U2641B [ATMEL]

Brush DC Motor Controller, 1.5A, BIPolar, PDIP8, DIP-8;
U2641B
型号: U2641B
厂家: ATMEL    ATMEL
描述:

Brush DC Motor Controller, 1.5A, BIPolar, PDIP8, DIP-8

电动机控制 光电二极管
文件: 总10页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U2641B  
Intermittent- and Wipe/ Wash Control for Wiper Systems  
Description  
With the U264xB, Atmel Wireless & Microcontrollers possibility to generate “x” versions using different metal-  
developed a family of intermittent- and wipe/wash con- lization masks. Thus, it is easy to verify a broad range of  
trol circuits for windshield or backlite wiper systems with time sequences which can be set independently of each  
identical basic functions. The circuit design provides the other.  
FD eRaetluayreacstivation can be controlled by a limit switch of  
D Relay activation:  
D Interval pause:  
D After wiping:  
0.48 s  
5.8 s  
the wiper motor or by a fixed activation period for  
systems without limit switch  
5.2 s  
D Debounced input stages  
D Pre-wash delay:  
0.52 s  
D Enable/disable of pre-wash delay by program pin  
D Polarity of WIWA: GND  
D Wipe/wash mode with priority  
D Protected in accordance to ISO/TR 7637–1  
D EMC with intergrated filters  
D Polarity of INT:  
V
Batt  
D Relay output is protected with a clamping diode  
Block Diagram  
V
S
OSC  
Voltage  
stabilization  
and  
Oscillator  
POR  
INT  
21 V  
Open-collector  
relay driver  
Load-  
dump  
WIWA  
REL  
21 V  
Input  
detection  
and  
output  
control  
21 V  
Logic  
comparator  
LS  
21 V  
PP  
21 V  
13944  
GND  
Figure 1. Block diagram  
Ordering Information  
Extended Type Number  
Package  
DIP8  
Remarks  
U2641B  
U2641B–FP  
SO8  
Rev. A3, 21-Aug-00  
1 (10)  
U2641B  
Pin Description  
Pin  
1
Symbol  
INT  
Function  
Intermittent input  
INT  
WIWA  
LS  
1
2
8
OSC  
2
WIWA Wipe/wash (WIWA) input  
V
S
7
6
3
LS  
PP  
Limit switch (wiper motor) input  
Program pin  
4
REL  
3
4
5
GND  
REL  
Ground  
6
Relay output  
GND  
PP  
5
7
V
S
Supply voltage  
13365  
8
OSC  
RC oscillator input  
Figure 2. Pinning  
Functional Description  
All times specified below refer to an oscillator frequency  
of 200 Hz. Figures 2 to 9 show the dependencies of the  
times upon battery voltage and temperature. The  
temperature dependence of the oscillator frequency is  
essentially determined by the temperature coefficient of  
the oscillator capacitor. The temperature dependence of  
the oscillator frequency can be reduced to minimum with  
a slightly negative temperature coefficient (N100). The  
capacitor used in figures 10 and 11 has a slightly positive  
temperatur coefficient.  
Interval Pause  
The interval pause t  
switch INT causes a debounce time, t , and reclosing  
results in the relay on-time, t , after t .  
= 5.8 s follows t . Opening of  
ON  
INT  
D
ON  
D
Wipe/Wash Function without Pre-Wash  
Delay (PP connected to GND)  
The water pump is switched on when the switch WIWA  
is pressed and, after the debounce time, t , the relay is  
energized. After-wiping time t = 5.2 s starts as soon as  
switch WIWA is opened and the debounce time, t , has  
expired. If the limit switch is connected, the relay remains  
energized until the wiper arm returns to park position, i.e.,  
the motor current flows via the relay contact only.  
D
All times are permanently set and can be changed only  
jointly within certain limits by adjusting the oscillator  
frequency. See table 1.  
AW  
D
Intermittent Function  
The relay is energized for the time t  
INT is switched on with respect to V  
after the switch  
ON  
Wipe/Wash Function with Pre-Wash Delay  
(PP connected to VS)  
and after  
Batt  
expiration of time t (debounce).  
D
The debounce time ranges between 60 ms and 80 ms. A  
time period of 5 ms to 40 ms for internal sequence control  
must be added (asynchronism between operating instant  
and internal clock) e.g., the response time may range from  
65 ms up to 120 ms.  
In wipe/wash mode, the relay is energized after a delay  
time. The water pump can spray water onto the wind-  
screen during the delay time, t  
.
DEL  
The on-delay time of the U2641B is:  
= t + 0.44 s = 0.52 s  
If the limit switch of the windscreen wiper motor is  
connected to Pin LS, the relay is energized as long as the  
switch is at high potential, regardless of the relay on-time,  
t
DEL  
D
If switch WIWA is closed longer than t but shorter than  
D
t
, i.e., the motor current in interval mode flows via the  
t
t
t
, the after-wiping time, t , starts after expiration of  
. The wipe/wash function with or without on-delay  
can be selected by programming PP.  
ON  
DEL  
DEL  
DEL  
AW  
relay contact only. In park position, the motor winding at  
both ends is connected to ground via the limit switch and  
the motor is decelerated immediately. The limit switch  
PP connected to GND:  
PP connected to V :  
without pre-wash delay  
with pre-wash delay  
input is debounced with t = 17 ms.  
DL  
S
The relay on-time, t , always elapses even if the  
ON  
interval switch was opened beforehand.  
The after-wiping time, t , is re-triggerable in both cases.  
AW  
2 (10)  
Rev. A3, 21-Aug-00  
U2641B  
Intermittent and Wipe/Wash Mode  
Power Supply  
The wipe/wash function has priority over the interval  
function. If switch WIWA is closed during the interval  
function, wipe/wash mode is activated immediately after  
For reasons related to protection against interference and  
destruction, all times must be provided with an RC net-  
work for limiting the current in the event of overvoltage  
and for buffering in the event of voltage drops.  
the debounce time, t , even if an on-delay is programmed  
D
(t  
= 0 s). Expiry of t is directly followed by the next  
DEL  
AW  
relay on-time, t , of intermittent mode.  
Proposed ratings: R = 510 W, C = 47 mF. An integrated  
V V  
ON  
14-V Zener diode is connected between V and GND.  
S
Oscillator  
Interference Voltages and Load-Dump  
All timing sequences are derived from an RC-oscillator  
whose charging time, t , is determined by an external  
1
In the case of transients, the integrated Zener diode limits  
the voltage of the relay output to approximately 28 V. In  
resistor R  
and whose discharging time, t is  
OSC  
2,  
determinated by an integrated 2-kW resistor. Since  
tolerance and temperature response of the integrated  
resistor are far higher than those of the external resistor,  
the case of load-dump, a current (dependent upon R and  
V
C ) flows through the integrated 14-V Zener diode, and  
V
the relay output is switched on V  
> 30 V in order to  
Batt  
t /t must be selected to be greater than 20 for stability  
1
2
avoid destruction of the output. The output transistor is  
rated such that it can withstand the current generated dur-  
ing the load-dump through the relay coil. In practice, the  
windscreen wiper motor is switched on via the relay and  
thus the amplitude of the load-dump pulse is limited. The  
supply voltage of the circuit is limited to 14 V by the inte-  
grated Zener diode, and the inputs are protected by  
external protective resistors and integrated Zener diodes.  
reasons. The minimum value of R  
should not be less  
OSC  
than 68 kW.  
Calculating cycle duration and frequency:  
t = t + t = C  
( 0.74 R  
+ 2260 W)  
OSC  
1
2
OSC  
and  
f
= 1/t  
OSC  
Calculating the capacitor for a given resistor:  
= t / ( 0.74 R + 2260 W)  
C
OSC  
OSC  
RF suppression is implemented with a low-pass filter at  
the inputs, consisting of a protective resistor and the inte-  
grated capacitor.  
Calculating the oscillator resistance for a given capacitor:  
= 1.34 ( t / C 2260 W)  
R
OSC  
OSC  
Power-on Reset (POR)  
Recommended frequency: f  
= 200 Hz  
OSC  
(for R  
= 200 kW, C  
= 33 nF)  
OSC  
OSC  
When the supply voltage is applied, a power-on reset  
All times can be varied jointly within specific limits by pulse is generated which sets the circuits logic to a  
varying the oscillator frequency (see table 1). The defined initial state. The POR threshold is approximately  
oscillator is operable up to 50 Hz.  
V = 4.3 V.  
S
Table 1 Change in times by varying the oscillator frquency  
fosc (Hz)  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
400  
tD [ms]  
140  
116  
100  
87  
tDL [ms]  
35  
tON [ms]  
tINT [s]  
11.84  
9.68  
8.45  
7.40  
6.57  
5.92  
5.38  
4.93  
4.55  
4.23  
3.95  
2.96  
tAW [s]  
10.24  
8.53  
7.31  
6.40  
5.68  
5.12  
4.65  
4.26  
3.94  
3.66  
3.41  
2.56  
tDEL [s]  
920  
766  
657  
575  
511  
460  
418  
383  
353  
328  
306  
230  
960  
800  
686  
600  
533  
480  
436  
400  
370  
343  
320  
240  
29  
25  
22  
77  
19  
70  
17  
64  
16  
58  
14  
54  
13  
50  
12  
46  
11  
35  
9
Rev. A3, 21-Aug-00  
3 (10)  
U2641B  
Absolute Maximum Ratings  
With recommended external circuitry  
Parameter  
Supply voltage (static)  
Supply current pulse  
Test Conditions  
Symbol  
Value  
24  
Unit  
V
5 min  
2 ms  
V
Batt  
I
1.5  
A
S
Supply current pulse  
300 ms  
I
150  
mA  
mA  
A
S
Relay output current (static)  
Relay output current pulse  
Ambient temperature range  
Storage temperature range  
Power dissipation  
I
I
300  
REL  
REL  
300 ms  
1.5  
T
amb  
40 to +95  
55 to +125  
0.45  
°C  
°C  
W
T
stg  
DIP8  
SO8  
P
tot  
tot  
Power dissipation  
P
0.34  
W
Thermal Resistance  
Parameters  
Symbol  
Value  
120  
Unit  
K/W  
K/W  
Junction ambient  
Junction ambient  
DIP8  
SO8  
R
R
thJA  
thJA  
160  
Electrical Characteristics  
Reference point Ground GND, T  
= 25_C, V  
= 13.5 V, unless otherwise specified (see figures 11 and 12)  
amb  
Batt  
Parameters  
Voltage supply  
Test Conditions / Pin  
Symbol  
Min  
Typ  
2.0  
Max  
Unit  
Pin 7  
Supply voltage  
Supply current  
V
Batt  
6.0  
0.5  
3.0  
16.0  
3.0  
V
mA  
V
I
S
Undervoltage threshold  
(POR)  
V
S
5.1  
Internal Z-diode  
V
C
13.5  
14.0  
15  
16.2  
V
pF  
W
Z
Internal capacitor  
Series resistance  
S
R
510  
47  
V
V
Filter capacitor  
C
mF  
Oscillator input OSC  
Internal discharge resistor  
Pin 8  
R
1.3  
2.0  
3.2  
kW  
DIS  
Lower switching-point  
voltage  
V
OSC  
0.16V 0.20V 0.24V  
V
S
S
S
Upper switching-point  
voltage  
V
OSC  
0.55V 0.60V 0.65V  
V
S
S
S
Input current  
V
OSC  
= 0 V  
I  
2
mA  
OSC  
Oscillator frequency  
f
1
200  
50 k  
Hz  
OSC  
Note: All internally generated time sequences are derived from the oscillator frquency. The tolerances refer to a  
frequency adjusted to f = 200 Hz.  
OSC  
4 (10)  
Rev. A3, 21-Aug-00  
U2641B  
Electrical Characteristics (continued)  
Reference point Ground GND, T  
= 25_C, V  
= 13.5 V, unless otherwise specified (see figures 11 and 12)  
amb  
Batt  
Parameters  
Test Conditions / Pin  
Symbol  
Min  
19.5  
Typ  
Max  
25.5  
Unit  
V
Input limit switch LS  
Pin 3  
Internal protection-diode  
voltage  
Internal capacitor  
I
= 10 mA  
V
LS  
21.0  
25  
LS  
C
V
pF  
V
LS  
0.375VS 0.5VS 0.675VS  
Switching threshold  
voltage  
LS  
Input current  
V
LS  
= V  
I
R
1
27  
mA  
kW  
kW  
S
LS  
Internal pull-up resistor  
External protection resistor  
Inputs INT, WIWA and PP  
13  
10  
20  
LS  
R
S
Pins 1, 2 and 4  
Internal protection-diode  
voltage  
Internal capacitor  
I = 10 mA  
E
V
19.5  
21.0  
25  
25.5  
V
E
C
pF  
V
E
0.375VS 0.5VS 0.675VS  
Switching threshold  
voltage  
V
E
Input current  
Internal pull-down resistor Pin INT and PP  
V = 0 V  
I  
1
27  
27  
mA  
kW  
kW  
kW  
E
E
E
E
S
R
R
R
13  
13  
10  
20  
20  
Internal pull-up resistor  
External protection resistor  
Relay Output  
Pin WIWA  
Pins 6  
Saturation voltage  
I = 100 mA  
I = 200 mA  
I = 10 mA  
V = 14 V  
V
V
V
1.1  
1.5  
V
V
REL  
REL  
REL  
REL  
Saturation voltage  
Z-diode clamp voltage  
Leakage current  
19.5  
21.0  
33  
25.5  
12  
V
I
mA  
W
V
Relay coil resistance  
R
60  
28  
REL  
Load-dump protection  
threshold  
V
42  
Batt  
Internal pulse times  
Debouncing period inputs INT/WIWA 12 - 16 clocks  
t
60  
15  
70  
80  
20  
ms  
ms  
ms  
s
D
Debouncing period inputs LS  
Relay activation time  
Intermittent pause  
3 4 clocks  
t
17.5  
480  
5.92  
DL  
ON  
96 clocks  
t
t
INT  
After wiping period  
1024 68 clocks  
88 96 clocks  
t
4.78  
440  
5.46  
480  
s
WIWA  
Pre-wash delay reaction  
t
ms  
DEL  
time for switch-on delay =  
t
+ t  
DEL  
D
Note: All internally generated time sequences are derived from the oscillator frquency. The tolerances refer to a  
frequency adjusted to f = 200 Hz.  
OSC  
Rev. A3, 21-Aug-00  
5 (10)  
U2641B  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
9
8
7
6
5
4
3
2
1
0
max  
min  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
V
Batt  
(V)  
V
Batt  
(V)  
Figure 3. Relay activation = f (VBatt  
)
Figure 5. After-wipe time = f (VBatt)  
10  
9
8
7
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
max  
min  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
V
Batt  
(V)  
V
Batt  
(V)  
Figure 4. Interval pause = f (VBatt  
)
Figure 6. Pre-wash delay = f (VBatt  
)
6 (10)  
Rev. A3, 21-Aug-00  
U2641B  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
8
7
6
5
4
3
2
1
0
max  
min  
40 20  
0
20  
40  
60  
80 100  
40 20  
0
20  
40  
60  
80 100  
Temperature (°C )  
Temperature (°C )  
Figure 7. Relay activation = f (Temperature)  
Figure 9. After-wipe time = f (Temperature)  
0.8  
8
7
6
5
4
3
2
1
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
max  
min  
40 20  
0
20  
40  
60  
80 100  
40 20  
0
20  
40  
60  
80 100  
Temperature (°C )  
Temperature (°C )  
Figure 8. Pre-wash delay = f (Temperature)  
Figure 10. Interval pause = f (Temperature)  
Note: The temperature characteristic is caused by the temperature coefficient T of the external capacitor  
C
Rev. A3, 21-Aug-00  
7 (10)  
U2641B  
Application Examples  
Kl 15  
Rv  
510Ω  
Rosc  
200 kΩ  
CV  
Cosc  
8
6
5
4
7
47µF 33 nF  
U2641B  
1
2
3
Rs  
10 kΩ  
Rs  
10 kΩ  
INT  
Water–  
pump  
Wiper–  
motor  
M
M
WIWA  
13905  
Figure 11. Application without limit switch  
Kl 15  
Rv  
510Ω  
Rosc  
200 k  
CV  
Cosc  
8
6
5
4
7
47µF 33 nF  
U2641B  
1
2
3
Rs  
10 kΩ  
Rs  
10 kΩ  
INT  
Rs  
10 kΩ  
Water–  
pump  
Wiper–  
motor  
End–  
switch  
M
M
WIWA  
13906  
Figure 12. Application with limit switch  
8 (10)  
Rev. A3, 21-Aug-00  
U2641B  
Package Information  
Package DIP8  
Dimensions in mm  
9.8  
9.5  
7.77  
7.47  
1.64  
1.44  
4.8 max  
3.3  
6.4 max  
0.5 min  
0.36 max  
0.58  
0.48  
9.8  
8.2  
2.54  
7.62  
8
5
technical drawings  
according to DIN  
specifications  
13021  
1
4
Package SO8  
Dimensions in mm  
5.2  
4.8  
5.00  
3.7  
4.85  
1.4  
0.2  
0.25  
0.10  
0.4  
3.8  
1.27  
6.15  
5.85  
3.81  
8
5
technical drawings  
according to DIN  
specifications  
13034  
8
5
Rev. A3, 21-Aug-00  
9 (10)  
U2641B  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of  
ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
8.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or  
unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages,  
and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with  
such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.temic–semi.com  
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
10 (10)  
Rev. A3, 21-Aug-00  

相关型号:

U2641B-FP

Automotive Analog Circuit, BIPolar, PDSO8,
VISHAY

U2641B-FP

Brush DC Motor Controller, 1.5A, PDSO8
MICROCHIP

U2641B-FP

Brush DC Motor Controller, 1.5A, BIPolar, PDSO8, SO-8
ATMEL

U2641B-FP

Brush DC Motor Controller, 1.5A, PDSO8, SO-8
TEMIC

U2642B

Intermittent- and Wipe/Wash Control for Wiper Systems
TEMIC

U2642B-FP

Intermittent- and Wipe/Wash Control for Wiper Systems
TEMIC

U264B-FP

Analog Circuit, 1 Func, PDSO8, SO-8
ATMEL

U264XB

Analog Circuit, 1 Func, PDIP8, DIP-8
ATMEL

U267BG

To drive LED-displays with 5 or 10 diodes
VISHAY

U27

Miniature Rocker Lever Handle Switches
CK-COMPONENTS

U2701A

U2701A and U2702A USB Modular Oscilloscope
HP

U2703

POWER MOSFET
INFINEON