ATA6831-PIPW [ATMEL]

Triple Half-bridge Driver with SP and PWM; 与SP和PWM三重半桥驱动器
ATA6831-PIPW
型号: ATA6831-PIPW
厂家: ATMEL    ATMEL
描述:

Triple Half-bridge Driver with SP and PWM
与SP和PWM三重半桥驱动器

驱动器 运动控制电子器件 信号电路 电动机控制
文件: 总17页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Supply Voltage up to 40V  
RDSon Typically 0.8at 25°C, Maximum 1.5at 150°C  
Up to 1.0A Output Current  
Three Half-bridge Outputs Formed by Three High-side and Three Low-side Drivers  
Capable of Switching Loads such as DC Motors, Bulbs, Resistors, Capacitors, and  
Inductors  
PWM Capability up to 25 kHz for Each High-side Output Controlled by External PWM  
Signal  
Triple  
No Shoot-through Current  
Very Low Quiescent Current IS < 5 µA in Standby Mode over Total Temperature Range  
Outputs Short-circuit Protected  
Selective Overtemperature Protection for Each Switch and Overtemperature  
Prewarning  
Half-bridge  
Driver with SPI  
and PWM  
Undervoltage Protection  
Various Diagnostic Functions such as Shorted Output, Open Load, Overtemperature  
and Power-supply Fail Detection  
Serial Data Interface, Daisy Chain Capable, up to 2 MHz Clock Frequency  
QFN18 Package  
ATA6831  
1. Description  
The ATA6831 provides fully protected driver interfaces designed in SOI technology.  
They are used to allow a microcontroller to control up to 3 different loads in automo-  
tive and industrial applications.  
Each of the 3 high-side and 3 low-side drivers is capable of driving currents up to  
1.0A. Due to the enhanced PWM signal (up to 25 kHz) it is possible to generate a  
smooth control of, for example, a DC motor without any noise. The drivers are inter-  
nally connected to form 3 half-bridges and can be controlled separately from a  
standard serial data interface, enabling all kinds of loads, such as bulbs, resistors,  
capacitors and inductors, to be combined. The IC design especially supports the  
application of H-bridges to drive DC motors.  
Protection is guaranteed with respect to short-circuit conditions, overtemperature and  
undervoltage. Various diagnostic functions and a very low quiescent current in  
standby mode enable a wide range of applications. Automotive qualification (protec-  
tion against conducted interferences, EMC protection and 2-kV ESD protection) gives  
added value and enhanced quality for exacting requirements of automotive  
applications.  
4908D–AUTO–09/06  
Figure 1-1. Block Diagram  
O
S
C
O
L
D
P
H
3
P
L
3
P
H
2
P
L
2
P
H
1
P
L
1
H
S
3
L
S
3
H
S
2
L
S
2
H
S
1
L
S
1
S
R
R
S
I
10  
11  
VS1  
VS2  
Input register  
Ouput register  
Serial interface  
Charge  
pump  
P
S
F
I
N
H
O
V
L
n. n. n. n. n. n.  
u. u. u. u. u. u.  
H
S
3
L
S
3
H
S
2
L
S
2
H
S
1
L
S
1
T
P
DI  
4
CLK  
5
3
CS  
DO  
UV  
protection  
Fault  
detector  
Fault  
detector  
Fault  
detector  
9
7
6
VCC  
Control  
logic  
PWM  
Power on  
reset  
8
14  
17  
18  
GND  
GND  
GND  
GND  
Fault  
detector  
Fault  
detector  
Fault  
detector  
Thermal  
protection  
1/2  
12/13  
15/16  
OUT3  
OUT2  
OUT1  
2
ATA6831  
4908D–AUTO–09/06  
ATA6831  
2. Pin Configuration  
Figure 2-1. Pinning QFN18  
18 17 16 15 14 13  
OUT3S  
OUT3F  
CS  
1
2
3
4
5
6
12 OUT2F  
11 VS2  
10 VS1  
DI  
9
8
7
VCC  
GND  
DO  
CLK  
PWM  
Table 2-1.  
Pin Description  
Pin  
Symbol  
Function  
Sense pin, used only for final testing  
1
OUT3S  
Half-bridge output 3; formed by internally connecting power MOS high-side switch 3 and low-side switch 3  
with internal reverse diodes; short circuit protection; overtemperature protection; diagnosis for short and  
open load  
2
OUT3F  
Chip select input; 5V CMOS logic level input with internal pull-up;  
low = serial communication is enabled, high = disabled  
3
4
CS  
DI  
Serial data input; 5V CMOS logic level input with internal pull-down; receives serial data from the control  
device; DI expects a 16-bit control word with LSB transferred first  
Serial clock input; 5V CMOS logic level input with internal pull-down;  
controls serial data input interface and internal shift register (fmax = 2 MHz)  
5
6
CLK  
PWM  
PWM input; 5V CMOS logic level input with internal pull-down  
Serial data output; 5V CMOS logic-level tri-state output for output (status) register data; sends 16-bit status  
information to the microcontroller (LSB transferred first); output will remain tri-stated unless device is  
selected by CS = low; this allows several ICs to operate on only one data-output line  
7
DO  
8
9
GND  
VCC  
VS1  
VS2  
Ground  
Logic supply voltage (5V)  
10  
11  
Power supply for output stages OUT1 and OUT2; internal supply  
Power supply for output stages OUT2 and OUT3; internal supply  
Half-bridge output 2; formed by internally connected power MOS high-side switch 2 and low-side switch 2  
with internal reverse diodes; short circuit protection; overtemperature protection; diagnosis for short and  
open load  
12  
OUT2F  
13  
14  
OUT2S  
PGND2  
Sense pin, used only for final testing  
Power ground OUT2  
Half-bridge output 1; formed by internally connected power MOS high-side switch 1 and low-side switch 1  
with internal reverse diodes; short circuit protection; overtemperature protection; diagnosis for short and  
open load  
15  
OUT1F  
16  
17  
18  
OUT1S  
PGND1  
PGND3  
Sense pin, used only for final testing  
Power ground OUT1  
Power ground OUT3  
3
4908D–AUTO–09/06  
3. Functional Description  
3.1  
Serial Interface  
Data transfer starts with the falling edge of the CS signal. Data must appear at DI synchronized  
to CLK and is accepted on the falling edge of the CLK signal. The LSB (bit 0, SRR) has to be  
transferred first. Execution of new input data is enabled on the rising edge of the CS signal.  
When CS is high, pin DO is in tri-state condition. This output is enabled on the falling edge of  
CS. Output data will change their state with the rising edge of CLK and stay stable until the next  
rising edge of CLK appears. LSB (bit 0, TP) is transferred first.  
Figure 3-1. Data Transfer  
CS  
DI  
CLK  
DO  
SRR  
0
LS1  
HS1  
LS2  
HS2  
LS3  
HS3  
nPL!  
PH1  
PL2  
PH2  
10  
PL3  
11  
PH3  
12  
OCS  
14  
SI  
OLD  
13  
1
2
3
4
5
6
7
8
9
15  
TP  
S1L  
S1H  
S2L  
S2H  
S3L  
S3H  
n. u.  
n. u.  
n. u.  
n. u.  
n. u.  
n. u.  
OVl  
INH  
PSF  
Table 3-1.  
Bit  
Input Data Protocol  
Input Register  
Function  
Status register reset (high = reset; the bits PSF and OVL in the output  
data register are set to low)  
0
SRR  
1
2
LS1  
HS1  
LS2  
HS2  
LS3  
HS3  
PL1  
PH1  
PL2  
PH2  
PL3  
PH3  
OLD  
OCS  
Controls output LS1 (high = switch output LS1 on)  
Controls output HS1 (high = switch output HS1 on)  
3
See LS1  
4
See HS1  
5
See LS1  
6
See HS1  
7
Output LS1 additionally controlled by PWM Input  
8
Output HS1 additionally controlled by PWM Input  
9
See PL1  
10  
11  
12  
13  
14  
See PH1  
See PL1  
See PH1  
Open load detection (low = on)  
Overcurrent shutdown (high = overcurrent shutdown is active)  
Software inhibit; low = standby, high = normal operation  
(data transfer is not affected by the standby function because the digital  
part is still powered)  
15  
SI  
4
ATA6831  
4908D–AUTO–09/06  
ATA6831  
Table 3-2.  
Output Data Protocol  
Output (Status)  
Bit  
Register  
Function  
Temperature prewarning: high = warning  
0
TP  
Normal operation: high = output is on, low = output is off  
Open-load detection: high = open load, low = no open load  
(correct load condition is detected if the corresponding output is  
switched off); not affected by SRR  
1
2
Status LS1  
Status HS1  
Normal operation: high = output is on, low = output is off  
Open-load detection: high = open load, low = no open load  
(correct load condition is detected if the corresponding output is  
switched off); not affected by SRR  
3
4
Status LS2  
Status HS2  
Status LS3  
Status HS3  
n. u.  
Description see LS1  
Description see HS1  
Description see LS1  
Description see HS1  
Not used  
5
6
7
8
n. u.  
Not used  
9
n. u.  
Not used  
10  
11  
12  
n. u.  
Not used  
n. u.  
Not used  
n. u.  
Not used  
Over-load detected: set high, when at least one output is switched off  
by a short-circuit condition or an overtemperature event. Bits 1 to 6 can  
be used to detect the affected switch  
13  
OVL  
Inhibit: this bit is controlled by software (bit SI in input register)  
High = standby, low = normal operation  
14  
15  
INH  
PSF  
Power-supply fail: undervoltage at pin VS detected  
5
4908D–AUTO–09/06  
After power-on reset, the input register has the following status:  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
PH1  
Bit 7  
PL1  
Bit 6  
HS3  
Bit 5  
LS3  
Bit 4  
HS2  
Bit 3 Bit 2 Bit 1 Bit 0  
SI  
OCS  
OLD  
PH3  
PL3  
PH2  
PL2  
LS2  
HS1  
LS1  
SRR  
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
The following patterns are used to enable internal test modes of the IC. Do not use these pat-  
terns during normal operation.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9  
(OCS)  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
Bit 0  
(HS3) (LS3) (HS2) (LS2) (HS1) (LS1) (SRR)  
H
H
H
H
H
H
H
H
H
H
L
L
H
L
L
L
H
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
3.2  
Power-supply Fail  
If undervoltage is detected at pin VS, the power-supply fail bit (PSF) in the output register is set  
and all outputs are disabled. To detect an undervoltage, its duration has to last longer than the  
undervoltage detection delay time tdUV. The outputs are enabled immediately when the supply  
voltage returns to the normal operational value. The PSF bit stays high until it is reset by the  
SRR bit in the input register.  
3.3  
Open-load Detection  
If the open-load detection bit (OLD) is set to low, a pull-up current for each high-side switch and  
a pull-down current for each low-side switch is turned on (open-load detection current IOUT1-3). If  
the current through the external load does not reach the open-load detection current, the corre-  
sponding bit of the output in the output register is set to high.  
Switching on an output stage with the OLD bit set to low disables the open-load function for this  
output.  
6
ATA6831  
4908D–AUTO–09/06  
ATA6831  
3.4  
Overtemperature Protection  
If the junction temperature of one or more output stages exceeds the thermal prewarning thresh-  
old, TjPW set, the temperature prewarning bit (TP) in the output register is set. When the  
temperature falls below the thermal prewarning threshold, TjPW reset, the bit TP is reset. The TP  
bit can be read without transferring a complete 16-bit data word. The status of TP is available at  
pin DO with the falling edge of CS. After the microcontroller has read this information, CS is set  
high and the data transfer is interrupted without affecting the status of input and output registers.  
If the junction temperature of an output stage exceeds the thermal shutdown threshold, Tjswitch off  
,
the affected output is disabled and the corresponding bit in the output register is set to low. Addi-  
tionally, the overload detection bit (OVL) in the output register is set. The output can be enabled  
again when the temperature falls below the thermal shutdown threshold, Tjswitch on, and the SRR  
bit in the input register is set to high. The hysteresis of thermal prewarning and shutdown thresh-  
old avoids oscillations.  
3.5  
Short-circuit Protection  
The output currents are limited by a current regulator. Overcurrent detection is activated by writ-  
ing a high to the overcurrent shutdown bit (OCS) bit in the input register. When the current in an  
output stage exceeds the overcurrent limitation and shut-down threshold, it is switched off, fol-  
lowing a delay time (tdSd). The over-load detection bit (OVL) is set and the corresponding status  
bit in the output register is set to low. For OCS = low, the overcurrent shutdown is inactive and  
the OVL bit is not set by an overcurrent. By writing a high to the SRR bit in the input register the  
OVL bit is reset and the disabled outputs are enabled.  
3.6  
3.7  
Inhibit  
The SI bit in the input register has to be set to zero to inhibit the ATA6831.  
In this state, all output stages are then turned off but the serial interface remains active. The cur-  
rent consumption is reduced to less than 5 µA at pin VS and less than 100 µA at pin VCC. The  
output stages can be reactivated by setting bit SI to “1”.  
PWM Mode  
The common input for all six outputs is pin PWM (Figure 3-2). The selection of the outputs,  
which are controlled by PWM, is done by input data register PLx or PHx. In addition to the PWM  
input register, the corresponding input registers HSx and LSs have to be set.  
Switching the high side outputs is possible up to 25 kHz, low side switches up to 8 kHz.  
Figure 3-2. Output Control by PWM  
Bit LSx/HSx  
Pin OUTx  
Bit PLx/PHx  
Pin PWM  
7
4908D–AUTO–09/06  
4. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Pin  
Symbol  
Value  
Unit  
Supply voltage  
10, 11  
VVS  
–0.3 to +40  
V
Supply voltage  
t < 0.5s; IS > –2A  
10, 11  
9
VVS  
–1  
V
V
Logic supply voltage  
Logic input voltage  
Logic output voltage  
Input current  
VVCC  
–0.3 to +7  
VCS, VDI, VCLK  
VPWM  
,
3, 4, 5, 6  
7
–0.3 to VVCC + 0.3  
–0.3 to VVCC + 0.3  
–10 to +10  
V
VDO  
V
ICS, IDI, ICLK  
IPWM  
,
3, 4, 5, 6  
7
mA  
mA  
Output current  
IDO  
–10 to +10  
Internally limited, see output  
specification  
Output current  
2, 12, 15  
2, 12, 15  
2, 12, 15  
IOut1, IOut2, IOut3  
IOut1, IOut2, IOut3  
IOut1, IOut2, IOut3  
Output voltage  
–0.3 to +40  
V
A
Reverse conducting current  
(tpulse = 150 µs)  
17  
Junction temperature range  
Storage temperature range  
TJ  
–40 to +150  
–55 to +150  
°C  
°C  
TSTG  
5. Thermal Resistance  
Parameters  
Test Conditions  
Symbol  
Value  
Unit  
Thermal resistance from junction to  
case  
RthJC  
15  
k/W  
Thermal resistance from junction to  
ambient  
Depends on the PC board  
RthJA  
40  
K/W  
6. Operating Range  
Parameters  
Symbol  
VVS  
Value  
VUV(1) to 40  
Unit  
Supply voltage  
V
V
Logic supply voltage  
Logic input voltage  
VVCC  
4.75 to 5.25  
VCS, VDI, VCLK, VPWM  
–0.3 to VVCC  
2
V
Serial interface clock frequency  
PWM input frequency  
Junction temperature range  
fCLK  
fPWM  
Tj  
MHz  
kHz  
°C  
max. 25  
–40 to +150  
Note:  
1. Threshold for undervoltage description  
8
ATA6831  
4908D–AUTO–09/06  
ATA6831  
7. Noise and Surge Immunity  
Parameters  
Test Conditions  
ISO 7637-1  
Value  
Level 4(1)  
Level 5  
2 kV  
Conducted interferences  
Interference suppression  
ESD (Human Body Model)  
CDM (Charge Device Model)  
VDE 0879 Part 2  
ESD S 5.1  
ESD STM5.3.1  
500V  
Note:  
1. Test pulse 5: Vsmax = 40V  
8. Electrical Characteristics  
7.5V < VS < 40V; 4.75V < VCC < 5.25V; INH = High; –40°C < Tj < 150°C; unless otherwise specified, all values refer to GND pins.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Pin  
1
Current Consumption  
1.1  
Quiescent current VS  
VVS < 20V, SI = low  
10, 11  
9
IVS  
1
5
µA  
µA  
A
A
4.75V < VVCC < 5.25V,  
SI = low  
1.2  
1.3  
1.4  
Quiescent current VCC  
IVCC  
60  
100  
VVS < 20V normal  
operating, all outputs  
off, input register bit 13  
(OLD) = high  
Supply current VS  
Supply current VCC  
10, 11  
9
IVS  
4
6
mA  
µA  
A
A
4.75V < VVCC < 5.25V,  
normal operating  
IVCC  
350  
650  
1.5  
1.6  
2
Discharge current VS  
Discharge current VS  
VVS = 32.5V, INH = low 10, 11  
IVS  
IVS  
0.5  
2.5  
5.5  
10  
mA  
mA  
A
A
VVS = 40V, INH = low  
10, 11  
9
Undervoltage Detection, Power-on Reset  
Power-on reset  
threshold  
2.1  
2.2  
2.3  
2.4  
2.5  
VVCC  
tdPor  
VUv  
3.2  
30  
3.9  
95  
4.4  
190  
7.0  
V
A
A
A
A
A
Power-on reset delay  
After switching on VCC  
time  
µs  
V
Undervoltage-detection  
threshold  
V
CC = 5V  
10, 11  
10, 11  
5.6  
Undervoltage-detection  
hysteresis  
VCC = 5V  
VUv  
tdUV  
0.6  
V
Undervoltage-detection  
delay time  
10  
40  
µs  
3
Thermal Prewarning and Shutdown  
3.1  
Thermal prewarning set  
TjPW set  
120  
105  
145  
130  
170  
155  
°C  
°C  
B
B
Thermal prewarning  
reset  
3.2  
3.3  
TjPW reset  
Thermal prewarning  
hysteresis  
TjPW  
15  
K
B
3.4  
3.5  
Thermal shutdown off  
Thermal shutdown on  
Tj switch off  
Tj switch on  
150  
135  
175  
160  
200  
185  
°C  
°C  
B
B
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Delay time between rising edge of input signal at pin CS after data transmission and switch on/off output stages to 90% of  
final level. Device not in standby for t > 1 ms.  
2. Delay time between rising/falling edge of input signal at pin PWM and switch on/off output stages to 90% of final level.  
3. Difference between switch-on and switch-off delay time of input signal at pin PWM to output stages in PWM mode.  
9
4908D–AUTO–09/06  
8. Electrical Characteristics (Continued)  
7.5V < VS < 40V; 4.75V < VCC < 5.25V; INH = High; –40°C < Tj < 150°C; unless otherwise specified, all values refer to GND pins.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Pin  
Thermal shutdown  
hysteresis  
3.6  
Tj switch off  
15  
K
B
Ratio thermal shutdown  
off/thermal prewarning  
set  
Tj switch off/  
TjPW set  
3.7  
1.05  
1.05  
1.2  
1.2  
B
B
Ratio thermal shutdown  
on/thermal prewarning  
reset  
Tj switch on/  
TjPW reset  
3.8  
4
Output Specification (OUT1 to OUT3)  
2, 12,  
15  
4.1  
IOut 1-3 = –0.9 A  
On resistance  
RDSon1-3H  
RDSon1-3L  
IOut1-3H  
1.5  
1.5  
A
A
A
A
2, 12,  
15  
4.2  
4.3  
4.4  
IOut 1-3 = –0.9 A  
High-side output  
leakage current  
VOut 1-3 H = 0V  
2, 12,  
15  
,
–15  
µA  
µA  
output stages off  
Out 1-3 L = VVS,  
output stages off  
Low-side output  
leakage current  
V
2, 12,  
15  
IOut1-3L  
300  
2
High-side switch  
reverse diode forward IOut = 1.5A  
voltage  
2, 12,  
15  
4.5  
4.6  
4.7  
VOut1-3 – VVS  
V
V
A
A
A
A
Low-side switch reverse  
diode forward voltage  
2, 12,  
15  
IOut 1-3 L = –1.5A  
VOut1-3L  
2
High-side overcurrent  
limitation and shutdown 7.5V < VVS < 20V  
threshold  
2, 12,  
15  
IOut1-3  
1.0  
1.3  
–1.3  
1.3  
1.7  
–1.0  
2.0  
Low-side overcurrent  
limitation and shutdown 7.5V < VVS < 20V  
threshold  
2, 12,  
15  
4.8  
4.9  
IOut1-3  
IOut1-3  
IOut1-3  
–1.7  
1.0  
A
A
A
A
A
A
High-side overcurrent  
limitation and shutdown 20V < VVS < 40V  
threshold  
2, 12,  
15  
Low-side overcurrent  
2, 12,  
15  
4.10 limitation and shutdown 20V < VVS < 40V  
threshold  
–2.0  
–1.3  
–1.0  
Overcurrent shutdown  
delay time  
4.11  
tdSd  
10  
40  
–0.2  
2.5  
3
µs  
mA  
mA  
A
A
A
High-side open load  
detection current  
Input register bit 13  
(OLD) = low, output off  
2, 12,  
15  
4.12  
4.13  
4.14  
IOut1-3H  
IOut1-3L  
–2.5  
0.2  
Low-side open load  
detection current  
Input register bit 13  
(OLD) = low, output off  
2, 12,  
15  
Open load detection  
current ratio  
IOLoutLX  
IOLoutHX  
/
1.2  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Delay time between rising edge of input signal at pin CS after data transmission and switch on/off output stages to 90% of  
final level. Device not in standby for t > 1 ms.  
2. Delay time between rising/falling edge of input signal at pin PWM and switch on/off output stages to 90% of final level.  
3. Difference between switch-on and switch-off delay time of input signal at pin PWM to output stages in PWM mode.  
10  
ATA6831  
4908D–AUTO–09/06  
ATA6831  
8. Electrical Characteristics (Continued)  
7.5V < VS < 40V; 4.75V < VCC < 5.25V; INH = High; –40°C < Tj < 150°C; unless otherwise specified, all values refer to GND pins.  
No. Parameters  
Test Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Pin  
High-side output switch VVS = 13V  
4.15  
4.16  
4.17  
4.18  
tdon  
20  
µs  
A
on delay(1),(2)  
RLoad = 30Ω  
Low-side output switch VVS = 13V  
on delay(1),(2)  
Load = 30Ω  
High-side output switch VVS =13V  
off delay(1),(2)  
RLoad = 30Ω  
tdon  
tdoff  
tdoff  
20  
20  
3
µs  
µs  
µs  
A
A
A
R
Low-side output switch VVS =13V  
off delay(1),(2)  
RLoad = 30Ω  
Dead time between  
corresponding  
high-side and low-side RLoad = 30Ω  
V
VS =13V  
4.19  
4.20  
t
don – tdoff  
1
3
µs  
A
switches  
tdPWM  
VVS = 13V  
RLoad = 30Ω  
tdPWM  
tdon – tdoff  
=
20  
7
µs  
µs  
A
A
low-side switch(3)  
tdPWM  
high-side switch(3)  
VVS = 13V  
RLoad = 30Ω  
tdPWM =  
tdon – tdoff  
4.21  
5
Logic Inputs DI, CLK, CS, PWM  
Input voltage low-level  
threshold  
3, 4, 5,  
6
0.3 ×  
VVCC  
5.1  
VIL  
VIH  
VI  
IPD  
IPU  
V
V
A
A
A
A
A
Input voltage high-level  
threshold  
3, 4, 5,  
6
0.7 ×  
VVCC  
5.2  
5.3  
5.4  
5.5  
Hysteresis of input  
voltage  
3, 4, 5,  
6
50  
10  
700  
65  
mV  
µA  
µA  
Pull-down current  
pins DI, CLK, PWM  
VDI, VCLK, VPWM = VCC  
VCS = 0V  
4, 5, 6  
3
Pull-up current  
pin CS  
–65  
–10  
6
Serial Interface – Logic Output DO  
Output-voltage low level IDOL = 2 mA  
Output-voltage high  
6.1  
7
7
VDOL  
VDOH  
0.4  
10  
V
V
A
A
VVCC  
0.7V  
6.2  
IDOL = –2 mA  
level  
Leakage current  
(tri-state)  
VCS = VCC  
0V < VDO < VVCC  
6.3  
7
IDO  
–10  
µA  
A
7
Inhibit Input – Timing  
Delay time from  
standby to normal  
operation  
7.1  
tdINH  
100  
µs  
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. Delay time between rising edge of input signal at pin CS after data transmission and switch on/off output stages to 90% of  
final level. Device not in standby for t > 1 ms.  
2. Delay time between rising/falling edge of input signal at pin PWM and switch on/off output stages to 90% of final level.  
3. Difference between switch-on and switch-off delay time of input signal at pin PWM to output stages in PWM mode.  
11  
4908D–AUTO–09/06  
9. Serial Interface Timing  
No. Parameters  
Test Conditions  
Pin  
Timing Chart No.(1)  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
8
Serial Interface Timing  
DO enable after CS  
falling edge  
8.1  
CDO = 100 pF  
CDO = 100 pF  
7
7
1
2
tENDO  
tDISDO  
200  
200  
ns  
ns  
D
D
DO disable after CS  
rising edge  
8.2  
8.3 DO fall time  
8.4 DO rise time  
8.5 DO valid time  
8.6 CS setup time  
8.7 CS setup time  
8.8 CS high time  
8.9 CLK high time  
8.10 CLK low time  
8.11 CLK period time  
8.12 CLK setup time  
8.13 CLK setup time  
8.14 DI setup time  
8.15 DI hold time  
CDO = 100 pF  
CDO = 100 pF  
CDO = 100 pF  
7
7
7
3
3
3
5
5
5
5
5
4
4
-
-
tDOf  
tDOr  
100  
100  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
D
D
D
D
D
D
D
D
D
D
D
D
D
10  
4
tDOVal  
tCSSethl  
tCSSetlh  
tCSh  
225  
225  
500  
225  
225  
500  
225  
225  
40  
8
9
5
tCLKh  
6
tCLKl  
-
tCLKp  
7
tCLKSethl  
tCLKSetlh  
tDIset  
3
11  
12  
tDIHold  
40  
*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
12  
ATA6831  
4908D–AUTO–09/06  
ATA6831  
Figure 9-1. Serial Interface Timing with Chart Number  
1
2
CS  
DO  
9
CS  
4
7
CLK  
5
3
6
8
DI  
11  
CLK  
10  
12  
DO  
Inputs DI, CLK, CS: High level = 0.7 × VCC, low level = 0.3 × VCC  
Output DO: High level = 0.8 × VCC, low level = 0.2 × VCC  
13  
4908D–AUTO–09/06  
10. Application Circuit  
Figure 10-1. Application Circuit  
V
CC  
U5021M  
Watchdog  
V
S
O
S
C
O
L
D
P
H
3
P
L
3
P
H
2
P
L
2
P
H
1
P
L
1
H
S
3
L
S
3
H
S
2
L
S
2
H
S
1
L
S
1
S
R
R
S
I
BYV28  
10  
11  
V
VS1  
VS2  
Batt  
13V  
Input register  
Ouput register  
Serial interface  
+
Charge  
pump  
P
S
F
I
N
H
O
V
L
n. n. n. n. n. n.  
u. u. u. u. u. u.  
H
S
3
L
S
3
H
S
2
L
S
2
H
S
1
L
S
1
T
P
DI  
4
CLK  
5
CS  
Micro-  
3
controller  
V
CC  
UV  
protection  
Fault  
detector  
Fault  
detector  
Fault  
detector  
V
CC  
9
8
DO  
7
VCC  
GND  
5V  
Control  
logic  
Power on  
reset  
+
PWM  
6
14  
17  
18  
Fault  
detector  
Fault  
detector  
Fault  
detector  
GND  
GND  
Thermal  
protection  
V
CC  
GND  
2
12  
15  
OUT3  
OUT2  
OUT1  
M
M
10.1 Application Notes  
• Connect the blocking capacitors at VCC and VS as close as possible to the power supply and  
GND pins.  
• Recommended value for capacitors at VS:  
– Electrolytic capacitor C > 22 µF in parallel with a ceramic capacitor C = 100 nF. The  
value for the electrolytic capacitor depends on external loads, conducted  
interferences, and the reverse conducting current IOut1,2,3  
.
• Recommended value for capacitors at VCC  
:
– Electrolytic capacitor C > 10 µF in parallel with a ceramic capacitor C = 100 nF.  
To reduce thermal resistance, place cooling areas on the PCB as close as possible to the  
GND pins and to the die pad.  
14  
ATA6831  
4908D–AUTO–09/06  
ATA6831  
11. Ordering Information  
Extended Type Number  
Package  
Remarks  
ATA6831-PIQW  
QFN18, 4 mm × 4 mm  
QFN18, 4 mm × 4 mm  
QFN18, 4 mm × 4 mm  
Taped and reeled, Pb-free  
Taped and reeled, Pb-free  
Tubes, Pb-free  
ATA6831-PIPW  
ATA6831-PISW  
12. Package Information  
Package: VQFN_4 x 4_18L  
Exposed pad 2.5 x 3.125  
Dimensions in mm  
Bottom  
2.5  
Not indicated tolerances ±0.05  
Z
12  
7
0.5 nom.  
18  
Top  
18  
13  
1
1
Pin 1 identification  
6
6
4
0.2  
2.6±0.15  
0.9±0.1  
Z 10:1  
technical drawings  
according to DIN  
specifications  
Drawing-No.: 6.543-5133.01-4  
0.23±0.07  
Issue: preliminary copy; 06.10.06  
15  
4908D–AUTO–09/06  
13. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
Features on page 1 changed  
Figure 1-1 “Block Diagram” on page 2 changed  
Section 2 “Pin Configuration” on pages 2 to 3 changed  
Section 4 “Absolute Maximum Ratings” on page 8 changed  
Section 8 “Electrical Characteristics” on pages 9 to 11 changed  
Section 9 “Serial Interface Timing” on page 12 changed  
Figure 10-1 “Application Circuit” on page 14 changed  
Section 11 “Ordering Information” on page 15 changed  
Section 12 “Package Information” on page 15 changed  
4908D-AUTO-09/06  
Title on page 1 changed  
Features on page 1 changed  
Figure 1-1 “Block Diagram” on page 1 changed  
Figure 2-1 “Pinning” on page 3 changed  
Table 2-1 “Pin Description” on page 3 changed  
Table 3-2 “Output Data Protocol” on page 5 changed  
Section 3.7 “PWM Mode” on page 7 added  
4908C-AUTO-08/06  
Section 4 “Absolute Maximum Ratings” on page 8 changed  
Section 8 “Electrical Characteristics” on pages 9 to 12 changed  
Figure 10-1 “Application Circuit” on page 14 changed  
Section 10.1 “Application Notes” on page 14 changed  
Section 11 “Ordering Information” on page 15 changed  
Section 12 “Package Information” on page 15 changed  
16  
ATA6831  
4908D–AUTO–09/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Microcontrollers  
Regional Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High-Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trade-  
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4908D–AUTO–09/06  

相关型号:

ATA6831-PIQW

Triple Half-bridge Driver with SP and PWM
ATMEL

ATA6831-PISW

Triple Half-bridge Driver with SP and PWM
ATMEL

ATA6831C

Triple Half-bridge Driver with SPI and PWM
ATMEL

ATA6831C-PIQW

Triple Half-bridge Driver with SPI and PWM
ATMEL

ATA6831_07

Triple Half-bridge Driver with SPI and PWM
ATMEL

ATA6831_10

Very Low Quiescent Current IVS μA in Standby Mode over Total Temperature Range
ATMEL

ATA6832

High Temperature Triple Half-bridge Driver with SPI and PWM
ATMEL

ATA6832-PFQW

HB Based Peripheral Driver With Pwm, 3 Driver, 4 X 4 MM, LEAD FREE, QFN-18
ATMEL

ATA6832-PIQW

High Temperature Triple Half-bridge Driver with SPI and PWM
ATMEL

ATA6832-PNQY

Interface Circuit
MICROCHIP

ATA6832C-PIQW

PWM Based Peripheral Driver
MICROCHIP

ATA6832C-PIQW

PWM Based Peripheral Driver,
ATMEL