ATR2406_08 [ATMEL]

Low-IF 2.4-GHz ISM Transceiver; 低中频的2.4GHz ISM收发器
ATR2406_08
型号: ATR2406_08
厂家: ATMEL    ATMEL
描述:

Low-IF 2.4-GHz ISM Transceiver
低中频的2.4GHz ISM收发器

ISM频段
文件: 总25页 (文件大小:792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Fully Integrated Low IF Receiver  
Fully Integrated GFSK Modulator for 72, 144, 288, 576 and 1152 Kbits/s  
High Sensitivity of Typically –93 dBm Due to Integrated LNA  
High Output Power of Typically +4 dBm  
Multi-channel Operation  
– 95 Channels  
– Support Frequency Hopping (ETSI) and Digital Modulation (FCC)  
Supply-voltage Range 2.9V to 3.6V (Unregulated)  
Auxiliary Voltage Regulator on Chip (3.2V to 4.6V)  
Low Current Consumption  
Low-IF 2.4-GHz  
ISM Transceiver  
Few Low-cost External Components  
Integrated Ramp-signal Generator and Power Control for an Additional Power Amplifier  
Low Profile Lead-free Plastic Package QFN32 (5 mm × 5 mm × 0.9 mm)  
RoHs Compliant  
ATR2406  
Applications  
High-tech Multi-user Toys  
Wireless Game Controllers  
Telemetry  
Wireless Audio/Video  
Electronic Point of Sales  
Wireless Head Set  
FCC CFR47, Part 15, ETSI EN 300 328, EN 300 440 and ARIB STD-T-66 Compliant Radio  
Links  
1. Description  
The ATR2406 is a single chip RF transceiver intended for applications in the 2.4-GHz  
ISM band. The QFN32-packaged IC is a complete transceiver including image rejec-  
tion mixer, low IF filter, FM demodulator, RSSI, TX preamplifier, power-ramping  
generator for external power amplifier, integrated synthesizer, and a fully integrated  
VCO and TX filter. No mechanical adjustment is necessary in production.  
The RF transceiver offers a clock recovery function on-chip.  
4779N–ISM–12/08  
Figure 1-1. Block Diagram  
REG_DEC VREG REG_CTRL VS_REG IREF  
VS_SYN  
VS_IFD  
VCO  
REG  
AUX  
REG  
AUX  
REG  
VREG_VCO  
RX_IN  
VS_IFA  
VS_RX/TX  
LIMITER  
RSSI  
DEMOD  
LNA  
IR-Mixer  
BP  
RX_DATA  
RSSI  
PA  
VCO  
CLOCK  
DATA  
Divider  
by 2  
TX_OUT  
BUS  
ENABLE  
TEST1  
TEST2  
PU_REG  
PU_TRX  
RX_ON  
TX_ON  
nOLE  
GAUSSIAN  
FILTER  
RAMP  
GEN  
CTRL  
LOGIC  
RAMP_OUT  
PLL  
CP REF_CLK TX_DATA  
VTUNE  
2. Pin Configuration  
Figure 2-1. Pinning QFN32 - 5 × 5  
32 31 30 29 28 27 26 25  
1
PU_REG  
REF_CLK  
RSSI  
24 RX_ON  
2
3
4
5
6
7
8
23  
22  
IC  
IC  
VS_IFD  
VS_IFA  
RX-CLOCK  
IC  
21 RAMP_OUT  
20 TX_OUT  
19 RX_IN1  
18 RX_IN2  
17 VS_TRX  
ATR2406  
IREF  
9 10 11 12 13 14 15 16  
2
ATR2406  
4779N–ISM–12/08  
ATR2406  
Table 2-1.  
Pin Description  
Symbol  
PU_REG  
REF_CLK  
RSSI  
Pin  
1
Function  
Power-up input for auxiliary regulator  
Reference frequency input  
2
3
Received signal strength indicator output  
Digital supply voltage  
4
VS_IFD  
VS_IFA  
RX-CLOCK  
IC  
5
Analog supply voltage for IF circuits  
RX-CLOCK, if RX mode with clock recovery is active  
Internally connected. Connect to VS if internal AUX regulator is not used  
External resistor for band-gap reference  
Auxiliary voltage regulator control output  
Auxiliary voltage regulator output  
Auxiliary voltage regulator supply voltage  
Decoupling pin for VCO_REG  
VCO voltage regulator  
6
7
8
IREF  
9
REG_CTRL  
VREG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Paddle  
VS_REG  
REG_DEC  
VREG_VCO  
VTUNE  
CP  
VCO tuning voltage input  
Charge-pump output  
VS_SYN  
VS_TRX  
RX_IN2  
RX_IN1  
TX_OUT  
RAMP_OUT  
IC  
Synchronous supply voltage  
Transmitter receiver supply voltage  
Differential receiver input 2  
Differential receiver input 1  
TX driver amplifier output  
Ramp generator output for PA power ramping  
Internally connected, do not connect on PCB  
Internally connected, do not connect on PCB  
RX control input  
IC  
RX_ON  
TX_ON  
nOLE  
TX control input  
Open loop enable input  
PU_TRX  
RX_DATA  
TX_DATA  
CLOCK  
DATA  
RX/TX/PLL/VCO power-up input  
RX data output  
TX data input  
3-wire-bus: Clock input  
3-wire-bus: Data input  
ENABLE  
GND  
3-wire-bus: Enable input  
Ground  
3
4779N–ISM–12/08  
3. Functional Description  
3.1  
Receiver  
The RF signal at RF_IN is differentially fed through the LNA to the image rejection mixer  
IR_MIXER, driving the integrated low-IF band-pass filter. The IF frequency is 864 kHz. The limit-  
ing IF_AMP with an integrated RSSI function feeds the signal to the digital demodulator  
DEMOD. No tuning is required. Data slicing is handled internally.  
3.2  
Clock Recovery  
For a 1152-kBit/s data rate, the receiver has a clock recovery function on-chip.  
The receiver includes a clock recovery circuit which regenerates the clock out of the received  
data. The advantage is that this recovered clock is synchronous to the clock of the transmitting  
device (and thus to the transmitted data), which significantly reduces the load of the processing  
microcontroller.  
The falling edge of the clock is the optimal sampling position for the RX_Data signal, so at this  
event the data must be sampled by the microcontroller. The recovered clock is available at pin 6.  
3.3  
Transmitter  
The transmit data at TX_DATA is filtered by an integrated Gaussian filter (GF) and fed to the  
fully integrated VCO operating at twice the output frequency. After modulation, the signal is fre-  
quency divided by 2 and fed to the internal preamplifier PA. This preamplifier supplies typically  
+4 dBm output power at TX_OUT.  
A ramp-signal generator RAMP_GEN, providing a ramp signal at RAMP_OUT for the external  
power amplifier, is integrated. The slope of the ramp signal is controlled internally so that spuri-  
ous requirements are fulfilled.  
3.4  
3.5  
Synthesizer  
The IR_MIXER, the PA, and the programmable counter (PC) are driven by the fully integrated  
VCO, using on-chip inductors and varactors. The output signal is frequency divided to supply the  
desired frequency to the TX_DRIVER, the 0/90 degree phase shifter for the IR_MIXER, and to  
be used by the PC for the phase detector (PD) (fPD = 1.728 MHz). Open loop modulation is  
supported.  
Power Supply  
An integrated band-gap–stabilized voltage regulator for use with an external low-cost PNP tran-  
sistor is implemented. Multiple power-down and current saving modes are provided.  
4
ATR2406  
4779N–ISM–12/08  
ATR2406  
4. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
VS  
Min.  
–0.3  
–0.3  
–0.3  
–40  
Max.  
+4.7  
+3.6  
VS  
Unit  
V
Supply voltage auxiliary regulator  
Supply voltage  
VS  
V
Control voltages  
Vcontr  
Tstg  
V
Storage temperature  
Input RF level  
+125  
+10  
°C  
dBm  
V
PRF  
VESD_ana  
VESD_dig  
TBD  
TBD  
ESD protection  
V
Electrostatic sensitive device.  
Observe precautions for handling.  
5. Operating Range  
Parameters  
Symbol  
VS  
Min.  
2.9  
Max.  
3.6  
Unit  
V
Supply voltage  
Auxiliary regulator supply voltage  
Temperature ambient  
Input frequency range  
VS_BATT  
Tamb  
3.2  
4.6  
V
–10  
2400  
+60  
2483  
°C  
fRX  
MHz  
5
4779N–ISM–12/08  
6. Electrical Characteristics  
VS = 3.6V with AUX regulator, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Supply  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
1
1.1 Supply voltage  
1.2 Supply voltage  
With AUX regulator  
VS  
VS  
IS  
3.2  
2.9  
3.6  
3.0  
57  
4.6  
3.6  
V
Without AUX regulator  
CW mode (peak current)  
Burst mode at 10 Kbits/s(4)  
CW mode (peak current)  
Burst mode at 10 Kbits/s(4)  
V
mA  
µA  
mA  
µA  
1.3 RX supply current  
1.4 TX supply current  
IS  
625  
42  
IS  
IS  
500  
Battery lifetime of a remote  
1.5 control application using an  
AVR®  
See Section 10. “Appendix: Current  
Calculations for a Remote Control”  
on page 20  
Supply current in power-down  
mode  
With AUX regulator  
PU_TRX = 0; PU_REG = 0  
1.6  
IS  
IS  
< 1  
< 1  
µA  
µA  
Supply current in power-down  
mode  
Without AUX regulator  
PU_TRX = 0; PU_REG = 0  
1.7  
2
Voltage Regulator  
2.1 AUX regulator  
2.2 VCO regulator  
VREG  
3.0  
2.7  
V
V
VREG_VCO  
3
Transmitter Part  
3.1 TX data rate  
72/144/288/576/1152  
kBits/s  
dBm  
MHz  
kHz  
3.2 Output power  
PTX  
4
3.3 TX data filter clock  
3.4 Frequency deviation  
9 taps in filter  
fTXFCLK  
10.368/13.824  
±400  
To be tuned by GFCS bits  
GFFM_nom  
GFFM = GFFM_nom × GFCS  
(Refer to bus protocol D9 to D11)  
3.5 Frequency deviation scaling(3)  
GFCS  
60  
130  
%
With standard loop filter and slot  
length of 1400 µs (Refer to the  
application note “ATR2406 Loop  
Filter and Data Rates”)  
3.6 Frequency drift  
3.7 Harmonics  
Δfo (drift)  
±40  
kHz  
BW = 100 kHz(1)  
–41.2  
dBm  
Spurious emissions  
30 – 1000 MHz  
3.8 1 – 12.75 GHz  
1.8 – 1.9 GHz  
–57  
–57  
–57  
–57  
dBm  
dBm  
dBm  
dBm  
BW = 100 kHz(1)  
5.15 – 5.3 GHz  
4
Ramp Generator, Pin 21  
4.1 Minimum output voltage  
4.2 Maximum output voltage  
4.3 Rise time  
TX_ON = low  
Vmin  
Vmax  
tr  
0.7  
V
V
Refer to bus protocol D12 to D13  
1.1  
1.9  
5
5
µs  
µs  
4.4 Fall time  
tf  
Notes: 1. Measured and guaranteed only on the Atmel® evaluation board, including microstrip filter, balun, and Smart Radio Fre-  
quency (Smart RF) firmware. Conducted measured.  
2. Timing is determined by external loop filter characteristics. Faster timing can be achieved by modification of the loop filter.  
For further information refer to the application notes.  
3. The Gaussian filter control setting (GFCS) is used to compensate production tolerances by tuning the modulation deviation  
in production to the nominal value of 400 kHz.  
4. Burst mode with 0.9% duty cycle  
6
ATR2406  
4779N–ISM–12/08  
ATR2406  
6. Electrical Characteristics (Continued)  
VS = 3.6V with AUX regulator, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Receiver Part  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
5
5.1 RX input impedance  
Differential  
Zin  
170 + j0  
–93  
Ω
At input for BER 10-3  
at 1152 kBits/s(1)  
5.2 Sensitivity  
dBm  
dBm  
5.3 Third order input intercept point  
IIP3  
IM3  
–15  
BER < 10-3, wanted at -83 dBm,  
level of interferers in channels  
N + 2 and N + 4(1)  
5.4 Intermodulation rejection  
5.5 Co-channel rejection  
32  
–11  
14  
dBc  
dBc  
dBc  
BER < 10-3, wanted at –76 dBm(1)  
RCO  
BER < 10-3, wanted at –76 dBm,  
adjacent level referred to wanted  
channel level(1)  
Adjacent channel rejection  
±1.728 MHz  
5.6  
Ri (N – 1)  
BER < 10-3, wanted at –76 dBm,  
bi-adjacent level referred to wanted  
channel level(1)  
Bi-adjacent channel rejection  
±3.456 MHz  
5.7  
Ri (N – 2)  
30  
dBc  
Rejection with 3 channels  
5.8 separation  
BER < 10-3, wanted at –76 dBm,  
n 3 adjacent level referred to  
wanted channel level(1)  
Ri (n  
40  
38  
47  
dBc  
dBc  
dBc  
3)  
±5.128 MHz  
BER < 10-3, wanted at –83 dBm at  
5.9 Out of band rejection > 6 MHz  
Bldf>6MHz  
2.45 GHz(1)  
Out of band rejection  
5.10 2300 MHz to 2394 MHz  
2506 MHz to 2600 GHz  
BER < 10-3, wanted at –83 dBm at  
2.45 GHz(1)  
Blnear  
Out of band rejection  
5.11 30 MHz to 2300 MHz  
2600 MHz to 6 GHz  
BER < 10-3, wanted at –83 dBm at  
2.45 GHz(1)  
Blfar  
57  
dBc  
6
RSSI Part  
6.1 Maximum RSSI output voltage Under high RX input signal level  
VRSSImax  
VRSSI  
2.1  
V
RSSI output voltage, monotonic With –33 dBm at RF input  
1.9  
0.1  
V
V
6.2  
over range –96 dBm to –36 dBm With –96 dBm at RF input  
7
VCO  
Oscillator frequency defined at  
TX output  
7.1  
Over full temperature range(1)  
2400  
0.5  
2483  
MHz  
V
7.2 Frequency control voltage range  
VVTUNE  
GVCO  
VCC – 0.5  
VCO tuning input gain defined at  
TX output  
7.3  
240  
MHz/V  
Notes: 1. Measured and guaranteed only on the Atmel® evaluation board, including microstrip filter, balun, and Smart Radio Fre-  
quency (Smart RF) firmware. Conducted measured.  
2. Timing is determined by external loop filter characteristics. Faster timing can be achieved by modification of the loop filter.  
For further information refer to the application notes.  
3. The Gaussian filter control setting (GFCS) is used to compensate production tolerances by tuning the modulation deviation  
in production to the nominal value of 400 kHz.  
4. Burst mode with 0.9% duty cycle  
7
4779N–ISM–12/08  
6. Electrical Characteristics (Continued)  
VS = 3.6V with AUX regulator, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
8
Synthesizer  
External reference input  
frequency  
D7 = 0  
D7 = 1  
10.368  
13.824  
MHz  
MHz  
8.1  
REF_CLK  
REF_CLK  
Sinusoidal input signal level  
(peak-to-peak value)  
8.2  
AC-coupled sine wave  
500  
0
1000  
31  
mVPP  
8.3 Scaling factor prescaler  
SPSC  
SMC  
SSC  
32/33  
-
-
-
8.4 Scaling factor main counter  
8.5 Scaling factor swallow counter  
86/87/88/89  
9
Phase Detector  
Phase detector comparison  
frequency  
9.1  
fPD  
1728  
kHz  
10 Charge-pump Output  
10.1 Charge-pump output current  
10.2 Leakage current  
V
CP = 1/2 VCC  
ICP  
IL  
±2  
mA  
pA  
VCP = 1/2 VCC  
±100  
1000  
11 Timing Conditions(1)(2)  
11.1 Transmit to receive time  
11.2 Receive to transmit time  
11.3 Channel switch time  
11.4 Power down to transmit  
11.5 Power down to receive  
11.6 Programming register  
11.7 PLL settling time  
Reference clock stable  
Reference clock stable  
Reference clock stable  
Reference clock stable  
Reference clock stable  
Reference clock stable  
Reference clock stable  
TX RX time  
RX TX time  
CS time  
200  
200  
200  
250  
200  
3
µs  
µs  
µs  
µs  
µs  
µs  
µs  
PD TR time  
PD RX time  
PRR time  
PLL set time  
200  
12 Interface Logic Input and Output Signal Levels, Pin DATA, CLOCK, ENABLE  
12.1 HIGH-level input voltage  
12.2 LOW-level input voltage  
12.3 HIGH-level output voltage  
12.4 LOW-level output voltage  
12.5 Input bias current  
Logic 1  
VIH  
VIL  
1.4  
3.1  
+0.4  
3.1  
V
V
Logic 0  
–0.3  
Logic 1  
VOH  
V
Logic 0  
VOL  
0
V
Logic 1 or logic 0  
Ibias  
–5  
+5  
10  
µA  
MHz  
12.6 3-wire bus clock frequency  
fCLKmax  
Notes: 1. Measured and guaranteed only on the Atmel® evaluation board, including microstrip filter, balun, and Smart Radio Fre-  
quency (Smart RF) firmware. Conducted measured.  
2. Timing is determined by external loop filter characteristics. Faster timing can be achieved by modification of the loop filter.  
For further information refer to the application notes.  
3. The Gaussian filter control setting (GFCS) is used to compensate production tolerances by tuning the modulation deviation  
in production to the nominal value of 400 kHz.  
4. Burst mode with 0.9% duty cycle  
8
ATR2406  
4779N–ISM–12/08  
ATR2406  
7. PLL Principle  
Figure 7-1. PLL Principle  
Programable counter PC  
"- Main counter MC  
"- Swallow counter SC  
fVCO = 1728 kHz × (SMC × 32 + SSC  
)
External  
loop filter  
PA driver  
Mixer  
Phase frequency  
detector PD  
fPD = 1728 kHz  
Divider  
by 2  
Charge  
pump  
VCO  
Gaussian  
filter GF  
Reference counter RC  
REF_CLK  
D7  
10.368 MHz  
13.824 MHz  
0
1
TXDAT  
PLL reference  
Frequency  
REF_CLK  
Baseband controller  
9
4779N–ISM–12/08  
Table 7-1 shows the LO frequencies for RX and TX in the 2.4-GHz ISM band. There are 95  
channels available. Since the ATR2406 supports wideband modulation with 400-kHz deviation,  
every second channel can be used without overlap in the spectrum.  
Table 7-1.  
Mode  
LO Frequencies  
fIF / kHz  
Channel  
C0  
fANT / MHz  
2401.056  
2401.920  
...  
fVCO / MHz divided by 2  
2401.056  
2401.920  
...  
SMC  
86  
86  
...  
SSC  
27  
28  
...  
N
2779  
2780  
...  
C1  
TX  
RX  
...  
C93  
C94  
C0  
2481.408  
2482.272  
2401.056  
2401.920  
...  
2481.408  
2482.272  
2401.920  
2402.784  
...  
89  
89  
86  
86  
...  
24  
25  
28  
29  
...  
2872  
2873  
2780  
2781  
...  
C1  
864  
...  
C93  
C94  
2481.408  
2482.272  
2482.272  
2483.136  
89  
89  
25  
26  
2873  
2874  
7.1  
TX Register Setting  
The following 16-bit word has to be programmed for TX.  
MSB  
LSB  
D0  
Data bits  
D15  
0
D14  
1
D13  
D12  
D11  
D10  
D9  
D8  
1
D7  
D6  
D5  
D4  
D3  
D2  
SC  
D1  
PA  
GFCS  
RC  
MC  
Note:  
D12 and D13 are only relevant if ramping generator in conjunction with external PA is used, otherwise it can be programmed 0  
or 1.  
Table 7-2.  
Output Power Settings with Bits D12 - D13  
PA (Output Power Settings)  
D13  
0
D12  
0
RAMP_OUT (Pin 21)  
1.3V  
1.35V  
1.4V  
0
1
1
0
1
1
1.75V  
The VRAMP voltage is used to control the output power of an external power amplifier. The volt-  
age ramp is started with the TX_ON signal.  
These bits are only relevant in TX mode.  
10  
ATR2406  
4779N–ISM–12/08  
ATR2406  
7.2  
7.3  
RX Register Setting  
There are two RX settings possible. For a data rate of 1152 kBits/s, an internal clock recovery  
function is implemented.  
Register Setting Without Clock Recovery  
Must be used for data rates below 1.152 Mbits/s.  
MSB  
LSB  
D0  
Data bits  
D15  
0
D14  
1
D13  
X
D12  
X
D11  
X
D10  
X
D9  
X
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
SC  
D1  
RC  
MC  
Note:  
X values are not relevant and can be set to 0 or 1.  
7.4  
RX Register Setting with Internal Clock Recovery  
Recommended for 1.152-Mbit/s data rate.  
The output pin of the recovered clock is pin 6. The falling edge of the recovered clock signal  
samples the data signal.  
MSB  
Data bits  
D24  
1
D23  
0
D22  
1
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
LSB  
D0  
Data bits  
D15  
0
D14  
0
D13  
X
D12  
X
D11  
X
D10  
X
D9  
X
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
SC  
D1  
RC  
MC  
Note:  
X values are not relevant and can be set to 0 or 1.  
7.5  
PLL Settings  
RC, MC and SC bits control the synthesizer frequency as shown in Table 7-3, Table 7-4 on page  
12 and Table 7-5 on page 12.  
Formula for calculating the frequency:  
TX frequency: fANT = 864 kHz × (32 × SMC + SSC  
)
RX frequency: fANT = 864 kHz × (32 × SMC + SSC – 1)  
Table 7-3.  
PLL Settings of the Reference Counter Bit D7  
RC (Reference Counter)  
D7  
0
CLK Reference  
10.368 MHz  
1
13.824 MHz  
11  
4779N–ISM–12/08  
Table 7-4.  
PLL Settings of the Main Counter Bits D5 to D6  
MC (Main Counter)  
D6  
0
D5  
0
SMC  
86  
0
1
87  
1
0
88  
1
1
89  
Table 7-5.  
PLL Settings of the Swallow Counter Bits D0 to D4  
SC (Swallow Counter)  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
SSC  
0
0
0
0
0
1
1
0
0
0
1
0
2
...  
1
...  
1
...  
1
...  
0
...  
1
...  
29  
30  
31  
1
1
1
1
0
1
1
1
1
1
7.6  
GFCS Adjustment  
The Gaussian filter control setting (GFCS) is used to compensate for production tolerances by  
tuning the modulation deviation in production to the nominal value of 400 kHz. These bits are  
only relevant in TX mode.  
Table 7-6.  
GFCS Adjustment of Bits D9 - D11  
GFCS  
D11  
D10  
0
D9  
0
GFCS  
60%  
0
0
0
0
1
1
1
1
0
1
70%  
1
0
80%  
1
1
90%  
0
0
100%  
110%  
120%  
130%  
0
1
1
0
1
1
12  
ATR2406  
4779N–ISM–12/08  
ATR2406  
7.7  
Control Signals  
The various transceiver functions are activated by the following control signals. A timing pro-  
posal is shown in Figure 7-3 on page 14  
Table 7-7.  
Control Signals and Functions  
Signal  
Functions  
Activates AUX voltage regulator and the VCO voltage regulator supplying the  
complete transceiver  
PU_REG  
PU_TRX  
RX_ON  
TX_ON  
nOLE  
Activates RX/TX blocks  
Activates RX circuits: DEMOD, IF AMP, IR MIXER  
Activates TX circuits: PA, RAMP GEN, Starts RAMP SIGNAL at RAMP_OUT  
Disables open loop mode of the PLL  
7.8  
Serial Programming Bus  
The transceiver is programmed by the SPI (CLOCK, DATA and ENABLE).  
After setting the enable signal to low, the data is transferred bit by bit into the shift register on the  
rising edge of the clock signal, starting with the MSBit. When the enable signal has returned to  
high, the programmed information is active. Additional leading bits are ignored and there is no  
check made of how many clock pulses arrived during enable low.  
The programming of the transceiver is done by a 16-bit or 25-bit data word (for the RX clock  
recovery mode).  
7.9  
3-wire Bus Timing  
Figure 7-2. 3-wire Bus Protocol Timing Diagram  
DATA  
CLOCK  
ENABLE  
TL  
TC  
TH  
TPER  
TEC  
TT  
TS  
Table 7-8.  
3-wire Bus Protocol Table  
Description  
Symbol  
TPER  
TS  
Minimum Value  
Unit  
ns  
Clock period  
100  
20  
Set time data to clock  
Hold time data to clock  
Clock pulse width  
ns  
TH  
20  
ns  
TC  
60  
ns  
Set time enable to clock  
Hold time enable to data  
Time between two protocols  
TL  
100  
0
ns  
TEC  
TT  
ns  
250  
ns  
13  
4779N–ISM–12/08  
Figure 7-3. Example TX and RX Timing Diagram  
( O X R u t p u t ) f s r o m g T i n S a l  
( I X n R p u t ) t s o T g i n S a l  
14  
ATR2406  
4779N–ISM–12/08  
ATR2406  
Table 7-9.  
Description of the Conditions/States  
Description  
Condition  
Power down  
C1  
C2  
ATR2406 is switched off and the supply current is lower than 1 µA.  
Power up  
ATR2406 is powered up by toggling PU_REG and PU_TRX to high.  
PU_REG enables the external AUX regulator transistor including VCO regulator.  
PU_TRX enables internal blocks like the PLL and the VCO.  
Depending on the value of the external capacitors (for example, at the AUX  
regulator, if one is used), it is necessary to wait at least 40 µs until the different  
supply voltages have settled.  
Programming  
The internal register of the ATR2406 is programmed via the three-wire interface.  
At TX, this is just the PLL (transmit channel) and the deviation (Gaussian filter).  
At RX, this is just the PLL (receive channel) and, if the clock recovery is used, also  
the bits to enable this option. At the start of the three-wire programming, the  
enable signal is toggled from high to low to enable clocking the data into the  
internal register. When the enable signal rises again to high, the programmed  
data is latched. This is the time point at which the settling of the PLL starts. It is  
necessary to wait the settling time of 200 µs so that the VCO frequency is stable.  
The reference clock needs to be applied to ATR2406 for at least the time when the  
PLL is in operation, which is the programming state (C3) and the active slot (C4,  
C5). Out of the reference clock, several internal signals are also derived, for  
example, the Gaussian filter circuitry and TX_DATA sampling.  
C3  
This is the receive slot where the transmit burst is received and data as well as  
recovered clock are available.  
C4  
C5  
This is the active transmit slot. As soon as TX_DATA is applied to ATR2406, the  
signal nOLE toggles to low which enables modulation in open-loop mode.  
The preamble (1-0-1-0 pattern) should start being sent at the start of TX_ON.  
7.10 Received Signal Strength Indication (RSSI)  
The RSSI is given as an analog voltage at the RSSI pin. A typical plot of the RSSI value is  
shown in Figure 7-4.  
Figure 7-4. Typical RSSI Value versus Input Power  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-130  
-110  
-90  
-70  
-50  
-30  
-10  
10  
RF Level (dBm)  
15  
4779N–ISM–12/08  
8. Application Circuit  
The ATR2406 requires only a few low-cost external components for operation. A typical applica-  
tion is shown in Figure 8-3 on page 17.  
8.1  
Typical Application Circuit  
Figure 8-1. Microcontroller Interfacing with General Purpose MCU, Pin Connections between  
Microcontroller and ATR2406  
Microcontroller  
ATR2406  
TX_DATA  
RX_DATA  
RX-CLOCK  
ENABLE  
CLOCK  
DATA  
Ctrl_Lines  
REF_CLK  
XTAL(1)  
XTAL_OUT  
Figure 8-2. Example with AVR MCU  
AVR_MCU  
ATR2406  
USART  
RF_DATA  
TXD  
RXD  
XCK  
TX_DATA  
RX_DATA  
RX-CLOCK  
R
GPIO  
RF_CTRL  
ENABLE  
CLOCK  
DATA  
nOLE  
TX_ON  
RX_ON  
PU_REG  
PU_TRX  
RSSI  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
13.824 MHz XTAL  
REF_CLK  
Note:  
1. XTAL: for example, XRFBCC-NANL; 13.824 MHz, 10 ppm  
Order at: Taitien Electronic, Taitien Specific No.: A009-x-B26-3, SMD  
16  
ATR2406  
4779N–ISM–12/08  
ATR2406  
Figure 8-3. Application Circuit for ATR2406-DEV-BOARD  
N C  
R 1  
J 2 4  
1 p 8  
C 3  
2 p 2  
1 k 5  
R 6  
C 7  
2 p 2  
C 6  
p t r i µ S  
G N  
G N  
G N  
G N  
G N  
G N  
G N  
G N  
T
V B A T  
R A M  
G N  
p t r i µ S  
U T O _ P  
N O R X _  
N C  
1 k 0  
R 4  
4
C 1  
3 9 0 p  
C 4  
N
_ O T X  
n O L E  
G N D  
S Y N V S _  
C P  
G
N O _ T X  
2 5  
1 6  
1 5  
n O L E  
R T X P U _  
A T D R X _  
2 6  
2 7  
2 8  
X R T P U _  
E N U V T  
A
6 8 p  
1 4  
A
A T D R X _  
C V O _  
D E G _ R E  
G E R V S _  
V R E G  
1 3  
N C  
C 1  
A T A _ D T X  
O C C K L  
A T A _ D T X  
8
9
C 1  
4 7 0 n  
C
2 9  
3 0  
3 1  
3 2  
1 2  
7
1 1  
O C C K L  
A T D A  
V R E G  
1 0  
R L C T G _ R E  
C 1  
E
A B L E N  
A
D A T  
E N A B L  
9
E
6 2 k  
R 3  
E G R P U _  
C _ L R E F  
R S S I  
4 n 7  
C 2  
1 8 p  
4 p 7  
3
K
1
C 1  
4
C 2  
J 2  
S V  
C K O L C R X -  
17  
4779N–ISM–12/08  
9. PCB Layout Design  
Figure 9-1. PCB Layout ATR2406-DEV-BOARD  
18  
ATR2406  
4779N–ISM–12/08  
ATR2406  
Table 9-1.  
Part  
Bill of Materials  
Part Number  
Value  
5.6 pF  
1.8 pF  
390 pF  
4.7 pF  
2.2 pF  
1.5 pF  
18 pF  
100 nF  
4.7 µF  
1 nF  
Vendor  
Package  
0402  
Comment  
C1  
C3, C10  
C4  
0402  
0402  
C5  
0402  
NC  
C6, C7  
C9  
0402  
0402  
C11  
0402  
C12, C15  
C13, C16  
C14  
0402  
B45196H2475M109  
Epcos®  
3216  
Optional(2)  
NC  
0402  
C17  
3.3 nF  
68 pF  
470 nF  
0402  
NC  
C18  
0402  
C19  
0402/0603  
COG, important for good  
RF performance  
C20  
C21  
22 nF, COG GRM21B5C1H223JA01  
Murata  
Murata  
0805  
0603  
2.2 nF,  
COG, important for good  
RF performance  
GRM1885C1H222JA01  
COG  
C23  
C24  
R3  
4.7 nF  
4.7 pF  
0402  
0402  
0402  
0402  
0402  
0402  
MLF32  
62 kΩ  
1.0 kΩ  
1.5 kΩ  
1.5 kΩ  
62k, 5%  
1k0, 5%  
1k5, 5%  
1k5, 5%  
R4  
R5  
Ref_Clk level, optional(1)  
Ref_Clk level, optional(1)  
R6  
IC2  
ATR2406 ATR2406  
Atmel  
BC808-40, any standard type can be used, but it is Vishay®,Philips®,  
T1  
BC808-40  
SOT-23  
Optional(2)  
important that be “–40”!  
etc.  
MSUB  
FR4  
FR4, e_r = 4.4 at 2.45 GHz, H = 500 µm, T = 35 µm, tand = 0.02, surface, that is, chem. tin or chem. gold  
Notes: 1. Not necessary if supplied RefClk level is within specification range  
2. If no AUX regulator is used, then T1 and C16 can be removed and a jumper is needed from the collector to the emitter pad.  
Additionally, pin 7 of the ATR2406 has to be connected to pin 4 or pin 5 to use the integrated F antenna, set jumper R2 (0R  
resistor 0603)  
Table 9-2.  
Parts Count Bill of Materials  
Parts Count  
Required (Minimal BOM)  
Optional (Depending on Application)  
Capacitors 0402  
14  
2
14  
4
Capacitors >0402  
Resistors 0402  
Inductors 0402  
Semiconductors  
2
2
1
2
19  
4779N–ISM–12/08  
10. Appendix: Current Calculations for a Remote Control  
Assumptions:  
A data packet consists of 24 bytes.  
Protocol  
24 bytes = 240 bits (USART connection)  
Tpacket_length = 210 µs at 1.152 Mbits/s  
The system will use five predefined channels for frequency hopping spread  
spectrum (FHSS) which gives improved immunity against interferers  
Channel  
Loop filter  
Loop filter settling time will be 110 µs  
If not in use, the handheld device will be in power-down mode with the AVR’s  
watchdog timer disabled. The AVR power-down current is typically 1.25 µA. If  
an external voltage regulator is used, additional power-down current has to be  
taken into account  
Handheld device  
The base station will periodically scan all the channels of the used subset. The  
base station will stay on one channel for 2 seconds. If the base station receives  
a correct packet, an acknowledge will be returned to the handheld device. The  
power consumption of the base station device is not power-sensitive, as this  
part of the application is normally mains powered  
Base station device  
Basic Numbers:  
Peak current ATR2406 in TX at 1.152 Kbits/s  
Peak current ATR2406 in RX at 1.152 Kbits/s  
Peak current ATR2406 with synthesizer running  
Current ATmega88 active  
42 mA  
57 mA  
26 mA  
5 mA  
Current ATmega88 power down (no WDT)  
Current ATmega88 power down (+ WDT)  
Loop settling time of ATR2406  
1.25 µA  
5 µA  
110 µs  
30 µs  
Configuration of ATR2406  
Time needed for exchanging a packet at 1.152 Kbits/s  
210 µs  
Amount of Current Needed to Transmit One Packet:  
Q1 = (0.005A + 0.026A) × 5030 µs = 155 µAs (charge up time ATR2406 + AVR internal calculations)  
Q2 = (0.005A + 0.026A) × 30 µs = 0.93 µAs (charge for configuring the ATR2406)  
Q3 = (0.005A + 0.026A) × 110 µs = 3.41 µAs (charge for settling the loop filter)  
Q4 = (0.005A + 0.042A) × 210 µs = 9.87 µAs (charge for transmitting the packet)  
Q5 = (0.005A) × 250 µs = 1.25 µAs (charge for turn around (TX to RX, RX to TX, etc.))  
Q6 = (0.005A + 0.026A) × 30 µs = 0.93 µAs (charge for configuring the ATR2406)  
Q7 = (0.005A + 0.026A) × 60 µs = 1.86 µAs (charge for settling the loop filter)  
Q8 = (0.005A + 0.057A) × 50 µs = 3.10 µAs (charge until valid data can be received)  
Q9 = (0.005A + 0.057A) × 210 µs = 13.02 µAs (charge for receiving the packet)  
Q10 = (0.005A + 0.057A) × 50 µs = 3.1 µAs (charge for latency before receiving)  
20  
ATR2406  
4779N–ISM–12/08  
ATR2406  
A successful packet exchange needs the following charge  
Q = Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 = 192.47 µAs  
As the described system is a FHSS system with 5 different channels, the system has to do this  
up to five times before the packet is acknowledged by the base station. The average will be 2.5  
times. In the case of an interfered environment, some more retries may be required; therefore, it  
is assumed the factor will be 3. The power-up time is included only once, as the cycle will be  
completed without powering up and down the handheld in order to be as power efficient as  
possible.  
Average current needed for a packet exchange:  
155 µAs + (37.5 µAs × 3) = 267.5 µAs  
If the device will be used 1000 times a day 3.1 µA  
Average current in active mode:  
System Power Down current:  
Current ATmega88:  
Current ATR2406:  
1.25 µA  
1.0 µA  
Current VREG (+ ShutDown):  
2.75 µA  
Assumed average power-down current is 5 µA.  
Overall power consumption is 8.1 µA  
It is assumed the system uses a small battery with a capacity of 100 mAh. This is 100.000 µAh.  
Battery lifetime will be around: 12345 hours = 514 days = 1.4 years.  
The most important factor is to get the power-down current as low as possible!  
Example:  
Assume a system where the handheld is used just 10 times per day.  
Iactive = 0.031 µA  
and assuming the power-down current of this device is just 4 µA.  
I = 0.031 µA + 4 µA = 4.03 µA  
Battery lifetime will be around 24807 hours = 1033 days = 2.83 years.  
Power-down current is the main factor influencing the battery lifetime.  
21  
4779N–ISM–12/08  
11. Ordering Information  
Extended Type Number  
Package  
QFN32 - 5x5  
Remarks  
MOQ  
4000  
1
ATR2406-PNQG  
Taped and reeled, Pb-free  
RF module  
ATR2406-DEV-BOARD  
Complete evaluation kit  
and reference design  
ATR2406 + ATmega88  
ATR2406-DEV-KIT2  
1
12. Package Information  
Package: QFN 32 - 5 x 5  
Exposed pad 3.7 x 3.7  
Dimensions in mm  
Not indicated tolerances ± 0.05  
5
0.9±0.1  
+0  
3.7  
0.05-0.05  
25  
32  
32  
1
24  
17  
1
8
technical drawings  
according to DIN  
specifications  
5
16  
9
0.5 nom.  
3.5  
Drawing-No.: 6.543-5096.01-4  
Issue: 1; 22.01.03  
22  
ATR2406  
4779N–ISM–12/08  
ATR2406  
13. Recommended Footprint/Landing Pattern  
Figure 13-1. Recommenced Footprint/Landing Pattern  
Table 13-1. Recommended Footprint/Landing Pattern Signs  
Sign  
A
Size  
3.2 mm  
1.2 mm  
0.3 mm  
1.1 mm  
0.3 mm  
0.2 mm  
0.55 mm  
0.5 mm  
B
C
a
b
c
d
e
23  
4779N–ISM–12/08  
14. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
Put datasheet in a new template  
4779N-ISM-12/08  
Section 12 “Package Information” on page 22 changed  
Put datasheet in a new template  
4779M-ISM-02/07  
Table 9-1 “Bill of Materials” on page 19 changed  
Table “Electrical Characteristics” on pages 6 to 8 changed  
Section 10 “Appendix: Current Calculations for a Remote Control” on  
pages 20 to 21 changed  
4779L-ISM-08/06  
Table “Ordering Information” on page 22 changed  
Minor corrections to grammar and style throughout document  
Put datasheet in a new template  
Table “Electrical Characteristics” on pages 6 to 8 changed  
4779K-ISM-06/06  
Section 10 “Appendix: Current Calculations for a Remote Control” on  
pages 20 to 21 added  
Ordering Information on page 22 changed  
24  
ATR2406  
4779N–ISM–12/08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
Atmel Japan  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
78054  
Saint-Quentin-en-Yvelines Cedex Tel: (81) 3-3523-3551  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
cordless_phone@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or  
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4779N–ISM–12/08  

相关型号:

ATR2434

WirelessUSB 2.4-GHz DSSS Radio SoC
ATMEL

ATR2434-PLQ

Telecom Circuit, 1-Func
MICROCHIP

ATR2434-PLQ

Telecom Circuit, 1-Func, 7 X 7 MM, MO-220, QFN-48
ATMEL

ATR2434-PLT

WirelessUSB 2.4-GHz DSSS Radio SoC
ATMEL

ATR2434-TIQ

Telecom Circuit, 1-Func, PDSO28, SO-28
ATMEL

ATR2512

THICK FILM CHIP RESISTORS
ABCO

ATR2730

L-band Down-converter for DAB Receivers
ATMEL

ATR2730-TLPY

L-band Down-converter for DAB Receivers
ATMEL

ATR2730-TLQY

L-band Down-converter for DAB Receivers
ATMEL

ATR2730-TLSY

L-band Down-converter for DAB Receivers
ATMEL

ATR2731

DAB One-chip Front End
ATMEL

ATR2731-ILQY

DAB One-chip Front End
ATMEL