ATSAM3N1BB-MU [ATMEL]

AT91SAM ARM-based Flash MCU; AT91SAM基于ARM的闪存微控制器
ATSAM3N1BB-MU
型号: ATSAM3N1BB-MU
厂家: ATMEL    ATMEL
描述:

AT91SAM ARM-based Flash MCU
AT91SAM基于ARM的闪存微控制器

闪存 微控制器
文件: 总60页 (文件大小:1335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Core  
– ARM® Cortex®-M3 revision 2.0 running at up to 48 MHz  
– Thumb®-2 instruction  
– 24-bit SysTick Counter  
– Nested Vector Interrupt Controller  
Pin-to-pin compatible with SAM7S legacy products (48- and 64-pin versions) and  
SAM3S (48-, 64- and 100-pin versions)  
Memories  
– From 16 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,  
single plane  
– From 4 to 24 Kbytes embedded SRAM  
AT91SAM  
ARM-based  
Flash MCU  
– 16 Kbytes ROM with embedded bootloader routines (UART) and IAP routines  
System  
– Embedded voltage regulator for single supply operation  
– Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe  
operation  
– Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure  
Detection and optional low power 32.768 kHz for RTC or device clock  
– High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default  
frequency for device startup. In-application trimming access for frequency  
adjustment  
SAM3N Series  
– Slow Clock Internal RC oscillator as permanent low-power mode device clock  
– One PLL up to 130 MHz for device clock  
– Up to 10 peripheral DMA (PDC) channels  
Low Power Modes  
Summary  
– Sleep and Backup modes, down to 3 µA in Backup mode  
– Ultra low power RTC  
Peripherals  
– Up to 2 USARTs with RS-485 and SPI mode support. One USART (USART0) has  
ISO7816, IrDA® and PDC support in addition  
– Two 2-wire UARTs  
– 2 Two Wire Interface (I2C compatible), 1 SPI  
– Up to 6 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and  
PWM mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for  
Stepper Motor  
– 4-channel 16-bit PWM  
– 32-bit Real-time Timer and RTC with calendar and alarm features  
– Up to 16 channels, 384 KSPS 10-bit ADC  
– One 500 KSPS 10-bit DAC  
I/O  
– Up to 79 I/O lines with external interrupt capability (edge or level sensitivity),  
debouncing, glitch filtering and on-die Series Resistor Termination  
– Three 32-bit Parallel Input/Output Controllers  
Packages  
– 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball TFBGA, 9 x 9 mm, pitch 0.8 mm  
– 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm  
– 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm  
11011BS–ATARM–22-Feb-12  
1. SAM3N Description  
Atmel's SAM3N series is a member of a family of Flash microcontrollers based on the high per-  
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 48 MHz  
and features up to 256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set  
includes 2x USARTs, 2x UARTs, 2x TWIs, 3x SPI, as well as 1 PWM timer, 6x general purpose  
16-bit timers, an RTC, a 10-bit ADC and a 10-bit DAC.  
The SAM3N series is ready for capacitive touch thanks to the QTouch library, offering an easy  
way to implement buttons, wheels and sliders.  
The SAM3N device is an entry-level general purpose microcontroller. That makes the SAM3N  
the ideal starting point to move from 8- /16-bit to 32-bit microcontrollers.  
It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP, 48-pin and  
64-pin QFN, and 100-pin BGA packages.  
The SAM3N series is the ideal migration path from the SAM3S for applications that require a  
reduced BOM cost. The SAM3N series is pin-to-pin compatible with the SAM3S series. Its  
aggressive price point and high level of integration pushes its scope of use far into cost-sensi-  
tive, high-volume applications.  
2
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
1.1  
Configuration Summary  
The SAM3N4/2/1/0/00 differ in memory size, package and features list. Table 1-1 summarizes  
the configurations of the 9 devices.  
Table 1-1.  
Configuration Summary  
Number  
of PIOs  
PDC  
Device  
Flash  
SRAM  
Package  
ADC  
Timer  
Channels USART DAC  
LQFP48  
QFN48  
SAM3N4A  
SAM3N4B  
SAM3N4C  
SAM3N2A  
SAM3N2B  
SAM3N2C  
SAM3N1A  
SAM3N1B  
SAM3N1C  
SAM3N0A  
SAM3N0B  
SAM3N0C  
SAM3N00A  
SAM3N00B  
256 Kbytes  
24 Kbytes  
24 Kbytes  
24 Kbytes  
16 Kbytes  
16 Kbytes  
16 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
4 KBytes  
4 KBytes  
34  
47  
79  
34  
47  
79  
34  
47  
79  
34  
47  
79  
34  
47  
8 channels  
6(1)  
8
1
2
2
1
2
2
1
2
2
1
2
2
1
2
_
1
1
_
1
1
_
1
1
_
1
1
_
1
LQFP64  
QFN64  
256 Kbytes  
256 Kbytes  
128 Kbytes  
128 Kbytes  
128 Kbytes  
64 Kbytes  
64 Kbytes  
64 Kbytes  
32 Kbytes  
32 Kbytes  
32 Kbytes  
16 Kbytes  
16 Kbytes  
10 channels  
16 channels  
8 channels  
10 channels  
16 channels  
8 channels  
10 channels  
16 channels  
8 channels  
10 channels  
16 channels  
8 channels  
10 channels  
6(2)  
10  
10  
8
LQFP100  
BGA100  
6
LQFP48  
QFN48  
6(1)  
6((2)  
6
LQFP64  
QFN64  
10  
10  
8
LQFP100  
BGA100  
LQFP48  
QFN48  
6(1)  
6(2)  
6
LQFP64  
QFN64  
10  
10  
8
LQFP100  
BGA100  
LQFP48  
QFN48  
6(1)  
6(2)  
6
LQFP64  
QFN64  
10  
10  
8
LQFP100  
BGA100  
LQFP48  
QFN48  
6(1)  
6(2)  
LQFP64  
QFN64  
10  
Notes: 1. Only two TC channels are accessible through the PIO.  
2. Only three TC channels are accessible through the PIO.  
3
11011BS–ATARM–22-Feb-12  
2. SAM3N Block Diagram  
Figure 2-1. SAM3N 100-pin version Block Diagram  
System Controller  
TST  
Voltage  
Regulator  
PCK0-PCK2  
PMC  
JTAG & Serial Wire  
OSC  
3-20 MHz  
XIN  
XOUT  
In-Circuit Emulator  
FLASH  
SRAM  
WDT  
RC OSC  
12/8/4 MHz  
24-bit  
N
V
I
SM  
SysTick Counter  
256 KBytes  
128 KBytes  
64 KBytes  
24 KBytes  
16 KBytes  
8 KBytes  
Cortex-M3 Processor  
Fmax 48 MHz  
ROM  
16 KBytes  
C
SUPC  
OSC 32k  
RC 32k  
PLL  
XIN32  
XOUT32  
I/D  
S
ERASE  
3- layer AHB Bus Matrix Fmax 48 MHz  
RTT  
RTC  
POR  
VDDIO  
RSTC  
NRST  
Peripheral  
Bridge  
PIOA  
PIOB  
PIOC  
VDDCORE  
URXD0  
UTXD0  
TCLK[0:2]  
Timer Counter A  
UART0  
UART1  
PDC  
PDC  
TIOA[0:2]  
TIOB[0:2]  
TC[0..2]  
URXD1  
UTXD1  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
USART0  
USART1  
TCLK[3:5]  
Timer Counter B  
TC[3..5]  
TIOA[3:5]  
TIOB[3:5]  
NPCS0  
NPCS1  
NPCS2  
NPCS3  
MISO  
PDC  
SPI  
PWM  
PWM[0:3]  
MOS  
SPCK  
PDC  
TWCK0  
TWD0  
TWI0  
TWI1  
ADTRG  
AD[0..15]  
10-bit ADC  
10-bit DAC  
PDC  
PDC  
TWCK1  
TWD1  
ADVREF  
DAC0  
DATRG  
4
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Figure 2-2. SAM3N 64-pin version Block Diagram  
System Controller  
TST  
Voltage  
Regulator  
PCK0-PCK2  
PMC  
JTAG & Serial Wire  
OSC  
3-20 MHz  
XIN  
XOUT  
In-Circuit Emulator  
FLASH  
SRAM  
WDT  
RC OSC  
12/8/4 MHz  
24-bit  
N
V
I
SM  
SysTick Counter  
256 KBytes  
128 KBytes  
64 KBytes  
24 KBytes  
16 KBytes  
8 KBytes  
Cortex-M3 Processor  
Fmax 48 MHz  
ROM  
16 KBytes  
C
SUPC  
OSC 32k  
RC 32k  
PLL  
XIN32  
XOUT32  
I/D  
S
ERASE  
3-layer AHB Bus Matrix Fmax 48 MHz  
RTT  
RTC  
POR  
VDDIO  
RSTC  
NRST  
Peripheral  
Bridge  
PIOA  
PIOB  
VDDCORE  
URXD0  
UTXD0  
TCLK[0:2]  
Timer Counter A  
UART0  
UART1  
PDC  
PDC  
TIOA[0:2]  
TIOB[0:2]  
TC[0..2]  
URXD1  
UTXD1  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
USART0  
USART1  
Timer Counter B  
TC[3..5]  
NPCS0  
NPCS1  
NPCS2  
NPCS3  
MISO  
PDC  
SPI  
PWM  
PWM[0:3]  
MOS  
SPCK  
PDC  
TWCK0  
TWD0  
TWI0  
TWI1  
ADTRG  
AD[0..9]  
10-bit ADC  
10-bit DAC  
PDC  
PDC  
TWCK1  
TWD1  
ADVREF  
DAC0  
DATRG  
5
11011BS–ATARM–22-Feb-12  
Figure 2-3. SAM3N 48-pin version Block Diagramz  
System Controller  
TST  
Voltage  
Regulator  
PCK0-PCK2  
PMC  
JTAG & Serial Wire  
OSC  
3-20 MHz  
XIN  
XOUT  
In-Circuit Emulator  
FLASH  
SRAM  
WDT  
RC OSC  
12/8/4 MHz  
24-bit  
256 KBytes  
128 KBytes  
64 KBytes  
32 KBytes  
16 KBytes  
N
V
I
SM  
SysTick Counter  
24 KBytes  
16 KBytes  
8 KBytes  
4 KBytes  
Cortex-M3 Processor  
Fmax 48 MHz  
ROM  
16 KBytes  
C
SUPC  
OSC 32k  
RC 32k  
PLL  
XIN32  
XOUT32  
I/D  
S
ERASE  
3-layer AHBBusMatrixFmax48 MHz
RTT  
RTC  
POR  
VDDIO  
RSTC  
NRST  
Peripheral  
Bridge  
PIOA  
PIOB  
VDDCORE  
URXD0  
UTXD0  
TCLK[0..1]  
Timer Counter A  
UART0  
UART1  
PDC  
PDC  
TIOA[0..1]  
TIOB[0..1]  
TC[0..1]  
URXD1  
UTXD1  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
Timer Counter B  
TC[3..5]  
USART0  
NPCS0  
NPCS1  
NPCS2  
NPCS3  
MISO  
PDC  
SPI  
PWM  
PWM[0:3]  
MOS  
SPCK  
PDC  
ADTRG  
AD[0..7]  
TWCK0  
TWD0  
TWI0  
TWI1  
10-bit ADC  
PDC  
ADVREF  
TWCK1  
TWD1  
6
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
3. Signal Description  
Table 3-1 gives details on the signal name classified by peripheral.  
Table 3-1.  
Signal Description List  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Power Supplies  
VDDIO  
VDDIN  
Peripherals I/O Lines Power Supply  
Power  
Power  
1.62V to 3.6V  
1.8V to 3.6V(3)  
Voltage Regulator, ADC and DAC Power  
Supply  
VDDOUT  
VDDPLL  
Voltage Regulator Output  
Power  
Power  
1.8V Output  
Oscillator and PLL Power Supply  
1.65 V to 1.95V  
1.65V to 1.95V  
Power the core, the embedded memories  
and the peripherals  
VDDCORE  
GND  
Power  
Connectedexternally  
to VDDOUT  
Ground  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
Reset State:  
- PIO Input  
XOUT  
XIN32  
Main Oscillator Output  
Slow Clock Oscillator Input  
- Internal Pull-up  
disabled  
- Schmitt Trigger  
enabled(1)  
XOUT32  
Slow Clock Oscillator Output  
Programmable Clock Output  
Output  
VDDIO  
Reset State:  
- PIO Input  
- Internal Pull-up  
enabled  
PCK0 - PCK2  
Output  
- Schmitt Trigger  
enabled(1)  
ICE and JTAG  
TCK/SWCLK  
TDI  
Test Clock/Serial Wire Clock  
Test Data In  
Input  
Input  
Reset State:  
- SWJ-DP Mode  
- Internal pull-up  
disabled  
Test Data Out/Trace Asynchronous Data  
Out  
TDO/TRACESWO  
TMS/SWDIO  
JTAGSEL  
Output  
Input / I/O  
Input  
VDDIO  
- Schmitt Trigger  
enabled(1)  
Test Mode Select /Serial Wire  
Input/Output  
Permanent Internal  
pull-down  
JTAG Selection  
High  
7
11011BS–ATARM–22-Feb-12  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Flash Memory  
Reset State:  
- Erase Input  
Flash and NVM Configuration Bits Erase  
Command  
- Internal pull-down  
enabled  
ERASE  
Input  
High  
VDDIO  
- Schmitt Trigger  
enabled(1)  
Reset/Test  
Permanent Internal  
pull-up  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
I/O  
Low  
VDDIO  
Permanent Internal  
pull-down  
Input  
VDDIO  
Universal Asynchronous Receiver Transceiver - UARTx  
URXDx  
UTXDx  
UART Receive Data  
Input  
UART Transmit Data  
Output  
PIO Controller - PIOA - PIOB - PIOC  
PA0 - PA31  
PB0 - PB14  
Parallel IO Controller A  
Parallel IO Controller B  
I/O  
I/O  
Reset State:  
- PIO or System  
IOs(2)  
VDDIO  
- Internal pull-up  
enabled  
PC0 - PC31  
Parallel IO Controller C  
I/O  
- Schmitt Trigger  
enabled(1)  
Universal Synchronous Asynchronous Receiver Transmitter USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
USARTx Serial Clock  
I/O  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
USARTx Request To Send  
USARTx Clear To Send  
Input  
Output  
Input  
Timer/Counter - TC  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
TC Channel x I/O Line B  
I/O  
Pulse Width Modulation Controller- PWMC  
PWM Waveform Output for channel x Output  
PWMx  
8
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
Reference Comments  
Signal Name  
Function  
Type  
Serial Peripheral Interface - SPI  
MISO  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
MOSI  
SPCK  
SPI_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPI_NPCS1 -  
SPI_NPCS3  
Output  
Two-Wire Interface- TWIx  
TWDx  
TWIx Two-wire Serial Data  
TWIx Two-wire Serial Clock  
I/O  
I/O  
TWCKx  
Analog  
Analog  
ADVREF  
ADC and DAC Reference  
10-bit Analog-to-Digital Converter - ADC  
AD0 - AD15  
ADTRG  
Analog Inputs  
ADC Trigger  
Analog  
Input  
VDDIO  
VDDIO  
Digital-to-Analog Converter Controller- DACC  
DAC0  
DACC channel analog output  
DACC Trigger  
Analog  
Input  
DATRG  
Fast Flash Programming Interface  
PGMEN0-PGMEN2  
PGMM0-PGMM3  
PGMD0-PGMD15  
PGMRDY  
Programming Enabling  
Programming Mode  
Programming Data  
Programming Ready  
Data Direction  
Input  
Input  
I/O  
Output  
Output  
Input  
Input  
Input  
High  
Low  
Low  
VDDIO  
PGMNVALID  
PGMNOE  
Programming Read  
Programming Clock  
Programming Command  
PGMCK  
PGMNCMD  
Low  
Notes: 1. Schmitt Triggers can be disabled through PIO registers.  
2. Some PIO lines are shared with System IOs.  
3. See Section 5.3 “Typical Powering Schematics” for restriction on voltage range of Analog Cells.  
9
11011BS–ATARM–22-Feb-12  
4. Package and Pinout  
SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore  
SAM3N4/2/1/0/00 devices have new functionalities referenced in italic inTable 4-1, Table 4-3  
and Table 4-4.  
4.1  
SAM3N4/2/1/0/00C Package and Pinout  
4.1.1  
100-lead LQFP Package Outline  
Figure 4-1. Orientation of the 100-lead LQFP Package  
75  
51  
76  
50  
100  
26  
1
25  
4.1.2  
100-ball TFBGA Package Outline  
The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its  
dimensions are 9 x 9 x 1.1 mm.  
Figure 4-2. Orientation of the 100-ball TFBGA Package  
TOP VIEW  
10  
9
8
7
6
5
4
3
2
1
A B C D E F G H J K  
BALL A1  
10  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
4.1.3  
100-Lead LQFP Pinout  
Table 4-1.  
100-lead LQFP SAM3N4/2/1/0/00C Pinout  
1
2
ADVREF  
GND  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
GND  
VDDIO  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
TDI/PB4  
PA6/PGMNOE  
PA5/PGMRDY  
PC28  
76 TDO/TRACESWO/PB5  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
JTAGSEL  
PC18  
3
PB0/AD4  
PC29/AD13  
PB1/AD5  
PC30/AD14  
PB2/AD6  
PC31/AD15  
PB3/AD7  
VDDIN  
PA16/PGMD4  
PC7  
4
TMS/SWDIO/PB6  
PC19  
5
PA15/PGMD3  
PA14/PGMD2  
PC6  
PA4/PGMNCMD  
VDDCORE  
PA27  
6
PA31  
7
PC20  
8
PA13/PGMD1  
PA24  
PC8  
TCK/SWCLK/PB7  
PC21  
9
PA28  
10  
11  
PC5  
NRST  
VDDCORE  
PC22  
VDDOUT  
VDDCORE  
PC4  
TST  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PA17/PGMD5/AD0  
PC26  
PC9  
ERASE/PB12  
PB10  
PA25  
PA29  
PA18/PGMD6/AD1  
PA21/AD8  
PA26  
PA30  
PB11  
PC3  
PC10  
PC23  
VDDCORE  
PC27  
PA12/PGMD0  
PA11/PGMM3  
PC2  
PA3  
VDDIO  
PA2/PGMEN2  
PC11  
PC24  
PA19/PGMD7/AD2  
PC15/AD11  
PA22/AD9  
PB13/DAC0  
PC25  
PA10/PGMM2  
GND  
VDDIO  
GND  
GND  
PC13/AD10  
PA23  
PA9/PGMM1  
PC1  
PC14  
PB8/XOUT  
PB9/PGMCK/XIN  
PA1/PGMEN1  
PA8/XOUT32/  
PGMM0  
23  
PC12/AD12  
48  
73  
PC16  
98  
VDDIO  
PA7/XIN32/  
PGMNVALID  
24  
25  
PA20/AD3  
PC0  
49  
50  
74  
75  
PA0/PGMEN0  
PC17  
99  
PB14  
VDDIO  
100  
VDDPLL  
11  
11011BS–ATARM–22-Feb-12  
4.1.4  
100-ball TFBGA Pinout  
Table 4-2.  
A1  
100-ball TFBGA SAM3N4/2/1/0/00C Pinout  
PB1  
PC29  
VDDIO  
PB9  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
PB7  
PC16  
PA1  
F1  
F2  
PA18  
PC26  
VDDOUT  
GND  
H6  
H7  
H8  
H9  
H10  
J1  
PC4  
PA11  
PC1  
A2  
A3  
F3  
A4  
PC17  
PA0  
F4  
PA6  
A5  
PB8  
F5  
VDDIO  
PA27  
PB4  
A6  
PB13  
PB11  
PB10  
PB6  
PB3  
F6  
PC15  
PC0  
A7  
PB0  
F7  
PC8  
J2  
A8  
PC24  
PC22  
GND  
GND  
VDDCORE  
PA2  
F8  
PA28  
J3  
PA16  
PC6  
A9  
F9  
TST  
J4  
A10  
B1  
JTAGSEL  
PC30  
ADVREF  
GNDANA  
PB14  
PC21  
PC20  
PA31  
F10  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
PC9  
J5  
PA24  
PA25  
PA10  
GND  
VDDCORE  
VDDIO  
PA22  
PC13  
PC12  
PA20  
PC5  
PA21  
J6  
B2  
PC27  
PA15  
J7  
B3  
J8  
B4  
PC11  
PC14  
PA17  
PC31  
VDDIN  
GND  
GND  
NRST  
PA29  
PA30  
PC10  
PA3  
VDDCORE  
VDDCORE  
PA26  
J9  
B5  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
B6  
B7  
PA12  
B8  
PC19  
PC18  
PB5  
PC28  
PA4  
B9  
B10  
C1  
PA5  
PB2  
PA19  
PC3  
C2  
VDDPLL  
PC25  
PC23  
PB12  
PA23  
PC2  
C3  
PC7  
PA9  
C4  
PA14  
PA8  
C5  
PA13  
PA7  
12  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
4.2  
SAM3N4/2/1/0/00B Package and Pinout  
Figure 4-3. Orientation of the 64-pad QFN Package  
64  
49  
48  
1
16  
33  
32  
17  
TOP VIEW  
Figure 4-4. Orientation of the 64-lead LQFP Package  
48  
33  
49  
32  
64  
17  
1
16  
13  
11011BS–ATARM–22-Feb-12  
4.2.1  
64-Lead LQFP and QFN Pinout  
64-pin version SAM3N devices are pin-to-pin compatible with SAM3S products. Furthermore,  
SAM3N products have new functionalities shown in italic in Table 4-3.  
Table 4-3.  
64-pin SAM3N4/2/1/0/00B Pinout  
1
2
3
4
5
6
7
8
ADVREF  
GND  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GND  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
TDI/PB4  
PA6/PGMNOE  
PA5/PGMRDY  
PA4/PGMNCMD  
PA27/PGMD15  
PA28  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
TDO/TRACESWO/PB5  
JTAGSEL  
VDDIO  
PB0/AD4  
PB1AD5  
PB2/AD6  
PB3/AD7  
VDDIN  
PA16/PGMD4  
PA15/PGMD3  
PA14/PGMD2  
PA13/PGMD1  
PA24/PGMD12  
VDDCORE  
TMS/SWDIO/PB6  
PA31  
TCK/SWCLK/PB7  
VDDCORE  
ERASE/PB12  
PB10  
NRST  
VDDOUT  
TST  
9
PA17/PGMD5/AD0  
PA18/PGMD6/AD1  
PA21/PGMD9/AD8  
VDDCORE  
PA25/PGMD13  
PA26/PGMD14  
PA12/PGMD0  
PA11/PGMM3  
PA10/PGMM2  
PA9/PGMM1  
PA29  
PB11  
10  
11  
12  
13  
14  
PA30  
VDDIO  
PA3  
PB13/DAC0  
GND  
PA2/PGMEN2  
VDDIO  
PA19/PGMD7/AD2  
PA22/PGMD10/AD9  
XOUT/PB8  
XIN/PGMCK/PB9  
GND  
PA8/XOUT32/PGMM  
0
15  
PA23/PGMD11  
31  
32  
47  
48  
PA1/PGMEN1  
PA0/PGMEN0  
63  
64  
PB14  
PA7/XIN32/XOUT32/  
PGMNVALID  
16  
PA20/PGMD8/AD3  
VDDPLL  
Note:  
The bottom pad of the QFN package must be connected to ground.  
14  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
4.3  
SAM3N4/2/1/0/00A Package and Pinout  
Figure 4-5. Orientation of the 48-pad QFN Package  
48  
37  
1
36  
12  
25  
13  
24  
TOP VIEW  
Figure 4-6. Orientation of the 48-lead LQFP Package  
36  
25  
37  
24  
13  
48  
1
12  
15  
11011BS–ATARM–22-Feb-12  
4.3.1  
48-Lead LQFP and QFN Pinout  
Table 4-4.  
48-pin SAM3N4/2/1/0/00A Pinout  
TDO/TRACESWO/  
PB5  
1
ADVREF  
13  
VDDIO  
25  
TDI/PB4  
37  
2
3
4
5
6
7
8
GND  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PA16/PGMD4  
PA15/PGMD3  
PA14/PGMD2  
PA13/PGMD1  
VDDCORE  
26  
27  
28  
29  
30  
31  
32  
33  
34  
PA6/PGMNOE  
PA5/PGMRDY  
PA4/PGMNCMD  
NRST  
38  
39  
40  
41  
42  
43  
44  
45  
46  
JTAGSEL  
TMS/SWDIO/PB6  
TCK/SWCLK/PB7  
VDDCORE  
PB0/AD4  
PB1/AD5  
PB2/AD6  
PB3/AD7  
VDDIN  
TST  
ERASE/PB12  
PB10  
PA12/PGMD0  
PA11/PGMM3  
PA10/PGMM2  
PA9/PGMM1  
PA3  
VDDOUT  
PA2/PGMEN2  
VDDIO  
PB11  
9
PA17/PGMD5/AD0  
PA18/PGMD6/AD1  
XOUT/PB8  
10  
GND  
XIN/P/PB9/GMCK  
PA8/XOUT32/PG  
MM0  
11  
PA19/PGMD7/AD2  
PA20/AD3  
23  
24  
35  
36  
PA1/PGMEN1  
PA0/PGMEN0  
47  
48  
VDDIO  
PA7/XIN32/PGMN  
VALID  
12  
VDDPLL  
Note:  
The bottom pad of the QFN package must be connected to ground.  
16  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
5. Power Considerations  
5.1  
Power Supplies  
The SAM3N product has several types of power supply pins:  
• VDDCORE pins: Power the core, including the processor, the embedded memories and the  
peripherals. Voltage ranges from 1.62V and 1.95V.  
• VDDIO pins: Power the Peripherals I/O lines, Backup part, 32 kHz crystal oscillator and  
oscillator pads. Voltage ranges from 1.62V and 3.6V  
• VDDIN pin: Voltage Regulator, ADC and DAC Power Supply. Voltage ranges from 1.8V to  
3.6V for the Voltage Regulator  
• VDDPLL pin: Powers the PLL, the Fast RC and the 3 to 20 MHz oscillators. Voltage ranges  
from 1.62V and 1.95V.  
5.2  
Voltage Regulator  
The SAM3N embeds a voltage regulator that is managed by the Supply Controller.  
This internal regulator is intended to supply the internal core of SAM3N. It features two different  
operating modes:  
• In Normal mode, the voltage regulator consumes less than 700 µA static current and draws  
60 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current  
depending on the required load current. In Wait Mode quiescent current is only 7 µA.  
• In Backup mode, the voltage regulator consumes less than 1 µA while its output (VDDOUT)  
is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach  
Normal mode is less than100 µs.  
For adequate input and output power supply decoupling/bypassing, refer to the Voltage Regula-  
tor section in the Electrical Characteristics section of the datasheet.  
5.3  
Typical Powering Schematics  
The SAM3N supports a 1.62V-3.6V single supply mode. The internal regulator input connected  
to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.  
As VDDIN powers the voltage regulator and the ADC/DAC, when the user does not want to use  
the embedded voltage regulator, it can be disabled by software via the SUPC (note that it is dif-  
ferent from Backup mode).  
17  
11011BS–ATARM–22-Feb-12  
Figure 5-1. Single Supply  
VDDIO  
I/Os.  
Main Supply  
(1.8V-3.6V)  
ADC, DAC  
VDDIN  
VDDOUT  
Voltage  
Regulator  
VDDCORE  
VDDPLL  
Figure 5-2. Core Externally Supplied  
VDDIO  
VDDIN  
Main Supply  
(1.62V-3.6V)  
I/Os.  
Can be the  
same supply  
ADC, DAC  
ADC, DAC Supply  
(3V-3.6V)  
VDDOUT  
Voltage  
Regulator  
VDDCORE  
VDDCORE Supply  
(1.62V-1.95V)  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 3V, ADC and DAC are not usable.  
With Main Supply >= 3V, all peripherals are usable.  
Figure 5-3 below provides an example of the powering scheme when using a backup battery.  
Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch  
off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after  
backup reset). External wake-up of the system can be from a push button or any signal. See  
Section 5.6 “Wake-up Sources” for further details.TFBGA  
18  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Figure 5-3. Core Externally Supplied (backup battery)  
ADC, DAC Supply  
(3V-3.6V)  
VDDIO  
Backup  
Battery  
I/Os.  
+
-
ADC, DAC  
VDDIN  
Main Supply  
VDDOUT  
IN  
OUT  
Voltage  
Regulator  
3.3V  
LDO  
VDDCORE  
ON/OFF  
VDDPLL  
PIOx (Output)  
WAKEUPx  
External wakeup signal  
Note: The two diodes provide a “switchover circuit” (for illustration purpose)  
between the backup battery and the main supply when the system is put in  
backup mode.  
5.4  
Active Mode  
Active mode is the normal running mode with the core clock running from the fast RC oscillator,  
the main crystal oscillator or the PLL. The power management controller can be used to adapt  
the frequency and to disable the peripheral clocks.  
5.5  
Low Power Modes  
The various low-power modes of the SAM3N are described below:  
5.5.1  
Backup Mode  
The purpose of backup mode is to achieve the lowest power consumption possible in a system  
that is performing periodic wakeups to carry out tasks but not requiring fast startup time  
(<0.1ms). Total current consumption is 3 µA typical.  
The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz  
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The  
regulator and the core supply are off.  
Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.  
The SAM3N can be awakened from this mode through WUP0-15 pins, the supply monitor (SM),  
the RTT or RTC wake-up event.  
Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-  
trol Register of the Cortex-M3 set to 1. (See the Power management description in The ARM  
Cortex M3 Processor section of the product datasheet).  
Exit from Backup mode happens if one of the following enable wake-up events occurs:  
• WKUPEN0-15 pins (level transition, configurable debouncing)  
19  
11011BS–ATARM–22-Feb-12  
• Supply Monitor alarm  
• RTC alarm  
• RTT alarm  
5.5.2  
Wait Mode  
The purpose of the wait mode is to achieve very low power consumption while maintaining the  
whole device in a powered state for a startup time of less than 10 µs. Current Consumption in  
Wait mode is typically 15 µA (total current consumption) if the internal voltage regulator is used  
or 8 µA if an external regulator is used.  
In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,  
peripherals and memories power supplies are still powered. From this mode, a fast start up is  
available.  
This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in  
PMC_FSMR). The Cortex-M3 is able to handle external or internal events in order to wake up  
the core (WFE). By configuring the WUP0-15 external lines as fast startup wake-up pins (refer to  
Section 5.7 “Fast Start-Up”). RTC or RTT Alarm wake-up events can be used to wake up the  
CPU (exit from WFE).  
Entering Wait Mode:  
• Select the 4/8/12 MHz fast RC oscillator as Main Clock  
• Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)  
• Execute the Wait-For-Event (WFE) instruction of the processor  
Note:  
Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN  
bit and the effective entry in Wait mode. Depending on the user application, Waiting for  
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired  
instructions.  
5.5.3  
Sleep Mode  
The purpose of sleep mode is to optimize power consumption of the device versus response  
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The  
current consumption in this mode is application dependent.  
This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with  
LPM = 0 in PMC_FSMR.  
The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or  
from an event if the WFE instruction is used to enter this mode.  
20  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
5.5.4  
Low Power Mode Summary Table  
The modes detailed above are the main low power modes. Each part can be set to on or off sep-  
arately and wake up sources can be individually configured. Table 5-1 below shows a summary  
of the configurations of the low power modes.  
Table 5-1.  
Low Power Mode Configuration Summary  
SUPC,  
32 kHz  
Oscillator  
RTC RTT  
Backup  
Registers,  
POR  
Core  
PIO State  
Memory  
(Backup  
Region)  
Potential Wake Up Core at while in Low PIO State Consumption Wake Up  
(2) (3)  
Mode  
Regulator Peripherals Mode Entry  
Sources  
Wake Up Power Mode at Wake Up  
Time(1)  
PIOA &  
PIOB &  
PIOC  
Inputs with  
pull ups  
WUP0-15 pins  
BOD alarm  
RTC alarm  
RTT alarm  
WFE  
OFF  
Backup  
Mode  
Previous  
state saved  
ON  
ON  
OFF  
Reset  
3 µA typ(4)  
< 0.1 ms  
+SLEEPDEEP  
(Not powered)  
bit = 1  
Any Event from: Fast  
startup through  
WUP0-15 pins  
RTC alarm  
WFE  
Powered  
Wait  
Mode  
+SLEEPDEEP  
bit = 0  
Clocked Previous  
back state saved  
ON  
ON  
Unchanged 5 µA/15 µA (5) < 10 µs  
(Not clocked)  
+LPM bit = 1  
RTT alarm  
Entry mode = WFI  
Interrupt Only; Entry  
mode = WFE Any  
Enabled Interrupt  
WFE or WFI  
Powered(7)  
Sleep  
Mode  
+SLEEPDEEP and/or Any Event  
Clocked Previous  
(6)  
(6)  
ON  
Unchanged  
bit = 0  
from: Fast start-up back state saved  
(Not clocked)  
through WUP0-15  
pins  
+LPM bit = 0  
RTC alarm  
RTT alarm  
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works  
with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up  
time is defined as the time taken for wake up until the first instruction is fetched.  
2. The external loads on PIOs are not taken into account in the calculation.  
3. Supply Monitor current consumption is not included.  
4. Total Current consumption.  
5. 5 µA on VDDCORE, 15 µA for total current consumption (using internal voltage regulator), 8 µA for total current consumption  
(without using internal voltage regulator).  
6. Depends on MCK frequency.  
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.  
21  
11011BS–ATARM–22-Feb-12  
5.6  
Wake-up Sources  
The wake-up events allow the device to exit backup mode. When a wake-up event is detected,  
the Supply Controller performs a sequence which automatically reenables the core power sup-  
ply and the SRAM power supply, if they are not already enabled.  
Figure 5-4. Wake-up Source  
BODEN  
brown_out  
rtc_alarm  
RTCEN  
RTTEN  
Core  
Supply  
Restart  
rtt_alarm  
WKUPT0  
WKUPEN0  
WKUPEN1  
WKUPIS0  
WKUPIS1  
Falling/Rising  
Edge  
Detector  
WKUP0  
WKUP1  
WKUPDBC  
Debouncer  
SLCK  
WKUPS  
WKUPT1  
Falling/Rising  
Edge  
Detector  
WKUPT15  
WKUPEN15  
WKUPIS15  
Falling/Rising  
Edge  
WKUP15  
Detector  
22  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
5.7  
Fast Start-Up  
The SAM3N allows the processor to restart in a few microseconds while the processor is in wait  
mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs  
(WKUP0 to 15 + SM + RTC + RTT).  
The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-  
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,  
the PMC automatically restarts the embedded 4 MHz fast RC oscillator, switches the master  
clock on this 4 MHz clock and reenables the processor clock.  
Figure 5-5. Fast Start-Up Sources  
RTCEN  
rtc_alarm  
RTTEN  
rtt_alarm  
fast_restart  
FSTT0  
Falling/Rising  
Edge  
Detector  
WKUP0  
FSTT15  
Falling/Rising  
Edge  
WKUP15  
Detector  
23  
11011BS–ATARM–22-Feb-12  
6. Input/Output Lines  
The SAM3N has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO)  
and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the  
PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed  
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.  
6.1  
General Purpose I/O Lines  
GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such  
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing  
or input change interrupt. Programming of these modes is performed independently for each I/O  
line through the PIO controller user interface. For more details, refer to the product PIO control-  
ler section.  
The input output buffers of the PIO lines are supplied through VDDIO power supply rail.  
The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35  
MHz on other lines. See AC Characteristics Section in the Electrical Characteristics Section of  
the datasheet for more details. Typical pull-up and pull-down value is 100 kΩ for all I/Os.  
Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an  
internal series resistor termination scheme for impedance matching between the driver output  
(SAM3N) and the PCB trace impedance preventing signal reflection. The series resistor helps to  
reduce I/O switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot  
and undershoot (ringing) due to inductance of interconnect between devices or between boards.  
In conclusion ODT helps diminish signal integrity issues.  
Figure 6-1. On-Die Termination  
Z0 ~ Zout + Rodt  
ODT  
36 Ohms Typ.  
Rodt  
Receiver  
SAM3 Driver with  
PCB Trace  
Zout ~ 10 Ohms  
Z0 ~ 50 Ohms  
6.2  
System I/O Lines  
System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few.  
Described below are the SAM3N system I/O lines shared with PIO lines:  
These pins are software configurable as general purpose I/O or system pins. At startup the  
default function of these pins is always used.  
24  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Table 6-1.  
SYSTEM_IO  
bit number  
System I/O Configuration Pin List.  
Default function  
after reset  
Constraints for  
normal start  
Other function  
Configuration  
Low Level at  
startup(1)  
12  
ERASE  
PB12  
In Matrix User Interface Registers  
7
6
5
4
-
TCK/SWCLK  
PB7  
PB6  
-
-
-
-
-
-
-
-
(Refer to the System I/O  
Configuration Register in the Bus  
Matrix section of the product  
datasheet.)  
TMS/SWDIO  
TDO/TRACESWO  
PB5  
TDI  
PA7  
PA8  
PB9  
PB8  
PB4  
XIN32  
XOUT32  
XIN  
See footnote (2) below  
See footnote (3) below  
-
-
-
XOUT  
Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the  
user application sets PB12 into PIO mode.  
2. In the product Datasheet Refer to: Slow Clock Generator of the Supply Controller section.  
3. In the product Datasheet Refer to: 3 to 20 MHZ Crystal Oscillator information in the PMC section.  
6.2.1  
Serial Wire JTAG Debug Port (SWJ-DP) Pins  
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on  
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference  
and reset state, refer to Table 3-1 on page 7.  
At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging  
probe. Please refer to the Debug and Test Section of the product datasheet.  
SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins  
when the debug port is not needed in the end application. Mode selection between SWJ-DP  
mode (System IO mode) and general IO mode is performed through the AHB Matrix Special  
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing  
and glitch filters is possible regardless of the mode.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It  
integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left uncon-  
nected for normal operations.  
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial  
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and  
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire  
Debug Port is active, TDO/TRACESWO can be used for trace.  
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous  
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and  
JTAG-DP switching, please refer to the Debug and Test Section.  
25  
11011BS–ATARM–22-Feb-12  
6.3  
6.4  
Test Pin  
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming  
mode of the SAM3N series. The TST pin integrates a permanent pull-down resistor of about 15  
kΩ to GND, so that it can be left unconnected for normal operations. To enter fast programming  
mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing  
and test mode, refer to the “Debug and Test” section of the product datasheet.  
NRST Pin  
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low  
to provide a reset signal to the external components or asserted low externally to reset the  
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT  
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-  
troller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up  
resistor to VDDIO of about 100 kΩ . By default, the NRST pin is configured as an input.  
6.5  
ERASE Pin  
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased  
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kΩ to GND, so  
that it can be left unconnected for normal operations.  
This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high  
during less than 100 ms, it is not taken into account. The pin must be tied high during more than  
220 ms to perform a Flash erase operation.  
The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE  
pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of  
this pin must be low to prevent unwanted erasing. Please refer to Section 11.2 “Peripheral Sig-  
nals Multiplexing on I/O Lines” on page 42. Also, if the ERASE pin is used as a standard I/O  
output, asserting the pin to low does not erase the Flash.  
26  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
7. Processor and Architecture  
7.1  
ARM Cortex-M3 Processor  
• Version 2.0  
• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.  
• Harvard processor architecture enabling simultaneous instruction fetch with data load/store.  
• Three-stage pipeline.  
• Single cycle 32-bit multiply.  
• Hardware divide.  
• Thumb and Debug states.  
• Handler and Thread modes.  
• Low latency ISR entry and exit.  
7.2  
7.3  
APB/AHB Bridge  
The SAM3N4/2/1/0/00 product embeds one peripheral bridge:  
The peripherals of the bridge are clocked by MCK.  
Matrix Masters  
The Bus Matrix of the SAM3N product manages 3 masters, which means that each master can  
perform an access concurrently with others, to an available slave.  
Each master has its own decoder, which is defined specifically for each master. In order to sim-  
plify the addressing, all the masters have the same decodings.  
Table 7-1.  
List of Bus Matrix Masters  
Cortex-M3 Instruction/Data  
Master 0  
Master 1  
Master 2  
Cortex-M3 System  
Peripheral DMA Controller (PDC)  
7.4  
Matrix Slaves  
The Bus Matrix of the SAM3N product manages 4 slaves. Each slave has its own arbiter, allow-  
ing a different arbitration per slave.  
Table 7-2.  
Slave 0  
List of Bus Matrix Slaves  
Internal SRAM  
Slave 1  
Internal ROM  
Slave 2  
Internal Flash  
Slave 3  
Peripheral Bridge  
27  
11011BS–ATARM–22-Feb-12  
7.5  
Master to Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths  
are forbidden or simply not wired, and shown as “-” in Table 7-3.  
Table 7-3.  
SAM3N Master to Slave Access  
Masters  
0
1
2
PDC  
X
Slaves  
Cortex-M3 I/D Bus  
Cortex-M3 S Bus  
0
1
2
3
Internal SRAM  
Internal ROM  
-
X
X
-
X
-
X
Internal Flash  
-
-
Peripheral Bridge  
X
X
7.6  
Peripheral DMA Controller  
• Handles data transfer between peripherals and memories  
• Low bus arbitration overhead  
– One Master Clock cycle needed for a transfer from memory to peripheral  
Two Master Clock cycles needed for a transfer from peripheral to memory  
• Next Pointer management for reducing interrupt latency requirement  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
Table 7-4.  
Peripheral DMA Controller  
Instance name  
TWI0  
Channel T/R  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Receive  
Receive  
Receive  
Receive  
Receive  
100 & 64 Pins  
48 Pins  
x
x
x
x
x
x
x
x
x
x
x
x
UART0  
USART0  
DAC  
x
N/A  
x
SPI  
TWI0  
x
UART0  
USART0  
ADC  
x
x
x
SPI  
x
28  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
7.7  
Debug and Test Features  
• Debug access to all memory and registers in the system, including Cortex-M3 register bank  
when the core is running, halted, or held in reset.  
• Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access  
• Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches  
• Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and  
system profiling  
• Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
• IEEE1149.1 JTAG Boundary-can on All Digital Pins  
29  
11011BS–ATARM–22-Feb-12  
8. Product Mapping  
Figure 8-1. SAM3N4/2/1/0/00 Product Mapping  
Code  
Address Memory Space  
Peripherals  
Reserved  
System Controller  
Reserved  
0x40000000  
0x40004000  
0x40008000  
0x4000C000  
0x40010000  
+0x40  
0x00000000  
0x400E0000  
0x400E0200  
0x400E0400  
0x400E0600  
0x400E0740  
0x400E0800  
0x400E0A00  
0x400E0C00  
0x400E0E00  
0x400E1000  
0x400E1200  
0x400E1400  
+0x10  
0x00000000  
0x00400000  
0x00800000  
0x00C00000  
0x1FFFFFFF  
Boot Memory  
Code  
MATRIX  
PMC  
Internal Flash  
Internal ROM  
Reserved  
Reserved  
SPI  
1 MByte  
bit band  
region  
0x20000000  
0x20100000  
21  
5
8
SRAM  
Reserved  
UART0  
CHIPID  
0x22000000  
0x24000000  
TC0  
TC0  
TC0  
TC1  
TC1  
TC1  
Undefined  
TC0  
TC1  
23  
24  
25  
26  
27  
28  
19  
20  
31  
32 MBytes  
bit band alias  
UART1  
EEFC  
9
6
+0x80  
0x40000000  
0x60000000  
0xA0000000  
0xE0000000  
0xFFFFFFFF  
TC2  
0x40014000  
+0x40  
Peripherals  
Reserved  
Reserved  
TC3  
Reserved  
TC4  
PIOA  
PIOB  
11  
12  
13  
1
+0x80  
TC5  
0x40018000  
0x4001C000  
0x40020000  
0x40024000  
0x40028000  
0x4002C000  
0x40038000  
0x4003C000  
0x40040000  
0x40044000  
0x40048000  
0x400E0000  
0x400E2600  
0x40100000  
TWI0  
TWI1  
PWM  
PIOC  
1 MByte  
bit band  
region  
SYSC  
RSTC  
SUPC  
RTT  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
+0x30  
System  
USART0  
USART1  
14  
15  
3
4
2
+0x50  
WDT  
+0x60  
RTC  
Reserved  
+0x90  
offset  
block  
peripheral  
ADC  
GPBR  
Reserved  
29  
30  
0x400E1600  
0x4007FFFF  
ID  
DACC  
Reserved  
Reserved  
Reserved  
System Controller  
Reserved  
Reserved  
0x40200000  
0x40400000  
32 MBytes  
bit band alias  
Reserved  
0x60000000  
30  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
9. Memories  
9.1  
Embedded Memories  
9.1.1  
Internal SRAM  
The SAM3N4 product embeds a total of 24-Kbytes high-speed SRAM.  
The SAM3N2 product embeds a total of 16-Kbytes high-speed SRAM.  
The SAM3N1 product embeds a total of 8-Kbytes high-speed SRAM.  
The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.  
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF  
FFFF.  
RAM size must be configurable by calibration fuses.  
9.1.2  
Internal ROM  
The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant  
(SAM-BA), In Application Programming routines (IAP) and Fast Flash Programming Interface  
(FFPI).  
At any time, the ROM is mapped at address 0x0080 0000.  
9.1.3  
Embedded Flash  
9.1.3.1  
Flash Overview  
The Flash of the SAM3N4 (256 Kbytes) is organized in one bank of 1024 pages of 256 bytes  
(Single plane).  
The Flash of the SAM3N2 (128 Kbytes) is organized in one bank of 512 pages of 256 bytes (Sin-  
gle Plane).  
The Flash of the SAM3N1 (64 Kbytes) is organized in one bank of 256 pages of 256 bytes (Sin-  
gle plane).  
The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.  
9.1.3.2  
9.1.3.3  
Flash Power Supply  
The Flash is supplied by VDDCORE.  
Enhanced Embedded Flash Controller  
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-  
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a  
User Interface, mapped on the APB.  
The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-  
bit internal bus. Its 128-bit wide memory interface increases performance.  
The user can choose between high performance or lower current consumption by selecting  
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking  
sequences of the Flash using a full set of commands.  
One of the commands returns the embedded Flash descriptor definition that informs the system  
about the Flash organization, thus making the software generic.  
31  
11011BS–ATARM–22-Feb-12  
9.1.3.4  
9.1.3.5  
Flash Speed  
Lock Regions  
The user needs to set the number of wait states depending on the frequency used.  
For more details, refer to the AC Characteristics sub section in the product Electrical Character-  
istics Section.  
Several lock bits used to protect write and erase operations on lock regions. A lock region is  
composed of several consecutive pages, and each lock region has its associated lock bit.  
Table 9-1.  
Lock bit number  
Product  
Number of lock bits  
Lock region size  
16 kbytes (64 pages)  
16 kbytes (64 pages)  
16 kbytes (64 pages)  
SAM3N4  
SAM3N2  
SAM3N1  
16  
8
4
If a locked-region’s erase or program command occurs, the command is aborted and the EEFC  
triggers an interrupt.  
The lock bits are software programmable through the EEFC User Interface. The command “Set  
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
9.1.3.6  
Security Bit Feature  
The SAM3N features a security bit, based on a specific General Purpose NVM bit (GPNVM bit  
0). When the security is enabled, any access to the Flash, either through the ICE interface or  
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of  
the code programmed in the Flash.  
This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of  
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the  
ERASE pin at 1, after a full Flash erase is performed. When the security bit is deactivated, all  
accesses to the Flash are permitted.  
It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation. However, it is safer to connect it directly to GND for the final application.  
9.1.3.7  
9.1.3.8  
Calibration Bits  
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are  
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-  
ibration bits.  
Unique Identifier  
Each device integrates its own 128-bit unique identifier. These bits are factory configured and  
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.  
32  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
9.1.3.9  
Fast Flash Programming Interface  
The Fast Flash Programming Interface allows programming the device through either a serial  
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-  
ming with market-standard industrial programmers.  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered  
when TST and PA0 and PA1are tied low.  
9.1.3.10  
SAM-BA Boot  
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the  
on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication via the UART0.  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.  
9.1.3.11  
GPNVM Bits  
The SAM3N features three GPNVM bits that can be cleared or set respectively through the com-  
mands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.  
.
Table 9-2.  
General-purpose Non volatile Memory Bits  
GPNVMBit[#]  
Function  
Security bit  
0
1
Boot mode selection  
9.1.4  
Boot Strategies  
The system always boots at address 0x0. To ensure a maximum boot possibilities the memory  
layout can be changed via GPNVM.  
A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the  
Flash.  
The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-  
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.  
Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the  
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by  
default.  
33  
11011BS–ATARM–22-Feb-12  
10. System Controller  
The System Controller is a set of peripherals, which allow handling of key elements of the sys-  
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...  
See the System Controller block diagram in Figure 10-1 on page 35.  
34  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Figure 10-1. System Controller Block Diagram  
VDDIO  
VDDOUT  
vr_on  
vr_mode  
Software Controlled  
Voltage Regulator  
VDDIN  
Supply  
Controller  
Zero-Power  
Power-on Reset  
VDDIO  
PIOx  
bod_on  
Supply  
PIOA/B/C  
Monitor  
brown_out  
(Backup)  
WKUP0 - WKUP15  
ADx  
General Purpose  
Backup Registers  
ADC  
DAC  
ADVREF  
DAC0  
rtc_nreset  
SLCK  
SLCK  
RTC  
RTT  
rtc_alarm  
rtt_nreset  
rtt_alarm  
osc32k_xtal_en  
osc32k_sel  
core_nreset  
XIN32  
Xtal 32 kHz  
Oscillator  
Slow Clock  
SLCK  
bod_core_on  
Brownout  
XOUT32  
Detector  
(Core)  
lcore_brown_out  
Embedded  
32 kHz RC  
Oscillator  
osc32k_rc_en  
SRAM  
Backup Power Supply  
core_nreset  
Peripherals  
VDDCORE  
proc_nreset  
periph_nreset  
ice_nreset  
Matrix  
Reset  
Peripheral  
Bridge  
Controller  
NRST  
Cortex-M3  
Flash  
FSTT0 - FSTT15  
SLCK  
Embedded  
12/8/4 MHz  
RC  
Main Clock  
MAINCK  
Master Clock  
MCK  
Oscillator  
Power  
Management  
Controller  
XIN  
Xtal  
Oscillator  
XOUT  
PLL  
Watchdog  
Timer  
SLCK  
Core Power Supply  
FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins, but are not physical pins.  
35  
11011BS–ATARM–22-Feb-12  
10.1 System Controller and Peripherals Mapping  
Please refer to Figure 8-1, "SAM3N4/2/1/0/00 Product Mapping" on page 30.  
All the peripherals are in the bit band region and are mapped in the bit band alias region.  
10.2 Power-on-Reset, Brownout and Supply Monitor  
The SAM3N embeds three features to monitor, warn and/or reset the chip:  
• Power-on-Reset on VDDIO  
• Brownout Detector on VDDCORE  
• Supply Monitor on VDDIO  
10.2.1  
10.2.2  
Power-on-Reset  
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but  
also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For  
more information, refer to the Electrical Characteristics section of the datasheet.  
Brownout Detector on VDDCORE  
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-  
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it  
during low-power modes such as wait or sleep modes.  
If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-  
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the  
datasheet.  
10.2.3  
Supply Monitor on VDDIO  
The Supply Monitor monitors VDDIO. It is inactive by default. It can be activated by software and  
is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by  
the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor  
power consumption by a factor of up to 2048. For more information, refer to the SUPC and Elec-  
trical Characteristics sections of the datasheet.  
10.3 Reset Controller  
The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.  
The Reset Controller is capable to return to the software the source of the last reset, either a  
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.  
The Reset Controller controls the internal resets of the system and the NRST pin input/output. It  
is capable to shape a reset signal for the external devices, simplifying to a minimum connection  
of a push-button on the NRST pin to implement a manual reset.  
The configuration of the Reset Controller is saved as supplied on VDDIO.  
10.4 Supply Controller (SUPC)  
The Supply Controller controls the power supplies of each section of the processor and the  
peripherals (via Voltage regulator control)  
The Supply Controller has its own reset circuitry and is clocked by the 32 kHz slow clock  
generator.  
36  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell.  
The zero-power power-on reset allows the Supply Controller to start properly, while the soft-  
ware-programmable brownout detector allows detection of either a battery discharge or main  
voltage loss.  
The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC  
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal  
oscillator and select it as the Slow Clock source.  
The Supply Controller starts up the device by sequentially enabling the internal power switches  
and the Voltage Regulator, then it generates the proper reset signals to the core power supply.  
It also enables to set the system in different low power modes and to wake it up from a wide  
range of events.  
10.5 Clock Generator  
The Clock Generator is made up of:  
• One Low Power 32768Hz Slow Clock Oscillator with bypass mode  
• One Low-Power RC Oscillator  
• One 3-20 MHz Crystal or Ceramic resonator Oscillator, which can be bypassed  
• One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12  
MHz. By default 4 MHz is selected.  
• One 60 to 130 MHz programmable PLL, capable to provide the clock MCK to the processor  
and to the peripherals. The input frequency of PLL is from 3.5 to 20 MHz.  
Figure 10-2. Clock Generator Block Diagram  
Clock Generator  
XTALSEL  
On Chip 32 kHz  
RC OSC  
Slow Clock  
SLCK  
XIN32  
Slow Clock  
Oscillator  
XOUT32  
XIN  
3-20 MHz  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
On Chip  
12/8/4 MHz  
RC OSC  
MAINSEL  
PLLA Clock  
PLLACK  
PLL and  
Divider A  
Status  
Power  
Control  
Management  
Controller  
37  
11011BS–ATARM–22-Feb-12  
10.6 Power Management Controller  
The Power Management Controller provides all the clock signals to the system. It provides:  
• the Processor Clock HCLK  
• the Free running processor clock FCLK  
• the Cortex SysTick external clock  
• the Master Clock MCK, in particular to the Matrix and the memory interfaces  
• independent peripheral clocks, typically at the frequency of MCK  
• three programmable clock outputs: PCK0, PCK1 and PCK2  
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The  
unused oscillator is disabled automatically so that power consumption is optimized.  
By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running  
at 4 MHz.  
The user can trim by software the 8 and 12 MHz RC Oscillator frequency.  
Figure 10-3. SAM3N4/2/1/0/00 Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
HCK  
int  
Sleep Mode  
Divider  
/8  
SystTick  
FCLK  
Master Clock Controller  
SLCK  
MAINCK  
PLLCK  
Prescaler  
/1,/2,/4,..,/64  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
ON/OFF  
Programmable Clock Controller  
ON/OFF  
SLCK  
MAINCK  
PLLCK  
Prescaler  
/1,/2,/4,..,/64  
pck[..]  
The SysTick calibration value is fixed at 6000 which allows the generation of a time base of 1 ms  
with SysTick clock at 6 MHz (48 MHz/8)  
10.7 Watchdog Timer  
• 16-bit key-protected only-once-Programmable Counter  
• Windowed, prevents the processor to be in a dead-lock on the watchdog access  
38  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
10.8 SysTick Timer  
10.9 Real-time Timer  
• 24-bit down counter  
• Self-reload capability  
• Flexible System timer  
• Real-time Timer, allowing backup of time with different accuracies  
– 32-bit Free-running back-up Counter  
– Integrates a 16-bit programmable prescaler running on slow clock  
– Alarm register capable to generate a wake-up of the system through the Shut Down  
Controller  
10.10 Real Time Clock  
• Low power consumption  
• Full asynchronous design  
Two hundred year calendar  
• Programmable Periodic Interrupt  
• Alarm and update parallel load  
• Control of alarm and update Time/Calendar Data In  
10.11 General Purpose Backup Registers  
• Eight 32-bit general-purpose backup registers  
10.12 Nested Vectored Interrupt Controller  
• Thirty Two maskable external interrupts  
• Sixteen priority levels  
• Processor state automatically saved on interrupt entry, and restored on  
• Dynamic reprioritization of interrupts  
• Priority grouping  
– selection of pre-empting interrupt levels and non pre-empting interrupt levels  
• Support for tail-chaining and late arrival of interrupts  
– back-to-back interrupt processing without the overhead of state saving and  
restoration between interrupts.  
• Processor state automatically saved on interrupt entry and restored on interrupt exit, with no  
instruction overhead  
39  
11011BS–ATARM–22-Feb-12  
10.13 Chip Identification  
• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.  
Table 10-1. SAM3N Chip ID Register  
Chip Name  
CHIPID_CIDR  
0x29540960  
0x29590760  
0x29580560  
0x29440960  
0x29490760  
0x29480560  
0x29340960  
0x29390760  
0x29380560  
CHIPID_EXID  
ATSAM3N4C (Rev A)  
ATSAM3N2C (Rev A)  
ATSAM3N1C (Rev A)  
ATSAM3N4B (Rev A)  
ATSAM3N2B (Rev A)  
ATSAM3N1B (Rev A)  
ATSAM3N4A (Rev A)  
ATSAM3N2A (Rev A)  
ATSAM3N1A (Rev A)  
• JTAG ID: 0x05B2E03F  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
10.14 UART  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
10.15 PIO Controllers  
• 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79  
I/O Lines  
• Each PIO Controller controls up to 32 programmable I/O Lines  
• Fully programmable through Set/Clear Registers  
Table 10-2. PIO available according to pin count  
Version  
PIOA  
48 pin  
64 pin  
100 pin  
32  
21  
13  
-
32  
15  
-
PIOB  
15  
PIOC  
32  
• Multiplexing of four peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)  
– Input change, rising edge, falling edge, low level and level interrupt  
– Debouncing and Glitch filter  
40  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
– Multi-drive option enables driving in open drain  
– Programmable pull up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
• Selection of the drive level  
• Synchronous output, provides Set and Clear of several I/O lines in a single write  
11. Peripherals  
11.1 Peripheral Identifiers  
Table 11-1 defines the Peripheral Identifiers of the SAM3N4/2/1/0/00. A peripheral identifier is  
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller  
and for the control of the peripheral clock with the Power Management Controller.  
Table 11-1. Peripheral Identifiers  
Instance ID  
Instance Name  
NVIC Interrupt  
PMC Clock Control Instance Description  
Supply Controller  
0
1
SUPC  
RSTC  
RTC  
RTT  
WDT  
PMC  
EEFC  
-
X
X
X
X
X
X
X
-
Reset Controller  
2
Real Time Clock  
3
Real Time Timer  
4
Watchdog Timer  
5
Power Management Controller  
6
Enhanced Flash Controller  
Reserved  
7
8
UART0  
UART1  
-
X
X
-
X
X
-
UART 0  
9
UART 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Reserved  
PIOA  
PIOB  
PIOC  
USART0  
USART1  
-
X
X
X
X
X
-
X
X
X
X
X
-
Parallel I/O Controller A  
Parallel I/O Controller B  
Parallel I/O Controller C  
USART 0  
USART 1  
Reserved  
-
-
-
Reserved  
-
-
-
Reserved  
TWI0  
TWI1  
SPI  
X
X
X
-
X
X
X
-
Two Wire Interface 0  
Two Wire Interface 1  
Serial Peripheral Interface  
Reserved  
-
TC0  
TC1  
X
X
X
X
Timer/Counter 0  
Timer/Counter 1  
41  
11011BS–ATARM–22-Feb-12  
Table 11-1. Peripheral Identifiers (Continued)  
Instance ID  
Instance Name  
TC2  
NVIC Interrupt  
PMC Clock Control Instance Description  
25  
26  
27  
28  
29  
30  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Timer/Counter 2  
TC3  
Timer/Counter 3  
TC4  
Timer/Counter 4  
TC5  
Timer/Counter 5  
ADC  
Analog-to-Digital Converter  
Digital-to-Analog Converter  
Pulse Width Modulation  
DACC  
PWM  
11.2 Peripheral Signals Multiplexing on I/O Lines  
The SAM3N product features 2 PIO controllers (48-pin and 64-pin version) or 3 PIO controllers  
(100-pin version), PIOA, PIOB and PIOC, that multiplex the I/O lines of the peripheral set.  
The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 10-2, “PIO  
available according to pin count,” on page 40). Each line can be assigned to one of three periph-  
eral functions: A, B or C. The multiplexing tables in the following paragraphs define how the I/O  
lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column “Com-  
ments” has been inserted in this table for the user’s own comments; it may be used to track how  
pins are defined in an application.  
Note that some peripheral functions which are output only, might be duplicated within the tables.  
42  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
11.2.1  
PIO Controller A Multiplexing  
Table 11-2. Multiplexing on PIO Controller A (PIOA)  
I/O Line  
PA0  
Peripheral A  
PWM0  
PWM1  
PWM2  
TWD0  
TWCK0  
RXD0  
Peripheral B  
TIOA0  
TIOB0  
SCK0  
Peripheral C  
Extra Function  
WKUP0  
System Function  
Comments  
High drive  
High drive  
High drive  
High drive  
PA1  
WKUP1  
PA2  
DATRG  
WKUP2  
PA3  
NPCS3  
TCLK0  
NPCS3  
PCK0  
PA4  
WKUP3  
WKUP4  
PA5  
PA6  
TXD0  
PA7  
RTS0  
PWM3  
ADTRG  
NPCS1  
NPCS2  
PWM0  
PWM1  
PWM2  
PWM3  
TIOA1  
TIOB1  
PCK1  
XIN32  
PA8  
CTS0  
WKUP5  
WKUP6  
XOUT32  
PA9  
URXD0  
UTXD0  
NPCS0  
MISO  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
WKUP7  
MOSI  
SPCK  
WKUP8  
WKUP14  
WKUP15  
AD0  
PCK2  
AD1  
AD2/WKUP9  
AD3/WKUP10  
AD8  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
PCK1  
NPCS3  
PWM0  
PWM1  
PWM2  
TIOA2  
TIOB2  
TCLK1  
TCLK2  
NPCS2  
PCK2  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
64/100-pin versions  
AD9  
WKUP11  
NPCS1  
43  
11011BS–ATARM–22-Feb-12  
11.2.2  
PIO Controller B Multiplexing  
Table 11-3. Multiplexing on PIO Controller B (PIOB)  
I/O Line  
PB0  
Peripheral A  
PWM0  
Peripheral B  
Peripheral C  
Extra Function  
AD4  
System Function  
Comments  
PB1  
PWM1  
AD5  
PB2  
URXD1  
UTXD1  
TWD1  
NPCS2  
PCK2  
AD6/WKUP12  
AD7  
PB3  
PB4  
PWM2  
TDI  
TDO/  
TRACESWO  
PB5  
TWCK1  
WKUP13  
PB6  
PB7  
TMS/SWDIO  
TCK/SWCLK  
XOUT  
PB8  
PB9  
XIN  
PB10  
PB11  
PB12  
PB13  
PB14  
ERASE  
PCK0  
DAC0  
64/100-pin versions  
64/100-pin versions  
NPCS1  
PWM3  
44  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
11.2.3  
PIO Controller C Multiplexing  
I/O Line  
PC0  
Peripheral A  
Peripheral B  
Peripheral C  
Extra Function  
System Function Comments  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
100-pin version  
PC1  
PC2  
PC3  
PC4  
NPCS1  
PC5  
PC6  
PC7  
NPCS2  
PWM0  
PWM1  
PWM2  
PWM3  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
AD12  
AD10  
PCK2  
AD11  
PCK0  
PCK1  
PWM0  
PWM1  
PWM2  
PWM3  
PWM0  
TIOA3  
TIOB3  
TCLK3  
TIOA4  
TIOB4  
TCLK4  
TIOA5  
TIOB5  
TCLK5  
AD13  
AD14  
AD15  
45  
11011BS–ATARM–22-Feb-12  
12. Embedded Peripherals Overview  
12.1 Serial Peripheral Interface (SPI)  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
12.2 Two Wire Interface (TWI)  
• Master, Multi-Master and Slave Mode Operation  
• Compatibility with Atmel two-wire interface, serial memory and I2C compatible devices  
• One, two or three bytes for slave address  
• Sequential read/write operations  
• Bit Rate: Up to 400 kbit/s  
• General Call Supported in Slave Mode  
• Connecting to PDC channel capabilities optimizes data transfers in Master Mode only (for  
TWI0 only)  
– One channel for the receiver, one channel for the transmitter  
– Next buffer support  
12.3 Universal Asynchronous Receiver Transceiver (UART)  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
46  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
– Support for two PDC channels with connection to receiver and transmitter (for  
UART0 only)  
12.4 USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards (Only on USART0)  
– NACK handling, error counter with repetition and iteration limit  
• SPI Mode  
– Master or Slave  
– Serial Clock programmable Phase and Polarity  
– SPI Serial Clock (SCK) Frequency up to MCK/4  
• IrDA modulation and demodulation (Only on USART0)  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
• PDC support (for USART0 only)  
12.5 Timer Counter (TC)  
• Six 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
47  
11011BS–ATARM–22-Feb-12  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
• Quadrature decoder  
– Advanced line filtering  
– Position/revolution/speed  
• 2-bit Gray Up/Down Counter for Stepper Motor  
12.6 Pulse Width Modulation Controller (PWM)  
• Four channels, one 16-bit counter per channel  
• Common clock generator, providing thirteen different clocks  
– One Modulo n counter providing eleven clocks  
Two independent linear dividers working on modulo n counter outputs  
• Independent channel programming  
– Independent enable/disable commands  
– Independent clock selection  
– Independent period and duty cycle, with double buffering  
– Programmable selection of the output waveform polarity  
12.7 10-bit Analog-to-Digital Converter  
• Up to 16-channel ADC  
• 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register  
ADC  
2 LSB Integral Non Linearity, 1 LSB Differential Non Linearity  
• Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs  
• External voltage reference for better accuracy on low voltage inputs  
• Individual enable and disable of each channel  
• Multiple trigger source  
– Hardware or software trigger  
– External trigger pin  
– Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger  
• Sleep Mode and conversion sequencer  
– Automatic wakeup on trigger and back to sleep mode after conversions of all  
enabled channels  
12.8 Digital-to-Analog Converter (DAC)  
• 1 channel 10-bit DAC  
• Up to 500 ksamples/s conversion rate  
• Flexible conversion range  
• Multiple trigger sources  
• One PDC channel  
48  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
13. Package Drawings  
The SAM3N series devices are available in LQFP, QFN and TFBGA packages.  
Figure 13-1. 100-lead LQFP Package Drawing  
Note : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.  
49  
11011BS–ATARM–22-Feb-12  
Figure 13-2. 100-ball TFBGA Package Drawing  
50  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Figure 13-3. 64- and 48-lead LQFP Package Drawing  
51  
11011BS–ATARM–22-Feb-12  
Table 13-1. 48-lead LQFP Package Dimensions (in mm)  
Millimeter  
Inch  
Symbol  
Min  
Nom  
Max  
1.60  
0.15  
1.45  
Min  
Nom  
Max  
0.063  
0.006  
0.057  
A
A1  
A2  
D
0.05  
1.35  
1.40  
0.002  
0.053  
0.055  
0.354 BSC  
0.276 BSC  
0.354 BSC  
0.276 BSC  
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
D1  
E
E1  
R2  
R1  
q
0.08  
0.08  
0°  
0.20  
0.003  
0.003  
0°  
0.008  
3.5°  
7°  
3.5°  
7°  
θ1  
θ2  
θ3  
c
0°  
0°  
11°  
11°  
0.09  
0.45  
12°  
13°  
13°  
0.20  
0.75  
11°  
12°  
13°  
13°  
0.008  
0.030  
12°  
11°  
12°  
0.004  
0.018  
L
0.60  
0.024  
0.039 REF  
L1  
S
1.00 REF  
0.20  
0.17  
0.008  
0.007  
b
0.20  
0.27  
0.008  
0.020 BSC.  
0.217  
0.217  
0.011  
e
0.50 BSC.  
5.50  
D2  
E2  
5.50  
Tolerances of Form and Position  
0.20  
aaa  
bbb  
ccc  
ddd  
0.008  
0.008  
0.003  
0.003  
0.20  
0.08  
0.08  
52  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Table 13-2. 64-lead LQFP Package Dimensions (in mm)  
Millimeter  
Inch  
Symbol  
Min  
Nom  
Max  
1.60  
0.15  
1.45  
Min  
Nom  
Max  
0.063  
0.006  
0.057  
A
A1  
A2  
D
0.05  
1.35  
0.002  
0.053  
0.055  
0.472 BSC  
0.383 BSC  
0.472 BSC  
0.383 BSC  
1.40  
12.00 BSC  
D1  
E
10.00 BSC  
12.00 BSC  
E1  
R2  
R1  
q
10.00 BSC  
0.08  
0.08  
0°  
0.20  
0.003  
0.003  
0°  
0.008  
3.5°  
7°  
3.5°  
7°  
θ1  
θ2  
θ3  
c
0°  
0°  
11°  
11°  
0.09  
0.45  
12°  
13°  
13°  
0.20  
0.75  
11°  
12°  
13°  
13°  
0.008  
0.030  
12°  
11°  
12°  
0.004  
0.018  
L
0.60  
1.00 REF  
0.024  
0.039 REF  
L1  
S
0.20  
0.17  
0.008  
0.007  
b
0.20  
0.50 BSC.  
7.50  
7.50  
0.27  
0.008  
0.020 BSC.  
0.285  
0.285  
0.011  
e
D2  
E2  
Tolerances of Form and Position  
0.20  
aaa  
bbb  
ccc  
ddd  
0.008  
0.008  
0.003  
0.003  
0.20  
0.08  
0.08  
53  
11011BS–ATARM–22-Feb-12  
Figure 13-4. 48-pad QFN Package Drawing  
54  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Table 13-3. 48-pad QFN Package Dimensions (in mm)  
Millimeter  
Inch  
Symbol  
Min  
Nom  
Max  
090  
Min  
Nom  
Max  
0.035  
0.002  
0.028  
A
A1  
A2  
A3  
b
0.050  
0.70  
0.65  
0.026  
0.008 REF  
0.008  
0.276 bsc  
0.220  
0.276 bsc  
0.220  
0.016  
0.020 bsc  
0.20 REF  
0.20  
0.18  
5.45  
0.23  
5.75  
0.007  
0.215  
0.009  
0.226  
D
7.00 bsc  
5.60  
D2  
E
7.00 bsc  
5.60  
E2  
L
5.45  
0.35  
5.75  
0.45  
0.215  
0.014  
0.226  
0.018  
0.40  
e
0.50 bsc  
R
0.09  
0.004  
Tolerances of Form and Position  
0.10  
aaa  
bbb  
ccc  
0.004  
0.004  
0.002  
0.10  
0.05  
55  
11011BS–ATARM–22-Feb-12  
Figure 13-5. 64-pad QFN Package Drawing  
56  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
14. Ordering Information  
Table 14-1.  
Flash  
Temperature  
Ordering Code  
MRL  
(Kbytes)  
Package  
Package Type  
Operating Range  
Industrial  
-40°C to 85°C  
ATSAM3N4CA-AU  
A
256  
256  
256  
256  
256  
256  
128  
128  
128  
128  
128  
128  
64  
LQFP100  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Industrial  
-40°C to 85°C  
ATSAM3N4CA-CU  
ATSAM3N4BA-AU  
ATSAM3N4BA-MU  
ATSAM3N4AA-AU  
ATSAM3N4AA-MU  
ATSAM3N2CA-AU  
ATSAM3N2CA-CU  
ATSAM3N2BA-AU  
ATSAM3N2BA-MU  
ATSAM3N2AA-AU  
ATSAM3N2AA-MU  
ATSAM3N1CA-AU  
ATSAM3N1CB-AU  
ATSAM3N1CA-CU  
ATSAM3N1CB-CU  
ATSAM3N1BA-AU  
ATSAM3N1BB-AU  
ATSAM3N1BA-MU  
ATSAM3N1BB-MU  
A
A
A
A
A
A
A
A
A
A
A
A
B
A
B
A
B
A
B
TFBGA100  
LQFP64  
QFN64  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP48  
QFN48  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP100  
TFBGA100  
LQFP64  
QFN64  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP48  
QFN48  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP100  
LQFP100  
TFBGA100  
TFBGA100  
LQFP64  
LQFP64  
QFN 64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
Industrial  
-40°C to 85°C  
64  
QFN 64  
57  
11011BS–ATARM–22-Feb-12  
Table 14-1.  
Ordering Code  
Flash  
(Kbytes)  
Temperature  
Operating Range  
MRL  
Package  
Package Type  
Industrial  
-40°C to 85°C  
ATSAM3N1AA-AU  
ATSAM3N1AB-AU  
ATSAM3N1AA-MU  
ATSAM3N1AB-MU  
ATSAM3N0CA-AU  
ATSAM3N0CA-CU  
ATSAM3N0BA-AU  
ATSAM3N0BA-MU  
ATSAM3N0AA-AU  
ATSAM3N0AA-MU  
ATSAM3N00BA-AU  
ATSAM3N00BA-MU  
ATSAM3N00AA-AU  
ATSAM3N00AA-MU  
A
64  
64  
64  
64  
32  
32  
32  
32  
32  
32  
16  
16  
16  
16  
LQFP48  
Green  
Industrial  
-40°C to 85°C  
B
A
B
A
A
A
A
A
A
A
A
A
A
LQFP48  
QFN48  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
QFN48  
Industrial  
-40°C to 85°C  
LQFP100  
TFBGA100  
LQFP64  
QFN64  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP48  
QFN48  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP64  
QFN64  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
LQFP48  
QFN48  
Industrial  
-40°C to 85°C  
58  
SAM3N Summary  
11011BS–ATARM–22-Feb-12  
SAM3N Summary  
Revision History  
Doc. Rev.  
Change  
11011BS  
Comments  
Request Ref.  
Overview:  
All mentions of 100-ball LFBGA changed into 100-ball TFBGA  
8044  
Section 8. “Product Mapping”, Heading was ‘Memories’. Changed to ‘Product Mapping’  
Section 4.1.4 “100-ball TFBGA Pinout”, whole pinout table updated  
Updated package dimensions in ‘Features’  
7685  
7201  
7965  
Change  
Doc. Rev  
Comments  
Request Ref.  
11011AS  
First issue  
59  
11011BS–ATARM–22-Feb-12  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/AT91SAM  
Technical Support  
AT91SAM Support  
Atmel techincal support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, SAM-BA® and others are registered trademarks or  
trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM®Powered logo, Thumb® and others are registered trademarks or trademarks of  
ARM Ltd. Other terms and product names may be trademarks of others.  
11011BS–ATARM–22-Feb-12  

相关型号:

ATSAM3N1CA-AU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N1CA-CU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N1CB-AU

ARM-based Flash MCU
ATMEL

ATSAM3N1CB-CU

ARM-based Flash MCU
ATMEL

ATSAM3N2AA-AU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N2AA-MU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N2BA-AU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N2BA-MU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N2CA-AU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N2CA-CU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N4AA-AU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL

ATSAM3N4AA-MU

Cortex M3 Flash Microcontroller Converges Performance and Simplicity
ATMEL