ=ꢀ16ꢀmA,ꢀR ꢀ  
SinceꢀP ꢀforꢀthisꢀcaseꢀisꢀgreaterꢀthanꢀP  
,ꢀR ꢀmustꢀbeꢀ  
g
F
g
O
O(MAX)  
=ꢀ8ꢀW,ꢀMaxꢀDutyꢀCycleꢀ=ꢀ80%,ꢀQ ꢀ=ꢀ500ꢀnC,ꢀfꢀ=ꢀ20ꢀkHzꢀandꢀ  
increasedꢀtoꢀreduceꢀtheꢀACPL-3130ꢀpowerꢀdissipation.  
g
T ꢀmaxꢀ=ꢀ85˚C:  
A
ForꢀQ ꢀ=ꢀ500ꢀnC,ꢀfromꢀFigureꢀ31,ꢀaꢀvalueꢀofꢀE ꢀ=ꢀ4.65ꢀµWꢀ  
g
SW  
givesꢀaꢀR ꢀ=ꢀ10.3ꢀΩ.  
P =16mA 1.8V 0.8 = 23mW  
g
E
P = 4.25mA 20V + 5.2µJ20kHz  
14  
12  
10  
O
Qg = 100 nC  
Qg = 500 nC  
Qg = 1000 nC  
= 85mW +104mW  
= 189mW  
V
V
= 19 V  
= -9 V  
> 178mW(PO( @85°C = 250mW -15°C 4.8mW/°C  
)
CC  
EE  
MAX  
)
8
6
4
ꢀTheꢀvalueꢀofꢀ4.25ꢀmAꢀforꢀI ꢀinꢀtheꢀpreviousꢀequationꢀwasꢀ  
CC  
obtainedꢀbyꢀderatingꢀtheꢀI ꢀmaxꢀofꢀ5ꢀmAꢀ(whichꢀoccursꢀatꢀ  
CC  
-40°C)ꢀtoꢀI ꢀmaxꢀatꢀ85˚Cꢀ(seeꢀFigureꢀ7).  
CC  
2
0
PO  
= PO  
- PO  
) (  
(
SWITCHINGMAX  
)
(
MAX  
BIAS  
)
-
= 178mW 85mW  
= 93mW  
0
10  
20  
30  
40  
50  
Rg - GATE RESISTANCE - Ω  
PO  
Figure 31. Energy Dissipated in the ACPL-3130 for Each IGBT Switching  
Cycle.  
(
SWITCHINGMAX  
)
ESW  
=
)
(
MAX  
f
93mW  
20kHz  
=
= 4.65µW  
ꢀꢂ  
Insertingthevaluesforq andq showninFigure32ꢀ  
Thermal Model  
(Discussion applies to ACPL-3130, ACPL-J313 and ACNW3130)  
LC  
DC  
gives:  
T = P  
(
256°C/W +θ  
)
+ P  
(
57°C/W +θCA  
)
)
+ TA  
+ TA  
θ
JE  
E
CA  
D
= 442 °C/W  
LD  
T
T
JD  
JE  
T = P  
(
57°C/W +θ  
)
+ P  
(
111°C/W +θCA  
JD  
E
CA  
D
θ
= 467 °C/W  
θ
= 126 °C/W  
LC  
DC  
Forꢀexample,ꢀgivenꢀP ꢀ=ꢀ45ꢀmW,ꢀP ꢀ=ꢀ250ꢀmW,ꢀT ꢀ=ꢀ70°Cꢀ  
andꢀq ꢀ=ꢀ83°C/W:  
E
O
A
T
C
CA  
θ
= 83 °C/W*  
CA  
T = P 339°C/W + P 140°C/W + T  
D
JE  
E
A
= 45mW 339°C/W + 250mW 140°C/W + 70°C = 120°C  
T
A
T = P 140°C/W + P 194°C/W + T  
JD  
E
D
A
T ꢀ=ꢀLEDꢀjunctionꢀtemperature  
JE  
= 45mW140°C/W + 250mW 194°C/W + 70°C  
T ꢀ=ꢀdetectorꢀICꢀjunctionꢀtemperature  
JD  
T ꢀ andꢀ T ꢀ shouldꢀ beꢀ limitedꢀ toꢀ 125°Cꢀ basedꢀ onꢀ theꢀ  
T ꢀ =ꢀ caseꢀ temperatureꢀ measuredꢀ atꢀ theꢀ centerꢀ ofꢀ theꢀ  
JE  
JD  
C
boardꢀ layoutꢀ andꢀ partꢀ placementꢀ (q )ꢀ specificꢀ toꢀ theꢀ  
packageꢀbottom  
CA  
application  
q ꢀ=ꢀLED-to-caseꢀthermalꢀresistance  
LC  
q
q
q
ꢀ=ꢀLED-to-detectorꢀthermalꢀresistance  
LD  
DC  
CA  
ꢀ=ꢀdetector-to-caseꢀthermalꢀresistance  
ꢀ=ꢀcase-to-ambientꢀthermalꢀresistance  
*q ꢀwillꢀdependꢀonꢀtheꢀboardꢀdesignꢀandꢀtheꢀplacementꢀ  
CA  
ofꢀtheꢀpart.  
Figure 32. Thermal Model.  
Theꢀ steadyꢀ stateꢀ thermalꢀ modelꢀ forꢀ theꢀ ACPL-3130ꢀ isꢀ  
showninFigure32.ꢀThethermalresistancevaluesgivenꢀ  
inthismodelcanbeusedtocalculatethetemperaturesꢀ  
ateachnodeforagivenoperatingcondition.Asshownꢀ  
byꢀtheꢀmodel,ꢀallꢀheatꢀgeneratedꢀflowsꢀthroughꢀq ꢀwhichꢀ  
CA  
raisesthecasetemperatureꢀT accordingly.Thevalueofꢀ  
C
q
ꢀdependsꢀonꢀtheꢀconditionsꢀofꢀtheꢀboardꢀdesignꢀandꢀis,ꢀ  
therefore,ꢀdeterminedꢀbyꢀtheꢀdesigner.ꢀTheꢀvalueꢀofꢀq ꢀ=ꢀ  
CA  
CA  
83°C/Wꢀwasꢀobtainedꢀfromꢀthermalꢀmeasurementsꢀusingꢀaꢀ  
2.5ꢀxꢀ2.5ꢀinchꢀPCꢀboard,ꢀwithꢀsmallꢀtracesꢀ(noꢀgroundꢀplane),ꢀ  
aꢀsingleꢀACPL-3130ꢀsolderedꢀintoꢀtheꢀcenterꢀofꢀtheꢀboardꢀ  
andꢀ stillꢀ air.ꢀ Theꢀ absoluteꢀ maximumꢀ powerꢀ dissipationꢀ  
deratingꢀspecificationsꢀassumeꢀaꢀq ꢀvalueꢀofꢀ83°C/W.  
CA  
FromꢀtheꢀthermalꢀmodeꢀinꢀFigureꢀ32ꢀtheꢀLEDꢀandꢀdetectorꢀ  
ICꢀjunctionꢀtemperaturesꢀcanꢀbeꢀexpressedꢀas:  
θLC  
θ
DC  
T = P  
(
θ ||  
(
θLD +θDC  
)
+θCA  
)
+ P  
+ θCA + TA  
JE  
E
LC  
D
(
)
θLC +θDC +θLD  
θ
θ LC  
θ +θ +θ  
DC  
T = P  
+θCA + P θ || θ +θ +θCA + TA  
(
) )  
(
JD  
E
D
DC  
LD  
LC  
(
)
LC  
DC  
LD  
ꢀꢃ  
LED Drive Circuit Considerations for Ultra High CMR Per-  
formance. (Discussion applies to ACPL-3130, ACPL-J313,  
and ACNW3130)  
CMR with the LED On (CMR )  
H
AꢀhighꢀCMRꢀLEDꢀdriveꢀcircuitꢀmustꢀkeepꢀtheꢀLEDꢀonꢀduringꢀ  
commonꢀmodeꢀtransients.ꢀThisꢀisꢀachievedꢀbyꢀoverdrivingꢀ  
theꢀLEDꢀcurrentꢀbeyondꢀtheꢀinputꢀthresholdꢀsoꢀthatꢀitꢀisꢀnotꢀ  
pulledꢀbelowꢀtheꢀthresholdꢀduringꢀaꢀtransient.ꢀAꢀminimumꢀ  
LEDꢀcurrentꢀofꢀ10ꢀmAꢀprovidesꢀadequateꢀmarginꢀoverꢀtheꢀ  
Withoutꢀ aꢀ detectorꢀ shield,ꢀ theꢀ dominantꢀ causeꢀ ofꢀ  
optocouplerCMRfailureiscapacitivecouplingfromtheꢀ  
inputꢀsideꢀofꢀtheꢀoptocoupler,ꢀthroughꢀtheꢀpackage,ꢀtoꢀtheꢀ  
detectorꢀICꢀasꢀshownꢀinꢀFigureꢀ33.ꢀTheꢀACPL-3130ꢀimprovesꢀ  
CMRꢀperformanceꢀbyꢀusingꢀaꢀdetectorꢀICꢀwithꢀanꢀopticallyꢀ  
transparentꢀFaradayꢀshield,ꢀwhichꢀdivertsꢀtheꢀcapacitivelyꢀ  
coupledꢀ currentꢀ awayꢀ fromꢀ theꢀ sensitiveꢀ ICꢀ circuitry.ꢀ  
However,ꢀ thisꢀ shieldꢀ doesꢀ notꢀ eliminateꢀ theꢀ capacitiveꢀ  
couplingꢀ betweenꢀ theꢀ LEDꢀ andꢀ optocouplerꢀ pinsꢀ 5-8ꢀ  
asꢀ shownꢀ inꢀ Figureꢀ 34.ꢀ Thisꢀ capacitiveꢀ couplingꢀ causesꢀ  
perturbationsintheLEDcurrentduringcommonmodeꢀ  
transientsꢀandꢀbecomesꢀtheꢀmajorꢀsourceꢀofꢀCMRꢀfailuresꢀ  
forꢀaꢀshieldedꢀoptocoupler.ꢀTheꢀmainꢀdesignꢀobjectiveꢀofꢀaꢀ  
highꢀCMRꢀLEDꢀdriveꢀcircuitꢀbecomesꢀkeepingꢀtheꢀLEDꢀinꢀtheꢀ  
properꢀstateꢀ(onꢀorꢀo)ꢀduringꢀcommonꢀmodeꢀtransients.ꢀ  
Forꢀ example,ꢀ theꢀ recommendedꢀ applicationꢀ circuitꢀ  
(Figure29),canachieve40kV/µsCMRwhileminimizingꢀ  
componentꢀcomplexity.  
maximumꢀI ꢀofꢀ5ꢀmAꢀtoꢀachieveꢀ40ꢀkV/μsꢀCMR.  
FLH  
CMR with the LED Off (CMR )  
L
AhighCMRLEDdrivecircuitmustkeeptheLEDo(V ꢀ  
F
≤ꢀV  
)ꢀduringꢀcommonꢀmodeꢀtransients.ꢀForꢀexample,ꢀ  
F(OFF)  
duringꢀ aꢀ -dV /dtꢀ transientꢀ inꢀ Figureꢀ 35,ꢀ theꢀ currentꢀ  
cm  
flowingꢀ throughꢀ C  
ꢀ alsoꢀ flowsꢀ throughꢀ theꢀ R ꢀ andꢀ  
SAT  
LEDP  
V
ꢀ ofꢀ theꢀ logicꢀ gate.ꢀ Asꢀ longꢀ asꢀ theꢀ lowꢀ stateꢀ voltageꢀ  
SAT  
developedꢀacrossꢀtheꢀlogicꢀgateꢀisꢀlessꢀthanꢀV  
,ꢀtheꢀLEDꢀ  
F(OFF)  
willꢀremainꢀoffꢀandꢀnoꢀcommonꢀmodeꢀfailureꢀwillꢀoccur.  
+5 V  
1
2
3
4
8
7
6
5
0.1  
µF  
+
-
C
I
LEDP  
V
= 18 V  
CC  
+
Techniques to keep the LED in the proper state are dis-  
cussed in the next two sections.  
LEDP  
V
SAT  
-
¥ ¥ ¥  
¥ ¥ ¥  
C
LEDN  
Rg  
1
2
3
4
8
7
6
5
SHIELD  
C
C
LEDP  
LEDN  
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING - dV  
/dt.  
CM  
+
-
V
CM  
Figure 35. Equivalent Circuit for Figure 29 During Common Mode Tran-  
sient.  
Theꢀ openꢀ collectorꢀ driveꢀ circuit,ꢀ shownꢀ inꢀ Figureꢀ 36,ꢀ  
cannotꢀkeepꢀtheꢀLEDꢀoffꢀduringꢀaꢀ+dV /dtꢀtransient,ꢀsinceꢀ  
Figure 33. Optocoupler Input to Output Capacitance Model for Unshield-  
ed Optocouplers.  
cm  
allthecurrentowingthroughC  
mustbesuppliedꢀ  
LEDN  
bytheLED,anditisnotrecommendedforapplicationsꢀ  
requiringꢀ ultraꢀ highꢀ CMR ꢀ performance.ꢀ Figureꢀ 37ꢀ isꢀ anꢀ  
L
C
1
2
3
4
8
7
6
5
LEDO1  
alternativeꢀ driveꢀ circuitꢀ which,ꢀ likeꢀ theꢀ recommendedꢀ  
applicationꢀcircuitꢀ(Figureꢀ29),ꢀdoesꢀachieveꢀultraꢀhighꢀCMRꢀ  
performanceꢀbyꢀshuntingꢀtheꢀLEDꢀinꢀtheꢀoffꢀstate.  
C
C
LEDP  
LEDN  
C
LEDO2  
1
2
3
4
8
7
6
5
+5 V  
C
LEDP  
SHIELD  
C
I
Figure 34. Optocoupler Input to Output Capacitance Model for Shielded  
Optocouplers.  
LEDN  
Q1  
LEDN  
SHIELD  
Figure 36. Not Recommended Open Collector Drive Circuit.  
ꢀ8  
35.  
isꢀequalꢀtoꢀtheꢀmaximumꢀvalueꢀofꢀtheꢀpropagationꢀdelayꢀ  
differenceꢀspecification,ꢀPDD ,ꢀwhichꢀisꢀspecifiedꢀtoꢀbeꢀ  
                                                      
Theꢀamountꢀofꢀdelayꢀnecessaryꢀtoꢀachieveꢀthisꢀconditionꢀ  
supplyvoltageꢀrisesꢀaboveꢀtheꢀACPL-3130  
                                      
V
Dead Time and Propagation Delay Specifications. (Discus-  
sion applies to ACPL-3130, ACPL-J313, and ACNW3130)  
1
2
3
4
8
7
6
5
+5 V  
Theꢀ ACPL-3130ꢀ includesꢀ aꢀ Propagationꢀ Delayꢀ Differenceꢀ  
(PDD)specificationintendedtohelpdesignersminimizeꢀ  
“deadꢀ time”ꢀ inꢀ theirꢀ powerꢀ inverterꢀ designs.ꢀ Deadꢀ timeꢀ  
isthetimeperiodduringwhichboththehighandlowꢀ  
sideꢀ powerꢀ transistorsꢀ (Q1ꢀ andꢀ Q2ꢀ inꢀ Figureꢀ 29)ꢀ areꢀ off.ꢀ  
AnyoverlapꢀinꢀQ1ꢀandꢀQ2ꢀconductionꢀwillꢀresultꢀinꢀlargeꢀ  
currentsꢀflowingꢀthroughꢀtheꢀpowerꢀdevicesꢀbetweenꢀtheꢀ  
highꢀandꢀlowꢀvoltageꢀmotorꢀrails.ꢀ  
C
C
LEDP  
LEDN  
SHIELD  
I
Figure 37. Recommended LED Drive Circuit for Ultra-High CMR.  
LED1  
V
Under Voltage Lockout Feature. (Discussion applies to  
ACPL-3130, ACPL-J313, and ACNW3130)  
OUT1  
Q1 ON  
Q1 OFF  
TheꢀACPL-3130ꢀcontainsꢀanꢀunderꢀvoltageꢀlockoutꢀ(UVLO)ꢀ  
featurethatisdesignedtoprotecttheIGBTunderfaultꢀ  
conditionsꢀ whichꢀ causeꢀ theꢀ ACPL-3130ꢀ supplyꢀ voltageꢀ  
(equivalentꢀ toꢀ theꢀ fully-chargedꢀ IGBTꢀ gateꢀ voltage)ꢀ toꢀ  
dropbelowalevelnecessarytokeeptheIGBTinalowꢀ  
resistanceꢀstate.ꢀWhenꢀtheꢀACPL-3130ꢀoutputꢀisꢀinꢀtheꢀhighꢀ  
stateꢀandꢀtheꢀsupplyꢀvoltageꢀdropsꢀbelowꢀtheꢀACPL-3130ꢀ  
Q2 ON  
Q2 OFF  
V
OUT2  
I
LED2  
t
PHL MAX  
t
PLH MIN  
- t  
PDD* MAX = (t  
)
= t  
- t  
PHL MAX PLH MIN  
PHL PLH MAX  
V
threshold(9.5<V  
<12.0)theoptocouplerꢀ  
UVLO  
UVLO  
outputꢀwillꢀgoꢀintoꢀtheꢀlowꢀstateꢀwithꢀaꢀtypicalꢀdelay,ꢀUVLOꢀ  
TurnꢀOffꢀDelay,ꢀofꢀ0.6ꢀµs.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
WhentheACPL-3130outputisinthelowstateandtheꢀ  
Figure 39. Minimum LED Skew for Zero Dead Time.  
+thresholdꢀ  
UVLO  
(11.0ꢀ<ꢀV  
+ꢀ<ꢀ13.5)ꢀtheꢀoptocouplerꢀoutputꢀwillꢀgoꢀintoꢀ  
UVLO  
Tominimizedeadtimeinagivendesign,theturnonofꢀ  
LED2ꢀshouldꢀbeꢀdelayedꢀ(relativeꢀtoꢀtheꢀturnꢀoffꢀofꢀLED1)ꢀ  
soꢀthatꢀunderꢀworst-caseꢀconditions,ꢀtransistorꢀQ1ꢀhasꢀjustꢀ  
turnedꢀoffꢀwhenꢀtransistorꢀQ2ꢀturnsꢀon,ꢀasꢀshownꢀinꢀFigureꢀ  
theꢀhighꢀstateꢀ(assumesꢀLEDꢀisꢀ“ON”)ꢀwithꢀaꢀtypicalꢀdelay,ꢀ  
UVLOꢀTurnꢀOnꢀDelayꢀofꢀ0.8ꢀµs.  
14  
12  
(12.3, 10.8)  
MAX  
10  
(10.7, 9.2)  
350ꢀnsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀofꢀ-40°Cꢀtoꢀ  
100°C.  
8
6
4
2
Delayingꢀ theꢀ LEDꢀ signalꢀ byꢀ theꢀ maximumꢀ propagationꢀ  
delaydifferenceensuresthattheminimumdeadtimeisꢀ  
zero,butitdoesnottelladesignerwhatthemaximumꢀ  
deadꢀtimeꢀwillꢀbe.ꢀTheꢀmaximumꢀdeadꢀtimeꢀisꢀequivalentꢀ  
toꢀ theꢀ differenceꢀ betweenꢀ theꢀ maximumꢀ andꢀ minimumꢀ  
propagationꢀ delayꢀ differenceꢀ specificationsꢀ asꢀ shownꢀ inꢀ  
Figure40.ꢀTheꢀmaximumꢀdeadꢀtimeꢀforꢀtheꢀACPL-3130ꢀisꢀ  
700ꢀnsꢀ(=ꢀ350ꢀnsꢀ-ꢀ(-350ꢀns))ꢀoverꢀanꢀoperatingꢀtemperatureꢀ  
rangeꢀofꢀ-ꢀ40°Cꢀtoꢀ100°C.  
(10.7, 0.1)  
5
(12.3, 0.1)  
15  
0
0
10  
20  
(V  
- V  
) - SUPPLY VOLTAGE - V  
EE  
CC  
Figure 38. Under Voltage Lock Out.  
NotethatthepropagationdelaysusedtocalculatePDDꢀ  
anddeadtimearetakenatequaltemperaturesandtestꢀ  
conditionsꢀ sinceꢀ theꢀ optocouplersꢀ underꢀ considerationꢀ  
areꢀtypicallyꢀmountedꢀinꢀcloseꢀproximityꢀtoꢀeachꢀotherꢀandꢀ  
areꢀswitchingꢀidenticalꢀIGBTs.  
ꢀ9  
800  
700  
600  
500  
400  
300  
I
LED1  
P
(mW)  
S
I
(mA) FOR ACPL-3130  
S
OPTION 060  
V
OUT1  
Q1 ON  
I
(mA) FOR ACPL-J313  
S
Q1 OFF  
Q2 ON  
Q2 OFF  
V
OUT2  
200  
100  
I
LED2  
t
PHL MIN  
0
t
PHL MAX  
0
25 50 75 100 125 150 175 200  
- CASE TEMPERATURE - °C  
t
PLH  
MIN  
T
S
t
PLH MAX  
Figure 41. Thermal Derating Curve, Dependence of Safety Limiting Value  
with Case Temperature per IEC/EN/DIN EN 60747-5-2 for ACPL-3130 (op-  
tion 060) and ACPL-J313.  
(t  
t
)
PHL- PLH MAX  
PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
1000  
= (t  
= (t  
- t  
) + (t  
) - (t  
- t  
PLH MIN  
)
)
PHL MAX PHL MIN  
PLH MAX  
P
I
(mW)  
(mA)  
- t  
- t  
S
S
PHL MAX PLH MIN  
PHL MIN PLH MAX  
900  
800  
700  
600  
500  
400  
300  
200  
100  
= PDD* MAX - PDD* MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 40. Waveforms for Dead Time.  
0
0
25  
50  
75 100 125 150 175  
T
- CASE TEMPERATURE - °C  
S
Figure 42. Thermal Derating Curve, Dependence of Safety Limiting Value  
with Case Temperature per IEC/EN/DIN EN 60747-5-2 for ACNW3130.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited, in the United States and other countries.  
Data subject to change. Copyright © 200ꢂ Avago Technologies, Limited. All rights reserved. Obsoletes AV0ꢀ-0ꢁꢂꢀEN  
AV0ꢀ-0ꢂ30EN - November ꢀ, 200ꢂ  

相关型号:

ACNW3190

5.0 Amp High Output Current IGBT Gate Drive Optocoupler
AVAGO

ACNW3190-000E

5.0 Amp High Output Current IGBT Gate Drive Optocoupler
AVAGO

ACNW3190-300E

5.0 Amp High Output Current IGBT Gate Drive Optocoupler
AVAGO

ACNW3190-500E

5.0 Amp High Output Current IGBT Gate Drive Optocoupler
AVAGO

ACO

CRYSTAL CLOCK OSCILLATORS
ABRACON
ABRACON
ABRACON

ACO-1.000MHZ

Oscillator, 0.32MHz Min, 200MHz Max, 1MHz Nom
ABRACON

ACO-1.8432MHZ

HCMOS/TTL Output Clock Oscillator, 1.8432MHz Nom, ROHS COMPLIANT, DIP-14/4
ABRACON

ACO-1.8432MHZ-L

HCMOS/TTL Output Clock Oscillator, 1.8432MHz Nom, ROHS COMPLIANT, DIP-14/4
ABRACON

ACO-10.000MHZ-E-R-S

HCMOS/TTL Output Clock Oscillator, 10MHz Nom, ROHS COMPLIANT, DIP-14/4
ABRACON

ACO-10.000MHZ-L

暂无描述
ABRACON