ATxmega16A4U-MH [ATMEL]

8/16-bit Atmel XMEGA A4U Microcontroller; 8位/ 16位爱特梅尔XMEGA微控制器A4U
ATxmega16A4U-MH
型号: ATxmega16A4U-MH
厂家: ATMEL    ATMEL
描述:

8/16-bit Atmel XMEGA A4U Microcontroller
8位/ 16位爱特梅尔XMEGA微控制器A4U

微控制器和处理器 外围集成电路 异步传输模式 PC ATM 时钟
文件: 总121页 (文件大小:4723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, Low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Non-volatile Program and Data Memories  
– 16K - 128KBytes of In-System Self-Programmable Flash  
– 4K - 8KBytes Boot Code Section with Independent Lock Bits  
– 1K - 2KBytes EEPROM  
– 2K - 8KBytes Internal SRAM  
Peripheral Features  
– Four-channel DMA Controller  
– Eight-channel Event System  
– Five 16-bit Timer/Counters  
8/16-bit Atmel  
XMEGA A4U  
Microcontroller  
Three Timer/Counters with 4 Output Compare or Input Capture channels  
Two Timer/Counters with 2 Output Compare or Input Capture channels  
High-Resolution Extensions on all Timer/Counters  
Advanced Waveform Extension on one Timer/Counter  
– One USB device Interface  
USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant  
32 Endpoints with full configuration flexibility  
– Five USARTs with IrDA support for one USART  
– Two Two-Wire Interfaces with dual address match (I2C and SMBus compatible)  
– Two Serial Peripheral Interfaces (SPIs)  
– AES and DES Crypto Engine  
– CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3) Generator  
– 16-bit Real Time Counter with Separate Oscillator  
– One Twelve-channel, 12-bit, 2MSPS Analog to Digital Converter  
– One Two-channel, 12-bit, 1MSPS Digital to Analog Converter  
– Two Analog Comparators with Window compare function, and current source feature  
– External Interrupts on all General Purpose I/O pins  
– Programmable Watchdog Timer with Separate On-chip Ultra Low Power Oscillator  
– QTouch® library support  
ATxmega128A4U  
ATxmega64A4U  
ATxmega32A4U  
ATxmega16A4U  
Capacitive touch buttons, sliders and wheels  
Up to 64 sense channels  
Special Microcontroller Features  
Preliminary  
– Power-on Reset and Programmable Brown-out Detection  
– Internal and External Clock Options with PLL and Prescaler  
– Programmable Multi-level Interrupt Controller  
– Five Sleep Modes  
– Programming and Debug Interfaces  
PDI (Program and Debug Interface)  
I/O and Packages  
– 34 Programmable I/O Pins  
– 44 - lead TQFP  
– 44 - pad VQFN/QFN  
– 49 - ball VFBGA  
Operating Voltage  
– 1.6 – 3.6V  
Operating Frequency  
– 0 – 12MHz from 1.6V  
– 0 – 32MHz from 2.7V  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
RF and ZigBee  
USB Connectivity  
Sensor control  
Optical  
Low power battery applications  
Power tools  
HVAC  
Utility Metering  
Medical Applications  
White Goods  
8387A–AVR–07/11  
XMEGA A4U  
1. Ordering Information  
Ordering Code  
Flash (Bytes) EEPROM (Bytes) SRAM (Bytes) Speed (MHz) Power Supply Package(1)(2)(3)  
Temp  
ATxmega128A4U-AU  
ATxmega64A4U-AU  
ATxmega32A4U-AU  
ATxmega16A4U-AU  
ATxmega128A4U-MH  
ATxmega64A4U-MH  
ATxmega32A4U-MH  
ATxmega16A4U-MH  
ATxmega128A4U-CU  
ATxmega64A4U-CU  
ATxmega32A4U-CU  
ATxmega16A4U-CU  
128K + 8K  
64K + 4K  
32K + 4K  
16K + 4K  
128K + 8K  
64K + 4K  
32K + 4K  
16K + 4K  
128K + 8K  
64K + 4K  
32K + 4K  
16K + 4K  
2K  
2K  
1K  
1K  
2K  
2K  
1K  
1K  
2K  
2K  
1K  
1K  
8K  
4K  
4K  
2K  
8K  
4K  
4K  
2K  
8K  
4K  
4K  
2K  
44A  
44M1  
49C2  
32  
1.6 - 3.6V  
-40°C - 85°C  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
3. For packaging information see ”Packaging information” on page 61.  
Package Type  
44A  
44-Lead, 10 x 10mm Body Size, 1.0mm Body Thickness, 0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
44-Pad, 7x7x1mm Body, Lead Pitch 0.50mm, 5.20mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad No Lead Package (VQFN)  
49-Ball (7 x 7 Array), 0.65mm Pitch, 5.0 x 5.0 x 1.0mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)  
44M1  
49C2  
2
8387A–AVR–07/11  
XMEGA A4U  
2. Pinout/Block Diagram  
Figure 2-1. Block Diagram and QFN/TQFP pinout  
Power / Ground  
Programming, debug, test  
Digital function  
Analog function  
External clock / Crystal pins  
General Purpose I/O  
Port R  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
GND  
VCC  
PC0  
PC1  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PE3  
DATA BUS  
OSC/CLK  
Control  
Crypto /  
Power  
PE2  
VCC  
GND  
PE1  
PE0  
PD7  
PD6  
PD5  
PD4  
PD3  
Watchdog  
CRC  
Supervision  
AREF  
ADC  
Real Time  
Counter  
Watchdog  
Timer  
Reset  
Controller  
Sleep  
Controller  
3
AC0:1  
4
Event System  
Controller  
Interrupt  
Controller  
Prog/Debug  
Interface  
OCD  
5
BUS  
matrix  
TEMPREF  
VREF  
AREF  
DAC  
6
DMA  
Controller  
CPU  
7
FLASH  
EEPROM  
SRAM  
8
DATA BUS  
9
EVENT ROUTING NETWORK  
10  
11  
Port C  
Port D  
Port E  
Note:  
For full details on pinout and pin functions refer to ”Pinout and Pin Functions” on page 51.  
3
8387A–AVR–07/11  
XMEGA A4U  
Figure 2-2. BGA pinout  
Top view  
Bottom view  
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
G
Table 2-1.  
A
BGA pinout  
1
2
3
4
5
6
PA3  
AVCC  
GND  
PR1  
PR0  
PDI_DATA  
PE3  
RESET/  
PA4  
PA1  
PA0  
GND  
PE2  
VCC  
B
C
D
E
F
PDI_CLK  
PA5  
PB1  
GND  
VCC  
PC1  
PA2  
PB2  
GND  
PC0  
PC2  
PA6  
PB3  
PC3  
PC4  
PC5  
PA7  
PB0  
GND  
PC6  
PC7  
GND  
GND  
PD4  
PD0  
GND  
PE1  
PD7  
PD5  
PD1  
VCC  
GND  
PE0  
PD6  
PD3  
PD2  
G
4
8387A–AVR–07/11  
XMEGA A4U  
3. Overview  
The Atmel® AVR® XMEGA® is a family of low power, high performance and peripheral rich 8/16-  
bit microcontrollers based on the AVR® enhanced RISC architecture. By executing instructions  
in a single clock cycle, AVR achieves throughputs CPU approaching 1Million Instructions Per  
Second (MIPS) per MHz allowing the system designer to optimize power consumption versus  
processing speed.  
Atmel AVR CPU combines a rich instruction set with 32 general purpose working registers. All  
the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two indepen-  
dent registers to be accessed in one single instruction, executed in one clock cycle. The  
resulting architecture is more code efficient while achieving throughputs many times faster than  
conventional single-accumulator or CISC based microcontrollers.  
The XMEGA A4U devices provide the following features: In-System Programmable Flash with  
Read-While-Write capabilities, Internal EEPROM and SRAM, four-channel DMA Controller,  
eight-channel Event System, Programmable Multi-level Interrupt Controller, 34 general purpose  
I/Opins, 16-bit Real Time Counter, five flexible 16-bit Timer/Counters with compare and PWM  
channels, one USB 2.0 full speed (12Mbps) Device Interface, five USARTs, two Two Wire Serial  
Interfaces (TWIs), two Serial Peripheral Interfaces (SPIs), AES and DES crypto engine, one  
Twelve-channel, 12-bit ADC with optional differential input with programmable gain, one Two-  
channel 12-bit DAC, two analog comparators with window mode, programmable Watchdog  
Timer with separate Internal Oscillator, accurate internal oscillators with PLL and prescaler and  
programmable Brown-Out Detection.  
The Program and Debug Interface (PDI), a fast 2-pin interface for programming and debugging,  
is available.  
All XMEGA devices have five software selectable power saving modes. The Idle mode stops the  
CPU while allowing the SRAM, DMA Controller, Event System, Interrupt Controller and all  
peripherals to continue functioning. The Power-down mode saves the SRAM and register con-  
tents but stops the oscillators, disabling all other functions until the next TWI or pin-change  
interrupt, or Reset. In Power-save mode, the asynchronous Real Time Counter continues to run,  
allowing the application to maintain a timer base while the rest of the device is sleeping. In  
Standby mode, the Crystal/Resonator Oscillator is kept running while the rest of the device is  
sleeping. This allows very fast start-up from external crystal combined with low power consump-  
tion. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue  
to run. To further reduce power consumption, the peripheral clock to each individual peripheral  
can optionally be stopped in Active mode and Idle sleep mode.  
Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels  
functionality into AVR microcontrollers.  
The device is manufactured using Atmel's high-density nonvolatile memory technology. The pro-  
gram Flash memory can be reprogrammed in-system through the PDI. A Bootloader running in  
the device can use any interface to download the application program to the Flash memory. The  
Bootloader software in the Boot Flash section will continue to run while the Application Flash  
section is updated, providing true Read-While-Write operation. By combining an 8/16-bit RISC  
CPU with In-System Self-Programmable Flash, the Atmel XMEGA A4U is a powerful microcon-  
troller family that provides a highly flexible and cost effective solution for embedded applications.  
5
8387A–AVR–07/11  
XMEGA A4U  
The Atmel® AVR® XMEGA® devices are supported with a full suite of program and system  
development tools including: C compilers, macro assemblers, program debugger/simulators,  
programmers, and evaluation kits.  
3.1  
Block Diagram  
Figure 3-1. XMEGA A4U Block Diagram  
PR[0..1]  
XTAL1/  
TOSC1  
Digital function  
Analog function  
Programming, debug, test  
Oscillator/Crystal/Clock  
General Purpose I/O  
XTAL2/  
TOSC2  
Oscillator  
Circuits/  
Clock  
Real Time  
Counter  
Watchdog  
Oscillator  
PORT R (2)  
Generation  
DATA BUS  
SRAM  
Watchdog  
Timer  
PA[0..7]  
PORT A (8)  
Event System  
Controller  
Oscillator  
Control  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
ACA  
DMA  
Controller  
Sleep  
Controller  
ADCA  
RESET/  
AREFA  
Int. Refs.  
Tempref  
AREFB  
Prog/Debug  
Controller  
PDI_CLK  
BUS Matrix  
PDI  
PDI_DATA  
AES  
DES  
CRC  
OCD  
Interrupt  
Controller  
CPU  
PB[0..7]  
PORT B (8)  
DACB  
NVM Controller  
Flash  
EEPROM  
IRCOM  
DATA BUS  
EVENT ROUTING NETWORK  
PORT C (8)  
PORT D (8)  
PORT E (4)  
TOSC1 (optional)  
TOSC2  
(optional)  
PC[0..7]  
PD[0..7]  
PE[0..3]  
6
8387A–AVR–07/11  
XMEGA A4U  
4. Resources  
A comprehensive set of development tools, application notes and datasheets are available for  
download on http://www.atmel.com/avr.  
4.1  
Recommended reading  
• XMEGA® AU Manual  
• XMEGA Application Notes  
This device data sheet only contains part specific information with a short description of each  
peripheral and module. The XMEGA AU Manual describes the modules and peripherals in  
depth. The XMEGA application notes contain example code and show applied use of the mod-  
ules and peripherals.  
All documentations are available from www.atmel.com/avr.  
5. Capacitive touch sensing  
The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive inter-  
faces on most Atmel AVR® microcontrollers. The patented charge-transfer signal acquisition  
offers robust sensing and includes fully debounced reporting of touch keys and includes Adja-  
cent Key Suppression® (AKS™) technology for unambiguous detection of key events. The  
QTouch Library includes support for the QTouch and QMatrix® acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library  
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-  
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information  
and determine the touch sensor states.  
The QTouch Library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the  
Atmel QTouch Library User Guide - also available for download from the Atmel website.  
7
8387A–AVR–07/11  
XMEGA A4U  
6. AVR CPU  
6.1  
Features  
8/16-bit high performance AVR RISC Architecture  
– 142 instructions  
– Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in SRAM  
Stack Pointer accessible in I/O memory space  
Direct addressing of up to 16Mbytes of program and 16Mbytes of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Support for 8-, 16- and 32-bit Arithmetic  
Configuration Change Protection of system critical features  
6.2  
Overview  
The Atmel® AVR® XMEGA® devices use the 8/16-bit AVR CPU. The main function of the CPU is  
to execute the code and perform all calculations. The CPU is able to access memories, perform  
calculations, control peripherals, and execute the program from the FLASH memory. Interrupt  
handling is described in a separate section, refer to ”Interrupts and Programmable Multi-level  
Interrupt Controller” on page 26.  
Figure 6-1 on page 8 shows the CPU block diagram of the AVR CPU architecture.  
Figure 6-1. Block Diagram of the AVR CPU architecture  
In order to maximize performance and parallelism, the AVR uses a Harvard architecture with  
separate memories and buses for program and data. Instructions in the program memory are  
executed with a single level pipelining. While one instruction is being executed, the next instruc-  
8
8387A–AVR–07/11  
XMEGA A4U  
tion is pre-fetched from the Program Memory. This enables instructions to be executed in every  
clock cycle.  
The program memory is In-System Self-Programmable Flash memory.  
6.3  
ALU - Arithmetic Logic Unit  
The Arithmetic Logic Unit (ALU) supports arithmetic and logic operations between registers or  
between a constant and a register. Single register operations can also be executed. The ALU  
operates in direct connection with all the 32 general purpose registers. In a single clock cycle,  
arithmetic operations between general purpose registers or between a register and an immedi-  
ate are executed and the result is stored back in the Register File. After an arithmetic or logic  
operation, the Status Register is updated to reflect information about the result of the operation.  
The ALU operations are divided into three main categories – arithmetic, logical, and bit-func-  
tions. Both 8- and 16-bit arithmetic is supported, and the instruction set allows for efficient  
implementation of 32-bit arithmetic. The hardware multiplier supports signed and unsigned mul-  
tiplication and fractional format.  
6.4  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the Flash Program  
Memory ‘0’. The Program Counter (PC) addresses the next instruction to be fetched. After a  
reset, the PC is set to location ‘0’.  
Program flow is provided by conditional and unconditional jump and call instructions, capable of  
addressing the whole address space directly. Most AVR instructions use a 16-bit word format,  
while a limited number uses a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the Stack. The Stack  
is allocated in the general data SRAM, and consequently the Stack size is only limited by the  
total SRAM size and the usage of the SRAM. After reset the Stack Pointer (SP) points to the  
highest address in the internal SRAM. The SP is read/write accessible in the I/O memory space,  
enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
6.5  
Register File  
The Register File consists of 32 x 8-bit general purpose working registers with single clock cycle  
access time. The Register File supports the following input/output schemes:  
• One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
• One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space  
addressing - enabling efficient address calculations. One of these address pointers can also be  
used as an address pointer for look up tables in Flash program memory.  
9
8387A–AVR–07/11  
XMEGA A4U  
7. Memories  
7.1  
Features  
Flash Program Memory  
– One linear address space  
– In-System Programmable  
– Self-Programming and Bootloader support  
– Application Section for application code  
– Application Table Section for application code or data storage  
– Boot Section for application code or bootloader code  
– Separate read/write protection lock bits for all sections  
– CRC Generator support for CRC check of a selectable flash program memory section  
Data Memory  
– One linear address space  
– Single cycle access from CPU  
– SRAM  
– EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
– I/O Memory  
Configuration and Status registers for all peripherals and modules  
16bit-accessible General Purpose Register for global variables or flags  
– Bus arbitration  
Safe and deterministic handling of priority between CPU, DMA Controller, and other bus  
masters  
– Separate buses for SRAM, EEPROM, and I/O Memory  
Simultaneous bus access for CPU and DMA Controller  
Production Signature Row Memory for factory programmed data  
– ID for each microcontroller device type  
– Serial number for each device  
– Calibration bytes for factory calibrated peripherals  
User Signature Row  
– One flash page in size  
– Can be read and written from software  
– Content is kept after chip erase  
7.2  
Overview  
The Atmel® AVR® architecture has two main memory spaces, the Program Memory and the  
Data Memory. Executable code can only reside in the Program Memory, while data can be  
stored both in the Program Memory and the Data Memory. The Data Memory includes both  
SRAM, and EEPROM Memory for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching.  
The available memory size configurations are shown in ”Ordering Information” on page 2. In  
addition each device has a Flash memory signature row for calibration data, device identifica-  
tion, serial number etc.  
Non Volatile Memory (NVM) spaces can be locked for further write and read/write operations.  
This prevents unrestricted access to the application software.  
10  
8387A–AVR–07/11  
XMEGA A4U  
7.3  
Flash Program Memory  
The Atmel® AVR® XMEGA® devices contain On-chip In-System Reprogrammable Flash mem-  
ory for program storage. The Flash memory can be accessed for read and write both from an  
external programmer through the PDI, or from application software running in the device.  
All AVR instructions are 16- or 32-bit wide, each Flash address location is 16-bit.  
The Flash memory is organized in two main sections, the Application Section and the Boot  
Loader section. The size of the different sections are fixed, but device dependent. These two  
sections have separate lock bits and can have different levels of protection. The Store Program  
Memory (SPM) instruction, used to write to the Flash from the application software, will only  
operate when executed from the Boot Loader Section.  
The Application Section contains an Application Table Section with separate lock settings. This  
enables safe storage of Non-volatile data in the Program Memory.  
Figure 7-1. Flash Program Memory (Hexadecimal address)  
Word Address  
0
Application Section (Bytes)  
(128K/64K/32K/16K)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
/
/
/
/
/
37FF  
3800  
3FFF  
4000  
47FF  
/
/
/
/
/
17FF  
1800  
1FFF  
2000  
27FF  
Application Table Section (Bytes)  
(4K/4K/4K/4K)  
FFFF  
10000  
10FFF  
Boot Section (Bytes)  
(8K/4K/4K/4K)  
The Application Table Section and Boot Section can also be used for general application  
software.  
7.4  
Data Memory  
The Data memory contains the I/O Memory, internal SRAM, optionally memory mapped  
EEPROM, and external memory if available. The data memory is organized as one continuous  
memory section, see Figure 7-2 on page 12. To simplify development, I/O Memory, EEPROM  
and SRAM will always have the same start addresses for all XMEGA devices.  
11  
8387A–AVR–07/11  
XMEGA A4U  
Figure 7-2. Data Memory Map (Hexadecimal address)  
Byte Address  
ATxmega64A4U  
Byte Address  
ATxmega32A4U  
Byte Address  
ATxmega16A4U  
0
0
0
FFF  
I/O Registers  
(4 KB)  
I/O Registers  
(4 KB)  
I/O Registers  
(4 KB)  
FFF  
1000  
17FF  
FFF  
1000  
13FF  
1000  
13FF  
EEPROM  
(2K)  
EEPROM  
(1K)  
EEPROM  
(1K)  
RESERVED  
RESERVED  
RESERVED  
2000  
2FFF  
2000  
2FFF  
2000  
27FF  
Internal SRAM  
(4K)  
Internal SRAM  
(4K)  
Internal SRAM  
(2K)  
Byte Address  
ATxmega128A4U  
0
FFF  
I/O Registers  
(4 KB)  
1000  
17FF  
EEPROM  
(2K)  
RESERVED  
2000  
3FFF  
Internal SRAM  
(8K)  
7.4.1  
I/O Memory  
The Status and configuration registers for peripherals and modules, including the CPU, are  
addressable through I/O memory locations. All I/O locations can be accessed by the load  
(LD/LDS/LDD) and store (ST/STS/STD) instructions, which is used to transfer data between the  
32 registers in the Register File and the I/O memory. The IN and OUT instructions can address  
I/O memory locations in the range 0x00 - 0x3F directly. In the address range 0x00 - 0x1F, sin-  
gle- cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA A4U is shown in the  
”Peripheral Module Address Map” on page 56.  
7.4.2  
7.4.3  
SRAM Data Memory  
The devices have internal SRAM memory for data storage.  
EEPROM Data Memory  
The devices have internal EEPROM memory for non-volatile data storage. It is addressable  
either in a separate data space or it can be memory mapped into the normal data memory  
space. The EEPROM memory supports both byte and page access.  
7.5  
Production Signature Row  
The Production Signature Row is a separate memory section for factory programmed data. It  
contains calibration data for functions such as oscillators and analog modules.  
12  
8387A–AVR–07/11  
XMEGA A4U  
The production signature row also contains an ID that identifies each microcontroller device  
type, and a serial number that is unique for each manufactured device. The device ID for the  
devices is shown in Table 7-1 on page 13. The serial number consists of the production LOT  
number, wafer number, and wafer coordinates for the device.  
The production signature row can not be written or erased, but it can be read from both applica-  
tion software and external programming.  
Table 7-1.  
Device ID bytes for XMEGA A4U devices.  
Device  
Device ID bytes  
Byte 2  
Byte 1  
94  
Byte 0  
1E  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
41  
41  
46  
46  
95  
1E  
96  
1E  
97  
1E  
7.6  
User Signature Row  
The User Signature Row is a separate memory section that is fully accessible (read and write)  
from application software and external programming. It is one flash page in size, and is meant  
for static user parameter storage, such as calibration data, custom serial numbers or identifica-  
tion numbers, random number seeds etc. This section is not erased by Chip Erase commands  
that erase the Flash, and requires a dedicated erase command. This ensures parameter storage  
during multiple program/erase session and on-chip debug sessions.  
13  
8387A–AVR–07/11  
XMEGA A4U  
7.7  
Flash and EEPROM Page Size  
The Flash Program Memory and EEPROM data memory are organized in pages. The pages are  
word accessible for the Flash and byte accessible for the EEPROM.  
Table 7-2 on page 14 shows the Flash Program Memory organization. Flash write and erase  
operations are performed on one page at a time, while reading the Flash is done one byte at a  
time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in  
the address (FPAGE) give the page number and the least significant address bits (FWORD)  
give the word in the page.  
Table 7-2.  
Number of words and Pages in the Flash.  
Devices  
Flash  
Size  
Page Size  
FWORD  
FPAGE  
Application  
Boot  
No of Pages  
(words)  
128  
Size  
No of Pages  
Size  
4K  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
16K + 4K  
32K + 4K  
64K + 4K  
128K + 8K  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[8:0]  
Z[13:7]  
Z[14:7]  
Z[15:7]  
Z[16:7]  
16K  
32K  
64  
16  
16  
16  
32  
128  
128  
256  
512  
4K  
128  
64K  
4K  
128  
128K  
8K  
Table 7-3 on page 14 shows EEPROM memory organization for the XMEGA A4U devices.  
EEPROM write and erase operations can be performed one page or one byte at a time, while  
reading the EEPROM is done one byte at a time. For EEPROM access the NVM Address Regis-  
ter (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give  
the page number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3.  
Number of Bytes and Pages in the EEPROM.  
Devices  
EEPROM  
Size  
1K  
Page Size  
E2BYTE  
E2PAGE  
No of Pages  
(Bytes)  
32  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
32  
32  
64  
64  
1K  
32  
2K  
32  
2K  
32  
14  
8387A–AVR–07/11  
XMEGA A4U  
8. DMAC - Direct Memory Access Controller  
8.1  
Features  
The DMA Controller allows data transfers with minimal CPU intervention  
– from data memory to data memory  
– from data memory to peripheral  
– from peripheral to data memory  
– from peripheral to peripheral  
Four DMA Channels with separate  
– transfer triggers  
– interrupt vectors  
– addressing modes  
Programmable channel priority  
From 1byte to 16Mbytes of data in a single transaction  
Multiple addressing modes  
– Static  
– Increment  
– Decrement  
Optional reload of source and destination address at the end of each  
– Burst  
– Block  
– Transaction  
Optional Interrupt on end of transaction  
Optional connection to CRC Generator module for CRC on DMA data  
8.2  
Overview  
The 4-channel Direct Memory Access (DMA) Controller can transfer data between memories  
and peripherals, and thus offload these tasks from the CPU. It enables high data transfer rates  
with minimum CPU intervention, and frees up CPU time. The 4 DMA channels enable up to four  
independent and parallel transfers.  
The DMA Controller can move data between SRAM and peripherals, between SRAM locations  
and between peripheral registers directly. With access to all peripherals the DMA Controller can  
handle automatic transfer of data to/from communication modules, as well as data retrieval from  
ADC conversions, or data transfer to or from port pins. The DMA Controller can also read from  
memory mapped EEPROM.  
Data transfers are done in continues bursts of 1, 2, 4 or 8bytes. They build block transfers of  
configurable size from 1 to 64Kbytes. A repeat counter can be used to repeat each block trans-  
fer for single transactions up to 16Mbytes. Source and destination addressing can be static,  
incremental or decremental. Automatic reload of source and/or destination address can be done  
after each burst, block transfer, or when transaction is complete. Application software, peripher-  
als and events can trigger DMA transfers.  
The four DMA channels have individual configuration and control settings. This include source,  
destination, transfer triggers and transaction sizes. They have individual interrupt settings. Inter-  
rupt requests can be generated both when a transaction is complete or if the DMA Controller  
detects an error on a DMA channel.  
To allow for continuous transfers, two channels can be interlinked so that the second takes over  
the transfer when the first is finished and vice versa.  
15  
8387A–AVR–07/11  
XMEGA A4U  
9. Event System  
9.1  
Features  
System for direct peripheral to peripheral communication and signaling  
Peripherals can directly send, receive and react to peripheral events  
– CPU and DMA controller independent operation  
– 100% predictable signal timing  
– Short and guaranteed response time  
8 Event Channels for up to 8 different and parallel signal routines and configurations  
Events can be sent and/or used by most peripherals, clock system and software  
Additional functions include  
– Quadrature Decoders  
– Digital Filtering of I/O pin change  
Works in Active mode and Idle sleep mode  
9.2  
Overview  
The Event System is system for direct peripheral to peripheral communication and signaling. It  
enables the possibility for a change in one peripheral to automatically trigger actions in others  
peripherals. It is designed for having a predictable system for short and guaranteed response  
time between peripherals. It is simple and powerful since it allows for autonomous peripheral  
control and interaction without use of interrupts, CPU or DMA Controller resources. It also  
enables synchronized timing of actions in several peripheral modules.  
The change in a peripheral is referred to as an event, and is it usually the same as the interrupt  
conditions for the peripheral. These events can be directly passed to other peripherals using a  
dedicated routing network called the Event Routing Network. How events are routed and used  
by other peripherals is configured in software.  
Figure 9-1 on page 17 shows a basic block diagram of all connected peripherals. The Event  
System can directly connect together Analog and Digital converters, Analog Comparators, I/O  
ports pins, the Real-time Counter, Timer/Counters, IR Communication Module (IRCOM), and  
USB. It can also be used to trigger DMA transactions (DMA Controller). Events can also be gen-  
erated from software and the Peripheral Clock.  
16  
8387A–AVR–07/11  
XMEGA A4U  
Figure 9-1. Event system block diagram  
CPU /  
Software  
DMA  
Controller  
Event Routing Network  
clkPER  
Prescaler  
ADC  
AC  
Real Time  
Counter  
Event  
System  
Controller  
Timer /  
Counters  
DAC  
USB  
Port pins  
IRCOM  
The Event Routing Network consists of eight software configurable multiplexers that control how  
events are routed and used. This is called Event Channels and it enables up to eight parallel  
event configurations and routings. The maximum routing latency between two peripherals is two  
Peripheral clock cycles. The Event System works in both Active mode and Idle sleep mode.  
17  
8387A–AVR–07/11  
XMEGA A4U  
10. System Clock and Clock options  
10.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal Oscillators:  
– 32MHz run-time calibrated and tuneable oscillator  
– 2MHz run-time calibrated oscillator  
– 32.768kHz calibrated oscillator  
– 32kHz Ultra Low Power (ULP) oscillator with 1kHz output  
External clock options  
– 0.4 - 16MHz Crystal Oscillator  
– 32 kHz Crystal Oscillator  
– External clock  
PLL with 20 - 128MHz output frequency  
– Internal and external clock options and 1 to 31x multiplication  
– Lock detector  
Clock Prescalers with 1 to 2048x division  
Fast peripheral clocks running at 2 and 4 times the CPU clock frequency  
Automatic Run-Time Calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non maskable interrupt  
10.2 Overview  
The flexible clock system supports a large number of clock sources. It incorporates both accu-  
rate internal oscillators, and external crystal oscillators and resonator support. A high frequency  
Phase Locked Loop (PLL) and clock prescalers can be used to generate a wide range of clock  
frequencies. A calibration feature (DFLL) is available, and can be used for automatic runtime  
calibration of the internal oscillators to remove frequency drift over voltage and temperate. An  
Oscillator Failure Monitor can be enabled to issue a Non-Maskable Interrupt and switch to inter-  
nal oscillator if the external oscillator or PLL fails.  
When a reset occur, all clock sources except 32kHz Ultra Low Power oscillator are disabled.  
After reset, the device will always start up running from the 2MHz internal oscillator. During nor-  
mal operation, the System Clock source and prescalers can be changed from software at any  
time.  
Figure 10-1 on page 19 presents the principal clock system in the XMEGA. All of the clocks do  
not need to be active at a given time. The clocks to the CPU and peripherals can be stopped  
using sleep modes and power reduction registers.  
18  
8387A–AVR–07/11  
XMEGA A4U  
Figure 10-1. The Clock system, clock sources and clock distribution  
Real Time  
Counter  
Non-Volatile  
Memory  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkPER4  
clkCPU  
USB  
clkUSB  
System Clock Prescalers  
clkSYS  
Prescaler  
Brown-out  
Detector  
Watchdog  
Timer  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
USBSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 – 16 MHz  
XTAL  
32 MHz  
Int. Osc  
2 MHz  
Int. Osc  
10.3 Clock Options  
10.3.1  
32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz Ultra Low Power (ULP) Internal  
Oscillator is a very low power clock source, and it is not designed for high accuracy. The oscilla-  
tor employs a built in prescaler providing a 1kHz output. The oscillator is automatically  
enabled/disabled when used as clock source for any part of the device. This oscillator can be  
selected as clock source for the RTC.  
10.3.2  
32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. A factory-calibrated value is written to  
the 32.768kHz oscillator calibration register during reset to ensure that the oscillator is running-  
within its specification. The calibration register can also be written from software for run-time  
calibration of the oscillator frequency. The oscillator employs a built in prescaler providing both a  
32.768kHz output and a 1.024kHz output.  
19  
8387A–AVR–07/11  
XMEGA A4U  
10.3.3  
32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between TOSC1 and TOSC2 pins and enable a  
dedicated low frequency oscillator input circuit. A low power mode with reduced voltage swing  
on TOSC2 is available. This oscillator can be used as clock source for the System Clock, RTC  
and as the DFLL reference clock.  
10.3.4  
10.3.5  
0.4 - 16MHz Crystal Oscillator  
The 0.4 - 16MHz Crystal Oscillator is a driver intended for driving both external resonators and  
crystals ranging from 400kHz to 16MHz.  
2MHz Run-time Calibrated Internal Oscillator  
The 2MHz Run-time Calibrated Internal Oscillator is the default system clock source after reset.  
It is calibrated during production to provide a default frequency which is close to its nominal fre-  
quency. A Digital Frequency Looked Loop (DFLL) that can be enabled for automatic run-time  
calibration of the oscillator to compensate for temperature and voltage drift to optimize the oscil-  
lator accuracy.  
10.3.6  
32MHz Run-time Calibrated Internal Oscillator  
The 32MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated  
during production to provide a default frequency which is close to its nominal frequency. A DFLL  
that can be enabled for automatic run-time calibration of the oscillator to compensate for temper-  
ature and voltage drift to optimize the oscillator accuracy This oscillator can also be adjusted  
and calibrated to any frequency between 30 and 55MHz.  
10.3.7  
10.3.8  
External Clock input  
The external clock input gives the possibility to connect a clock from an external source to  
XTAL1.  
PLL with Multiplication factor 1 - 31x  
The PLL provides the possibility of multiplying a frequency by any number from 1 to 31. In com-  
bination with the prescalers, this gives a wide range of output frequencies from all clock sources.  
20  
8387A–AVR–07/11  
XMEGA A4U  
11. Power Management and Sleep Modes  
11.1 Features  
Power management for adjusting power consumption and enabled functions  
5 sleep modes:  
– Idle  
– Power-down  
– Power-save  
– Standby  
– Extended standby  
Power Reduction register to disable clock and turn off unused peripherals in Active and Idle  
mode  
11.2 Overview  
Various sleep modes and clock gating are implemented in order to tailor power consumption to  
the application's requirement. This enables the microcontroller to stop unused modules to save  
power.  
All sleep modes are available and can be entered from Active mode. In Active mode the CPU is  
executing application code. When the device enters sleep mode, program execution is stopped  
and interrupts or reset is used to wake the device again. The application code decides when and  
what sleep mode to enter. Interrupts from enabled peripherals and all enabled reset sources can  
restore the microcontroller from sleep to Active mode.  
In addition, Power Reduction registers provide a method to stop the clock to individual peripher-  
als from software. When this is done, the current state of the peripheral is frozen and there is no  
power consumption from that peripheral. This reduces the power consumption in Active mode  
and Idle sleep mode and enable much more fine-tuned power management than sleep modes  
alone.  
11.3 Sleep Modes  
11.3.1  
Idle Mode  
In Idle mode the CPU and Non-Volatile Memory are stopped, but all peripherals including the  
Interrupt Controller, Event System and DMA Controller are kept running. Any enabled interrupt  
will wake the device.  
11.3.2  
Power-down Mode  
In Power-down mode all clocks, including the Real Time Counter clock source are stopped. This  
only allows operation of asynchronous modules that does not require a running clock. The only  
interrupts that can wake up the MCU are the Two Wire Interface address match interrupt, asyn-  
chronous port interrupts and USB resume interrupt.  
11.3.3  
Power-save Mode  
Power-save mode is identical to Power-down, with one exception, if the Real Time Counter  
(RTC) is enabled, it will keep running during sleep and the device can also wake up from either  
RTC Overflow or Compare Match interrupt.  
21  
8387A–AVR–07/11  
XMEGA A4U  
11.3.4  
11.3.5  
Standby Mode  
Standby mode is identical to Power-down with the exception that the enabled system clock  
sources are kept running, while the CPU, Peripheral and RTC clocks are stopped. This reduces  
the wake-up time.  
Extended Standby Mode  
Extended Standby mode is identical to Power-save mode with the exception that the enabled  
system clock sources are kept running while the CPU and Peripheral clocks are stopped. This  
reduces the wake-up time.  
22  
8387A–AVR–07/11  
XMEGA A4U  
12. System Control and Reset  
12.1 Features  
Reset the microcontroller and set it to its initial state when a reset source goes active  
Multiple reset sources that cover different situations  
– Power-On Reset  
– External Reset  
– Watchdog Reset  
– Brown-Out Reset  
– PDI reset  
– Software reset  
Asynchronous operation  
– No running system clock in the device is required for the reset  
Reset Status Register for reading the reset source from the application code  
12.2 Overview  
The Reset System issues a microcontroller reset and set the device to its initial state. This is for  
situation where operation should not start or continue, for example when the microcontroller  
operates below its power supply rating. If a reset source goes active, the device enters and be  
kept in reset until all reset sources have released their reset. The I/O pins are immediately  
tristated.  
The program counter is set to the Reset Vector location and all I/O registers are set to the initial  
value. The SRAM content is kept, but not guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated  
before the device starts running from the Reset Vector address. By default this is the lowest pro-  
gram memory address, '0', but it is possible to move the Reset Vector to the lowest address in  
the Boot Section.  
The reset functionality is asynchronous, so no running system clock is required to reset the  
device. The software reset feature makes it possible to issue a controlled system reset from the  
user software.  
The reset status register has individual status flags for each reset source. It is cleared at Power-  
on Reset, it shows which sources that have issued a reset since the last power-on.  
12.3 Reset Sources  
12.3.1  
Power-On Reset  
The device is reset when the supply voltage VCC is below the Power-on Reset threshold  
voltage.  
12.3.2  
12.3.3  
External Reset  
The device is reset when a low level is present on the RESET pin.  
Watchdog Reset  
The device is reset when the Watchdog Timer period expires and the Watchdog Reset is  
enabled. The Watchdog Timer runs from a dedicated oscillator independent of the System  
Clock. For more details see ”WDT - Watchdog Timer” on page 25.  
23  
8387A–AVR–07/11  
XMEGA A4U  
12.3.4  
Brown-Out Reset  
The device is reset when the supply voltage VCC is below the Brown-Out Reset threshold volt-  
age and the Brown-out Detector is enabled. The Brown-out threshold voltage is programmable.  
12.3.5  
12.3.6  
PDI reset  
The MCU can be reset through the Program and Debug Interface (PDI).  
Software reset  
The MCU can be reset by the CPU writing to a special I/O register through a timed sequence.  
24  
8387A–AVR–07/11  
XMEGA A4U  
13. WDT - Watchdog Timer  
13.0.1  
Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronously operation from dedicated oscillator  
– 1kHz output of the 32kHz Ultra Low Power oscillator  
11 selectable timeout periods, from 8ms to 8s.  
Two operation modes  
– Normal mode  
– Window mode  
Configuration lock to prevent unwanted changes  
13.1 Overview  
The Watchdog Timer (WDT) is a system function for monitoring correct program operation. It  
makes it possible to recover from error situations such as run-away or dead-lock code. The WDT  
is a timer, configured to a predefined timeout period and is constantly running when enabled. If  
the WDT is not reset within the timeout period, it will issue a microcontroller reset. The WDT is  
reset by executing the WDR (Watchdog Timer Reset) instruction from the application code.  
The window mode makes it possible to define a time slot window inside the total timeout period  
where WDT must be reset within. If the WDT is reset too early or too late and outside this win-  
dow, a system reset will be issued. Compared to the normal mode, this can also catch situations  
where a code error also causes constant WDR execution.  
The WDT will run in Active mode and all sleep modes if enabled. It is asynchronous and runs  
from a CPU independent clock source, and will continue to operate to issue a system reset even  
if the main clocks fail. The Configuration Change Protection mechanism ensures that the WDT  
settings cannot be changed by accident. For increased safety, a fuse for locking the WDT set-  
tings is available.  
25  
8387A–AVR–07/11  
XMEGA A4U  
14. Interrupts and Programmable Multi-level Interrupt Controller  
14.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable Multi-level Interrupt Controller  
– Interrupt prioritizing according to level and vector address  
– 3 selectable interrupt levels for all interrupts: Low, Medium and High  
– Selectable round-robin priority scheme within low level interrupts  
– Non-Maskable Interrupts for critical functions  
Interrupt vectors can be moved from the Application Section to the Boot Loader Section  
14.2 Overview  
Atmel® AVR® XMEGA® have a Programmable Multi-level Interrupt Controller (PMIC). Interrupts  
signal a change of state in peripherals, and this can be used to alter program execution. Periph-  
erals can have one or more interrupts, and all are individually enabled and configured. When an  
interrupt is enabled and configured, it will generate an interrupt request when the interrupt condi-  
tion is present. The Programmable Multi-level Interrupt Controller (PMIC) controls the handling  
and prioritizing of interrupt requests. When an interrupt request is acknowledged by the PMIC,  
the program counter is set to point to the interrupt vector, and the interrupt handler can be  
executed.  
All peripherals can select between three different priority levels for their interrupts; low, medium  
and high. Interrupts are prioritized according to their level and their interrupt vector address.  
Medium level interrupts will interrupt low level interrupt handlers. High level interrupts will inter-  
rupt both medium and low level interrupt handlers. Within each level, the interrupt priority is  
decided from the interrupt vector address, where the lowest interrupt vector address has the  
highest interrupt priority. Low level interrupts have an optional round-robin scheduling scheme to  
ensure that all interrupts are serviced within a certain amount of time.  
Non-Maskable Interrupts (NMI) is also supported and can be used for critical functions. If a boot-  
loader is used, it is possible to move the interrupt vectors from the Application Section to the  
Boot Loader Sections so interrupts can be used and executed also during self-programming.  
14.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address  
for specific interrupts in each peripheral. The base addresses for the XMEGA A4U devices are  
shown in Table 14-1 on page 27. Offset addresses for each interrupt available in the peripheral  
are described for each peripheral in the XMEGA AU manual. For peripherals or modules that  
have only one interrupt, the interrupt vector is shown in Table 14-1 on page 27. The program  
address is the word address.  
26  
8387A–AVR–07/11  
XMEGA A4U  
Table 14-1. Reset and Interrupt Vectors  
Program Address  
(Base Address)  
0x000  
0x002  
0x004  
0x008  
0x00C  
0x014  
0x018  
0x01C  
0x028  
0x030  
0x032  
0x038  
0x03E  
0x040  
0x044  
0x056  
0x05A  
0x05E  
0x06A  
0x074  
0x080  
0x084  
0x088  
0x08E  
0x09A  
0x0A6  
0x0AE  
0x0B0  
0x0B6  
0x0FA  
Source  
Interrupt Description  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC_INT_base  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
Crystal Oscillator Failure Interrupt vector (NMI)  
Port C Interrupt base  
Port R Interrupt base  
DMA Controller Interrupt base  
Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
Timer/Counter 0 on port C Interrupt base  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
USARTC0_INT_base  
USARTC1_INT_base  
AES_INT_vect  
USART 0 on port C Interrupt base  
USART 1 on port C Interrupt base  
AES Interrupt vector  
NVM_INT_base  
PORTB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
TCE1_INT_base  
USARTE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
TCD0_INT_base  
TCD1_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
USB_INT_base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
Port E Interrupt base  
Two-Wire Interface on Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
Timer/Counter 1 on port E Interrupt base  
USART 0 on port E Interrupt base  
Port D Interrupt base  
Port A Interrupt base  
Analog Comparator on Port A Interrupt base  
Analog to Digital Converter on Port A Interrupt base  
Timer/Counter 0 on port D Interrupt base  
Timer/Counter 1 on port D Interrupt base  
SPI on port D Interrupt vector  
USART 0 on port D Interrupt base  
USART 1 on port D Interrupt base  
USB on port D Interrupt base  
27  
8387A–AVR–07/11  
XMEGA A4U  
15. I/O Ports  
15.1 Features  
General purpose input and output pins with several and individual configuration options  
Output driver with configurable driver and pull settings:  
– Totem-pole  
– Wired-AND  
– Wired-OR  
– Bus-keeper  
– Inverted I/O  
Input with synchronous and/or asynchronous sensing with port interrupts and events  
– Sense both edges  
– Sense rising edges  
– Sense falling edges  
– Sense low level  
Optimal pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake-up the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
– Hardware read-modify-write through dedicated Toggle/Clear/Set registers  
– Configuration of multiple pins in a single operation  
– Mapping of port registers into bit-accessible I/O memory space  
Peripheral Clocks output on port pin  
Real Time Counter Clock output to port pin  
Event Channel output on port pin  
Remap of digital peripheral pin functions  
– Selectable USART, SPI and Timer/Counter input/output pin locations  
15.2 Overview  
One port consists of up to 8 pins ranging from pin 0 to 7. Each port pin can be configured as  
input or output with configurable driver and pull settings. They also implement synchronous and  
asynchronous input sensing with interrupts and events for selectable pin change conditions.  
Asynchronous pin-change sensing means that a pin change can wake the device from all sleep  
modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in one  
single operation. The pins have hardware Read-Modify-Write (RMW) functionality for safe and  
correct change of drive value and/or pull resistor configuration. The direction of one port pin can  
be changed without unintentionally changing the direction of any other pin.  
The port pin configuration also controls input and output selection of other device function. It is  
possible to have both the peripheral clock and the real time clock output to a port pin, and avail-  
able for external use. The same applies to events from the Event System that can be used to  
synchronize and control external functions. Other digital peripherals such as USART, SPI and  
Timer/Counters can be remapped to selectable pin location in order to optimize pinout versus  
application needs.  
28  
8387A–AVR–07/11  
XMEGA A4U  
15.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable  
slew rate limitation to reduce electromagnetic emission.  
15.3.1  
Push-pull  
Figure 15-1. I/O configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
15.3.2  
Pull-down  
Figure 15-2. I/O configuration - Totem-pole with pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.3  
Pull-up  
Figure 15-3. I/O configuration - Totem-pole with pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
29  
8387A–AVR–07/11  
XMEGA A4U  
15.3.4  
Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as  
a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’.  
Figure 15-4. I/O configuration - Totem-pole with bus-keeper  
DIRn  
Pn  
OUTn  
INn  
15.3.5  
Others  
Figure 15-5. Output configuration - Wired-OR with optional pull-down  
OUTn  
Pn  
INn  
Figure 15-6. I/O configuration - Wired-AND with optional pull-up  
INn  
Pn  
OUTn  
30  
8387A–AVR–07/11  
XMEGA A4U  
15.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports,  
and the configuration is shown in Figure 15-7 on page 31.  
Figure 15-7. Input sensing system overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
Event  
INVERTED I/O  
R
R
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
15.5 Alternate Port Functions  
In addition to the input/output functions on all port pins, most pins have alternate functions. This  
means that other modules or peripherals connected to the port can use the port pins for their  
functions, such as communication or pulse-width modulation. ”Pinout and Pin Functions” on  
page 51 shows which modules on peripherals that enable alternate functions on a pin, and  
which alternate function is available on a pin.  
31  
8387A–AVR–07/11  
XMEGA A4U  
16. T/C - 16-bit Timer/Counter  
16.1 Features  
Five 16-bit Timer/Counters  
– Three Timer/Counters of type 0  
– Two Timer/Counters of type 1  
32-bit Timer/Counter support by cascading two Timer/Counters  
Up to 3 Compare or Capture (CC) Channels  
– 3 CC Channels for Timer/Counter of type 0  
– 2 CC Channels for Timer/Counter of type 1  
Double Buffered Timer Period Setting  
Double Buffered Compare or Capture Channels  
Waveform Generation:  
– Frequency Generation  
– Single Slope Pulse Width Modulation  
– Dual Slope Pulse Width Modulation  
Input Capture:  
– Input Capture with noise cancelling  
– Frequency capture  
– Pulse width capture  
– 32-bit input capture  
Timer Overflow and Error interrupts / events  
One Compare Match or Input Capture interrupt / event per CC Channel  
Can be used with Event System for  
– Quadrature Decoding  
– Count and direction control  
– Capture  
Can be used with DMA and trigger DMA transactions  
High-Resolution Extension  
– Increases frequency and waveform resolution by 4x (2-bit), or 8x (3-bit)  
Advanced Waveform Extension  
– Low and High-side output with programmable Dead-Time Insertion (DTI)  
Event controlled fault protection for safe disabling of external drivers  
16.2 Overview  
There are five flexible 16-bit Timer/Counters (TC). Their capabilities include accurate program  
execution timing, frequency and waveform generation, and input capture with time and fre-  
quency measurement of digital signals. Two Timer/Counters can be cascaded to create 32-bit  
Timer/Counter with optional 32-bit capture.  
A Timer/Counter consists of a Base Counter and a set of Compare or Capture (CC) channels.  
The Base Counter can be used to count clock cycles or events. It has direction control and  
period setting that can be used for timing. The CC channels can be used together with the Base  
Counter to do compare match control, frequency generation and pulse width waveform modula-  
tion, or various input capture operations. A Timer/Counter can be configured for either capture or  
compare functions, and not perform both at the same time.  
A Timer/Counter can be clocked and timed from the Peripheral Clock with optional prescaling or  
the Event System. The Event System can also be used for direction control, capture trigger or to  
synchronize operations.  
32  
8387A–AVR–07/11  
XMEGA A4U  
Figure 16-1. Overview of a Timer/Counter and closely related peripherals  
Timer/Counter  
Base Counter  
Timer Period  
Counter  
Prescaler  
clkPER  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Buffer  
Generation  
The only difference between Timer/Counter type 0 and 1 is the number of CC Channels.  
Timer/Counter 0 has four CC channels, and Timer/Counter 1 has two CC channels. All informa-  
tion related to CC channel 3 and 4 is only valid for Timer/Counter 0.  
Some Timer/Counters have extensions to enable more specialized waveform and frequency  
generation. The Advanced Waveform Extension (AWeX) is intended for motor control and other  
power control applications. It enables Low- and High Side output with Dead Time Insertion, and  
fault protection for disabling and shutdown of drivers. It can also generate a synchronized bit  
pattern across the port pins.See ”Hi-Res - High Resolution Extension” on page 35 for more  
details.  
The High Resolution (Hi-Res) extension can be used to increase the waveform output resolution  
by up to eight times, by using internal clock source running up to four times faster than the  
Peripheral Clock. See ”AWeX - Advanced Waveform Extension” on page 34 for more details.  
PORTC and PORTD each has one Timer/Counter 0 and one Timer/Counter1. PORTE has one  
Timer/Conter0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1 and TCE0,  
respectively.  
33  
8387A–AVR–07/11  
XMEGA A4U  
17. AWeX - Advanced Waveform Extension  
17.1 Features  
Wafeform output with complementary output from each Compare channel  
4 Dead-Time Insertion (DTI) Units  
– 8-bit Resolution  
– Separate High and Low Side Dead-Time Setting  
– Double Buffered Dead-Time  
– Optionally halts Timer during Dead-Time Insertion  
Pattern Generation unit creating synchronised bit pattern across the port pins  
– Double buffered pattern generation  
– Optionally distribution of one Compare channel output across the port pins  
Event controlled Fault Protection for instant and predictably fault triggering  
17.2 Overview  
The Advanced Waveform Extension (AWeX) provides extra functions to the Timer/Counter in  
Waveform Generation (WG) modes. It is primarily intended for different types of motor control  
and other power control applications. It enables Low- and High Side output with Dead Time  
Insertion, and fault protection for disabling and shutdown of drivers. It can also generate a syn-  
chronized bit pattern across the port pins.  
Each of the waveform generator outputs from the Timer/Counter 0 are split into a complimentary  
pair of outputs when any AWeX features are enabled. These output pairs go through a Dead-  
Time Insertion (DTI) unit that generates the non-inverted Low Side (LS) and inverted High Side  
(HS) of the WG output with dead time insertion between LS and HS switching. The DTI output  
will override the normal port value according to the port override setting.  
The Pattern Generation unit can be used to generate a synchronized bit pattern across the port  
it is connected to. In addition, the WG output from the Compare Channel A can be distributed to  
and override all the port pins. When the Pattern Generator unit is enabled the DTI unit is  
bypassed.  
The Fault Protection unit is connected to the Event System, enabling any event to trigger a fault  
condition that will disable the AWeX output. The Event System ensure predictable and instant  
fault reaction, and gives great flexibility in the selection of fault triggers.  
The AWEX is available for TCC0. The notation of this is AWEXC.  
34  
8387A–AVR–07/11  
XMEGA A4U  
18. Hi-Res - High Resolution Extension  
18.1 Features  
Increases Waveform Generator resolution by up to 8 times (3-bit)  
Supports Frequency, Single Slope PWM and Dual Slope PWM generation  
Supports the AWeX when this is used for the same Timer/Counter  
18.2 Overview  
The Hi-Resolution (Hi-Res) Extension is able to increase the resolution of the waveform genera-  
tion output by a factor of four or eight. It can be used for a Timer/Counter doing Frequency,  
Single Slope PWM or Dual Slope PWM generation. It can also be used with the AWeX if this is  
used for the same Timer/Counter.  
Atmel® AVR® XMEGA® A4U have three Hi-Res Extensions that each can be enabled for each  
Timer/Counters pair on PORTC, PORTD and PORTE. The notation of these are HIRESC,  
HIRESD and HIRESE, respectively.  
35  
8387A–AVR–07/11  
XMEGA A4U  
19. RTC - 16-bit Real-Time Counter  
19.1 Features  
16-bit resolution  
Selectable clock source  
– 32.768kHz external crystal  
– External clock  
– 32.768kHz internal oscillator  
– 32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One Compare register  
One Period register  
Clear Counter on period overflow  
Optional Interrupt/ Event on overflow and compare match  
19.2 Overview  
The 16-bit Real Time Counter (RTC) is a counter that typically runs continuously, including in  
low power sleep modes, to keep track of time. It can wake up the device from sleep modes  
and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high accuracy crystal of 32.768kHz,  
and this is the configuration most optimized for low power consumption. The faster 32.768kHz  
output can be selected if the RTC needs a higher resolution than 1mS. The RTC can also be  
clocked from an external clock signal, the internal 32.768kHz oscillator or the internal 32kHz  
ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock  
before it reaches the Counter. A wide range of resolution and time-out periods can be config-  
ured. With a 32.768kHz clock source the maximum resolution of 30.5µs, time-out periods range  
up to 2000seconds. With a resolution of 1 second, the maximum time-out period is over 18hours  
(65536seconds). The RTC can give a compare interrupt and/or event when the counter equals  
the Compare register value, and an overflow interrupt and/event when it equals the Period regis-  
ter value.  
Figure 19-1. Real Time Counter overview  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
36  
8387A–AVR–07/11  
XMEGA A4U  
20. USB - Universal Serial Bus Interface  
20.1 Features  
One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface  
Integrated on-chip USB transceiver, no external components needed  
16 endpoint addresses with full endpoint flexibility for up to 32 endpoints  
– One input endpoint per endpoint address  
– One output endpoint per endpoint address  
Endpoint address transfer type selectable to  
– Control transfers  
– Interrupt transfers  
– Bulk transfers  
– Isochronous transfers  
Configurable data payload size per endpoint, up to 1023bytes  
Endpoint configuration and data buffers located in internal SRAM  
– Configurable location for endpoint configuration data  
– Configurable location for each endpoint's data buffer  
Built in Direct Memory Access (DMA) to internal SRAM for  
– Endpoint configurations  
– Read and write of endpoint data  
Ping-Pong operation for higher throughput and double buffered operation  
– Input and output endpoint data buffers used in a single direction  
– CPU/DMA controller can update data buffer during transfer  
Multi-Packet transfer for reduced interrupt load and software intervention  
– Data payload exceeding max packet size is transferred in one continuous transfer  
– No interrupts or software interaction on packet transaction level  
Transaction Complete FIFO for easy flow management when using multiple endpoints  
– Tracks all completed transactions in a first come, first serve work-queue  
Clock selection independent of System Clock source selection  
Connection to Event System  
On chip debug possibilities during USB transactions  
20.2 Overview  
The USB interface is an USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compli-  
ant interface.  
It supports 16 endpoint addresses. All endpoint addresses have one input and one output end-  
point, for a total of 32 endpoints. Each endpoint address is fully configurable and can be  
configured for any of the four transfer types: control, interrupt, bulk or isochronous. The data  
payload size is also selectable and it supports data payloads up to 1023bytes.  
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to  
keep the configuration for each endpoint address, and the data buffer for each endpoint. The  
memory locations used for endpoint configurations and data buffers are fully configurable. The  
amount of memory allocated is fully dynamic according to the number of endpoints in use, and  
the configuration of these. The USB module has built-in Direct Memory Access (DMA) and will  
read/write data from/to the SRAM when a USB transaction takes place.  
To maximise throughput, an endpoint address can be configured for Ping-Pong operation. When  
this is done, the input and output endpoints are both used in the same direction. The CPU or  
37  
8387A–AVR–07/11  
XMEGA A4U  
DMA Controller can then read/write one data buffer while the USB module writes/reads the  
other, and vice versa. This gives double buffered communication.  
Multi-packet transfer enables a data payload exceeding the maximum packet size of an end-  
pointto be transferred as multiple packets without software intervention. This reduce the CPU  
intervention and the interrupts needed for USB transfers.  
For low power operation, the USB module can put the microcontroller in any sleep mode when  
the USB bus is idle and a suspend condition is given. Upon bus resume, the USB module can  
wake the microcontroller from any sleep mode.  
PORTD has one USB. Notation of this is USB.  
38  
8387A–AVR–07/11  
XMEGA A4U  
21. TWI - Two Wire Interface  
21.1 Features  
Two Identical Two Wire Interface peripherals  
Bi-directional two-wire communication interface  
– Phillips I2C compatible  
– System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
– Slave operation  
– Single bus master operation  
– Bus master in multi-master bus environment  
– Multi-master arbitration  
Flexible slave address match functions  
– 7-bit and General Call Address Recognition in Hardware  
– 10-bit addressing supported  
– Address mask register for dual address match or address range masking  
– Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between START/Repeated START and Data Bit (SMBus)  
Slave arbitration allows support for Address Resolve Protocol (ARP) (SMBus)  
21.2 Overview  
The Two Wire Interface is a bi-directional two-wire communication interface. It is I2C and System  
Management Bus (SMBus) compatible. The only external hardware needed to implement the  
bus is one pull-up resistor on each bus line.  
The TWI module supports master and slave functionality. The master and slave functionality are  
separated from each other and can be enabled and configured separately. The master module  
supports multi-master bus operation and arbitration. It contains the baud rate generator. Both  
100kHz and 400kHz bus frequency is supported.  
The slave module implements 7-bit address match and general address call recognition in hard-  
ware. 10-bit addressing is also supported. A dedicated address mask register can act as a  
second address match register or as a register for address range masking. The slave continues  
to operate in all sleep modes, including Power down mode. This enables the slave to wake up  
the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead. Smart Mode can be enabled to auto trigger  
operations and reduce software complexity.  
The TWI module will detect START and STOP conditions, bus collision and bus errors. Arbitra-  
tion lost, errors, collision and clock hold on the bus is also detected and indicated in separate  
status flags available in both master and slave mode.  
It is possible to disable the TWI drivers in the device, and enable a 4-wire digital interface for  
connecting to an external TWI bus driver. This can be used for applications where the device  
operates from a different VCC voltage than used by the TWI bus.  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE,  
respectively.  
39  
8387A–AVR–07/11  
XMEGA A4U  
22. SPI - Serial Peripheral Interface  
22.1 Features  
Two Identical SPI peripherals  
Full-duplex, Three-wire Synchronous Data Transfer  
Master or Slave Operation  
LSB First or MSB First Data Transfer  
Seven Programmable Bit Rates  
Interrupt Flag at the End of Transmission  
Write collision flag to indicate data collision  
Wake-up from Idle Mode  
Double Speed Master Mode  
22.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using  
three or four pins. It allows fast communication between an XMEGA device and peripheral  
devices or other microcontrollers. The SPI supports full duplex communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls  
all data transactions, and data is transferred both to and from the device simultaneously.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID,  
respectively.  
40  
8387A–AVR–07/11  
XMEGA A4U  
23. USART  
23.1 Features  
Five Identical USART peripherals  
Full Duplex Operation  
Asynchronous or Synchronous Operation  
– Synchronous clock rates up to 1/2 o the device clock frequency  
– Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits  
Fractional Baud Rate Generator  
– Can generate desired baud rate from any system clock frequency  
– No need for external oscillator with certain frequencies  
Built in error detection and correction schemes  
– Odd or Even Parity Generation and Parity Check  
– Data Over Run and Framing Error Detection  
– Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter  
Separate Interrupts for  
– Transmit Complete  
– Transmit Data Register Empty  
– Receive Complete  
Multi-Processor Communication Mode  
– Addressing scheme to address a specific devices on a multi-device bus  
– Enable unaddressed devices to automatically ignore all frames  
Master SPI Mode  
– Double Buffered Operation  
– Configurable Data Order  
– High Speed Operation up to 1/2 of the peripheral clock frequency  
IRCOM Module for IrDA compliant pulse modulation/demodulation  
23.2 Overview  
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a  
fast and flexible serial communication module. The USART supports full duplex communication,  
and both asynchronous and clocked synchronous operation. The USART can also be set in  
Master SPI mode and be used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide  
range of standards. The USART is buffered in both direction, enabling continued data transmis-  
sion without any delay between frames. There are separate interrupts for receive and transmit  
complete, enabling fully interrupt driven communication. Frame error and buffer overflow are  
detected in hardware and indicated with separate status flags. Even or odd parity generation  
and parity check can also be enabled.  
The Clock Generation logic has a fractional baud rate generator that is able to generate a wide  
range of USART baud rates from any system clock frequencies. This remove the need to use  
an external crystal oscillator with a certain frequency in order to achieve a required baud rate. It  
also includes support external clock input in synchronous slave operation.  
One USART can use the IRCOM module to support IrDA 1.4 physical compliant pulse modula-  
tion and demodulation for baud rates up to 115.2kbps.  
PORTC and PORTD each has two USARTs. PORTE has one USART. Notation of these periph-  
erals are USARTC0, USARTC1, USARTD0, USARTD1 and USARTE0, respectively.  
41  
8387A–AVR–07/11  
XMEGA A4U  
24. IRCOM - IR Communication Module  
24.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA Compatible for baud rates up to 115.2kbps  
Selectable pulse modulation scheme  
– 3/16 of baud rate period  
– Fixed pulse period, 8-bit programmable  
– Pulse modulation disabled  
Built in filtering  
Can be connected to and used by one USART at a time  
24.2 Overview  
The Infrared Communication Module (IRCOM) is used for IrDA communication with baud rates  
up to 115.2kbps. There is one IRCOM available which can be connected to any USART to  
enable infrared pulse coding/decoding for that USART.  
42  
8387A–AVR–07/11  
XMEGA A4U  
25. AES and DES Crypto Engine  
25.1 Features  
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) Crypto module  
DES Instruction  
– Encryption and Decryption  
– Single-cycle DES instruction  
– Encryption/Decryption in 16 clock cycles per 8-byte block  
AES Crypto Module  
– Encryption and Decryption  
– Supports 128-bit keys  
– Supports XOR data load mode to the State memory for Cipher Block Chaining  
– Encryption/Decryption in 375 clock cycles per 16-byte block  
25.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two com-  
monly used standards for cryptography. These are supported through an AES peripheral  
module and a DES CPU instruction, and the communication interfaces and the CPU can use  
these for fast encrypted communication and secure data storage.  
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must  
be loaded into the Register file, and then the DES instruction must be executed 16 times to  
encrypt/decrypt the data block.  
The AES Crypto Module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key.  
The key and data must be loaded into the key and state memory in the module before encryp-  
tion/ decryption is started. It takes 375 Peripheral clock cycles before the encryption/decryption  
is done. The encrypted/encrypted data can then be read out, and an optional interrupt can be  
generated. The AES Crypto Module also has DMA support with transfer triggers when encryp-  
tion/decryption is done and optional auto-start of encryption/decryption when the state memory  
is fully loaded.  
43  
8387A–AVR–07/11  
XMEGA A4U  
26. CRC - Cyclic Redundancy Check Generator  
26.1 Features  
Cyclic Redundancy Check (CRC) Generation and Checking for  
– Communication Data  
– Program or Data in Flash memory  
– Data in SRAM memory and I/O memory space  
Integrated with Flash memory, DMA Controller and CPU  
– Continuous CRC on data going through a DMA Channel  
– Automatic CRC of the complete, or selectable range of the Flash memory  
– CPU can load data to CRC Generator through I/O interface  
CRC polynomial software selectable to  
– CRC-16 (CRC-CCITT)  
– CRC-32 (IEEE 802.3)  
Zero remainder detection  
26.2 Overview  
A Cyclic Redundancy Check (CRC) is a test algorithm used to detect accidental errors on data,  
and is commonly used to determine the correctness of a data transmission, data memory and  
program memory. A CRC takes a data stream or block of data as input and generates a 16- or  
32-bit output that can be kept with the data and used as checksum. When the same data is later  
received or read, the device or application repeats the calculation. If the new CRC calculation  
does not match the one calculated earlier, the block contains a data error. The application will  
then detect this and may take corrective action such as requesting the data to be sent again.  
Typically, an n-bit CRC, applied to a data block of arbitrary length, will detect any single error  
burst not longer than n bits (in other words, any single alteration that spans no more than n bits  
of the data), and will detect a fraction 1-2-n of all longer error bursts.The CRC module in XMEGA  
supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and CRC-32  
(IEEE 802.3).  
CRC-16:  
x16+x12+x5+1  
Polynomial:  
Hex value:  
0x1021  
CRC-32:  
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
Polynomial:  
Hex value:  
0x04C11DB7  
44  
8387A–AVR–07/11  
XMEGA A4U  
27. ADC - 12-bit Analog to Digital Converter  
27.1 Features  
One Analog to Digital Converter (ADC)  
12-bit resolution  
Up to 2Million Samples Per Second  
– 4 inputs can be sampled within 1.5µs  
– Down to 2.5µs conversion time with 8-bit resolution  
– Down to 3.5µs conversion time with 12-bit resolution  
Differential and Single-ended input  
– Up to 16 single-ended inputs  
– 16x4 differential inputs without gain  
– 16x4 differential input with gain  
Built in differential gain stage  
1/2x, 1x, 2x, 4x, 8x, 16x, 32x and 64x gain options  
Single, continues and scan conversion options  
4 internal inputs  
– Internal Temperature sensor  
– DAC Output  
– VCC voltage divided by 10  
– 1.1V Bandgap voltage  
4 conversion channels with individual input control and result registers  
– Enable 4 parallel configurations and results  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional DMA transfer of conversion results  
Optional interrupt/event on compare result  
27.2 Overview  
The Analog to Digital Converter (ADC) converts analog signals to digital values. The ADC has  
12-bit resolution and is capable of converting up to 2 Million Samples Per Second (MSPS). The  
input selection is flexible, and both single-ended and differential measurements can be done.  
For differential measurements an optional gain stage is available to increase the dynamic range.  
In addition several internal signal inputs are available. The ADC can provide both signed and  
unsigned results.  
This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows  
high sample rate at a low System Clock frequency. It also means that a new input can be sam-  
pled and a new ADC conversion started while other ADC conversions are still ongoing. This  
remove dependencies between sample rate and propagation delay.  
The ADC has four conversion channels (Channel 0-3) with individual input selection, result reg-  
isters and conversion start control. The ADC can then keep and use four parallel configurations  
and results, and this will ease use for applications with high data throughput or multiple modules  
using the ADC independently. It is possible to use DMA to move ADC results directly to memory  
or peripherals when conversions are done.  
45  
8387A–AVR–07/11  
XMEGA A4U  
Both internal and external reference voltages can be used. An integrated temperature sensor is  
available for use with the ADC. The output from the DAC, VCC/10 and the Bandgap voltage can  
also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with mini-  
mum software intervention required.  
Figure 27-1. ADC overview  
Compare  
Register  
Internal  
signals  
ADC0  
<
>
VINP  
CH0 Result  
CH1 Result  
CH2 Result  
CH3 Result  
ADC15  
Threshold  
(Int Req)  
ADC4  
½x - 64x  
ADC  
ADC7  
Int. signals  
Internal  
signals  
VINN  
ADC0  
Internal 1.00V  
Internal VCC/1.6V  
Internal VCC/2  
AREFA  
Reference  
Voltage  
ADC3  
Int. signals  
AREFB  
Four inputs can be sampled within 1.5µs without any intervention by the application.  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (prop-  
agation delay) from 3.5µs for 12-bit to 2.5µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This  
eases calculation when the result is represented as a signed integer (signed 16-bit number).  
PORTA has one ADC. Notation of this peripheral is ADCA.  
46  
8387A–AVR–07/11  
XMEGA A4U  
28. DAC - 12-bit Digital to Analog Converter  
28.1 Features  
One Digital to Analog Converter (DAC)  
12-bit resolution  
Two independents and continues-time channels per DAC  
Up to 1Million Samples Per Second conversion rate per DAC channel  
Built in calibration that removes  
– Offset error  
– Gain error  
Multiple conversion trigger sources  
– On new available data  
– Events from the Event System  
High drive capabilities and support for  
– Resistive load  
– Capacitive load  
– Combined resistive and capacitive load  
Internal and external reference options  
DAC output available as input to Analog Comparator and ADC  
Low Power mode with reduced drive strength  
Optional DMA transfer of data  
28.2 Overview  
The Digital to Analog Converter (DAC) converts digital values to voltages. The DAC has two  
channels, 12-bit resolution, and is capable of converting 1Million Samples Per Second (MSPS)  
on each channels. The built-in calibration system can remove offset and gain error when loaded  
with calibration values from software.  
Figure 28-1. DAC overview  
DMA req  
(Data Empty)  
D
A
T
12  
Output  
Driver  
CH0DATA  
DAC0  
A
To  
AC/ADC  
Int.  
driver  
Trigger  
Select  
Enable  
CTRLA  
Enable  
AVCC  
Internal 1.00V  
AREFA  
Reference  
selection  
CTRLB  
Internal Output  
enable  
AREFB  
Trigger  
Select  
D
A
T
12  
Output  
Driver  
CH1DATA  
DAC1  
A
DMA req  
(Data Empty)  
A DAC conversion is automatically started when new data to be converted is available. Event  
from the Event System can also be used, and this enable synchronized and timed conversions  
between the DAC and other peripherals such as a Timer/Counter. The DMA Controller can be  
used to transfer data to the DAC.  
The DAC has high drive strengths and is capable of driving both resistive and capacitive loads,  
and a load which is a combination of this. A low power mode is available, and this will reduce the  
drive strengths of the output. Both internal and external voltage reference can be used. The  
DAC output is also internally available for use as input to the Analog Comparator or ADC.  
PORTB has one DAC. Notation of this peripheral is DACB.  
47  
8387A–AVR–07/11  
XMEGA A4U  
29. AC - Analog Comparator  
29.1 Features  
Two Analog Comparators  
Selectable propagation delay vs current consumption  
Selectable hysteresis  
– No  
– Small  
– Large  
Analog Comparator output available on pin  
Flexible Input Selection  
– All pins on the port  
– Output from the DAC  
– Bandgap reference voltage.  
– A 64-level programmable voltage scaler of the internal VCC voltage  
Interrupt and event generation on  
– Rising edge  
– Falling edge  
– Toggle  
Window function interrupt and event generation on  
– Signal above window  
– Signal inside window  
– Signal below window  
Constant current source with configurable output pin selection  
29.2 Overview  
The Analog Comparator (AC) compares the voltage level on two inputs and gives a digital output  
based on this comparison. The Analog Comparator may be configured to give interrupt requests  
and/or events upon several different combinations of input change.  
Two important properties of the Analog Comparator when it comes to the dynamic behavior, are  
hysteresis and propagation delay. Both these parameters may be adjusted in order to find the  
optimal operation for each application.  
The input section includes analog port pins, several internal signals and a 64-level programma-  
ble voltage scaler. The analog comparator output state can also be directly available on a pin for  
use by external devices. Using as pair they can also be set in Window mode to monitor a signal  
compared to a voltage window instead of a voltage level.  
A constant current source can be enabled, and output on a selectable pin. This can be used to  
replace for example external resistors used to charge capacitors in capacitive touch sensing  
applications.  
The Analog Comparators are always grouped in pairs on each port. They have identical behav-  
ior but separate control registers.  
PORTA has one AC pair. Notation of this peripheral is ACA.  
48  
8387A–AVR–07/11  
XMEGA A4U  
Figure 29-1. Analog comparator overview  
Pin Input  
AC0OUT  
Pin Input  
Hysteresis  
DAC  
Enable  
Interrupt  
Interrupts  
Sensititivity  
Interrupt  
Mode  
Control  
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
&
Events  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
Pin Input  
AC1OUT  
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators  
in a pair as shown in Figure 29-2.  
Figure 29-2. Analog comparator window function  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
49  
8387A–AVR–07/11  
XMEGA A4U  
30. Programming and Debugging  
30.1 Features  
Programming  
– External programming through the PDI  
Minimal protocol overhead for fast operation  
Built in error detection and handling for reliable operation  
– Bootloader support for programming through any communication interface  
Debugging  
– Non-Intrusive Real-Time On-Chip Debug System  
– No software or hardware resources required from device expect pin connection  
– Program Flow Control  
Go, Stop, Reset, Step into, Step over, Step out, Run-to-Cursor  
– Unlimited Number of User Program Breakpoints  
– Unlimited Number of User Data Breakpoints, break on:  
Data location read, write or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
– No limitation on device clock frequency  
Program and Debug Interface (PDI)  
– 2-pin interface for external programming and debugging  
– Uses the Reset pin and a dedicated pin  
– No I/O pins required during programming or debugging  
30.2 Overview  
Atmel® AVR® XMEGA® devices together with Atmel’s development tool chain include the neces-  
sary functions for efficient development. All external programming and debugging are done  
through the Program and Debug Interface (PDI).  
The Program and Debug Interface is 2-pin interface that uses the Reset pin and a dedicated pin.  
No I/O pins are required during programming or debugging.  
In addition to the PDI, programming can also be done through a bootloader. A bootloader in the  
device can use any other communication interface such as UART, TWI or SPI to download and  
program new application code to the Flash memory.  
Debug is supported through a on-chip debug system that offers Non-Intrusive Real-Time debug.  
It does not require any software or hardware resources expect for the device expect pin connec-  
tion. Using Atmel’s tool chain, it offers complete program flow control and has supported for  
unlimited number of program and complex data breakpoints. Application debug can be done  
from C and high level language source code level, as well as assembler and disassembler level.  
50  
8387A–AVR–07/11  
XMEGA A4U  
31. Pinout and Pin Functions  
The device pinout is shown in ”Pinout/Block Diagram” on page 3. In addition to general purpose  
I/O functionality, each pin can have several alternate functions. This will depend on which  
peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used  
at time.  
31.1 Alternate Pin Functions Description  
The tables below shows the notation and description for all pin functions.  
Operation/Power Supply  
31.1.1  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
31.1.2  
31.1.3  
Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator n Output  
ACnOUT  
ADCn  
DACn  
AREF  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
31.1.4  
Timer/Counter and AWeX functions  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
51  
8387A–AVR–07/11  
XMEGA A4U  
31.1.5  
Communication functions  
SCL  
SDA  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock for TWI  
Serial Data for TWI  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
D-  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
Data- for USB  
D+  
Data+ for USB  
31.1.6  
Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel 0 Output  
RTC Clock Source Output  
CLKOUT  
EVOUT  
RTCOUT  
31.1.7  
Debug/System functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
52  
8387A–AVR–07/11  
XMEGA A4U  
31.2 Alternate Pin Functions  
he tables below show the primary/default function for each pin on a port in the first column, the  
pin number in the second column, and then all alternate pin functions in the remaining columns.  
The head row shows what peripheral that enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their func-  
tions, this is noted under the the first table where this apply.  
Table 31-1. Port A - Alternate functions  
PORT A  
PIN #  
INTERRUPT  
ADCA  
POS/GAINPOS  
ADCA  
NEG  
ADCA  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
38  
39  
40  
41  
42  
43  
44  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
AC3  
AC5  
AC7  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
SYNC  
2
SYNC  
AC1OUT  
AC0OUT  
3
SYNC  
Table 31-2. Port B - Alternate functions  
PORT B  
PIN #  
INTERRUPT  
ADCA  
DACB  
REFB  
POS/GAINPOS  
PB0  
PB1  
PB2  
PB3  
4
5
6
7
SYNC  
SYNC  
ADC8  
AREF  
ADC9  
SYNC/ASYNC  
SYNC  
ADC10  
DAC0  
DAC1  
ADC11  
53  
8387A–AVR–07/11  
XMEGA A4U  
Table 31-3. Port C - Alternate functions  
PORT C  
GND  
VCC  
PC0  
PIN #  
INTERRUPT  
TCC0(1)  
AWEXC  
TCC1  
USARTC0(2)  
USARTC1  
SPIC(3)  
TWIC  
EVENTOUT(5)  
CLOCKOUT(4)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
SDA  
SCL  
PC1  
XCK0  
RXD0  
TXD0  
PC2  
SYNC/ASYNC  
SYNC  
PC3  
PC4  
SYNC  
OC1A  
OC1B  
SS  
PC5  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PC6  
SYNC  
clkRTC  
clkPER  
PC7  
SYNC  
EVOUT  
Notes: 1. Pin mapping of all TC0 can optionally be moved to high nibble of port.  
2. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
3. Pins MOSI and SCK for all SPI can optionally be swapped.  
4. CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
5. EVOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
Table 31-4. Port D - Alternate functions  
PORT D  
GND  
VCC  
PD0  
PIN #  
INTERRUPT  
TCD0  
TCD1  
USBD  
USARTD0  
USARTD1  
SPID  
CLOCKOUT  
EVENTOUT  
18  
19  
20  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
PD1  
21  
XCK0  
RXD0  
TXD0  
PD2  
22  
SYNC/ASYNC  
SYNC  
PD3  
23  
PD4  
24  
SYNC  
OC1A  
OC1B  
SS  
PD5  
25  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PD6  
26  
SYNC  
D-  
PD7  
27  
SYNC  
D+  
clkPER  
EVOUT  
Table 31-5. Port E - Alternate functions  
PORT E  
PIN #  
INTERRUPT  
TCE0  
USARTE0  
TWIE  
SDA  
SCL  
PE0  
28  
SYNC  
OC0A  
OC0B  
PE1  
29  
SYNC  
XCK0  
GND  
VCC  
PE2  
30  
31  
32  
SYNC/ASYNC  
SYNC  
OC0C  
OC0D  
RXD0  
TXD0  
PE3  
33  
54  
8387A–AVR–07/11  
XMEGA A4U  
Table 31-6. Port R- Alternate functions  
PORT R  
PIN #  
INTERRUPT  
PDI  
XTAL  
TOSC(1)  
PDI  
34  
PDI_DATA  
PDI_CLOCK  
RESET  
PRO  
35  
36  
SYNC  
SYNC  
XTAL2  
XTAL1  
TOSC2  
TOSC1  
PR1  
37  
Note:  
1. TOSC pins can optionally be moved to PE2/PE3  
55  
8387A–AVR–07/11  
XMEGA A4U  
32. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA A4U. For  
complete register description and summary for each peripheral module, refer to the XMEGA AU  
Manual.  
Base Address  
Name  
Description  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x00D0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0240  
0x0300  
0x0320  
0x0380  
0x0400  
0x0480  
0x04A0  
0x04C0  
0x0600  
0x0620  
0x0640  
0x0660  
0x0680  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08F8  
0x0900  
0x0940  
0x0990  
0x09A0  
0x09B0  
0x09C0  
0x0A00  
0x0A80  
0x0A90  
0x0AA0  
GPIO  
General Purpose IO Registers  
Virtual Port 0  
Virtual Port 1  
Virtual Port 2  
Virtual Port 3  
CPU  
Clock Control  
Sleep Controller  
Oscillator Control  
DFLL for the 32MHz Internal Oscillator  
DFLL for the 2MHz Internal Oscillator  
Power Reduction  
Reset Controller  
Watch-Dog Timer  
MCU Control  
Programmable Multilevel Interrupt Controller  
Port Configuration  
AES Module  
CRC Module  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
CLK  
SLEEP  
OSC  
DFLLRC32M  
DFLLRC2M  
PR  
RST  
WDT  
MCU  
PMIC  
PORTCFG  
AES  
CRC  
DMA  
EVSYS  
NVM  
ADCA  
ADCB  
DACA  
DACB  
ACA  
RTC  
TWIC  
TWIE  
USB  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTR  
TCC0  
DMA Controller  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog to Digital Converter on port B  
Digital to Analog Converter on port A  
Digital to Analog Converter on port B  
Analog Comparator pair on port A  
Real Time Counter  
Two Wire Interface on port C  
Two Wire Interface on port E  
USB Device  
Port A  
Port B  
Port C  
Port D  
Port E  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
USARTC1  
SPIC  
IRCOM  
TCD0  
TCD1  
HIRESD  
USARTD0  
USARTD1  
SPID  
USART 1 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
Timer/Counter 1 on port D  
High Resolution Extension on port D  
USART 0 on port D  
USART 1 on port D  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
Advanced Waveform Extension on port E  
High Resolution Extension on port E  
USART 0 on port E  
TCE0  
AWEXE  
HIRESE  
USARTE0  
56  
8387A–AVR–07/11  
XMEGA A4U  
33. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
ADC  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch Instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
None  
3
RCALL  
ICALL  
Relative Call Subroutine  
Indirect Call to (Z)  
PC + k + 1  
2 / 3(1)  
2 / 3(1)  
PC(15:0)  
PC(21:16)  
Z,  
0
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3(1)  
57  
8387A–AVR–07/11  
XMEGA A4U  
Mnemonics  
CALL  
RET  
Operands  
Description  
Operation  
Flags  
None  
None  
I
#Clocks  
3 / 4(1)  
4 / 5(1)  
4 / 5(1)  
1 / 2 / 3  
1
k
call Subroutine  
PC  
PC  
k
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
BRID  
k
1 / 2  
Data Transfer Instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
None  
None  
None  
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
1
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
(X)  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd, X  
Rd, X+  
Rd  
LD  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2(1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1(1)(2)  
1(1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
58  
8387A–AVR–07/11  
XMEGA A4U  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2(1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2(1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2(1)(2)  
2(1)  
X, Rr  
Rr  
1(1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1(1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2(1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1(1)  
1(1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2(1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2(1)  
1(1)  
1(1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2(1)  
2(1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
None  
1
1
OUT  
PUSH  
POP  
XCH  
Push Register on Stack  
Pop Register from Stack  
Exchange RAM location  
Rr  
1(1)  
2(1)  
2
Rd  
STACK  
Z, Rd  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp  
LAS  
LAC  
Z, Rd  
Z, Rd  
Load and Set RAM location  
Load and Clear RAM location  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp v (Z)  
None  
None  
2
2
(Z)  
Rd  
($FF – Rd) • (Z)  
(Z)  
59  
8387A–AVR–07/11  
XMEGA A4U  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
LAT  
Z, Rd  
Load and Toggle RAM location  
(Z)  
Rd  
Rd (Z)  
(Z)  
None  
2
Bit and Bit-test Instructions  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
MCU Control Instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external  
RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
60  
8387A–AVR–07/11  
XMEGA A4U  
34. Packaging information  
34.1 44A  
PIN 1 IDENTIFIER  
PIN 1  
e
B
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.30  
0.09  
0.45  
0.15  
1.00  
12.00  
10.00  
12.00  
10.00  
1.05  
12.25  
D1  
E
10.10 Note 2  
12.25  
Notes:  
E1  
B
10.10 Note 2  
0.45  
1. This package conforms to JEDEC reference MS-026, Variation ACB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
44A  
C
R
61  
8387A–AVR–07/11  
XMEGA A4U  
34.2 44M1  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
A1  
A3  
TOP VIEW  
A
K
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
1
2
3
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
0.90  
NOTE  
SYMBOL  
A
E2  
Option B  
Option C  
A1  
A3  
b
0.02  
Pin #1  
Chamfer  
(C 0.30)  
0.20 REF  
0.23  
0.18  
6.90  
5.00  
6.90  
0.30  
7.10  
5.40  
7.10  
D
7.00  
D2  
E
5.20  
K
Pin #1  
Notch  
(0.20 R)  
e
b
7.00  
E2  
e
5.00  
5.20  
0.50 BSC  
0.64  
5.40  
BOTTOM VIEW  
L
0.59  
0.20  
0.69  
0.41  
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.  
K
0.26  
9/26/08  
GPC  
ZWS  
DRAWING NO.  
TITLE  
REV.  
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead  
Pitch 0.50 mm, 5.20 mm Exposed Pad,Thermally  
Enhanced Plastic Very Thin Quad Flat No  
Lead Package (VQFN)  
Package Drawing Contact:  
packagedrawings@atmel.com  
44M1  
H
62  
8387A–AVR–07/11  
XMEGA A4U  
34.3 49C2  
E
A1 BALL ID  
0.10  
D
A1  
A2  
TOP VIEW  
A
SIDE VIEW  
E1  
G
F
e
E
D
C
B
A
D1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
A
1
2
3
4
5
6
7
A1  
A2  
D
0.20  
0.65  
4.90  
A1 BALL CORNER  
49 - Ø0.35 0.05  
b
e
5.00  
5.10  
BOTTOM VIEW  
D1  
E
3.90 BSC  
5.00  
4.90  
0.30  
5.10  
0.40  
E1  
b
3.90 BSC  
0.35  
e
0.65 BSC  
3/14/08  
GPC  
CBD  
DRAWING NO.  
TITLE  
REV.  
49C2, 49-ball (7 x 7 Array), 0.65 mm Pitch,  
5.0 x 5.0 x 1.0 mm, Very Thin, Fine-Pitch  
Ball Grid Array Package (VFBGA)  
Package Drawing Contact:  
packagedrawings@atmel.com  
49C2  
A
63  
8387A–AVR–07/11  
XMEGA A4U  
35. Electrical Characteristics  
All typical values are measured at T = 25°C unless other temperature condition is given. All min-  
imum and maximum values are valid across operating temperature and voltage unless other  
conditions are given.  
35.1 Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Operating Temperature.................................... -55°C to +85°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on any Pin with respect to Ground..-0.5V to VCC+0.5V  
Maximum Operating Voltage ............................................ 4.0V  
DC Current per I/O Pin ................................................ 20.0mA  
DC Current VCC and GND Pins................................. 200.0mA  
35.2 DC Characteristics  
Table 35-1. Current Consumption for Active and sleep modes  
Symbol Parameter  
Condition  
Min  
Typ  
50  
Max  
Units  
VCC = 1.8V  
32kHz, Ext. Clk  
V
CC = 3.0V  
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
130  
260  
540  
460  
0.96  
9.8  
V
V
V
µA  
1MHz, Ext. Clk  
Active Power  
consumption(1)  
600  
1.4  
12  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
V
CC = 3.0V  
CC = 1.8V  
mA  
µA  
ICC  
V
2.4  
VCC = 3.0V  
CC = 1.8V  
VCC = 3.0V  
3.9  
V
62  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
Idle Power  
118  
125  
237  
3.8  
consumption(1)  
VCC = 1.8V  
225  
350  
5.5  
1
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
µA  
0.1  
VCC = 3.0V  
VCC = 3.0V  
T = 85°C  
1.2  
4.5  
Power-down power  
consumption  
WDT and Sampled BOD enabled,  
T = 25°C  
ICC  
1.2  
2.4  
3
7
WDT and Sampled BOD enabled,  
T=85°C  
64  
8387A–AVR–07/11  
XMEGA A4U  
Table 35-1. Current Consumption for Active and sleep modes (Continued)  
Symbol Parameter  
Condition  
Min  
Typ  
1.2  
Max  
Units  
RTC on ULP clock, WDT and  
sampled BOD enabled, T = 25°C  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
1.2  
0.5  
2
2
Power-save power  
RTC on 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
consumption(2)  
0.7  
ICC  
µA  
0.9  
3
RTC from low power 32.768kHz  
TOSC, T = 25°C  
1.15  
3.5  
Current through RESET pin  
substracted  
Reset power consumption  
VCC = 3.0V  
320  
Module and peripheral power consumption(3)  
ULP oscillator  
1
27  
32.768kHz int. oscillator  
85  
2MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
460  
220  
0.015  
1
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
Multiplication factor = 10x  
PLL  
µA  
Real Time Counter  
Watchdog Timer  
Continuous mode  
138  
1.2  
BOD  
Sampled mode, include ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
100  
95  
ICC  
3.05  
2.61  
2.16  
1.75  
1.63  
CURRLIMIT = LOW  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Normal mode  
250 kSPS  
ADC  
VREF = Ext ref  
mA  
250kSPS’  
DAC  
AC  
VREF = Ext ref  
No load  
Low Power mode  
1.06  
High Speed Mode  
Low Power Mode  
330  
130  
108  
16  
DMA  
615KBps between I/O registers and SRAM  
µA  
Timer/Counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
3.6  
Flash memory and EEPROM programming  
mA  
Notes: 1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization and not tested in production.  
65  
8387A–AVR–07/11  
XMEGA A4U  
3. All parameters measured as the difference in current consumption between module enabled and disabled. All data at  
VCC = 3.0V, ClkSYS = 1MHz External clock without prescaling, T = 25°C unless other conditiond are given .  
35.3 Operating Voltage and Frequency  
Table 35-2. Operating voltage and frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
CC = 1.8V  
Min  
0
Typ  
Max  
12  
Units  
V
0
12  
ClkCPU  
CPU clock frequency  
MHz  
VCC = 2.7V  
VCC = 3.6V  
0
32  
0
32  
The maximum System clock frequency of the Atmel® AVR® XMEGA A4U devices is depending  
on VCC. As shown in Figure 35-1 on page 66 the Frequency vs. VCC curve is linear between  
1.8V < VCC < 2.7V.  
Figure 35-1. Maximum Frequency vs. Vcc  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
66  
8387A–AVR–07/11  
XMEGA A4U  
35.4 Wakeup time from sleep  
Table 35-3. Device wakeup time from sleep modes with various system clock sources  
Symbol Parameter  
Condition  
External 2MHz clock  
Min  
Typ  
2
Max  
Units  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2
Wake-up time from Idle  
0.17  
2
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2
Wake-up time from Standby  
0.17  
2
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2
Wake-up time from Extend  
Standby  
twakeup  
µs  
0.17  
4.5  
320  
8.8  
5
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
Wake-up time from Power-save  
Wake-up time from Power-down  
4.5  
320  
8.8  
5
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
67  
8387A–AVR–07/11  
XMEGA A4U  
35.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCSMOS specification and the high- and  
low level input and output voltage limits reflect or exceed this specification.  
Table 35-4. I/O Pin Characteristics  
Symbol Parameter  
Condition  
VCC = 3.0 - 3.6V  
CC = 2.3 - 2.7V  
Min  
2
Typ  
Max  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.8  
Units  
VIH  
High Level Input Voltage  
V
1.7  
VCC = 1.6 - 2.7V  
VCC = 3.0 - 3.6V  
0.7*VCC  
-0.3  
-0.3  
-0.3  
2.4  
VIL  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Output Low Voltage GPIO  
Output High Voltage GPIO  
VCC = 2.3 - 2.7V  
0.7  
VCC = 1.6 - 2.7V  
VCC = 3.0 - 3.6V  
0.2*VCC  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
3.19  
2.43  
2.37  
0.05  
0.03  
0.05  
0.4  
VOH  
VOL  
VOL  
VOH  
2.0  
V
CC = 2.3 - 2.7V  
VCC = 3.0 - 3.6V  
CC = 2.3 - 2.7V  
1.7  
V
0.4  
0.4  
V
0.7  
VCC = 3.3V  
CC = 3.0V  
0.76  
0.64  
0.46  
V
0.265  
0.18  
2.86  
2.66  
1.64  
<0.001  
<0.001  
27  
VCC = 1.8V  
VCC = 3.3V  
2.6  
2.1  
1.4  
VCC = 3.0V  
VCC = 1.8V  
IIN  
IIL  
Input Leakage Current I/O pin  
Input Leakage Current I/O pin  
I/O pin Pull/Buss keeper Resistor  
Reset pin Pull-up Resistor  
Input hysteresis  
0.1  
0.1  
µA  
RP  
kΩ  
V
RRST  
25  
0.2  
4
tr  
Pad rise time  
No load  
nS  
slew rate limitation  
7
68  
8387A–AVR–07/11  
XMEGA A4U  
35.6 ADC Characteristics  
Table 35-5. ADC Characteristics  
Symbol  
Parameter  
Condition(2)  
Min  
Typ  
Max  
Units  
RES  
Resolution  
8
12  
12  
Bits  
ClkADC  
cycles  
Conversion time (latency)  
Sampling Time  
(RES+2)/2+(GAIN !=0), RES = 8 or 2  
5
8
1/2 ClkADC cycle  
0.25  
100  
5
2000  
µS  
Max is 1/4 of Peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC Clock frequency  
kHz  
100  
125  
100  
2000  
CURRLIMIT = LOW  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
100  
1500  
fADC  
Sample rate  
kSPS  
100  
1000  
100  
500  
AVCC  
VREF  
Rin  
Analog supply voltage  
Reference voltage  
VCC- 0.3  
1
VCC+ 0.3  
AVCC- 0.6  
V
Input resistance  
Switched  
4.0  
4.4  
>10  
7
kΩ  
pF  
Cin  
Input capacitance  
Switched  
RAREF  
CAREF  
Reference input resistance  
(leackage only)  
MΩ  
pF  
Reference input capacitance Static load  
Start-up time  
ADC clock cycles  
12  
7
24  
ClkADC  
cycles  
After changing reference or input mode  
After ADC flush  
7
ADC settling time  
1
1
Vin  
Vin  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+ 0.1  
Conversion range  
Conversion range  
Differential mode, Vinp - Vinn  
VREF  
V
Single ended unsigned mode, Vinp  
VREF-ΔV  
VCC-1.0V < VREF< VCC-0.6V  
500kSPS  
1.2  
1.5  
1.0  
1.5  
0.8  
2
3
INL(1)  
Integral non-linearity  
V
CC-1.0V < VREF< VCC-0.6V  
CC-1.0V < VREF< VCC-0.6V  
2
2000kSPS  
LSB  
3
500kSPS,  
guaranteed  
monotonic  
V
1.2  
0.5  
0.8  
0.5  
1.5  
1.2  
1.5  
DNL(1)  
Differential non-linearity  
Offset Error  
2000kSPS, VCC-1.0V < VREF< VCC-0.6V  
guaranteed  
monotonic  
-1  
mV  
Temperature drift  
<0.01  
<0.6  
mV/K  
mV/V  
Operating voltage drift  
69  
8387A–AVR–07/11  
XMEGA A4U  
Table 35-5. ADC Characteristics (Continued)  
Symbol  
Parameter  
Condition(2)  
External reference  
AVCC/1.6  
Min  
Typ  
1
Max  
Units  
10  
Differential  
mode  
mV  
AVCC/2.0  
8
Gain Error  
Bandgap  
5
Temperature drift  
<0.02  
<0.5  
mV/K  
mV/V  
Operating voltage drift  
Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 35-6. ADC Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min  
Typ  
4.0  
4.4  
Max  
Units  
kΩ  
pF  
Input resistance  
Input capacitance  
Signal range  
Cin  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
ADC conversion rate  
Same as ADC  
1
Clock rate  
100  
1000  
4
kHz  
INL(1)  
Integral Non-Linearity  
All gain settings  
500kSPS  
2.0  
0.9  
LSB  
All gain setting, guaranteed  
DNL(1)  
Differential Non-Linearity  
1.5  
monotonic  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain normal mode  
64x gain normal mode  
-0.8  
-2.5  
-3.5  
-2  
Gain Error  
%
Offset Error, input  
refered  
-5  
mV  
-4  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
70  
8387A–AVR–07/11  
XMEGA A4U  
35.7 DAC Characteristics  
Table 35-7. DAC Characteristics  
Symbol  
RES  
Parameter  
Condition  
Min  
1.0  
Typ  
Max  
12  
Units  
Bits  
V
Input Resolution  
AVREF  
Rchannel  
External reference voltage  
DC output impedance  
V
CC-0.6  
50  
Ω
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum Resistance load  
0.15  
AVCC-0.15  
RAREF  
CAREF  
>10  
7
MΩ  
pF  
kΩ  
pF  
nF  
1
100  
Maximum capacitance laod  
1000Ω serial resistance  
1
AVCC/1000  
10  
Operating within specification  
Safe operation  
Output sink/source  
mA  
Ox  
Enable, reset to code  
0
VCC = 1.6V  
VREF= Ext 1.0V  
2.0  
1.5  
2.0  
1.5  
3.0  
3.0  
1.5  
3
2.5  
4
VCC = 3.6V  
VCC = 1.6V  
VREF=AVCC  
INL(1)  
Integral non-linearity  
VCC = 3.6V  
4
VCC = 1.6V  
VREF=INT1V  
VCC = 3.6V  
VREF=Ext 1.0V, VCC = 1.6V  
guaranteed  
3
LSB  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
0.6  
1.0  
0.6  
1.5  
3.5  
1.5  
monotonic  
VREF=AVCC,  
guaranteed  
monotonic  
DNL(1)  
Differential Non-Linearity  
VCC = 1.6V  
VCC = 3.6V  
3.0  
3.0  
<4  
4
VREF=INT1V  
Gain error  
After calibration  
Gain calibration step size  
Gain calibration drift  
Offset error  
VREF= Ext 1.0V  
After calibration  
<0.2  
<1  
1
mV/K  
LSB  
Offset calibration step size  
Fout=Fclk/4,  
Cload=100pF,  
Max step size  
0
0
1000  
1000  
Fclk  
Conversion rate  
kSPS  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
71  
8387A–AVR–07/11  
XMEGA A4U  
35.8 Analog Comparator Characteristics  
Table 35-8. Analog Comparator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
< 10  
<1000  
Max  
Units  
mV  
pA  
Voff  
Ilk  
Input Offset Voltage  
Input Leakage Current  
Input voltage range  
AC startup time  
-0.1  
AVCC+ 0.1  
V
100  
0
µs  
Vhys1  
Vhys2  
Hysteresis, None  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
14  
30  
30  
60  
90  
95  
200  
200  
0.5  
5
Hysteresis, Small  
Hysteresis, Large  
mV  
Vhys3  
mode = LP  
VCC = 3.0V, T= 85°C mode = HS  
mode = HS  
100  
500  
1
tdelay  
Propagation delay  
ns  
VCC = 3.0V, T= 85°C mode = LP  
mode = LP  
64-Level Voltage Scaler  
Integral non-linearity (INL)  
LSB  
%
Current source accuracy after calibration  
Current source calibration range  
4
6
µA  
35.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 35-9. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T= 85°C, After calibration  
0.99  
1.01  
Variation over voltage and temperature  
0.5  
%
72  
8387A–AVR–07/11  
XMEGA A4U  
35.10 Brownout Detection Characteristics  
Table 35-10. Brownout Detection Characteristics(1)  
Symbol Parameter  
Condition  
Min  
Typ  
1.62  
1.81  
2.01  
2.21  
2.41  
2.61  
2.81  
3.00  
0,4  
Max  
Units  
BOD level 0 falling Vcc  
1.62  
1.72  
BOD level 1 falling Vcc  
BOD level 2 falling Vcc  
BOD level 3 falling Vcc  
V
BOD level 4 falling Vcc  
BOD level 5 falling Vcc  
BOD level 6 falling Vcc  
BOD level 7 falling Vcc  
Continous mode  
Sampled mode  
tBOD  
Detection time  
µs  
%
1000  
1.6  
VHYST  
Hysteresis  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
35.11 External Reset Characteristics  
Table 35-11. External Reset Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
tEXT  
Minimum reset pulse width  
90  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.50*VCC  
0.40*VCC  
VRST  
Reset threshold voltage  
V
35.12 Power-on Reset Characteristics  
Table 35-12. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
VCC falls faster than 1V/ms  
CC falls at 1V/ms or slower  
Min  
0.4  
0.8  
Typ  
1.0  
1.2  
1.3  
Max  
Units  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
V
V
VPOT+  
1.59  
73  
8387A–AVR–07/11  
XMEGA A4U  
35.13 Flash and EEPROM Memory Characteristics  
Table 35-13. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min  
10K  
10K  
100  
25  
Typ  
Max  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/Erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
80K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
Table 35-14. Programming time  
Symbol Parameter  
Chip Erase  
Condition  
Min  
Typ(1)  
50  
6
Max  
Units  
Flash, EEPROM(2) and SRAM Erase  
Page Erase  
Flash  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
Page Erase  
12  
6
ms  
EEPROM  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
12  
Notes: 1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
35.14 Clock and Oscillator Characteristics  
35.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 35-15. Calibrated 32.768kHz Internal Oscillator characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
74  
8387A–AVR–07/11  
XMEGA A4U  
35.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 35-16. Calibrated 2MHz Internal Oscillator characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
Frequency range  
1.8  
2.0  
2.2  
MHz  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
35.14.3 Calibrated and tunable 32MHz Internal Oscillator characteristics  
Table 35-17. Calibrated 32MHz Internal Oscillator characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
Frequency range  
30  
32  
55  
MHz  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
35.14.4 32kHz Internal ULP Oscillator characteristics  
Table 35-18. 32kHz Internal ULP Oscillator characteristics  
Symbol Parameter  
Output frequency  
Condition  
Min  
Typ  
Max  
Units  
38  
kHz  
35.14.5 Internal Phase Locked Loop (PLL) characteristics  
Table 35-19. Calibrated 32MHz Internal Oscillator characteristics  
Symbol Parameter  
Condition  
Min  
0.4  
20  
Typ  
Max  
64  
Units  
fIN  
Input Frequnecy  
Output frequnecy must be within fOUT  
32  
MHz  
fOUT  
Ouput frequnecy (1)  
20  
128  
Start-up time  
re-lock time  
25  
25  
µs  
1.  
The maximum ouput frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than 4 times the  
maximum CPU frequency.  
75  
8387A–AVR–07/11  
XMEGA A4U  
35.14.6 External 32.768kHz Crystal Oscillator and TOSC characteristics  
Table 35-20. External 32.768kHz Crystal Oscillator and TOSC characteristics  
Symbol Parameter  
Condition  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Normal mode  
Min  
Typ  
Max  
60  
Units  
Recommended crystal equivalent  
series resistance (ESR)  
ESR/R1  
kΩ  
35  
4.7  
5.2  
CIN_TOSC Input capacitance between TOSC pins  
pF  
Low power mode  
capacitance load matched to  
crystal specification  
Recommended Safety factor  
3
Note:  
1. See Figure 35-2 on page 76 for definition  
Figure 35-2. TOSC input capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 KHz crystal  
The input capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal  
when oscillating without external capacitors.  
35.14.7 External Clock Characteristics  
Figure 35-3. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
76  
8387A–AVR–07/11  
XMEGA A4U  
Table 35-21. External Clock used as System Clock without prescaling  
Symbol Parameter  
Condition  
Min  
0
Typ  
Max  
12  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency(1)  
MHz  
0
32  
V
CC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
CC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
Clock Period  
V
tCH  
Clock High Time  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
tCL  
Clock Low Time  
ns  
10  
3
tCR  
Rise Time (for maximum frequency)  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
10  
3
tCF  
Fall Time (for maximum frequency)  
ΔtCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters  
with supply voltage conditions.  
Table 35-22. External Clock with prescaler(1) for System Clock  
Symbol Parameter Condition  
Min  
0
Typ  
Max  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency(2)  
MHz  
0
142  
11  
7
tCK  
Clock Period  
V
V
V
CC = 1.6 - 1.8V  
CC = 2.7 - 3.6V  
CC = 1.6 - 1.8V  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
Clock Low Time  
ns  
%
tCL  
VCC = 2.7 - 3.6V  
tCR  
tCF  
Rise Time (for maximum frequency)  
1.5  
1.5  
10  
Fall Time (for maximum frequency)  
ΔtCK  
Change in period from one clock cycle to the next  
Notes: 1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters  
with supply voltage conditions  
77  
8387A–AVR–07/11  
XMEGA A4U  
35.15 SPI Characteristics  
Figure 35-4. SPI Interface Requirements in Master mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data Input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 35-5. SPI Timing Requirements in Slave mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data Input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
78  
8387A–AVR–07/11  
XMEGA A4U  
Table 35-23. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
(See Table 21-4 in  
XMEGA AU Manual)  
tSCK  
SCK Period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK Rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
0.5*SCK  
2.7  
2.7  
SCK Fall time  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
10  
tMIH  
10  
tMOS  
tMOH  
0.5*SCK  
1
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
Slave SCK Period  
SCK high/low width  
SCK Rise time  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
4*t ClkPER  
2*t ClkPER  
ns  
1600  
1600  
SCK Fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
SS hold after SCK  
MISO setup SCK  
20  
tSOS  
8
13  
11  
8
tSOH  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
tSOSS  
tSOSH  
79  
8387A–AVR–07/11  
XMEGA A4U  
35.16 Two-Wire Interface Characteristics  
Table 2-1 describes the requirements for devices connected to the Two Wire Serial Bus. The  
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions.  
Timing symbols refer to Figure 35-6.  
Figure 35-6. Two-Wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 35-24. Two Wire Serial Bus Characteristics  
Unit  
s
Symbol Parameter  
Condition  
Min  
Typ  
Max  
VIH  
VIL  
Vhys  
VOL  
tr  
Input High Voltage  
0.7VCC  
0.5  
VCC+0.5  
0.3*VCC  
Input Low Voltage  
V
(1)  
Hysteresis of Schmitt Trigger Inputs  
Output Low Voltage  
0.05VCC  
3mA, sink current  
0
20+0.1Cb  
20+0.1Cb  
0
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise Time for both SDA and SCL  
Output Fall Time from VIHmin to VILmax  
Spikes Suppressed by Input Filter  
Input Current for each I/O Pin  
Capacitance for each I/O Pin  
SCL Clock Frequency  
tof  
10pF < Cb < 400pF(2)  
0.1VCC < VI < 0.9VCC  
ns  
tSP  
II  
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER(3)>max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
VCC 0.4V  
----------------------------  
3mA  
300ms  
Cb  
----------------  
RP  
Value of Pull-up resistor  
Ω
fSCL > 100kHz  
fSCL 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
tHD;STA  
Hold Time (repeated) START condition  
Low Period of SCL Clock  
fSCL > 100kHz  
fSCL 100kHz  
tLOW  
f
SCL > 100kHz  
µs  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
tHIGH  
High Period of SCL Clock  
tSU;STA  
Set-up time for a repeated START condition  
80  
8387A–AVR–07/11  
XMEGA A4U  
Table 35-24. Two Wire Serial Bus Characteristics (Continued)  
Unit  
Symbol Parameter  
Condition  
fSCL 100kHz  
SCL > 100kHz  
fSCL 100kHz  
SCL > 100kHz  
Min  
0
Typ  
Max  
3.45  
0.9  
s
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
f
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
f
µs  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
Setup time for STOP condition  
Bus free time between a STOP and START  
condition  
Notes: 1. Required only for fSCL > 100kHz  
2. Cb = Capacitance of one bus line in pF  
3. fPER = Peripheral clock frequency  
81  
8387A–AVR–07/11  
XMEGA A4U  
36. Typical Characteristics  
36.1 Active Supply Current  
Figure 36-1. Active Supply Current vs. Frequency  
fSYS = 0 - 1.0MHz External clock, T = 25°C  
700  
600  
500  
400  
300  
200  
100  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.2  
0.4  
0.6  
0.8  
1
Frequency [MHz]  
Figure 36-2. Active supply current vs. frequency  
fSYS = 1 - 32MHz External clock, T = 25°C  
12  
10  
8
3.3V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
82  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-3. Active Supply Current vs. Vcc  
fSYS = 1.0MHz External Clock  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-40°C  
25°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 36-4. Active Supply Current vs. VCC  
fSYS = 2.0MHz internal oscillator  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-40°C  
25°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
83  
8387A–AVR–07/11  
XMEGA A4U  
36.2 Idle Supply Current  
Figure 36-5. Idle Supply Current vs. Frequency  
fSYS = 0 - 1.0MHz, T = 25°C  
140  
120  
100  
80  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 36-6. Idle Supply Current vs. Frequency  
fSYS = 1 - 32MHz, T = 25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.0  
1.8V  
0.5  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
84  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-7. Idle Supply Current vs. Vcc  
fSYS = 32.768kHz internal oscillator  
33  
32  
31  
30  
29  
28  
27  
-40°C  
85°C  
25°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-8. Idle Supply Current vs. Vcc  
fSYS = 1.0MHz internal oscillator  
160  
150  
140  
130  
120  
110  
100  
90  
85 °C  
25 °C  
-40 °C  
80  
70  
60  
50  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
85  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-9. Idle Supply Current vs. Vcc  
fSYS = 2.0MHz internal oscillator  
410  
380  
350  
320  
290  
260  
230  
200  
170  
-40°C  
25°C  
85°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-10. Idle Supply Current vs. Vcc  
fSYS = 32MHz internal oscillator  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
-40°C  
25°C  
85°C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
CC [V]  
3.3  
3.4  
3.5  
3.6  
V
86  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-11. Idle Supply Current vs. Vcc  
fSYS = 32MHz internal oscillator, prescaled to 8MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
36.3 Power-down Supply Current  
Figure 36-12. Power-down Supply Current vs. Temperature  
All functions disabled  
3.3V  
3.0V  
2.7V  
1.2  
1
2.2V  
1.8V  
0.8  
0.6  
0.4  
0.2  
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
87  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-13. Power-down Supply Current vs. Temperature  
With WDT and sampled BOD enabled.  
2.6  
2.3  
2
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
1.7  
1.4  
1.1  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
36.4 Pin Pull-up  
Figure 36-14. Reset and I/O Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
70  
60  
50  
40  
30  
20  
10  
0
-40 °C  
25 °C  
85 °C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
V
RESET [V]  
88  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-15. Reset and I/O Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
-40 °C  
25 °C  
85 °C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
VRESET [V]  
Figure 36-16. Reset and I/O Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
-40 °C  
25 °C  
85 °C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
V
RESET [V]  
89  
8387A–AVR–07/11  
XMEGA A4U  
36.5 Pin Output Voltage vs. Sink/Source Current  
Figure 36-17. I/O Pin Output Voltage vs. Source Current  
Vcc = 1.8V  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0
-1  
85 °C  
25 °C  
-20 °C  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
V
PIN [V]  
Figure 36-18. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.0V  
1.5  
1.65  
1.8  
1.95  
2.1  
2.25  
2.4  
2.55  
2.7  
2.85  
3
0
-2  
85 °C  
25 °C  
-40 °C  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
VPIN [V]  
90  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-19. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.3V  
1.8  
1.95  
2.1  
2.25  
2.4  
2.55  
2.7  
2.85  
3
3.15  
3.3  
0
-2  
85 °C  
25 °C  
-40 °C  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
V
PIN [V]  
Figure 36-20. I/O Pin Output Voltage vs. Source Current  
T = 25°C  
3.6  
3.3  
3
3.6 V  
3.3 V  
2.7 V  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2.2 V  
1.8 V  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
I
PIN [mA]  
91  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-21. I/O Pin Output Voltage vs. Sink Current  
Vcc = 1.8V  
2.75  
2.5  
2.25  
2
85°C  
20°C  
1.75  
1.5  
1.25  
1
-40°C  
0.75  
0.5  
0.25  
0
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
IPIN [mA]  
Figure 36-22. I/O Pin Output Voltage vs. Sink Current  
T= 25°C  
2
1.8  
1.6  
1.4  
1.2  
1
1.8 V  
2.2 V  
2.7 V  
3.3 V  
0.8  
0.6  
0.4  
0.2  
0
3.6 V  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
PIN [mA]  
92  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-23. I/O Pin Sink Current vs. Output Voltage  
Vcc = 3.0V  
20  
18  
16  
14  
12  
10  
8
-20 °C  
25 °C  
85 °C  
6
4
2
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
VPIN [V]  
Figure 36-24. I/O Pin Sink Current vs. Output Voltage  
Vcc = 3.3V  
22  
20  
18  
16  
14  
12  
10  
8
-20 °C  
25 °C  
85 °C  
6
4
2
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
PIN [V]  
0.3  
0.35  
0.4  
0.45  
0.5  
V
93  
8387A–AVR–07/11  
XMEGA A4U  
36.6 Pin Thresholds and Hysteresis  
Figure 36-25. I/O Pin Input Threshold Voltage vs. VCC  
T = 25°C  
1.85  
1.7  
VIH  
VIL  
1.55  
1.4  
1.25  
1.1  
0.95  
0.8  
0.65  
0.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-26. I/O Pin Input Hysteresis vs. VCC  
T = 25°C  
0.315  
0.3  
0.285  
0.27  
0.255  
0.24  
0.225  
0.21  
0.195  
0.18  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
94  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-27. Reset Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”  
-40°C  
25°C  
85°C  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-28. Reset Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”  
-40°C  
25°C  
85°C  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
95  
8387A–AVR–07/11  
XMEGA A4U  
36.7 Bod characteristics  
Figure 36-29. BOD Thresholds vs. Temperature  
BOD Level = 1.6V  
1.629  
1.626  
1.623  
1.62  
Rising Vcc  
Falling Vcc  
1.617  
1.614  
1.611  
1.608  
1.605  
1.602  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 36-30. BOD Thresholds vs. Temperature  
BOD Level = 2.6V  
2.648  
2.642  
2.636  
2.63  
Rising Vcc  
2.624  
2.618  
2.612  
2.606  
2.6  
Falling Vcc  
2.594  
2.588  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
96  
8387A–AVR–07/11  
XMEGA A4U  
36.8 Oscillators  
36.8.1  
Internal 1kHz Oscillator  
Figure 36-31. 1kHz Ouput from Internal ULP Oscillator Frequency vs. Temperature  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.09  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Temperature [°C]  
36.8.2  
32.768kHz Internal Oscillator  
Figure 36-32. 32.768kHz Internal Oscillator Frequency vs. Temperature  
1.8V  
2.2V  
2.7V  
3.3V  
3.0V  
32.81  
32.79  
32.77  
32.75  
32.73  
32.71  
32.69  
32.67  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
97  
8387A–AVR–07/11  
XMEGA A4U  
36.8.3  
2MHz Internal Oscillator  
Figure 36-33. 2MHz Internal Oscillator CALA Calibration Step Size  
VCC = 3V  
0.32 %  
0.29 %  
0.26 %  
0.23 %  
0.20 %  
0.17 %  
0.14 %  
-40°C  
25°C  
85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130  
CALA  
Figure 36-34. 2MHz Internal Oscillator Frequency vs. Temperature  
2.15  
2.14  
2.13  
2.12  
2.11  
2.1  
2.09  
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
1.99  
1.98  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
98  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-35. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from 32.768kHz internal oscillator  
2.005  
2.004  
2.003  
2.002  
2.001  
2
2.7V  
2.2V  
3.3V  
3.0V  
1.8V  
1.999  
1.998  
1.997  
1.996  
1.995  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
36.8.4  
32MHZ Internal Oscillator  
Figure 36-36. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
35.7  
35.2  
34.7  
34.2  
33.7  
33.2  
32.7  
32.2  
31.7  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
99  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-37. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from 32.768kHz internal oscillator  
2.2V  
3.0V  
2.7V  
1.8V  
32.06  
32.04  
32.02  
32  
3.3V  
31.98  
31.96  
31.94  
31.92  
31.9  
31.88  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 36-38. 32MHz Internal Oscillator CALA Calibration Step Size  
VCC = 3.0V  
0.36 %  
0.34 %  
0.32 %  
0.30 %  
0.28 %  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.16 %  
0.14 %  
0.12 %  
85°C  
25°C  
-40°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130  
CALA  
100  
8387A–AVR–07/11  
XMEGA A4U  
36.8.5  
32MHz Internal Oscillator Calibrated to 48MHZ  
Figure 36-39. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
53.5  
52.5  
51.5  
50.5  
49.5  
48.5  
47.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 36-40. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from 32.768kHz internal oscillator  
48.08  
48.05  
48.02  
47.99  
47.96  
47.93  
47.9  
2.2V  
3.3V  
1.8V  
3.0V  
2.7V  
47.87  
47.84  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
101  
8387A–AVR–07/11  
XMEGA A4U  
36.9 Analog comparator characteristics  
Figure 36-41. AC current consumption vs. Vcc  
Low-power mode  
147  
142  
137  
132  
127  
122  
117  
112  
85°C  
25°C  
-40°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-42. AC current consumption vs. Vcc  
High speed mode  
360  
350  
340  
330  
320  
310  
300  
290  
280  
85°C  
25°C  
-40°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
102  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-43. Analog comparator hysteresis vs. Vcc  
High-speed mode, small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
85°C  
-40°C  
25°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-44. Analog comparator hysteresis vs. Vcc  
High-speed mode, large hysteresis  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
85°C  
25°C  
-40°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
103  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-45. Analog comparator propagation delay vs. Vcc  
High-speed mode  
170  
147  
124  
101  
78  
85°C  
25°C  
-40°C  
55  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 36-46. Analog comparator propagation delay vs. temperature  
High-speed mode.  
170  
147  
124  
101  
78  
1.6V  
2.7V  
3.6V  
55  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
104  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-47. Analog comparator propagation delay vs. temperature  
Low-power mode  
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
1.6V  
2.7V  
3.6V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
36.10 ADC characteristics  
Figure 36-48. Gain Error vs. External VREF  
T = 25°C, VCC = 3.6V, ADC sampling speed = 500kSPS  
3
2
Single-ended Signed  
Differential Mode  
1
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF  
105  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-49. Gain Error vs. VCC  
T = 25°C, VREF= External 1.0V, ADC sampling speed = 500kSPS  
2.2  
1.9  
1.6  
1.3  
1
Single-ended Signed  
Differential Mode  
0.7  
0.4  
0.1  
-0.2  
-0.5  
Single-ended Unsigned  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
2.6  
3.4  
3.6  
VCC [V]  
Figure 36-50. Offset Error vs. External VREF  
T = 25°C, VCC = 3.6V, ADC sampling speed = 500kSPS  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.8  
3
-1  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2  
Differential Mode  
VREF [V]  
106  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-51. Offset Error vs. VCC  
T = 25°C, VREF = External 1.0V, ADC sampling rate = 500kSPS.  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Differential Mode  
-1.1  
-1.2  
VCC [V]  
Figure 36-52. Gain Error vs. Temperature  
VCC = 3.0V, VREF = External 2.0V  
3
2
Single-ended Signed  
Differential Mode  
1
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [ºC]  
107  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-53. INL error vs. External VREF  
T = 25°C, VCC = 3.6V.  
1.8  
1.7  
1.6  
1.5  
Differential Mode  
Single-ended Unsigned  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
Single-ended Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 36-54. DNL error vs. External VREF  
T = 25°C, VCC = 3.6V  
0.9  
0.88  
0.86  
Differential Mode  
0.84  
0.82  
0.8  
Single-ended Signed  
0.78  
0.76  
0.74  
0.72  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
108  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-55. INL error vs. Sample Rate  
T = 25°C, VCC = 3.6V, VREF = 3.0V External Reference.  
1.4  
1.35  
1.3  
Differential Mode  
1.25  
1.2  
Single-ended Unsigned  
1.15  
1.1  
1.05  
1
Single-ended Signed  
0.95  
0.9  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
Figure 36-56. DNL error vs. Sample Rate  
T = 25°C, VCC = 3.6V, VREF = 3.0V External Reference.  
0.9  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
0.83  
0.82  
0.81  
0.8  
Differential Mode  
Single-ended Signed  
Single-ended Unsigned  
0.79  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
109  
8387A–AVR–07/11  
XMEGA A4U  
36.11 DAC characteristics  
Figure 36-57. DNL error vs. External VREF  
VCC = 3.6V  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
25ºC  
1.6  
1.8  
2
2.2  
2.4  
VREF [V]  
2.6  
2.8  
3
Figure 36-58. INL error vs. External VREF  
VCC = 3.6V  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
25ºC  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
110  
8387A–AVR–07/11  
XMEGA A4U  
36.12 PDI characteristics  
Figure 36-59. Maximum PDI speed vs. Vcc  
32  
29.5  
27  
25°C  
-40°C  
85°C  
24.5  
22  
19.5  
17  
14.5  
12  
1.6  
1.85  
2.1  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
VCC [V]  
36.13 Power-on reset characteristics  
Figure 36-60. Power-on reset threshold vs. temperature.  
1.295  
1.285  
Rising Vcc  
1.275  
Falling Vcc  
1.265  
1.255  
1.245  
-45 -35 -25 -15 -5  
5
15  
25 35 45 55 65 75 85  
Temperature [°C]  
111  
8387A–AVR–07/11  
XMEGA A4U  
Figure 36-61. Power-on reset current consumption vs. Vcc.  
2000  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
600  
400  
200  
0
1.6 1.7 1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VCC [V]  
3
3.1 3.2 3.3  
36.14 Bandgap and internal 1.0V characteristics  
Figure 36-62. Internal 1.0V reference voltage vs. temperature.  
1.004  
1.002  
1
1.8V  
2.2V  
2.7V  
3.2V  
3.6V  
0.998  
0.996  
0.994  
0.992  
0.99  
0.988  
0.986  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
112  
8387A–AVR–07/11  
XMEGA A4U  
36.15 Reset pin characteristics  
Figure 36-63. Minimum Reset Pulse vs. Vcc.  
130  
125  
120  
115  
110  
105  
100  
95  
85°C  
90  
25°C  
-40°C  
85  
80  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
113  
8387A–AVR–07/11  
XMEGA A4U  
37. Errata  
37.1 ATxmega16A4U, ATxmega32A4U  
37.1.1  
rev. E  
CRC fails for Range CRC when end address is the last word address of a flash section  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application  
section. If application table read lock is enabled, the range CRC cannot end on the last  
address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a  
section with read lock enabled. Instead, use the dedicated CRC commands for complete  
applications sections.  
2. AWeX fault protection restore is not done correctly in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is  
cleared, OUTOVEN is restored according to the corresponding enabled DTI channels. For  
Common Waveform Channel Mode (CWCM), this has no effect as the OUTOVEN is correct  
after restoring from fault. For Pattern Generation Mode (PGM), OUTOVEN should instead  
have been restored according to the DTILSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condi-  
tion. Then, set correct OUTOVEN value and enable the DTI channels, before the direction  
(DIR) register is written to enable the correct outputs again.  
For PGM in cycle-by-cycle mode there is no workaround.  
37.1.2  
rev. A - D  
Not sampled.  
114  
8387A–AVR–07/11  
XMEGA A4U  
38. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The  
referring revision in this section are referring to the document revision.  
38.1 8387A – 07/11  
1.  
Initial revision.  
115  
8387A–AVR–07/11  
XMEGA A4U  
Table of Contents  
Features..................................................................................................... 1  
Typical Applications ................................................................................ 1  
Ordering Information ............................................................................... 2  
Pinout/Block Diagram .............................................................................. 3  
1
2
3
Overview ................................................................................................... 5  
3.1Block Diagram ...........................................................................................................6  
4
Resources ................................................................................................. 7  
4.1Recommended reading .............................................................................................7  
5
6
Capacitive touch sensing ........................................................................ 7  
AVR CPU ................................................................................................... 8  
6.1Features ....................................................................................................................8  
6.2Overview ...................................................................................................................8  
6.3ALU - Arithmetic Logic Unit .......................................................................................9  
6.4Program Flow ............................................................................................................9  
6.5Register File ..............................................................................................................9  
7
Memories ................................................................................................ 10  
7.1Features ..................................................................................................................10  
7.2Overview .................................................................................................................10  
7.3Flash Program Memory ...........................................................................................11  
7.4Data Memory ...........................................................................................................11  
7.5Production Signature Row .......................................................................................12  
7.6User Signature Row ................................................................................................13  
7.7Flash and EEPROM Page Size ...............................................................................14  
8
9
DMAC - Direct Memory Access Controller .......................................... 15  
8.1Features ..................................................................................................................15  
8.2Overview .................................................................................................................15  
Event System ......................................................................................... 16  
9.1Features ..................................................................................................................16  
9.2Overview .................................................................................................................16  
10 System Clock and Clock options ......................................................... 18  
10.1Features ................................................................................................................18  
i
8387A–AVR–07/11  
XMEGA A4U  
10.2Overview ...............................................................................................................18  
10.3Clock Options ........................................................................................................19  
11 Power Management and Sleep Modes ................................................. 21  
11.1Features ................................................................................................................21  
11.2Overview ...............................................................................................................21  
11.3Sleep Modes .........................................................................................................21  
12 System Control and Reset .................................................................... 23  
12.1Features ................................................................................................................23  
12.2Overview ...............................................................................................................23  
12.3Reset Sources .......................................................................................................23  
13 WDT - Watchdog Timer ......................................................................... 25  
13.1Overview ...............................................................................................................25  
14 Interrupts and Programmable Multi-level Interrupt Controller .......... 26  
14.1Features ................................................................................................................26  
14.2Overview ...............................................................................................................26  
14.3Interrupt vectors ....................................................................................................26  
15 I/O Ports .................................................................................................. 28  
15.1Features ................................................................................................................28  
15.2Overview ...............................................................................................................28  
15.3Output Driver .........................................................................................................29  
15.4Input sensing .........................................................................................................31  
15.5Alternate Port Functions ........................................................................................31  
16 T/C - 16-bit Timer/Counter ..................................................................... 32  
16.1Features ................................................................................................................32  
16.2Overview ...............................................................................................................32  
17 AWeX - Advanced Waveform Extension .............................................. 34  
17.1Features ................................................................................................................34  
17.2Overview ...............................................................................................................34  
18 Hi-Res - High Resolution Extension ..................................................... 35  
18.1Features ................................................................................................................35  
18.2Overview ...............................................................................................................35  
19 RTC - 16-bit Real-Time Counter ............................................................ 36  
19.1Features ................................................................................................................36  
ii  
8387A–AVR–07/11  
XMEGA A4U  
19.2Overview ...............................................................................................................36  
20 USB - Universal Serial Bus Interface ................................................... 37  
20.1Features ................................................................................................................37  
20.2Overview ...............................................................................................................37  
21 TWI - Two Wire Interface ....................................................................... 39  
21.1Features ................................................................................................................39  
21.2Overview ...............................................................................................................39  
22 SPI - Serial Peripheral Interface ............................................................ 40  
22.1Features ................................................................................................................40  
22.2Overview ...............................................................................................................40  
23 USART ..................................................................................................... 41  
23.1Features ................................................................................................................41  
23.2Overview ...............................................................................................................41  
24 IRCOM - IR Communication Module .................................................... 42  
24.1Features ................................................................................................................42  
24.2Overview ...............................................................................................................42  
25 AES and DES Crypto Engine ................................................................ 43  
25.1Features ................................................................................................................43  
25.2Overview ...............................................................................................................43  
26 CRC - Cyclic Redundancy Check Generator ....................................... 44  
26.1Features ................................................................................................................44  
26.2Overview ...............................................................................................................44  
27 ADC - 12-bit Analog to Digital Converter ............................................. 45  
27.1Features ................................................................................................................45  
27.2Overview ...............................................................................................................45  
28 DAC - 12-bit Digital to Analog Converter ............................................. 47  
28.1Features ................................................................................................................47  
28.2Overview ...............................................................................................................47  
29 AC - Analog Comparator ....................................................................... 48  
29.1Features ................................................................................................................48  
29.2Overview ...............................................................................................................48  
30 Programming and Debugging .............................................................. 50  
iii  
8387A–AVR–07/11  
XMEGA A4U  
30.1Features ................................................................................................................50  
30.2Overview ...............................................................................................................50  
31 Pinout and Pin Functions ...................................................................... 51  
31.1Alternate Pin Functions Description ......................................................................51  
31.2Alternate Pin Functions .........................................................................................53  
32 Peripheral Module Address Map .......................................................... 56  
33 Instruction Set Summary ...................................................................... 57  
34 Packaging information .......................................................................... 61  
34.144A ........................................................................................................................61  
34.244M1 .....................................................................................................................62  
34.349C2 ......................................................................................................................63  
35 Electrical Characteristics ...................................................................... 64  
35.1Absolute Maximum Ratings* .................................................................................64  
35.2DC Characteristics ................................................................................................64  
35.3Operating Voltage and Frequency ........................................................................66  
35.4Wakeup time from sleep ........................................................................................67  
35.5I/O Pin Characteristics ...........................................................................................68  
35.6ADC Characteristics .............................................................................................69  
35.7DAC Characteristics .............................................................................................71  
35.8Analog Comparator Characteristics .......................................................................72  
35.9Bandgap and Internal 1.0V Reference Characteristics .........................................72  
35.10Brownout Detection Characteristics ....................................................................73  
35.11External Reset Characteristics ............................................................................73  
35.12Power-on Reset Characteristics ..........................................................................73  
35.13Flash and EEPROM Memory Characteristics .....................................................74  
35.14Clock and Oscillator Characteristics ....................................................................74  
35.15SPI Characteristics ..............................................................................................78  
35.16Two-Wire Interface Characteristics .....................................................................80  
36 Typical Characteristics .......................................................................... 82  
36.1Active Supply Current ............................................................................................82  
36.2Idle Supply Current ................................................................................................84  
36.3Power-down Supply Current .................................................................................87  
36.4Pin Pull-up .............................................................................................................88  
36.5Pin Output Voltage vs. Sink/Source Current .........................................................90  
iv  
8387A–AVR–07/11  
36.6Pin Thresholds and Hysteresis ..............................................................................94  
36.7Bod characteristics ................................................................................................96  
36.8Oscillators ..............................................................................................................97  
36.9Analog comparator characteristics ......................................................................102  
36.10ADC characteristics ...........................................................................................105  
36.11DAC characteristics ...........................................................................................110  
36.12PDI characteristics ............................................................................................111  
36.13Power-on reset characteristics ..........................................................................111  
36.14Bandgap and internal 1.0V characteristics ........................................................112  
36.15Reset pin characteristics ...................................................................................113  
37 Errata ..................................................................................................... 114  
37.1ATxmega16A4U, ATxmega32A4U ......................................................................114  
38 Datasheet Revision History ................................................................ 115  
38.18387A – 07/11 .....................................................................................................115  
Table of Contents....................................................................................... i  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: (+1)(408) 441-0311  
Fax: (+1)(408) 487-2600  
www.atmel.com  
Atmel Asia Limited  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Atmel Munich GmbH  
Business Campus  
Parkring 4  
D-85748 Garching b. Munich  
GERMANY  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
JAPAN  
Tel: (+81)(3) 3523-3551  
Fax: (+81)(3) 3523-7581  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2011 Atmel Corporation. All rights reserved.  
Atmel®, Atmel logo and combinations thereof, AVR®, QTouch®, QMatrix®, AVR Studio® and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks of Microsoft Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to  
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL  
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY  
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,  
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-  
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL  
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-  
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.  
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-  
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-  
tions intended to support or sustain life.  
8387A–AVR–07/11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY