TSC695FL-15MA [ATMEL]

Low-Voltage Rad-Hard 32-bit SPARC Embedded Processor; 低压抗辐射的32位SPARC嵌入式处理器
TSC695FL-15MA
型号: TSC695FL-15MA
厂家: ATMEL    ATMEL
描述:

Low-Voltage Rad-Hard 32-bit SPARC Embedded Processor
低压抗辐射的32位SPARC嵌入式处理器

微控制器和处理器 外围集成电路 微处理器 异步传输模式 ATM 时钟
文件: 总42页 (文件大小:3365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Integer Unit Based on SPARC V7 High-performance RISC Architecture  
Optimized Integrated 32/64-bit Floating-point Unit  
On-chip Peripherals  
– EDAC and Parity Generator and Checker  
– Memory Interface  
Chip Select Generator  
Waitstate Generation  
Memory Protection  
– DMA Arbiter  
– Timers  
Low-Voltage  
Rad-Hard 32-bit  
SPARC  
General Purpose Timer (GPT)  
Real-time Clock Timer (RTCT)  
Watchdog Timer (WDT)  
– Interrupt Controller With 5 External Inputs  
– General Purpose Interface (GPI)  
– Dual UART  
Embedded  
Processor  
Speed Optimized Code RAM Interface  
8- or 40-bit boot-PROM (Flash) Interface  
IEEE 1149.1 Test Access Port (TAP) for Debugging and Test Purposes  
Fully Static Design  
Performance: 12 MIPs/3 MFlops (Double Precision) at SYSCLK = 15 MHz  
Core Consumption: 0.3W Typ. at 12 MIPs  
Operating Range: 3.15V to 3.45V -55°C to +125°C  
Tested up to a Total Dose of 300 Krds (si) according toMIL STD 883 Method 1019  
No Single Event Latch-up Below an LET Threshold of 80 MeV/mg/cm2  
Single Event Upsets Error Rate Better than:  
– 2 E-7 Error/Component/Day in GEO Orbit  
– 5 E-5 Error/Component/Day in LEO Orbit (53°, 1000 km)  
Quality Grades: ESCC, and QMLQ or V with 5962-03246  
Package: 256 MQFPF; Bare Die  
TSC695FL  
Description  
The TSC695FL (ERC32 Single-Chip) is a highly integrated, high-performance 32-bit  
RISC embedded processor implementing the SPARC architecture V7 specification. It  
has been developed with the support of the ESA (European Space Agency), and  
offers a full development environment for embedded space applications.  
The processor is manufactured using the Atmel 0.5 µm radiation tolerant (300  
KRADs (Si)) CMOS enhanced process (RTP). It can operate at a low voltage for opti-  
mized power consumption (see datasheet TSC695FL). It has been specially designed  
for space, as it has on-chip concurrent transient and permanent error detection.  
The TSC695FL includes an on-chip Integer Unit (IU), a Floating Point Unit (FPU), a  
Memory Controller and a DMA arbiter. For real-time applications, the TSC695FL  
offers a high security watchdog, two timers, an interrupt controller, parallel and serial  
interfaces. Fault tolerance is supported using parity on internal/external buses and an  
EDAC on the external data bus. The design is highly testable with the support of an  
On-Chip Debugger (OCD), and a boundary scan through JTAG interface.  
The TSC695FL is a selection of the TSC5695F performed for a narrow 3.3V biasing  
voltage range (± 0.15V), as such, this specification can be only met by the products  
solds as TSC695FL. Where computing power is not the key factor, it allows for a dra-  
matic power consumption reduction (70%).  
Rev. 4204C–AERO–05/05  
Block Diagram  
Figure 1. TSC695FL Block Diagram  
32-bit  
Integer  
Unit  
DMA  
TAP  
DMA Ctrl  
Arbiter  
32/64-bit  
Floating-Point  
Unit  
Clock  
&
Parity  
Gen./Chk.  
Reset  
Access  
Controller  
Parity  
Managt  
Mem Ctrl  
Gen./Chk.  
Wait State  
Controller  
Ready/Busy  
Add.+Size+ASI  
Address  
Interface  
Error  
Managt  
Real Time Clock  
Timer  
Watch  
Dog  
General Purpose  
Timer  
EDAC  
Data+Check bits  
Parities  
Interrupt  
General Purpose  
Interface  
UART B  
UART A  
Parity  
Gen./Check.  
Controller  
Interrupts  
GPI bits  
RxD, TxD  
Pin Descriptions  
For pin assignment, refer to package section.  
Signal  
Type  
Active  
Description  
RA[31:0]  
RAPAR  
RASI[3:0]  
RSIZE[1:0]  
RASPAR  
CPAR  
I/O,  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
32-bit registered address bus  
Registered address bus parity  
4-bit registered address space identifier  
2-bit registered bus transaction size  
Registered ASI and SIZE parity  
Control bus parity  
Output buffer: 400 pF  
High  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
High  
High  
D[31:0]  
CB[6:0]  
DPAR  
32-bit data bus  
7-bit check-bit bus  
High  
High  
Low  
High  
High  
High  
Low  
High  
Data bus parity  
RLDSTO  
ALE  
Registered atomic load-store  
Address latch enable  
Data transfer  
DXFER  
LOCK  
I/O  
I/O  
I/O  
I/O  
I/O  
Bus lock  
RD  
Read access  
WE  
Write enable  
WRT  
Advanced write  
MHOLD+FHOLD  
+BHOLD+FCCV  
MHOLD  
O
Low  
Memory bus hold  
MDS  
O
O
I
Low  
Low  
Low  
Memory data strobe  
-
MEXC  
Memory exception  
-
PROM8  
BA[1:0]  
Select 8-bit wide PROM  
Latched address used for 8-bit wide boot PROM  
PROM chip select  
-
O
O
I
-
ROMCS  
ROMWRT  
MEMCS[9:0]  
MEMWR  
Low  
Low  
Low  
Low  
-
ROM write enable  
-
O
O
Memory chip select  
Output buffer: 400 pF  
Output buffer: 400 pF  
Memory write strobe  
2
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Signal  
Type  
Active  
Description  
OE  
O
O
O
O
O
O
O
I
Low  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
Low  
Low  
Low  
Low  
Low  
High  
Low  
High  
High  
High  
High  
High  
Memory output enable  
Data buffer enable  
Output buffer: 400 pF  
BUFFEN  
DDIR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Data buffer direction  
Data buffer direction  
I/O chip select  
DDIR  
IOSEL[3:0]  
IOWR  
I/O and exchange memory write strobe  
Exchange memory chip select  
Bus ready  
EXMCS  
BUSRDY  
BUSERR  
DMAREQ  
DMAGNT  
DMAAS  
DRDY  
I
Bus error  
I
DMA request  
O
I
DMA grant  
DMA address strobe  
Data ready during DMA access  
IU error  
O
O
O
O
I
IUERR  
CPUHALT  
SYSERR  
SYSHALT  
SYSAV  
NOPAR  
INULL  
Processor (IU & FPU) halt and freeze  
System error  
System halt  
O
I
System availability  
No parity  
O
O
O
O
O
I
Integer unit nullify cycle  
Instruction fetch  
INST  
Used to check the execute  
stage of IU  
FLUSH  
DIA  
FPU instruction flush  
Delay instruction annulled  
Real Time Clock Counter output  
Receive data UART ’A’ and ’B’  
Transmit data UART ’A’ and ’B’  
GPI input/output  
instruction pipeline  
RTC  
-
RxA/RxB  
TxA/TxB  
GPI[7:0]  
GPIINT  
EXTINT[4:0]  
EXTINTACK  
IWDE  
Input trigger  
O
I/O  
O
I
-
Input trigger  
High  
GPI interrupt  
-
External interrupt  
Input trigger  
O
I
High  
High  
High  
External interrupt acknowledge  
Internal watch dog enable  
External watch dog input interrupt  
Watch dog clock  
-
-
EWDINT  
WDCLK  
CLK2  
I
Input trigger  
I
-
I
Double frequency clock  
System clock  
-
SYSCLK  
RESET  
SYSRESET  
TMODE[1:0]  
DEBUG  
TCK  
O
O
I
-
Low  
Low  
Output reset  
-
System input reset  
Factory test mode  
Input trigger  
I
Functional mode=00  
I
High  
Low  
Software debug mode  
Test (JTAG) clock  
-
I
-
TRST  
I
Test (JTAG) reset  
pull-up 37 kΩ  
TMS  
I
Test (JTAG) mode select  
Test (JTAG) data input  
Test (JTAG) data output  
Main internal power  
Output driver power  
pull-up 37 kΩ  
TDI  
I
pull-up 37 kΩ  
TDO  
O
-
-
-
VCCI/VSSI  
VCCO/VSSO  
Note:  
If not specified, the output buffer type is 150 pF, the input buffer type is TTL.  
3
4204C–AERO–05/05  
System Architecture The TSC695FL is to be used as an embedded processor requiring only memory and  
application specific peripherals to be added to form a complete on-board computer. All  
other system support functions are provided by the core.  
Figure 2. System Architecture Based on TSC695FL  
DMA Unit  
Boot PROM  
Ax[31:0]  
Xtd PROM  
Xchg Mem  
Glue  
Logic  
Xtd RAM  
Local  
Memory  
I/O 0  
to  
I/O 3  
DMAGNT  
DMAREQ  
DMAAS  
Xtd I/O  
(BUFFEN, DDIR)  
Xtd general  
MEMCtrl  
(ROMCS, EXMCS, IOSEL[3:0], MEMWR, IOWR, OE, BUSRDY,...)  
Memory  
Interface  
FPU  
RAMCtrl  
(MEMCS[9:0], MEMWR, OE)  
RAM  
Memory  
DMA  
DMA  
(0 ws)  
A[31:0]  
IU  
User  
Application  
Peripherals  
TSC695FL  
4
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Product Description  
Integer Unit  
The IU is designed for highly dependable space and military applications, and includes  
support for error detection. The RISC architecture makes the creation of a processor  
that can execute instructions at a rate approaching one instruction per processor clock  
possible.  
To achieve that rate of execution, the IU employs a four-stage instruction pipeline that  
permits parallel execution of multiple instructions.  
Fetch - The processor outputs the instruction address to fetch the instruction.  
Decode - The instruction is placed in the instruction register and is decoded. The  
processor reads the operands from the register file and computes the next  
instruction address.  
Execute - The processor executes the instruction and saves the results in temporary  
registers. Pending traps are prioritized and internal traps are taken during this stage.  
Write - If no trap is taken, the processor writes the result to the destination register.  
All four stages operate in parallel, working on up to four different instructions at a time. A  
basic ’single-cycle’ instruction enters the pipeline and completes in four cycles.  
By the time it reaches the write stage, three more instructions have entered and are  
moving through the pipeline behind it. So, after the first four cycles, a single-cycle  
instruction exits the pipeline and a single-cycle instruction enters the pipeline on every  
cycle. Of course, a ’single-cycle’ instruction actually takes four cycles to complete, but  
they are called single cycle because with this type of instruction the processor can com-  
plete one instruction per cycle after the initial four-cycle delay.  
Floating-point Unit  
The FPU is designed to provide execution of single and double-precision floating-point  
instructions concurrently with execution of integer instructions by the IU. The FPU is  
compliant to the ANSI/IEEE-754 (1985) floating-point standard.  
The FPU is designed for highly dependable space and military applications, and  
includes support for concurrent error detection and testability.  
The FPU uses a four stage instruction pipeline consisting of fetch, decode, execute and  
write stages (F, D, E and W). The fetch unit captures instructions and their addresses  
from the data and address busses. The decode unit contains logic to decode the float-  
ing-point instruction opcodes. The execution unit handles all instruction execution. The  
execution unit includes a floating-point queue (FP queue), which contains stored float-  
ing-point operate (FPop) instructions under execution and their addresses. The  
execution unit controls the load unit, the store unit, and the datapath unit. The FPU  
depends upon the IU to access all addresses and control signals for memory access.  
Floating-point loads and stores are executed in conjunction with the IU, which provides  
addresses and control signals while the FPU supplies or stores the data. Instruction  
fetch for integer and floating-point instructions is provided by the IU.  
The FPU provides three types of registers: f registers, FSR, and the FP queue. The FSR  
is a 32-bit status and control register. It keeps track of rounding modes, floating-point  
trap types, queue status, condition codes, and various IEEE exception information. The  
floating-point queue contains the floating-point instruction currently under execution,  
along with its corresponding address.  
5
4204C–AERO–05/05  
Instruction Set  
TSC695FL instructions fall into six functional categories: load/store, arithmetic/logi-  
cal/shift, control transfer, read/write control register, floating-point, and miscellaneous.  
Please refer to SPARC V7 Instruction-set Manual.  
Note:  
The execution of IFLUSH will cause an illegal instruction trap.  
On-chip Peripherals  
Memory Interface  
The TSC695FL is designed to allow easy interfacing to internal/external memory  
resources.  
Table 1. Memory Mapping  
Memory Contents  
Start Address  
Size (bytes)  
Data Size and Parity Options  
8-bit mode  
40-bit mode  
8-bit mode  
40-bit mode  
No parity/-No EDAC/-Only byte write  
Boot PROM  
0x00000000  
128K 16M  
Parity + EDAC mandatory/-Only word write  
No parity/-No EDAC/-Only byte write  
Extended PROM  
Exchange Memory  
System Registers  
RAM (8 blocks)  
Extended RAM  
I/O Area 0  
0x01000000  
0x01F00000  
0x01F80000  
0x02000000  
0x04000000  
0x10000000  
0x11000000  
0x12000000  
0x13000000  
0x14000000  
0x80000000  
Max: 15M  
Parity + EDAC mandatory/-Only word write  
4K 512K  
512K (124 used)  
8*32K 8*4M  
Max: 192M  
0 16M  
Parity + EDAC option/-Only word write  
Parity/-Only word read/write access  
Parity + EDAC option/-All data sizes allowed  
I/O Area 1  
0 16M  
I/O Area 2  
0 16M  
I/O Area 3  
0 16M  
Extended I/O Area  
Extended General  
Max: 1728M  
Max: 2G  
Parity option/-All data sizes allowed  
No parity/-All data sizes allowed  
System Registers  
The system registers are only writeable by IU in the supervisor mode or by DMA during  
halt mode.  
Table 2. System Registers Address Map  
System Register Name  
System Control Register  
Software Reset  
Address  
SYSCTR  
SWRST  
PDOWN  
SYSFSR  
FAILAR  
0x 01F8 0000  
0x 01F8 0004  
0x 01F8 0008  
0x 01F8 00A0  
0x 01F8 00A4  
0x 01F8 00B0  
0x 01F8 00D0  
Power Down  
System Fault Status Register  
Failing Address Register  
Error & Reset Status Register  
Test Control Register  
ERRRSR  
TESCTR  
6
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Table 2. System Registers Address Map (Continued)  
System Register Name  
Address  
Memory Configuration Register  
I/O Configuration Register  
MCNFR  
0x 01F8 0010  
0x 01F8 0014  
0x 01F8 0018  
0x 01F8 0020  
0x 01F8 0024  
0x 01F8 0028  
0x 01F8 002C  
0x 01F8 0044  
0x 01F8 0048  
0x 01F8 004C  
0x 01F8 0050  
0x 01F8 0054  
0x 01F8 0060  
0x 01F8 0064  
0x 01F8 0080  
0x 01F8 0084  
0x 01F8 0088  
0x 01F8 008C  
0x 01F8 0098  
0x 01F8 00A8  
0x 01F8 00AC  
0x 01F8 00E0  
0x 01F8 00E4  
0x 01F8 00E8  
IOCNFR  
WSCNFR  
APS1BR  
APS1ER  
APS2BR  
APS2ER  
INTSHR  
INTPDR  
INTMKR  
INTCLR  
INTFCR  
WDOGTR  
WDOGST  
RTCCR  
Waitstate Configuration Register  
Access Protection Segment 1 Base Register  
Access Protection Segment 1 End Register  
Access Protection Segment 2 Base Register  
Access Protection Segment 2 End Register  
Interrupt Shape Register  
Interrupt Pending Register  
Interrupt Mask Register  
Interrupt Clear Register  
Interrupt Force Register  
Watchdog Timer Register  
Watchdog Timer Trap Door Set  
Real Time Clock Timer <Counter> Register  
Real Time Clock Timer <Scaler> Register  
General Purpose Timer <Counter> Register  
General Purpose Timer <Scaler> Register  
Timers Control Register  
RTCSR  
GPTCR  
GPTSR  
TIMCTR  
GPICNFR  
GPIDATR  
UARTAR  
UARTBR  
UARTSR  
General Purpose Interface Configuration Register  
General Purpose Interface Data Register  
UART ’A’ Rx & Tx Register  
UART ’B’ Rx & Tx Register  
UART Status Register  
Wait-state and Time-out  
Generator  
It is possible to control the wait state generation by programming a Waitstate Configura-  
tion Register. The maximum programmable number of wait-states is applied by default  
at reset.  
It is possible to program the number of wait states for the following combinations:  
RAM read and write  
PROM read and write (i.e. EEPROM or Flash write)  
Exchange Memory read/write  
Four individual I/O peripherals read/write  
7
4204C–AERO–05/05  
A bus time-out function of 256 system clock cycles is provided for the bus ready con-  
trolled memory areas, i.e. the Extended PROM, Exchange Memory, Extended RAM,  
Extended I/O and the Extended General areas.  
EDAC  
The TSC695FL includes a 32-bit EDAC (Error Detection And Correction). Seven bits  
(CB[6:0]) are used as check bits over the data bus. The Data Bus Parity signal (DPAR)  
is used to check and generate the odd parity over the 32-bit data bus. This means that  
altogether 40 bits are used when the EDAC is enabled.  
The TSC695FL EDAC uses a 7-bit Hamming code which detects any double bit error on  
the 40-bit bus as a non-correctable error. In addition, the EDAC detects all bits stuck-at-  
one and stuck-at-zero failure for any nibble in the data word as a non-correctable error.  
Stuck-at-one and stuck-at-zero for all 32 bits of the data word is also detected as a non-  
correctable error.  
Memory and I/O Parity  
The TSC695FL handles parity towards memory and I/O in a special way. The processor  
can be programmed to use no parity, only parity or parity and EDAC protection towards  
memory and to use parity or no towards I/O. The signal used for the parity bit is DPAR.  
Memory Redundancy  
Programming the Memory Configuration Register, the TSC695FL provides chip selects  
for two redundant memory banks for replacement of faulty banks.  
Memory Access Protection  
Unimplemented Areas - Access to all unimplemented memory areas are handled by  
the TSC695FL and detected as illegal.  
RAM Write Access Protection - The TSC695FL can be programmed to detect and  
mask write accesses in any part of the RAM. The protection scheme is enabled only  
for data area, not for the instruction area. The programmable write access  
protection is based on two segments.  
Boot PROM Write Protection - The TSC695FL supports a qualified PROM write for  
an 8-bit wide PROM and/or for a 40-bit wide PROM.  
DMA  
DMA Interface  
The TSC695FL supports Direct Memory Access (DMA). The DMA unit requests access  
to the processor bus by asserting the DMA request signal (DMAREQ). When the DMA  
unit receives the DMAGNT signal in response, the processor bus is granted. In case the  
processor is in the power-down mode the processor is permanent tri-stated, and a  
DMAREQ will directly give a DMAGNT. The TSC695FL includes a DMA session time-  
out function.  
Bus Arbiter  
The TSC695FL always has the lowest priority on the system bus.  
Traps  
A trap is a vectored transfer of control to the supervisor through a special trap table that  
contains the first four instructions of each trap handler. The base address of the table is  
established by supervisor and the displacement, within the table, is determined by the  
trap type. Two categories of traps can appear.  
8
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Synchronous Traps  
Table 3. Synchronous Traps  
Trap  
Priority  
Trap Type (tt) Comments  
Sources: SYSRESET* pin  
software reset  
Reset  
1
-
watchdog reset  
IU or System error reset  
Non-restartable, imprecise  
Severe error requiring a re-boot  
error  
2.1  
2.2  
64h  
62h  
65h  
63h  
61h  
TSC695FL enters (if not masked) in halt or reset mode.  
Non-restartable,  
precise error  
Error not removable, PC & nPC OK  
TSC695FL enters (if not masked) in halt or reset mode.  
Special case of non-restartable, precise error.  
TSC695FL enters (if not masked) in halt or reset mode.  
2
Register file error  
2.3  
Retrying instruction but PC & nPC have to be re-adjusted  
TSC695FL enters (if not masked) in halt or reset mode.  
Restartable, late error  
2.4  
2.5  
Restartable,  
precise error  
Retrying instruction  
TSC695FL enters (if not masked) in halt or reset mode.  
Parity error on control bus  
Parity error on data bus  
Parity error on address bus  
Access to protected or unimplemented area  
Uncorrectable error in memory  
Bus time out  
3
Instruction access  
(Error on instruction fetch)  
01h  
Bus error  
Illegal Instruction  
Privileged instruction  
FPU disabled  
4
5
6
02h  
03h  
04h  
05h  
-
-
-
Overflow  
During SAVE instruction or trap taken  
Window  
7
Underflow  
06h  
07h  
During RESTORE instruction or RETT instruction  
Memory address not aligned  
Non-restartable error  
Data bus error  
8
-
9.1  
9.2  
9.3  
9.4  
9.5  
Severe error, cannot restart the instruction.  
Parity error on FPU data bus.  
Restartable error  
Can be removed restarting the instruction.  
Sequence error  
-
-
Unimplemented FPop  
Invalid operation  
Division by zero  
Overflow  
IEEE exceptions:  
9
9.6  
08h  
Underflow  
Inexact  
9
4204C–AERO–05/05  
Table 3. Synchronous Traps (Continued)  
Trap  
Priority  
Trap Type (tt) Comments  
Idem “instruction access”  
Data access exception  
10  
09h  
(Error on data load)  
System register access violation  
Tag overflow  
11  
12  
0Ah  
TADDccTV and TSUBccTV instructions  
Trap on integer condition codes (Ticc)  
Trap instructions  
80h to FFh  
Table 4. Interrupts or Asynchronous Traps  
Trap  
Priority  
Comments  
Trap Type (tt)  
1Fh  
Watchdog time-out  
External INT 4  
13  
Internal or external (EWDINT pin)  
14  
1Eh  
EXTINTAK on only one of EXTINT[4:0]  
Real time clock timer  
General purpose timer  
External INT 3  
15  
1Dh  
-
16  
1Ch  
-
17  
1Bh  
EXTINTAK on only one of EXTINT[4:0]  
External INT 2  
18  
1Ah  
EXTINTAK on only one of EXTINT[4:0]  
DMA time-out  
19  
19h  
-
DMA access error  
UART Error  
20  
18h  
-
21  
17h  
-
Correctable error in memory  
Data ready  
22  
16h  
Data read OK but source not updated  
UART B  
Transmitter ready  
23  
15h  
-
Data ready  
UART A  
Transmitter ready  
24  
25  
26  
14h  
13h  
12h  
-
External INT 1  
External INT 0  
EXTINTAK on only one of EXTINT[4:0]  
EXTINTAK on only one of EXTINT[4:0]  
Logical OR of:  
IU hardware error masked  
IU error mode masked  
System hardware error masked  
Masked hardware errors  
27  
11h  
It is possible to mask each individual interrupt (except Watchdog time-out). The interrupts in the Interrupt Pending Register  
are cleared automatically when the interrupt is acknowledged.  
By programming the Interrupt Shape Register, it is possible to define the external interrupts to be either active low or active  
high and to define the external interrupts to be either edge or level sensitive.  
10  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Timers  
In software debug mode the timers are controlled by a system register bit and the exter-  
nal pin DEBUG.  
General Purpose Timer  
The General Purpose Timer (GPT) provides, in addition to a generalized counter func-  
tion, a mechanism for setting the step size in which actual time counts are performed.  
GPT is clocked by the internal system clock. They are possible to program to be either  
of single-shot type or periodical type and in both cases generate an interrupt when the  
delay time has elapsed. The current value of the scaler and counter of the GPT can be  
read.  
Real Time Clock Timer  
Watchdog Timer  
The only functional differences between the two timers are that the Real Time Clock  
Timer (RTCT) has an 8-bit scaler (16-bit scaler for GPT) and that the RTCT interrupt has  
higher priority than the GPT interrupt.  
RTCT information is available on RTC output pin.  
Setting the external pin IWDE to Vcc enables the internal watchdog timer. Otherwise the  
watchdog function must be externally provided.  
The watchdog is supplied from a separate external input (WDCLK). After reset, the timer  
is enabled and starts running with the maximum range. If the timer is not refreshed  
(reprogrammed) before the counter reaches zero value, an interrupt is sent. Simulta-  
neously, the timer starts counting a reset time-out period. If the timer is not  
acknowledged before the reset time-out period elapses, a reset is applied to TSC695FL.  
UARTs  
Two full duplex asynchronous receiver transmitters (UART) are included. In software  
debug mode the UART’s are controlled by system register bits.  
The data format of the UART’s is eight bits. It is possible to choose between even or odd  
parity, or no parity, and between one and two stop bits. The UART’s provide double buff-  
ering, i.e. each UART consists of a transmitter holding register, a receiver holding  
register, a transmitter shift register, and a receiver shift register. Each of these registers  
are 8-bit wide. For each UART a RX and TX Register is provided. The UART’s generate  
an interrupt each time a byte has been received or a byte has been sent. There is  
another interrupt to indicate errors.  
The baud rate of both the UART’s is programmable. The clock is derived either from the  
system clock or can use the watchdog clock.  
General Purpose Interface  
The General Purpose Interface (GPI) is an 8-bit parallel I/O port. Each pin can be config-  
ured as an input or an output.  
A falling or rising edge detection is made on each selected GPI inputs. Every input tran-  
sition on GPI generates an external positive pulse on GPIINT pin of two SYSCLK width.  
Execution Modes  
Reset Mode  
Reset mode is entered when:  
The SYSRES input is asserted  
Software reset which is caused by the software writing to a Software Reset  
Register,  
Watchdog reset which is caused by a Watchdog counter time-out  
Error reset which is caused by a hardware parity error  
11  
4204C–AERO–05/05  
This RESET output has a minimum of 1024 SYSCLK width to allow the usage of flash  
memories.  
The error and Reset Status Register contain the source of the last processor reset.  
Run Mode  
In this mode the IU/FPU is executing, while all peripherals are running (if software  
enabled).  
System Halt Mode  
System Halt mode is entered when the SYSHALT input is asserted. In this mode, the IU  
and FPU are frozen, while the timers (includeing the internal watchdog timer) and  
UART’s are stopped.  
Power Down Mode  
Error Halt Mode  
This mode is entered by writing to the Power Down Register. In this mode, the IU and  
FPU are frozen. The TSC695FL leaves the power-down mode if an external interrupt is  
asserted.  
Error Halt mode is entered under the following circumstances:  
A internal hardware parity error.  
The IU enters error mode.  
The only way to exit Error Halt Mode is through Cold Reset by asserting SYSRESET.  
Error Handler  
The TSC695FL has one error output signal (SYSERR) which indicates that an  
unmasked error has occurred. Any error signalled on the error inputs from the IU and  
the FPU is latched and reflected in the Error and Reset Status Register. By default, an  
error leads to a processor halt.  
Parity Checking  
The TSC695FL includes:  
Parity checking and generation (if required) on the external data bus,  
Parity checking on the external address bus,  
Parity checking on ASI and SIZE,  
Parity checking and generation on all system registers,  
Parity generation and checking on the internal control bus to the IU,  
All external parity checking can be disabled using the NOPAR signal.  
System Clock  
The TSC695FL uses CLK2 clock input directly and creates a system clock signal by  
dividing CLK2 by two. It drives SYSCLK pin with a nominal 50% duty cycle for the appli-  
cation. It is highly recommended that only SYSCLK rising edge is used as reference as  
far as possible.  
System Availability  
Test Mode  
The SYSAV bit in the Error and Reset Status Register can be used by software to indi-  
cate system availability.  
The TSC695FL includes a number of software test facilities such as EDAC test, Parity  
test, Interrupt test, Error test and a simple Test Access Port. These test functions are  
controlled using the Test Control Register.  
12  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Test and Diagnostic  
Hardware Functions  
A variety of TSC695FL test and diagnostic hardware functions, including boundary  
scan, internal scan, clock control and On-chip Debugger, are controlled through an  
IEEE 1149.1 (JTAG) standard Test Access Port (TAP).  
Test Access Port  
The TAP interfaces to the JTAG bus via 5 dedicated pins on the TSC695FL chip. These  
pins are:  
TCK (input): Test Clock  
TMS (input): Test Mode Select  
TDI (input): Test Data Input  
TDO (output): Test Data Output  
TRST (input): Test Reset  
Instruction Register  
Five standard instructions are supported by the TSC695FL TAP.  
Binary Value Name of Instruction Data Register  
Scan Chain Accessed  
Boundary Scan  
00. 0000  
00. 0001  
EXTEST  
Register  
Boundary scan chain  
Boundary scan chain  
Boundary Scan  
Register  
SAMPLE/PRELOAD  
Boundary Scan  
Register  
00. 0011  
11. 1111  
10. 0000  
INTEST  
BYPASS  
IDCODE  
Boundary scan chain  
Bypass register  
Bypass Register  
Device ID Register  
ID register scan chain  
Debugging  
The design is highly testable with the support of an On-Chip Debugger (OCD), an inter-  
nal and boundary scan through JTAG interface.  
13  
4204C–AERO–05/05  
Electrical Characteristics  
Absolute Maximum Ratings  
Note: Stresses at or above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those  
indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Military Range............................................... -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
Supply Voltage...................................................-0.5V to +7.0V  
Input Voltage......................................................-0.5V to +7.0V  
DC Characteristics  
Table 5. DC Characteristics at VDD 3.3V ± 0.15V  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Input Low Voltage  
for trigger input  
VIL trigger  
1
V
V
CC = 3.15 to 3.45V  
CC = 3.15 to 3.45V  
CC = 3.15 to 3.45V  
CC = 3.15 to 3.45V  
Input High Voltage  
for trigger input  
VIH trigger  
VT  
1.5  
0.3  
V
V
V
V
V
V
V
V
Input Hysteresis  
for trigger input  
Input Low Voltage  
for TTL input  
VIL TTL  
VIH TTL  
VOL400 pF  
0.8  
Input High Voltage  
for TTL input  
2
VCC = 3.15 to 3.45V  
V
CC = 3.15 to 3.45V  
Output Low Voltage  
for 400 pF buffer  
0.4  
IOL = 9 mA  
VCC = 3.15 to 3.45V  
IOH = -6 mA  
Output High Voltage  
for 400 pF buffer  
VOH400 pF  
VOL150 pF  
2.4  
V
V
VCC = 3.15 to 3.45V  
IOL = 3 mA  
Output Low Voltage  
for 150 pF buffer  
0.4  
V
CC = 3.15 to 3.45V  
Output High Voltage  
for 150 pF buffer  
VOH150 pF  
IccOP  
2.4  
V
IOH = -2 mA  
Operating Supply Current  
for core processor  
100  
10  
mA  
mA  
VCC = 3.45V, f = 15 MHz  
VCC = 3.45V, f = 15 MHz  
Power Down Supply Current  
for core processor  
IccPD  
IIL  
IIH  
Low Level Input Current  
High-Level Input Current  
-10  
-10  
10  
10  
10  
µA  
µA  
µA  
VCC = 3.45V, VIN = 0  
VCC = 3.45V; VIN = VCC  
VCC = 3.45V; VIN = 0  
IILPU  
Low Level Input Pull-up Current  
350  
14  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Capacitance Ratings  
Parameter  
CIN  
Description  
Input Capacitance  
Max  
7 pF  
8 pF  
8 pF  
COUT  
Output Capacitance  
Input/Output Capacitance  
CIO  
AC Characteristics  
Table 6. AC Characteristics (SYSCLK Freq. = 15 MHz - 3.3V ± 0.15V) Cload = 50 pF, Vref = VCC/2  
Min  
(ns)  
Max  
Parameter  
(ns) Comment  
Reference Edge  
t1  
t2  
33  
66  
16  
CLK2 period  
SYSCLK period  
t3  
CLK2 high and low pulse width  
RA(31:0) RAPAR RSIZE RLDSTO output delay  
LOCK Output delay  
t4_1  
t4_2  
t5  
10  
16  
18  
18  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK+  
MEMCS*(9:0) ROMCS* EXMCS* output delay  
DDIR DDIR* output delay  
t6  
MEMWR* IOWR*output delay  
formula: 20 ns + 1/4 t2  
t7  
36.5  
SYSCLK- or SYSCLK+  
OE* HL output delay  
formula: 15 ns + 1/4 t2  
t8  
31.5  
SYSCLK+  
SYSCLK+  
t9_1  
t9_2  
16  
13  
Data setup time during load  
Data setup time during load NOPAR = 0 rpa = rec = either 0 or  
1
SYSCLK+  
SYSCLK+  
SYSCLK-  
SYSCLK+  
SYSCLK+  
SYSCLK-  
t10  
t11  
t12  
t13  
t14  
7
Data hold time during load  
Data output delay  
44  
18  
Data output valid to HZ – guaranteed by design  
CB output delay  
30  
25  
ALE* output delay  
BUFFEN* HL output delay  
formula: 16 ns + 1/4 t2  
t15  
32.5  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK-  
SYSCLK+  
SYSCLK+  
t16  
t17  
t20  
t21  
t22  
20  
20  
20  
MHOLD* output delay – guaranteed by design  
MDS* DRDY* output delay  
MEXC* output delay  
15  
0
RASI(3:0) RSIZE(1:0) RASPAR setup time  
RASI(3:0) RSIZE(1:0) RASPAR hold time  
15  
4204C–AERO–05/05  
Table 6. AC Characteristics (SYSCLK Freq. = 15 MHz - 3.3V ± 0.15V) Cload = 50 pF, Vref = VCC/2 (Continued)  
Min  
(ns)  
Max  
Parameter  
(ns) Comment  
Reference Edge  
SYSCLK+  
t23  
t24  
t25  
15  
0
20  
BOOT PROM address output delay  
BUSRDY* setup time  
BUSRDY* hold time  
SYSCLK+  
SYSCLK+  
SYSCLK+ HL  
SYSCLK- LH  
t27  
t28  
t29  
15  
0
20  
33  
33  
IOSEL output delay  
DMAAS setup time  
formula of max: 1/2 t2  
SYSCLK+  
DMAAS hold time  
formula of max: 1/2 t2  
SYSCLK-  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK+  
t30  
t31  
t32  
t33  
t36  
t37  
t38  
t39  
t40  
t41  
t46  
t48  
t49  
t50  
t52  
t53  
t54  
t56  
t57  
t60  
15  
20  
DMAREQ* setup time  
DMAGNT* output delay  
RA(31:0) RAPAR CPAR setup time  
RA(31:0) RAPAR CPAR hold time  
TCK period  
15  
0
100  
10  
4
TMS setup time  
TCK+  
TMS hold time  
TCK+  
10  
10  
TDI setup time  
TCK+  
TDI hold time  
TCK+  
20  
35  
35  
20  
35  
TDO output delay  
TCK-  
INULL output delay  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK-  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK+  
SYSCLK+  
RESET* CPUHALT* output delay  
SYSERR* SYSAV output delay  
IUERR* output delay  
15  
0
EXTINT(4:0) setup time  
EXTINT(4:0) hold time  
EXTINTACK output delay  
OE* LH output delay (no DMA mode)  
BUFFEN* LH output delay  
INST output delay  
20  
14  
15  
35  
Data output delay to low-Z – guaranteed by design  
formula: 14 ns + 1/4 t2  
t61  
30.5  
SYSCLK+  
16  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 3. 150 pF Buffer Response (Data from simulation)  
30  
25  
20  
15  
10  
5
DTplh (Vref Vcc/2)  
DTplh Typ  
DTplh Min  
DTplh Max  
Table 1 : Pad 150pF - 3,15V up to 3,45V  
Cload  
50  
DTplh min  
DTplh typ  
DTplh max  
0
2,7  
5,2  
0
4,05  
8,4  
12,5  
16,75  
0
100  
150  
200  
250  
7,25  
14,35  
21,45  
28,55  
0
50 100 150 200 250  
7,95  
10,65  
Cload (pF)  
DTphl (Vref Vcc/2)  
20  
15  
10  
5
Table 2 : Pad 150pF - 3,15V up to 3,45V  
Cload DTphl min DTphl typ DTphl max  
50 0  
DTphl Min  
DTphlTyp  
DTphl Max  
0
2,65  
5
7,35  
9,95  
0
3,5  
6,95  
10,45  
13,85  
100  
150  
200  
250  
5,7  
11,15  
15,6  
0
50 100 150 200 250  
18,45  
Cload (pF)  
Trise (Vref 10%-90%Vcc)  
60  
50  
40  
30  
20  
10  
0
Table 3 : Pad 150pF - 3,15V up to 3,45V  
Cload Trise min Trise typ Trise max  
50 4,95 7,3  
Trise Min  
Trise Typ  
Trise Max  
12,55  
23,5  
34,3  
45,3  
56,4  
100  
150  
200  
250  
8,4  
12,25  
15,9  
13,15  
19,3  
25,55  
31,8  
50 100 150 200 250  
19,85  
Cload (pF)  
Tfall (Vref 10%-90%Vcc)  
60  
50  
40  
30  
20  
10  
0
Table 4 : Pad 150pF - 3,15V up to 3,45V  
Cload Tfall min Tfall typ Tfall max  
50 4,45 6,1  
Tfall Min  
Tfall Typ  
Tfall Max  
11,45  
21,85  
32,45  
43,1  
100  
150  
200  
250  
7,2  
11,35  
15,8  
12  
18,25  
24,8  
20,35  
31,4  
53,65  
50 100 150 200 250  
Cload (pF)  
17  
4204C–AERO–05/05  
Figure 4. 400 pF Buffer Response (Data from simulation)  
25  
20  
15  
10  
5
DTplh (Vref Vcc/2)  
DTplh Typ  
DTplh Min  
DTplh Max  
Table 5 : Pad 400pF - 3,15V up to 3,45V  
Cload  
50  
DTplh min  
DTplh typ  
DTplh max  
0
2,8  
5,1  
6,95  
8,9  
0
0
5,4  
10,4  
15,2  
20,05  
100  
150  
200  
250  
3,65  
6,55  
9,65  
12,5  
0
50 150 250 350 450  
Cload (pF)  
DTphl (Vref Vcc/2)  
20  
15  
10  
5
DTphl Min  
DTphlTyp  
DTphl Max  
Table 6 : Pad 400pF - 3,15V up to 3,45V  
Cload DTphl min DTphl typ DTphl max  
50 0  
0
0
100  
150  
200  
250  
3,6  
6,3  
8,85  
11,5  
3,9  
6,95  
10  
5,1  
9,7  
14,1  
18,25  
0
50 150 250 350 450  
12,95  
Cload (pF)  
Trise (Vref 10%-90%Vcc)  
40  
30  
20  
10  
0
Table 7 : Pad 400pF - 3,15V up to 3,45V  
Cload Trise min Trise typ Trise max  
50 3,9  
Trise Min  
Trise Typ  
Trise Max  
3
5,7  
12,2  
19,15  
26,25  
33,65  
100  
150  
200  
250  
5,8  
8,1  
10,7  
13,15  
7,7  
11,6  
15,5  
19,5  
50 150 250 350 450  
Cload (pF)  
Tfall (Vref 10%-90%Vcc)  
35  
30  
25  
20  
15  
10  
5
Table 8 : Pad 400pF - 3,15V up to 3,45V  
Cload Tfall min Tfall typ Tfall max  
50 2,95 3,55  
Tfall Min  
Tfall Typ  
Tfall Max  
5
10,9  
17,75  
25  
100  
150  
200  
250  
5,5  
7,85  
10,5  
6,85  
10,35  
14,3  
0
50 150 250 350 450  
13,45  
18,55  
32,35  
Cload (pF)  
18  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 5. OE*/400 pF Buffer Response (Data from simulation)  
25  
20  
15  
10  
5
DTplh (Vref Vcc/2)  
DTplh Typ  
DTplh Min  
DTplh Max  
Table 9 : Pad 400pF - OE* - 3,15V up to 3,45V  
Cload  
50  
DTplh min  
DTplh typ  
DTplh max  
0
2,75  
5,1  
6,95  
8,9  
0
3,7  
6,6  
0
100  
150  
200  
250  
5,35  
10,35  
15,2  
0
50 150 250 350 450  
9,7  
Cload (pF)  
12,55  
20,05  
20  
DTphl (Vref Vcc/2)  
15  
10  
5
DTphl Min  
DTphlTyp  
DTphl Max  
Table 10 : Pad 400pF - OE* - 3,15V up to 3,45V  
Cload DTphl min DTphl typ DTphl max  
50 0  
0
0
100  
150  
200  
250  
2,95  
5,1  
6,95  
8,7  
3,45  
6,1  
8,6  
4,7  
8,75  
12,7  
0
50 150 250 350 450  
11,1  
16,45  
Cload (pF)  
Trise (Vref 10%-90%Vcc)  
40  
30  
20  
10  
0
Trise Min  
Trise Typ  
Trise Max  
Table 11 : Pad 400pF - OE* - 3,15V up to 3,45V  
Cload Trise min Trise typ Trise max  
50 3,9 5,7  
3
100  
150  
200  
250  
5,8  
8,1  
10,7  
13,15  
7,7  
11,6  
15,5  
19,5  
12,2  
19,15  
26,25  
33,65  
50 150 250 350 450  
Cload (pF)  
Tfall (Vref 10%-90%Vcc)  
35  
30  
25  
20  
15  
10  
5
Table 12 : Pad 400pF - OE* - 3,15V up to 3,45V  
Cload Tfall min Tfall typ Tfall max  
50 2,45 3,25 4,7  
Tfall Min  
Tfall Typ  
Tfall Max  
100  
150  
200  
250  
4,7  
6,4  
6,1  
9,15  
10,05  
16,25  
23,15  
30,2  
0
8,5  
10,55  
12,45  
16,2  
50 150 250 350 450  
Cload (pF)  
19  
4204C–AERO–05/05  
Timing Diagrams  
Figure 6. RAM Fetch, RAM Load and RAM Store Sequence - n Waitstates for Read, m Waitstates for Write  
20  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 7. RAM “Atomic-load-store” byte Sequence - 0 Waitstate  
21  
4204C–AERO–05/05  
Figure 8. RAM Load-double and RAM Store-double Sequence - 0 Waitstate  
22  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 9. RAM Load with Correctable Error - 0 Waitstate  
23  
4204C–AERO–05/05  
Figure 10. RAM Load with Uncorrectable Error - 0 Waitstate  
24  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 11. RAM Load with Unimplemented Area Access - 0 Waitstate  
25  
4204C–AERO–05/05  
Figure 12. I/O Store Sequence with BUSRDY* and n Waitstates (Timing for 0 Waitstate = Timing for 1 Waitstates)  
26  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 13. I/O Load Sequence with BUSRDY* and n Waitstates (Timing for 0 ws = Timing for 1 ws)  
27  
4204C–AERO–05/05  
Figure 14. EXCHANGE RAM Store with BUSDRY* and n Waitstates  
28  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 15. EXCHANGE RAM Load with BUSDRY* and n Waitstates  
29  
4204C–AERO–05/05  
Figure 16. 8-bit BOOT PROM Fetch (or Load Word) - n Waitstates  
30  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 17. 8-bit BOOT PROM 2x Store byte - n Waitstate  
31  
4204C–AERO–05/05  
Figure 18. DMA RAM load with or without Correctable Error and DMA RAM Store - 0 Waitstates  
32  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 19. Edge Triggered Interrupt Timing  
33  
4204C–AERO–05/05  
Figure 20. Halt Timing  
34  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 21. External Error with Halt Timing  
35  
4204C–AERO–05/05  
Figure 22. Reset Timing  
36  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Figure 23. External Error signaling with BUSERR* and BUSRDY*  
1
2
3
4
SYSCLK  
BUSRDY*  
BUSERR*  
MEXC*  
t24  
t24  
t25  
t25  
t100  
t20  
37  
4204C–AERO–05/05  
TSC695FL  
Package  
Drawings  
256-lead MQFP-F  
37  
4204C–AERO–05/05  
256-lead MQFP-F Pin  
Assignments  
Table 7. Pin Assignments  
Pin  
Signal  
GPIINT  
GPI[7]  
VCCO  
VSSO  
GPI[6]  
GPI[5]  
GPI[4]  
GPI[3]  
VCCO  
VSSO  
GPI[2]  
GPI[1]  
GPI[0]  
D[31]  
Pin  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
Signal  
D[0]  
Pin  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
Signal  
RA[0]  
Pin  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
Signal  
DXFER  
MEXC  
1
2
RSIZE[1]  
RSIZE[0]  
RASI[3]  
VCCO  
VSSO  
RASI[2]  
RASI[1]  
RASI[0]  
RA[31]  
RA[30]  
VCCO  
VSSO  
RA[29]  
RA[28]  
RA[27]  
VCCO  
VSSO  
RA[26]  
RA[25]  
RA[24]  
VCCI  
VCCO  
3
VSSO  
VCCO  
4
RAPAR  
RASPAR  
DPAR  
VSSO  
5
RESET  
SYSRESET  
BA[1]  
6
7
VCCO  
8
VSSO  
BA[0]  
9
SYSCLK  
TDO  
CB[6]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CB[5]  
TRST  
VCCO  
TMS  
VSSO  
TDI  
CB[4]  
TCK  
CB[3]  
D[30]  
CLK2  
CB[2]  
VCCO  
VSSO  
D[29]  
DRDY  
CB[1]  
DMAAS  
VCCO  
VCCO  
VSSO  
D[28]  
VSSO  
CB[0]  
VCCI  
DMAGNT  
EXMCS  
VCCI  
ALE  
VSSI  
VCCI  
D[27]  
VSSI  
D[26]  
VSSI  
VSSI  
PROM8  
ROMCS  
MEMCS[9]  
VCCO  
VCCO  
VSSO  
D[25]  
VCCO  
VSSO  
RA[23]  
RA[22]  
RA[21]  
VCCO  
VSSO  
RA[20]  
RA[19]  
RA[18]  
DMAREQ  
BUSERR  
BUSRDY  
ROMWRT  
NOPAR  
SYSHALT  
CPUHALT  
VCCO  
D[24]  
VSSO  
D[23]  
MEMCS[8]  
MEMCS[7]  
MEMCS[6]  
MEMCS[5]  
MEMCS[4]  
MEMCS[3]  
D[22]  
VCCO  
VSSO  
D[21]  
VSSO  
D[20]  
SYSERR  
38  
TSC695FL  
4204C–AERO–05/05  
TSC695FL  
Table 7. Pin Assignments (Continued)  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Signal  
D[19]  
D[18]  
VCCO  
VSSO  
D[17]  
D[16]  
VCCI  
VSSI  
D[15]  
D[14]  
VCCO  
VSSO  
D[13]  
D[12]  
D[11]  
D[10]  
VCCO  
VSSO  
D[9]  
Pin  
Signal  
VCCO  
VSSO  
RA[17]  
RA[16]  
RA[15]  
VCCO  
VSSO  
RA[14]  
VCCI  
Pin  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
Signal  
SYSAV  
EXTINT[4]  
EXTINT[3]  
EXTINT[2]  
EXTINT[1]  
EXTINT[0]  
VCCI  
Pin  
Signal  
VCCO  
VSSO  
98  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
MEMCS[2]  
MEMCS[1]  
MEMCS[0]  
VCCI  
VSSI  
VSSI  
OE  
EXTINTACK  
IUERR  
VCCO  
VCCO  
VSSO  
VSSI  
RA[13]  
RA[12]  
VCCO  
VSSO  
RA[11]  
RA[10]  
RA[9]  
MEMWR  
BUFFEN  
DDIR  
VSSO  
CPAR  
TXA  
VCCO  
VSSO  
RXA  
RXB  
DDIR  
TXB  
MHOLD  
MDS  
VCCO  
VSSO  
RA[8]  
IOWR  
IOSEL[3]  
VCCO  
WDCLK  
IWDE  
D[8]  
D[7]  
RA[7]  
VSSO  
EWDINT  
TMODE[1]  
TMODE[0]  
DEBUG  
INULL  
D[6]  
RA[6]  
IOSEL[2]  
IOSEL[1]  
IOSEL[0]  
WRT  
VCCO  
VSSO  
D[5]  
VCCO  
VSSO  
RA[5]  
D[4]  
RA[4]  
WE  
DIA  
D[3]  
RA[3]  
VCCO  
VCCO  
VSSO  
D[2]  
VCCO  
VSSO  
RA[2]  
VSSO  
VCCO  
VSSO  
D[1]  
RD  
FLUSH  
INST  
RLDSTO  
LOCK  
RA[1]  
RTC  
39  
4204C–AERO–05/05  
Ordering  
Information  
Table 8. Possible Order Entries  
Operating  
Part Number  
Supply Voltage  
Temperature (°C)  
Max Speed  
Packaging  
MQFP-F256  
MQFP-F256  
MQFP-F256  
MQFP-F256  
MQFP-F256  
Die  
Quality Flow  
Engineering Samples  
Standard Mil.  
QML Q  
TSC695FL-15MA-E  
TSC695FL-15MA  
5962-0324601QXC  
5962-0324601VXC  
TSC695FL-15SASB  
TSC695FL-15MB-E  
5962-0324601Q9A  
5962-0324601V9A  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
25  
15  
15  
15  
15  
15  
15  
15  
15  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
25  
QML V  
ESCC  
Engineering Samples  
QML Q  
-55 to 125  
-55 to 125  
Die  
Die  
QML V  
40  
TSC695FL  
4204C–AERO–05/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
Fax: (33) 4-76-58-34-80  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not  
intended, authorized, or warranted for use as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are®  
are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
4204C–AERO–05/05  

相关型号:

TSC695FL-15MA-E

Low-Voltage Rad-Hard 32-bit SPARC Embedded Processor
ATMEL

TSC695FL-15MB-E

Low-Voltage Rad-Hard 32-bit SPARC Embedded Processor
ATMEL

TSC695FL-15SASB

Low-Voltage Rad-Hard 32-bit SPARC Embedded Processor
ATMEL

TSC695F_04

Rad-Hard 32-bit SPARC Embedded Processor
ATMEL

TSC7

CERAMIC TRIMMER CAPACITOR - 7MM
SUNTAN

TSC704

BEFESTIGUNGSKLAMMER EINZEL 10ST
ETC

TSC73F12CBT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS

TSC73F21IAT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS

TSC73F22ILT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS

TSC73F23IFT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS

TSC73F25CHT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS

TSC73F31CBT

Parallel - Fundamental Quartz Crystal, 7.373MHz Nom, HC-49/US, 2 PIN
CTS