ATF1508ASV-15QJ100 [ATMEL]

EE PLD, 15ns, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, MS-022GC-1, QFP-100;
ATF1508ASV-15QJ100
型号: ATF1508ASV-15QJ100
厂家: ATMEL    ATMEL
描述:

EE PLD, 15ns, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, MS-022GC-1, QFP-100

文件: 总28页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-density, High-performance, Electrically-erasable  
Complex Programmable Logic Device  
– 3.0V to 3.6V Operating Range  
– 128 Macrocells  
– 5 Product Terms per Macrocell, Expandable up to 40 per Macrocell  
– 84, 100, 160 Pins  
– 15 ns Maximum Pin-to-pin Delay  
– Registered Operation up to 77 MHz  
– Enhanced Routing Resources  
Flexible Logic Macrocell  
High-  
performance  
EE PLD  
– D/T/Latch Configurable Flip-flops  
– Global and Individual Register Control Signals  
– Global and Individual Output Enable  
– Programmable Output Slew Rate  
– Programmable Output Open Collector Option  
– Maximum Logic Utilization by Burying a Register within a COM Output  
Advanced Power Management Features  
– Automatic 5 µA Standby for “L” Version  
– Pin-controlled 100 µA Standby Mode  
– Programmable Pin-keeper Inputs and I/Os  
– Reduced-power Feature per Macrocell  
Available in Commercial and Industrial Temperature Ranges  
Available in 84-lead PLCC and 100-lead PQFP and TQFP and  
160-lead PQFP Packages  
ATF1508ASV  
ATF1508ASVL  
Advanced EE Technology  
– 100% Tested  
– Completely Reprogrammable  
– 10,000 Program/Erase Cycles  
– 20 Year Data Retention  
– 2000V ESD Protection  
– 200 mA Latch-up Immunity  
JTAG Boundary-scan Testing to IEEE Std. 1149.1-1990 and 1149.1a-1993 Supported  
Fast In-System Programmability (ISP) via JTAG  
PCI-compliant  
Security Fuse Feature  
Green (Pb/Halide-free/RoHS Compliant) Package Options  
Enhanced Features  
Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)  
Output Enable Product Terms  
Transparent-latch Mode  
Combinatorial Output with Registered Feedback within Any Macrocell  
Three Global Clock Pins  
ITD (Input Transition Detection) Circuits on Global Clocks, Inputs and I/O  
Fast Registered Input from Product Term  
Programmable “Pin-keeper” Option  
VCC Power-up Reset Option  
Pull-up Option on JTAG Pins TMS and TDI  
Advanced Power Management Features  
– Edge-controlled Power-down “L”  
– Individual Macrocell Power Option  
– Disable ITD on Global Clocks, Inputs and I/O for “Z” Parts  
Rev. 1408H–PLD–7/05  
84-lead PLCC  
Top View  
100-lead PQFP  
Top View  
I/O/PD1 12  
VCCIO 13  
I/O/TDI 14  
I/O 15  
74 I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
9
80 I/O  
79 I/O  
78 I/O  
77 I/O  
76 GND  
75 I/O/TDO  
74 I/O  
73 I/O  
72 I/O  
71 I/O  
70 I/O  
69 I/O  
68 VCCIO  
67 I/O  
66 I/O  
65 I/O  
64 I/O/TCK  
63 I/O  
62 I/O  
61 GND  
60 I/O  
59 I/O  
58 I/O  
57 I/O  
56 I/O  
55 I/O  
54 I/O  
53 VCCIO  
52 I/O  
51 I/O  
73 I/O  
72 GND  
71 I/O/TDO  
70 I/O  
I/O/PD1  
I/O  
I/O 16  
VCCIO  
I/O/TDI  
I/O  
I/O 17  
69 I/O  
I/O 18  
68 I/O  
GND 19  
I/O 20  
67 I/O  
I/O  
66 VCCIO  
65 I/O  
I/O  
I/O 21  
I/O 10  
I/O 11  
I/O 22  
64 I/O  
I/O 12  
I/O/TMS 23  
I/O 24  
63 I/O  
GND 13  
I/O 14  
62 I/O/TCK  
61 I/O  
I/O 25  
I/O 15  
VCCIO 26  
I/O 27  
60 I/O  
I/O 16  
59 GND  
58 I/O  
I/O/TMS 17  
I/O 18  
I/O 28  
I/O 29  
57 I/O  
I/O 19  
I/O 30  
56 I/O  
VCCIO 20  
I/O 21  
I/O 31  
55 I/O  
GND 32  
54 I/O  
I/O 22  
I/O 23  
I/O 24  
I/O 25  
I/O 26  
I/O 27  
GND 28  
I/O 29  
I/O 30  
100-lead TQFP  
Top View  
160-lead PQFP  
Top View  
N/C  
N/C  
1
2
3
4
5
6
7
8
9
120 N/C  
119 N/C  
118 N/C  
117 N/C  
116 N/C  
115 N/C  
114 N/C  
113 GND  
112 I/O/TDO  
111 I/O  
110 I/O  
109 I/O  
108 I/O  
107 I/O  
106 I/O  
105 I/O  
104 VCCIO  
103 I/O  
102 I/O  
101 I/O  
100 I/O  
99 I/O/TCK  
98 I/O  
N/C  
I/O/PD1  
1
2
3
4
5
6
7
8
9
75 I/O  
N/C  
I/O  
VCCIO  
I/O/TDI  
I/O  
74 GND  
73 I/O/TDO  
72 I/O  
N/C  
N/C  
N/C  
VCCIO  
I/O/TDI  
71 I/O  
I/O  
70 I/O  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
I/O 16  
GND 17  
I/O 18  
I/O 19  
I/O 20  
I/O 21  
I/O/TMS 22  
I/O 23  
I/O 24  
I/O 25  
VCCIO 26  
I/O 27  
I/O 28  
I/O 29  
I/O 30  
I/O 31  
I/O 32  
I/O 33  
N/C 34  
N/C 35  
N/C 36  
N/C 37  
N/C 38  
N/C 39  
N/C 40  
I/O  
69 I/O  
I/O  
68 I/O  
I/O  
67 I/O  
I/O 10  
GND 11  
I/O 12  
66 VCCIO  
65 I/O  
64 I/O  
I/O 13  
63 I/O  
I/O 14  
62 I/O/TCK  
61 I/O  
I/O/TMS 15  
I/O 16  
60 I/O  
I/O 17  
59 GND  
58 I/O  
97 I/O  
96 I/O  
VCCIO 18  
I/O 19  
95 GND  
94 I/O  
57 I/O  
I/O 20  
56 I/O  
93 I/O  
I/O 21  
55 I/O  
92 I/O  
91 I/O  
I/O 22  
54 I/O  
90 I/O  
I/O 23  
53 I/O  
89 I/O  
I/O 24  
52 I/O  
88 I/O  
I/O 25  
51 VCCIO  
87 N/C  
86 N/C  
85 N/C  
84 N/C  
83 N/C  
82 N/C  
81 N/C  
2
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Block Diagram  
6 to 12  
3
1408H–PLD–7/05  
Description  
The ATF1508ASV(L) is a high-performance, high-density complex programmable logic  
device (CPLD) that utilizes Atmel’s proven electrically-erasable technology. With 128  
logic macrocells and up to 100 inputs, it easily integrates logic from several TTL, SSI,  
MSI, LSI and classic PLDs. The ATF1508ASV(L)’s enhanced routing switch matrices  
increase usable gate count and increase odds of successful pin-locked design  
modifications.  
The ATF1508ASV(L) has up to 96 bi-directional I/O pins and four dedicated input pins,  
depending on the type of device package selected. Each dedicated pin can also serve  
as a global control signal, register clock, register reset or output enable. Each of these  
control signals can be selected for use individually within each macrocell.  
Each of the 128 macrocells generates a buried feedback that goes to the global bus.  
Each input and I/O pin also feeds into the global bus. The switch matrix in each logic  
block then selects 40 individual signals from the global bus. Each macrocell also gener-  
ates a foldback logic term that goes to a regional bus. Cascade logic between  
macrocells in the ATF1508ASV(L) allows fast, efficient generation of complex logic func-  
tions. The ATF1508ASV(L) contains eight such logic chains, each capable of creating  
sum term logic with a fan-in of up to 40 product terms.  
The ATF1508ASV(L) macrocell, shown in Figure 1, is flexible enough to support highly-  
complex logic functions operating at high-speed. The macrocell consists of five sections:  
product terms and product term select multiplexer, OR/XOR/CASCADE logic, a flip-flop,  
output select and enable, and logic array inputs.  
Unused macrocells are automatically disabled by the compiler to decrease power con-  
sumption. A security fuse, when programmed, protects the contents of the  
ATF1508ASV(L). Two bytes (16 bits) of User Signature are accessible to the user for  
purposes such as storing project name, part number, revision or date. The User Signa-  
ture is accessible regardless of the state of the security fuse.  
The ATF1508ASV(L) device is an in-system programmable (ISP) device. It uses the  
industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and is fully-compliant with  
JTAG’s Boundary-scan Description Language (BSDL). ISP allows the device to be pro-  
grammed without removing it from the printed circuit board. In addition to simplifying the  
manufacturing flow, ISP also allows design modifications to be made in the field via  
software.  
Product Terms and Select  
Mux  
Each ATF1508ASV(L) macrocell has five product terms. Each product term receives as  
its inputs all signals from both the global bus and regional bus.  
The product term select multiplexer (PTMUX) allocates the five product terms as  
needed to the macrocell logic gates and control signals. The PTMUX programming is  
determined by the design compiler, which selects the optimum macrocell configuration.  
OR/XOR/CASCADE Logic  
The ATF1508ASV(L)’s logic structure is designed to efficiently support all types of logic.  
Within a single macrocell, all the product terms can be routed to the OR gate, creating a  
5-input AND/OR sum term. With the addition of the CASIN from neighboring macrocells,  
this can be expanded to as many as 40 product terms with little additional delay.  
The macrocell’s XOR gate allows efficient implementation of compare and arithmetic  
functions. One input to the XOR comes from the OR sum term. The other XOR input can  
be a product term or a fixed high- or low-level. For combinatorial outputs, the fixed level  
input allows polarity selection. For registered functions, the fixed levels allow DeMorgan  
minimization of product terms. The XOR gate is also used to emulate T- and JK-type  
flip-flops.  
4
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Flip-flop  
The ATF1508ASV(L)’s flip-flop has very flexible data and control functions. The data  
input can come from either the XOR gate, from a separate product term or directly from  
the I/O pin. Selecting the separate product term allows creation of a buried registered  
feedback within a combinatorial output macrocell. (This feature is automatically imple-  
mented by the fitter software). In addition to D, T, JK and SR operation, the flip-flop can  
also be configured as a flow-through latch. In this mode, data passes through when the  
clock is high and is latched when the clock is low.  
The clock itself can either be the Global CLK Signal (GCK) or an individual product term.  
The flip-flop changes state on the clock's rising edge. When the GCK signal is used as  
the clock, one of the macrocell product terms can be selected as a clock enable. When  
the clock enable function is active and the enable signal (product term) is low, all clock  
edges are ignored. The flip-flop’s asynchronous reset signal (AR) can be either the Glo-  
bal Clear (GCLEAR), a product term, or always off. AR can also be a logic OR of  
GCLEAR with a product term. The asynchronous preset (AP) can be a product term or  
always off.  
Figure 1. ATF1508ASV(L) Macrocell  
5
1408H–PLD–7/05  
Extra Feedback  
I/O Control  
The ATF15xxSE Family macrocell output can be selected as registered or combinato-  
rial. The extra buried feedback signal can be either combinatorial or a registered signal  
regardless of whether the output is combinatorial or registered. (This enhancement  
function is automatically implemented by the fitter software.) Feedback of a buried com-  
binatorial output allows the creation of a second latch within a macrocell.  
The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be  
individually configured as an input, output or for bi-directional operation. The output  
enable for each macrocell can be selected from the true or compliment of the two output  
enable pins, a subset of the I/O pins, or a subset of the I/O macrocells. This selection is  
automatically done by the fitter software when the I/O is configured as an input, all mac-  
rocell resources are still available, including the buried feedback, expander and cascade  
logic.  
Global Bus/Switch Matrix  
Foldback Bus  
The global bus contains all input and I/O pin signals as well as the buried feedback sig-  
nal from all 128 macrocells. The switch matrix in each logic block receives as its inputs  
all signals from the global bus. Under software control, up to 40 of these signals can be  
selected as inputs to the logic block.  
Each macrocell also generates a foldback product term. This signal goes to the regional  
bus and is available to 16 macrocells. The foldback is an inverse polarity of one of the  
macrocell’s product terms. The 16 foldback terms in each region allow generation of  
high fan-in sum terms (up to 21 product terms) with little additional delay.  
Open-collector Output Option This option enables the device output to provide control signals such as an interrupt that  
can be asserted by any of the several devices.  
6
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Programmable Pin-  
keeper Option for  
Inputs and I/Os  
The ATF1508ASV(L) offers the option of programming all input and I/O pins so that “pin-  
keeper” circuits can be utilized. When any pin is driven high or low and then subse-  
quently left floating, it will stay at that previous high- or low-level. This circuitry prevents  
unused input and I/O lines from floating to intermediate voltage levels, which causes  
unnecessary power consumption and system noise. The keeper circuits eliminate the  
need for external pull-up resistors and eliminate their DC power consumption.  
Input Diagram  
Speed/Power  
Management  
The ATF1508ASV(L) has several built-in speed and power management features. The  
ATF1508ASV(L) contains circuitry that automatically puts the device into a low-power  
standby mode when no logic transitions are occurring. This not only reduces power con-  
sumption during inactive periods, but also provides proportional power-savings for most  
applications running at system speeds below 5 MHz.  
To further reduce power, each ATF1508ASV(L) macrocell has a reduced-power bit fea-  
ture. This feature allows individual macrocells to be configured for maximum power-  
savings. This feature may be selected as a design option.  
I/O Diagram  
7
1408H–PLD–7/05  
All ATF1508 also have an optional power-down mode. In this mode, current drops to  
below 10 mA. When the power-down option is selected, either PD1 or PD2 pins (or  
both) can be used to power down the part. The power-down option is selected in the  
design source file. When enabled, the device goes into power-down when either PD1 or  
PD2 is high. In the power-down mode, all internal logic signals are latched and held, as  
are any enabled outputs.  
All pin transitions are ignored until the PD pin is brought low. When the power-down fea-  
ture is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However,  
the pin’s macrocell may still be used to generate buried foldback and cascade logic  
signals.  
All power-down AC characteristic parameters are computed from external input or I/O  
pins, with reduced-power bit turned on. For macrocells in reduced-power mode  
(reduced-power bit turned on), the reduced-power adder, tRPA, must be added to the AC  
parameters, which include the data paths tLAD, tLAC, tIC, tACL, tACH and tSEXP  
.
Each output also has individual slew rate control. This may be used to reduce system  
noise by slowing down outputs that do not need to operate at maximum speed. Outputs  
default to slow switching, and may be specified as fast switching in the design file.  
Design Software  
Support  
ATF1508ASV(L) designs are supported by several third-party tools. Automated fitters  
allow logic synthesis using a variety of high-level description languages and formats.  
Power-up Reset  
The ATF1508ASV is designed with a power-up reset, a feature critical for state machine  
initialization. At a point delayed slightly from VCC crossing VRST, all registers will be ini-  
tialized, and the state of each output will depend on the polarity of its buffer. However,  
due to the asynchronous nature of reset and uncertainty of how VCC actually rises in the  
system, the following conditions are required:  
1. The VCC rise must be monotonic,  
2. After reset occurs, all input and feedback setup times must be met before driving  
the clock pin high, and,  
3. The clock must remain stable during TD.  
The ATF1508ASV has two options for the hysteresis about the reset level, VRST, Small  
and Large. To ensure a robust operating environment in applications where the device  
is operated near 3.0V, Atmel recommends that during the fitting process users configure  
the device with the Power-up Reset hysteresis set to Large. For conversions, Atmel  
POF2JED users should include the flag “-power_reset” on the command line after “file-  
name.POF”. To allow the registers to be properly reinitialized with the Large hysteresis  
option selected, the following condition is added:  
4. If VCC falls below 2.0V, it must shut off completely before the device is turned on  
again.  
When the Large hysteresis option is active, ICC is reduced by several hundred micro-  
amps as well.  
Security Fuse Usage A single fuse is provided to prevent unauthorized copying of the ATF1508ASV(L) fuse  
patterns. Once programmed, fuse verify is inhibited. However, User Signature and  
device ID remains accessible.  
8
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Programming  
ATF1508ASV(L) devices are in-system programmable (ISP) devices utilizing the 4-pin  
JTAG protocol. This capability eliminates package handling normally required for pro-  
gramming and facilitates rapid design iterations and field changes.  
Atmel provides ISP hardware and software to allow programming of the  
ATF1508ASV(L) via the PC. ISP is performed by using either a download cable, a com-  
parable board tester or a simple microprocessor interface.  
To allow ISP programming support by the Automated Test Equipment (ATE) vendors,  
Serial Vector Format (SVF) files can be created by the Atmel ISP software. Conversion  
to other ATE tester format beside SVF is also possible  
ATF1508ASV(L) devices can also be programmed using standard third-party program-  
mers. With third-party programmer, the JTAG ISP port can be disabled thereby allowing  
four additional I/O pins to be used for logic.  
Contact your local Atmel representatives or Atmel PLD applications for details.  
ISP Programming  
Protection  
The ATF1508ASV(L) has a special feature that locks the device and prevents the inputs  
and I/O from driving if the programming process is interrupted for any reason. The  
inputs and I/O default to high-Z state during such a condition. In addition the pin-keeper  
option preserves the former state during device programming.  
All ATF1508ASV(L) devices are initially shipped in the erased state thereby making  
them ready to use for ISP.  
Note:  
For more information refer to the “Designing for In-System Programmability with Atmel  
CPLDs” application note.  
9
1408H–PLD–7/05  
DC and AC Operating Conditions  
Commercial  
0°C - 70°C  
3.0V - 3.6V  
Industrial  
-40°C - 85°C  
3.0V - 3.6V  
Operating Temperature (Ambient)  
V
CC (3.3V) Power Supply  
DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Input or I/O Low  
Leakage Current  
IIL  
V
IN = VCC  
-2  
-10  
µA  
µA  
µA  
Input or I/O High  
Leakage Current  
IIH  
2
10  
40  
Tri-State Output  
Off-State Current  
IOZ  
VO = VCC or GND  
-40  
Com.  
Ind.  
115  
135  
5
mA  
mA  
µA  
Std Mode  
Power Supply  
Current, Standby  
VCC = Max  
IN = 0, VCC  
ICC1  
V
Com.  
Ind.  
LMode  
5
µA  
Power Supply Current,  
Power-down Mode  
VCC = Max  
IN = 0, VCC  
ICC2  
“PD” Mode  
Std Mode  
0.1  
5
mA  
V
Com.  
Ind.  
60  
80  
mA  
mA  
V
Reduced-power Mode  
Supply Current, Standby  
VCC = Max  
(2)  
ICC3  
V
IN = 0, VCC  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.3  
1.7  
0.8  
VCCIO + 0.3  
0.45  
V
Com.  
Ind.  
V
V
IN = VIH or VIL  
Output Low Voltage (TTL)  
VCC = Min, IOL = 8 mA  
0.45  
V
VOL  
Com.  
Ind.  
0.2  
V
V
IN = VIH or VIL  
Output Low Voltage (CMOS)  
VCC = Min, IOL = 0.1 mA  
0.2  
V
Output High Voltage  
– 3.3V (TTL)  
VIN = VIH or VIL  
VCC = Min, IOH = -2.0 mA  
2.4  
V
V
VOH  
Output High Voltage  
– 3.3V (CMOS)  
V
IN = VIH or VIL  
V
CCIO - 0.2  
VCCIO = Min, IOH = -0.1 mA  
Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.  
2. ICC3 refers to the current in the reduced-power mode when macrocell reduced-power is turned ON.  
Pin Capacitance  
Typ  
Max  
8
Units  
pF  
Conditions  
CIN  
VIN = 0V; f = 1.0 MHz  
VOUT = 0V; f = 1.0 MHz  
CI/O  
8
pF  
Note:  
Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage pin  
during programming) has a maximum capacitance of 12 pF.  
10  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Temperature Under Bias.................................. -40°C to +85°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on Any Pin with  
Respect to Ground .........................................-2.0V to +7.0V(1)  
Voltage on Input Pins  
with Respect to Ground  
During Programming.....................................-2.0V to +14.0V(1)  
Note:  
1. Minimum voltage is -0.6V DC, which may under-  
shoot to -2.0V for pulses of less than 20 ns. Max-  
imum output pin voltage is VCC + 0.75V DC,  
which may overshoot to 7.0V for pulses of less  
than 20 ns.  
Programming Voltage with  
Respect to Ground .......................................-2.0V to +14.0V(1)  
Timing Model  
Internal Output  
Enable Delay  
t
IOE  
Global Control  
Delay  
Input  
Delay  
t
GLOB  
Register  
Delay  
Cascade Logic  
Delay  
t
IN  
Output  
Delay  
t
Logic Array  
Delay  
SU  
t
PEXP  
t
H
Switch  
Matrix  
t
t
t
OD1  
OD2  
OD3  
t
t
t
t
PRE  
LAD  
CLR  
t
UIM  
RD  
Register Control  
Delay  
t
XZ  
t
COMB  
t
t
t
t
ZX1  
ZX2  
ZX3  
FSU  
t
LAC  
t
FH  
t
IC  
Fast Input  
Delay  
t
EN  
t
FIN  
Foldback Term  
Delay  
t
SEXP  
I/O Delay  
t
IO  
11  
1408H–PLD–7/05  
AC Characteristics(1)  
-15  
-20  
Symbol  
tPD1  
tPD2  
tSU  
Parameter  
Min  
3
Max  
15  
Min  
Max  
20  
Units  
ns  
Input or Feedback to Non-registered Output  
I/O Input or Feedback to Non-registered Feedback  
Global Clock Setup Time  
3
12  
16  
ns  
11  
0
13.5  
0
ns  
tH  
Global Clock Hold Time  
ns  
tFSU  
tFH  
tCOP  
tCH  
Global Clock Setup Time of Fast Input  
Global Clock Hold Time of Fast Input  
Global Clock to Output Delay  
Global Clock High Time  
3
3
ns  
1.0  
2.0  
MHz  
ns  
9
12  
5
5
5
4
6
6
7
4
ns  
tCL  
Global Clock Low Time  
ns  
tASU  
tAH  
Array Clock Setup Time  
ns  
Array Clock Hold Time  
ns  
tACOP  
tACH  
tACL  
tCNT  
fCNT  
tACNT  
fACNT  
fMAX  
tIN  
Array Clock Output Delay  
Array Clock High Time  
15  
18.5  
ns  
6
6
8
8
ns  
Array Clock Low Time  
ns  
Minimum Clock Global Period  
Maximum Internal Global Clock Frequency  
Minimum Array Clock Period  
Maximum Internal Array Clock Frequency  
Maximum Clock Frequency  
Input Pad and Buffer Delay  
I/O Input Pad and Buffer Delay  
Fast Input Delay  
13  
13  
17  
17  
ns  
76.9  
66  
MHz  
ns  
76.9  
100  
58.8  
83.3  
MHz  
MHz  
ns  
2
2
2.5  
2.5  
2
tIO  
ns  
tFIN  
2
ns  
tSEXP  
tPEXP  
tLAD  
tLAC  
tIOE  
Foldback Term Delay  
8
10  
1
ns  
Cascade Logic Delay  
1
ns  
Logic Array Delay  
6
8
ns  
Logic Control Delay  
3.5  
3
4.5  
3
ns  
Internal Output Enable Delay  
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF; VCCIO = 5V; CL = 35 pF)  
tOD1  
tOD2  
tOD3  
tZX1  
3
3
5
7
4
4
6
9
ns  
ns  
ns  
Output Buffer and Pad Delay  
(Slow slew rate = OFF; VCCIO = 3.3V; CL = 35 pF)  
Output Buffer and Pad Delay  
(Slow slew rate = ON; VCCIO = 5V or 3.3V; CL = 35 pF)  
Output Buffer Enable Delay  
(Slow slew rate = OFF; VCCIO = 5.0V; CL = 35 pF)  
12  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
AC Characteristics(1) (Continued)  
-15  
-20  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
Output Buffer Enable Delay  
(Slow slew rate = OFF; VCCIO = 3.3V; CL = 35 pF)  
tZX2  
7
9
ns  
Output Buffer Enable Delay  
(Slow slew rate = ON; VCCIO = 5.0V/3.3V; CL = 35 pF)  
tZX3  
tXZ  
10  
6
11  
7
ns  
ns  
Output Buffer Disable Delay  
(CL = 5 pF)  
tSU  
Register Setup Time  
Register Hold Time  
5
4
2
2
6
5
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tH  
tFSU  
tFH  
Register Setup Time of Fast Input  
Register Hold Time of Fast Input  
Register Delay  
tRD  
2
2
2.5  
3
tCOMB  
tIC  
Combinatorial Delay  
Array Clock Delay  
6
7
tEN  
Register Enable Time  
Global Control Delay  
Register Preset Time  
Register Clear Time  
6
7
tGLOB  
tPRE  
tCLR  
tUIM  
tRPA  
2
3
4
5
4
5
Switch Matrix Delay  
2
2.5  
13  
Reduced-Power Adder(2)  
10  
Notes: 1. See ordering information for valid part numbers.  
2. The tRPA parameter must be added to the tLAD, tLAC,tTIC, tACL, and tSEXP parameters for macrocells running in the reduced-  
power mode.  
Input Test Waveforms and Measurement Levels  
tR, tF = 1.5 ns typical  
13  
1408H–PLD–7/05  
Output AC Test Loads  
3.0V  
703  
8060  
Power-down Mode  
The ATF1508ASV(L) includes two pins for optional pin-controlled power-down feature.  
When this mode is enabled, the PD pin acts as the power-down pin. When the PD1 and  
PD2 pin is high, the device supply current is reduced to less than 5 mA. During power-  
down, all output data and internal logic states are latched and held. Therefore, all regis-  
tered and combinatorial output data remain valid. Any outputs that were in a high-Z state  
at the onset will remain at high-Z. During power-down, all input signals except the  
power-down pin are blocked. Input and I/O hold latches remain active to ensure that  
pins do not float to indeterminate levels, further reducing system power. The power-  
down pin feature is enabled in the logic design file. Designs using either power-down pin  
may not use the PD pin logic array input. However, buried logic resources in this macro-  
cell may still be used.  
Power Down AC Characteristics(1)(2)  
-15  
-20  
Symbol Parameter  
Min  
15  
Max  
Min  
20  
Max  
Units  
ns  
tIVDH  
tGVDH  
tCVDH  
tDHIX  
tDHGX  
tDHCX  
tDLIV  
Valid I, I/O before PD High  
Valid OE(2) before PD High  
Valid Clock(2) before PD High  
I, I/O Don’t Care after PD High  
OE(2) Don’t Care after PD High  
Clock(2) Don’t Care after PD High  
PD Low to Valid I, I/O  
15  
20  
ns  
15  
20  
ns  
25  
25  
25  
1
30  
30  
30  
1
ns  
ns  
ns  
µs  
tDLGV  
tDLCV  
tDLOV  
PD Low to Valid OE (Pin or Term)  
PD Low to Valid Clock (Pin or Term)  
PD Low to Valid Output  
1
1
µs  
1
1
µs  
1
1
µs  
Notes: 1. For slow slew outputs, add tSSO  
.
2. Pin or product term.  
14  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
JTAG-BST Overview  
The JTAG-BST (JTAG boundary-scan testing) is controlled by the Test Access Port  
(TAP) controller in the ATF1508ASV(L). The boundary-scan technique involves the  
inclusion of a shift-register stage (contained in a boundary-scan cell) adjacent to each  
component so that signals at component boundaries can be controlled and observed  
using scan testing principles. Each input pin and I/O pin has its own Boundary-scan Cell  
(BSC) in order to support boundary-scan testing. The ATF1508ASV(L) does not cur-  
rently include a Test Reset (TRST) input pin because the TAP controller is automatically  
reset at power-up. The six JTAG-BST modes supported include: SAMPLE/PRELOAD,  
EXTEST, BYPASS and IDCODE. BST on the ATF1508ASV(L) is implemented using  
the Boundary-scan Definition Language (BSDL) described in the JTAG specification  
(IEEE Standard 1149.1). Any third-party tool that supports the BSDL format can be used  
to perform BST on the ATF1508ASV(L).  
The ATF1508ASV(L) also has the option of using four JTAG-standard I/O pins for in-  
system programming (ISP). The ATF1508ASV(L) is programmable through the four  
JTAG pins using programming-compatible with the IEEE JTAG Standard 1149.1. Pro-  
gramming is performed by using 5V TTL-level programming signals from the JTAG ISP  
interface. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not  
needed, then the four JTAG control pins are available as I/O pins.  
JTAG Boundary-scan The ATF1508ASV(L) contains up to 96 I/O pins and four input pins, depending on the  
device type and package type selected. Each input pin and I/O pin has its own bound-  
Cell (BSC) Testing  
ary-scan cell (BSC) in order to support boundary-scan testing as described in detail by  
IEEE Standard 1149.1. A typical BSC consists of three capture registers or scan regis-  
ters and up to two update registers. There are two types of BSCs, one for input or I/O  
pin, and one for the macrocells. The BSCs in the device are chained together through  
the (BST) capture registers. Input to the capture register chain is fed in from the TDI pin  
while the output is directed to the TDO pin. Capture registers are used to capture active  
device data signals, to shift data in and out of the device and to load data into the update  
registers. Control signals are generated internally by the JTAG TAP controller. The BSC  
configuration for the input and I/O pins and macrocells are shown below.  
BSC Configuration Pins and Macrocells (Except JTAG TAP Pins)  
Note:  
The ATF1508ASV(L) has pull-up option on TMS and TDI pins. This feature is selected as a design option.  
15  
1408H–PLD–7/05  
Boundary-scan  
Definition Language  
(BSDL) Models for  
the ATF1508  
These are now available in all package types via the Atmel web site. These models can  
be used for Boundary-scan Test Operation in the ATF1508ASV(L) and have been  
scheduled to conform to the IEEE 1149.1 standard.  
BSC Configuration for Macrocell  
Pin BSC  
TDO  
0
DQ  
Pin  
1
Capture  
DR  
Clock  
TDI  
Shift  
TDO  
OEJ  
0
1
0
1
D Q  
D Q  
OUTJ  
0
1
Pin  
0
1
D Q  
D Q  
Capture  
DR  
Update  
DR  
Mode  
TDI  
Clock  
Shift  
Macrocell BSC  
16  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
ATF1508ASV(L) Dedicated Pinouts  
Dedicated Pin  
INPUT/OE2/GCLK2  
INPUT/GCLR  
INPUT/OE1  
84-lead J-lead  
100-lead PQFP  
100-lead TQFP  
160-lead PQFP  
2
1
92  
91  
90  
89  
87  
3,43  
6
90  
89  
88  
87  
85  
1,41  
4
142  
141  
140  
139  
137  
63,159  
9
84  
INPUT/GCLK1  
I/O/GCLK3  
83  
81  
I/O/PD (1, 2)  
12,45  
14  
I/O/TDI(JTAG)  
I/O/TMS(JTAG)  
I/O/TCK(JTAG)  
I/O/TDO(JTAG)  
23  
17  
64  
75  
15  
62  
73  
22  
62  
99  
71  
112  
7,19,32,42,  
47,59,72,82  
13,28,40,45,  
61,76,88,97  
11,26,38,43,  
59,74,86,95  
17,42,60,66,95,  
113,138,148  
GND  
VCC  
3,13,26,38,  
43,53,66,78  
5,20,36,41,  
53,68,84,93  
3,18,34,39,  
51,66,82,91  
8,26,55,61,79,104,133,143  
1,2,3,4,5,6,7,34,35,36,  
37,38,39,40,44,45,46,  
47,74,75,76,77,81,82,  
83,84,85,86,87,114,  
115,116,117,118,119,  
120,124,125,126,127,  
154,155,156,157  
N/C  
-
-
-
# of SIGNAL PINS  
68  
84  
80  
84  
80  
100  
96  
# USER I/O PINS  
OE (1, 2)  
64  
Global OE pins  
Global Clear pin  
Global Clock pins  
Power-down pins  
GCLR  
GCLK (1, 2, 3)  
PD (1, 2)  
TDI, TMS, TCK, TDO  
GND  
JTAG pins used for boundary-scan testing or in-system programming  
Ground pins  
VCC  
VCC pins for the device  
17  
1408H–PLD–7/05  
ATF1508ASV(L) I/O Pinouts  
84-lead  
J-lead  
100-lead  
PQFP  
100-lead  
TQFP  
160-lead  
PQFP  
84-lead  
J-lead  
100-lead  
PQFP  
100-lead  
TQFP  
160-lead  
PQFP  
MC  
1
PLB  
A
MC  
33  
PLB  
C
-
-
4
-
2
-
160  
-
-
-
27  
-
25  
-
41  
-
2
A
34  
C
A/  
PD1  
3
12  
3
1
159  
35  
C
31  
26  
24  
33  
4
5
A
A
A
A
A
A
A
A
A
A
A
A
-
11  
10  
-
-
2
-
100  
99  
-
158  
153  
152  
-
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
C
C
C
C
C
C
C
C
C
C
C
C
-
30  
29  
-
-
-
32  
31  
30  
-
25  
24  
-
23  
22  
-
6
1
7
-
8
9
-
100  
99  
-
98  
97  
-
151  
150  
-
28  
-
23  
22  
-
21  
20  
-
29  
28  
-
9
10  
11  
12  
13  
14  
15  
-
-
8
-
98  
-
96  
-
149  
147  
146  
145  
-
27  
-
21  
-
19  
-
27  
25  
24  
23  
-
6
5
-
96  
95  
-
94  
93  
-
25  
24  
-
19  
18  
-
17  
16  
-
C/  
TMS  
16  
A
4
94  
92  
144  
48  
23  
17  
15  
22  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
22  
-
16  
-
14  
-
21  
-
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
41  
-
39  
-
37  
-
59  
-
21  
-
15  
-
13  
-
20  
19  
18  
16  
-
40  
-
38  
-
36  
-
58  
57  
56  
54  
-
20  
-
14  
12  
-
12  
10  
-
39  
-
37  
35  
-
35  
33  
-
-
-
18  
17  
-
11  
10  
-
9
15  
14  
-
37  
36  
-
34  
33  
-
32  
31  
-
53  
52  
-
8
-
16  
-
9
7
13  
12  
11  
10  
-
35  
-
32  
-
30  
-
51  
50  
49  
48  
-
-
-
15  
-
8
6
34  
-
31  
30  
-
29  
28  
-
7
5
-
-
-
-
B/  
TDI  
32  
14  
6
4
9
64  
D
33  
29  
27  
43  
65  
66  
E
E
44  
-
42  
-
40  
-
62  
-
97  
98  
G
G
63  
-
65  
-
63  
-
100  
-
18  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
ATF1508ASV(L) I/O Pinouts (Continued)  
84-lead  
J-lead  
100-lead  
PQFP  
100-lead  
TQFP  
160-lead  
PQFP  
84-lead  
J-lead  
100-lead  
PQFP  
100-lead  
TQFP  
160-lead  
PQFP  
MC  
PLB  
MC  
PLB  
E/  
PD2  
67  
45  
43  
41  
63  
99  
G
64  
66  
64  
101  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
E
E
E
E
E
E
E
E
E
E
E
E
-
46  
-
-
-
64  
65  
67  
-
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
G
G
G
G
G
G
G
G
G
G
G
G
-
65  
-
-
-
102  
103  
105  
-
44  
46  
-
42  
44  
-
67  
69  
-
65  
67  
-
-
-
48  
49  
-
47  
48  
-
45  
46  
-
68  
69  
-
67  
68  
-
70  
71  
-
68  
69  
-
106  
107  
-
50  
-
49  
-
47  
-
70  
71  
72  
73  
-
69  
-
72  
-
70  
-
108  
109  
110  
111  
-
51  
-
50  
51  
-
48  
49  
-
70  
-
73  
74  
-
71  
72  
-
-
-
G/  
TDO  
80  
E
52  
52  
50  
78  
112  
71  
75  
73  
112  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
-
-
54  
-
52  
-
80  
-
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
-
-
77  
-
75  
-
121  
-
54  
-
55  
-
53  
-
88  
89  
90  
91  
-
73  
-
78  
-
76  
-
122  
123  
128  
129  
-
55  
56  
-
56  
57  
-
54  
55  
-
74  
75  
-
79  
80  
-
77  
78  
-
57  
-
58  
59  
-
56  
57  
-
92  
93  
-
76  
-
81  
82  
-
79  
80  
-
130  
131  
-
-
-
58  
-
60  
-
58  
-
94  
96  
97  
98  
-
77  
-
83  
-
81  
-
132  
134  
135  
136  
-
60  
61  
-
62  
63  
-
60  
61  
-
79  
80  
-
85  
86  
-
83  
84  
-
F/  
TCK  
H/  
GCLK3  
96  
62  
64  
62  
99  
128  
81  
87  
85  
137  
19  
1408H–PLD–7/05  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
PIN-CONTROLLED POWER-DOWN MODE  
(TA = 25°C, F = 0)  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
(TA = 25°C, F = 0)  
200  
100  
0
800  
700  
600  
500  
400  
STANDARD POWER  
STANDARD & REDUCED POWER MODE  
REDUCED POWER  
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT VS. FREQUENCY  
STANDARD POWER (TA = 25°C)  
SUPPLY CURRENT VS. FREQUENCY  
LOW-POWER ("L") VERSION  
(TA = 25°C)  
250.0  
200.0  
150.0  
100.0  
50.0  
125.0  
100.0  
75.0  
50.0  
25.0  
0.0  
STANDARD POWER  
STANDARD POWER  
REDUCED POWER  
REDUCED POWER MODE  
0.0  
0.00  
20.00  
40.00  
60.00  
80.00  
100.00  
0.00  
5.00  
10.00  
15.00  
20.00  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SUPPLY CURRENT VS. SUPPLY VOLTAGE  
LOW POWER ("L") MODE  
(TA = 25°C, F = 0)  
10  
9
8
7
6
5
4
3
2
1
0
2.50  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
SUPPLY VOLTAGE (V)  
20  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
OUTPUT SOURCE CURRENT  
OUTPUT SOURCE CURRENT  
VS. OUTPUT VOLTAGE (VCC = 3.3V,TA = 25°C)  
VS. SUPPLY VOLTAGE (VOH = 2.4V, TA = 25°C)  
0
-2  
10  
0
-4  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-6  
-8  
-10  
-12  
-14  
-16  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT SINK CURRENT  
OUTPUT SINK CURRENT  
VS. OUTPUT VOLTAGE (VCC = 3.3V, TA = 25°C)  
VS. SUPPLY VOLTAGE (VOL = 0.5V, TA = 25°C)  
100  
80  
60  
40  
20  
0
40  
35  
30  
25  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
2.75  
3.00  
3.25  
3.50  
3.75  
4.00  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
INPUT CURRENT vs. INPUT VOLTAGE  
(VCC = 3.3V, TA = 25°C)  
INPUT CLAMP CURRENT  
VS. INPUT VOLTAGE (VCC = 3.3V, TA = 25°C)  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-100  
-10  
-1  
-0.9  
-0.8  
-0.7  
-0.6  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
21  
1408H–PLD–7/05  
Ordering Information  
ATF1508ASV(L) Standard Package Options  
tPD  
(ns)  
tCO1  
(ns)  
fMAX  
(MHz)  
Ordering Code  
Package  
84J  
Operation Range  
ATF1508ASV-15 JC84  
ATF1508ASV-15 QC100  
ATF1508ASV-15 AC100  
ATF1508ASV-15 QC160  
100Q1  
100A  
Commercial  
8
100  
(0°C to 70°C)  
160Q  
15  
ATF1508ASV-15 JI84  
ATF1508ASV-15 QI100  
ATF1508ASV-15 AI100  
ATF1508ASV-15 QI160  
84J  
100Q1  
100A  
160Q  
Industrial  
8
100  
83.3  
83.3  
(-40°C to +85°C)  
ATF1508ASVL-20 JC84  
ATF1508ASVL-20 QC100  
ATF1508ASVL-20 AC100  
ATF1508ASVL-20 QC160  
84J  
100Q1  
100A  
160Q  
Commercial  
12  
12  
(0°C to 70°C)  
20  
ATF1508ASVL-20 JI84  
ATF1508ASVL-20 QI100  
ATF1508ASVL-20 AI100  
ATF1508ASVL-20 QI160  
84J  
100Q1  
100A  
160Q  
Industrial  
(-40°C to +85°C)  
Note:  
1. The last time buy is Sept. 30, 2005 for shaded parts.  
Using “C” Product for Industrial  
There is very little risk in using “C” devices for industrial applications because the VCC conditions for 3.3V products are  
the same for commercial and industrial (there is only 15°C difference at the high end of the temperature range). To use  
commercial product for industrial temperature ranges, de-rate ICC by 15%.  
ATF1508ASV(L) Green Package Options (Pb/Halide-free/RoHS Compliant)  
tPD  
(ns)  
tCO1  
(ns)  
fMAX  
(MHz)  
Ordering Code  
Package  
Operation Range  
ATF1508ASV-15 JU84  
ATF1508ASV-15 AU100  
84J  
Industrial  
15  
20  
8
100  
100A  
(-40°C to +85°C)  
ATF1508ASVL-20 JU84  
ATF1508ASVL-20 AU100  
84J  
Industrial  
12  
83.3  
100A  
(-40°C to +85°C)  
Package Type  
84J  
84-lead, Plastic J-leaded Chip Carrier (PLCC)  
100-lead, Plastic Quad Pin Flat Package (PQFP)  
100Q1  
100A  
160Q  
100-lead, Very Thin Plastic Gull Wing Quad Flat Package (TQFP)  
160-lead, Plastic Quad Pin Flat Package (PQFP)  
22  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Packaging Information  
84J – PLCC  
1.14(0.045) X 45˚  
PIN NO. 1  
1.14(0.045) X 45˚  
0.318(0.0125)  
0.191(0.0075)  
IDENTIFIER  
D2/E2  
E1  
E
B1  
B
e
A2  
A1  
D1  
D
A
0.51(0.020)MAX  
45˚ MAX (3X)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
4.191  
MAX  
4.572  
3.048  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
2.286  
0.508  
30.099  
29.210  
30.099  
29.210  
30.353  
D1  
E
29.413 Note 2  
30.353  
Notes:  
1. This package conforms to JEDEC reference MS-018, Variation AF.  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the upper or lower parting line.  
E1  
29.413 Note 2  
28.702  
D2/E2 27.686  
B
0.660  
0.330  
0.813  
3. Lead coplanarity is 0.004" (0.102 mm) maximum.  
B1  
e
0.533  
1.270 TYP  
10/04/01  
DRAWING NO. REV.  
84J  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC)  
B
R
23  
1408H–PLD–7/05  
100Q1 – PQFP  
E
PIN 1 ID  
PIN 1  
e
D1  
B
D
E1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
JEDEC STANDARD MS-022, GC-1  
A
0º~7º  
C
MIN  
MAX  
3.4  
NOM  
3.04  
NOTE  
SYMBOL  
A
L
A1  
D
0.25  
0.33  
0.5  
A1  
23.20 BSC  
17.20 BSC  
14.00 BSC  
E
E1  
B
0.22  
0.11  
0.40  
0.23  
C
D1  
L
20 BSC  
0.73  
1.03  
e
0.65 BSC  
07/6/2005  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100Q1, 100-lead, 14 x 20 mm Body, 3.2 mm Footprint, 0.65 mm Pitch,  
Plastic Quad Flat Package (PQFP)  
100Q1  
C
R
24  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
100A – TQFP  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0˚~7˚  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
14.10 Note 2  
0.27  
C
0.20  
3. Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
C
R
25  
1408H–PLD–7/05  
160Q – PQFP  
Dimensions in Millimeters and (Inches).  
Controlling dimension: Millimeters.  
JEDEC Standard MS-022 DC-1  
31.45(1.238)  
30.95(1.218)  
SQ  
PIN 1 ID  
PIN 1  
0.40(0.016)  
0.22(0.009)  
0.65(0.0256)BSC  
28.10(1.106)  
SQ  
4.10(0.161)MAX  
27.90(1.098)  
0.23(0.009)  
0º~7º  
0.11(0.004)  
1.03(0.041)  
0.73(0.029)  
0.50(0.020)  
0.25(0.010)  
10/23/03  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
160Q, 160-lead, 28 x 28 mm Body, 3.2 mm Footprint,  
0.65 mm Pitch, Plastic Quad Flat Package (PQFP)  
160Q  
B
R
26  
ATF1508ASV(L)  
1408H–PLD–7/05  
ATF1508ASV(L)  
Revision History  
Revision  
1408H  
Comments  
Corrected list of last buy parts.  
Green package options added.  
1408G  
27  
1408H–PLD–7/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trade-  
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
1408H–PLD–7/05  
xM  

相关型号:

ATF1508ASV-15QJ160

EE PLD, 15ns, PQFP160, 28 X 28 MM, 0.65 MM PITCH, PLASTIC, MS-022DC-1, QFP-160
ATMEL

ATF1508ASV-15QL100

EE PLD, 15ns, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, MS-022GC-1, QFP-100
ATMEL

ATF1508ASV-15QL160

EE PLD, 15ns, PQFP160, 28 X 28 MM, 0.65 MM PITCH, PLASTIC, MS-022DC-1, QFP-160
ATMEL

ATF1508ASVL

Highperformance EE PLD
ATMEL

ATF1508ASVL-20AC100

Highperformance EE PLD
ATMEL

ATF1508ASVL-20AI100

Highperformance EE PLD
ATMEL

ATF1508ASVL-20AJ100

EE PLD, 20ns, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, PLASTIC, MS-026AED, TQFP-100
ATMEL

ATF1508ASVL-20AL100

EE PLD, 20ns, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, PLASTIC, MS-026AED, TQFP-100
ATMEL

ATF1508ASVL-20AU100

Highperformance EE PLD
ATMEL

ATF1508ASVL-20JC84

Highperformance EE PLD
ATMEL

ATF1508ASVL-20JI84

Highperformance EE PLD
ATMEL

ATF1508ASVL-20JJ84

EE PLD, 20ns, PQCC84, PLASTIC, MS-018AF, LCC-84
ATMEL