AT91SAM9260-QU [ATMEL]

AT91 ARM Thumb Microcontrollers; AT91 ARM的Thumb微控制器
AT91SAM9260-QU
型号: AT91SAM9260-QU
厂家: ATMEL    ATMEL
描述:

AT91 ARM Thumb Microcontrollers
AT91 ARM的Thumb微控制器

微控制器
文件: 总45页 (文件大小:915K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM926EJ-SARM® Thumb® Processor  
– DSP Instruction Extensions, ARM Jazelle® Technology for Java® Acceleration  
– 8-KByte Data Cache, 8-KByte Instruction Cache, Write Buffer  
– 200 MIPS at 180 MHz  
– Memory Management Unit  
– EmbeddedICE, Debug Communication Channel Support  
Additional Embedded Memories  
– One 32 KByte Internal ROM, Single-cycle Access At Maximum Matrix Speed  
– Two 4 KByte Internal SRAM, Single-cycle Access At Maximum Matrix Speed  
External Bus Interface (EBI)  
– Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash®  
USB 2.0 Full Speed (12 Mbits per second) Device Port  
– On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM  
USB 2.0 Full Speed (12 Mbits per second) Host Single Port in the 208-lead PQFP  
Package and Double Port in 217-ball LFBGA Package  
– Single or Dual On-chip Transceivers  
AT91 ARM  
Thumb  
Microcontrollers  
AT91SAM9260  
Preliminary  
Summary  
– Integrated FIFOs and Dedicated DMA Channels  
Ethernet MAC 10/100 Base T  
– Media Independent Interface or Reduced Media Independent Interface  
– 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit  
Image Sensor Interface  
– ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate  
– 12-bit Data Interface for Support of High Sensibility Sensors  
– SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format  
Bus Matrix  
– Six 32-bit-layer Matrix  
– Boot Mode Select Option, Remap Command  
Fully-featured System Controller, including  
– Reset Controller, Shutdown Controller  
– Four 32-bit Battery Backup Registers for a Total of 16 Bytes  
– Clock Generator and Power Management Controller  
– Advanced Interrupt Controller and Debug Unit  
– Periodic Interval Timer, Watchdog Timer and Real-time Timer  
Reset Controller (RSTC)  
– Based on a Power-on Reset Cell, Reset Source Identification and Reset Output  
Control  
Clock Generator (CKGR)  
– Selectable 32,768 Hz Low-power Oscillator or Internal Low Power RC Oscillator on  
Battery Backup Power Supply, Providing a Permanent Slow Clock  
– 3 to 20 MHz On-chip Oscillator, One up to 240 MHz PLL and One up to 130 MHz PLL  
Power Management Controller (PMC)  
– Very Slow Clock Operating Mode, Software Programmable Power Optimization  
Capabilities  
NOTE: This is a summary document.  
The complete document is available on  
the Atmel website at www.atmel.com.  
– Two Programmable External Clock Signals  
Advanced Interrupt Controller (AIC)  
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources  
– Three External Interrupt Sources and One Fast Interrupt Source, Spurious  
Interrupt Protected  
6221ES–ATARM–12-Mar-07  
Debug Unit (DBGU)  
– 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access Prevention  
Periodic Interval Timer (PIT)  
– 20-bit Interval Timer plus 12-bit Interval Counter  
Watchdog Timer (WDT)  
– Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock  
Real-time Timer (RTT)  
– 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler  
One 4-channel 10-bit Analog-to-Digital Converter  
Three 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC)  
– 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os  
– Input Change Interrupt Capability on Each I/O Line  
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output  
– High-current Drive I/O Lines, Up to 16 mA Each  
Peripheral DMA Controller Channels (PDC)  
One Two-slot MultiMedia Card Interface (MCI)  
– SDCard/SDIO and MultiMediaCardCompliant  
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC  
One Synchronous Serial Controller (SSC)  
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter  
– I²S Analog Interface Support, Time Division Multiplex Support  
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer  
Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)  
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding  
– Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support  
– Full Modem Signal Control on USART0  
Two 2-wire UARTs  
Two Master/Slave Serial Peripheral Interfaces (SPI)  
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects  
– Synchronous Communications  
Two Three-channel 16-bit Timer/Counters (TC)  
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel  
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability  
– High-Drive Capability on Outputs TIOA0, TIOA1, TIOA2  
One Two-wire Interface (TWI)  
– Master, Multi-master and Slave Mode Operation  
– General Call Supported in Slave Mode  
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins  
Required Power Supplies:  
– 1.65V to 1.95V for VDDBU, VDDCORE and VDDPLL  
– 1.65V to 3.6V for VDDIOP1 (Peripheral I/Os)  
– 3.0V to 3.6V for VDDIOP0 and VDDANA (Analog-to-digital Converter)  
– Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM (Memory I/Os)  
Available in a 208-lead PQFP Green and a 217-ball LFBGA RoHS-compliant Package  
2
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
1. Description  
The AT91SAM9260 is based on the integration of an ARM926EJ-S processor with fast ROM  
and RAM memories and a wide range of peripherals.  
The AT91SAM9260 embeds an Ethernet MAC, one USB Device Port, and a USB Host control-  
ler. It also integrates several standard peripherals, such as the USART, SPI, TWI, Timer  
Counters, Synchronous Serial Controller, ADC and MultiMedia Card Interface.  
The AT91SAM9260 is architectured on a 6-layer matrix, allowing a maximum internal bandwidth  
of six 32-bit buses. It also features an External Bus Interface capable of interfacing with a wide  
range of memory devices.  
2. AT91SAM9260 Block Diagram  
The block diagram shows all the features for the 217-LFBGA package. Some functions are not  
accessible in the 208-pin PQFP package and the unavailable pins are highlighted in “Multiplex-  
ing on PIO Controller A” on page 34, “Multiplexing on PIO Controller B” on page 35,  
“Multiplexing on PIO Controller C” on page 36. The USB Host Port B is not available in the 208-  
pin package. Table 2-1 on page 3 defines all the multiplexed and not multiplexed pins not avail-  
able in the 208-PQFP package.  
Table 2-1.  
Unavailable Signals in 208-lead PQFP Package  
PIO  
Peripheral A  
HDPB  
HDMB  
SCK2  
SCK0  
TXD5  
Peripheral B  
-
-
-
-
PA30  
PA31  
PB12  
PB13  
PC2  
PC3  
PC12  
RXD4  
TXD4  
ISI_D10  
ISI_D11  
PCK1  
RXD5  
AD2  
AD3  
SPI1_NPCS3  
NCS7  
IRQ0  
3
6221ES–ATARM–12-Mar-07  
MASTER  
SLAVE  
System  
Controller  
JTAG Selection and Boundary Scan  
TST  
Transc. Transc.  
FIQ  
IRQ0-IRQ2  
In-Circuit Emulator  
AIC  
Image  
Sensor  
Interface  
10/100 Ethernet  
MAC  
USB  
OHCI  
ARM926EJ-S Processor  
DBGU  
PDC  
DRXD  
DTXD  
ICache  
8 Kbytes  
DCache  
8 Kbytes  
FIFO  
FIFO  
MMU  
PCK0-PCK1  
PMC  
DMA  
DMA  
DMA  
Bus Interface  
PLLRCA  
PLLA  
I
D
PLLB  
OSC  
WDT  
XIN  
XOUT  
6-layer Matrix  
PIT  
4GPREG  
RC  
OSCSEL  
XIN32  
XOUT32  
OSC  
RTT  
D0-D15  
PIOA  
PIOB  
A0/NBS0  
ROM  
32 Kbytes  
Fast SRAM  
4 Kbytes  
Fast SRAM  
4 Kbytes  
SHDN  
WKUP  
A1/NBS2/NWR2  
A2-A15, A18-A20  
A16/BA0  
EBI  
SHDC  
Peripheral  
Bridge  
22-channel  
Peripheral  
DMA  
CompactFlash  
NAND Flash  
VDDBU  
POR  
POR  
A17/BA1  
PIOC  
NCS0  
NCS1/SDCS  
VDDCORE  
NRST  
RSTC  
NRD  
NWR0/NWE  
NWR1/NBS1  
NWR3/NBS3  
SDCK, SDCKE  
RAS, CAS  
SDWE, SDA10  
NANDOE, NANDWE  
A21/NANDALE  
A22/NANDCLE  
D16-D31  
APB  
SDRAM  
Controller  
PDC  
MCI  
PDC  
SPI0  
PDC  
USART0  
USART1  
USART2  
USART3  
USART4  
USART5  
PDC  
SSC  
PDC  
DPRAM  
Static  
Memory  
Controller  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
4-channel  
10-bit ADC  
USB  
Device  
TWI  
SPI1  
NWAIT  
A23-A24  
NCS4/CFCS0  
NCS5/CFCS1  
A25/CFRNW  
CFCE1-CFCE2  
ECC  
Controller  
NCS2, NCS6, NCS7  
NCS3/NANDCS  
Transceiver  
SPI0_, SPI1_  
AT91SAM9260 Preliminary  
3. Signal Description  
Table 3-1.  
Signal Description List  
Active  
Signal Name  
Function  
Type  
Level  
Comments  
Power Supplies  
EBI I/O Lines Power Supply  
VDDIOM  
VDDIOP0  
VDDIOP1  
VDDBU  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
1.65V to 1.95V or 3.0V to3.6V  
3.0V to 3.6V  
Peripherals I/O Lines Power Supply  
Peripherals I/O Lines Power Supply  
Backup I/O Lines Power Supply  
Analog Power Supply  
PLL Power Supply  
1.65V to 3.6V  
1.65V to 1.95V  
3.0V to 3.6V  
VDDANA  
VDDPLL  
VDDCORE  
GND  
1.65V to 1.95V  
1.65V to 1.95V  
Core Chip Power Supply  
Ground  
GNDPLL  
GNDANA  
GNDBU  
PLL and Oscillator Ground  
Analog Ground  
Backup Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
XOUT  
XIN32  
XOUT32  
Main Oscillator Output  
Slow Clock Oscillator Input  
Slow Clock Oscillator Output  
Output  
Accepts between 0V and  
VDDBU.  
OSCSEL  
Slow Clock Oscillator Selection  
Input  
PLLRCA  
PLL A Filter  
Input  
PCK0 - PCK1  
Programmable Clock Output  
Output  
Shutdown, Wakeup Logic  
Driven at 0V only. Do not tie  
over VDDBU.  
SHDN  
WKUP  
Shutdown Control  
Wake-up Input  
Output  
Input  
Accepts between 0V and  
VDDBU.  
ICE and JTAG  
NTRST  
TCK  
Test Reset Signal  
Test Clock  
Input  
Input  
Low  
Pull-up resistor  
No pull-up resistor  
No pull-up resistor  
TDI  
Test Data In  
Input  
TDO  
TMS  
Test Data Out  
Test Mode Select  
Output  
Input  
No pull-up resistor  
Pull-down resistor. Accepts  
between 0V and VDDBU.  
JTAGSEL  
RTCK  
JTAG Selection  
Input  
Return Test Clock  
Output  
5
6221ES–ATARM–12-Mar-07  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
Function  
Type  
Comments  
Reset/Test  
NRST  
TST  
Microcontroller Reset  
Test Mode Select  
Boot Mode Select  
I/O  
Low  
Pull-up resistor  
Pull-down resistor. Accepts  
between 0V and VDDBU.  
Input  
Input  
BMS  
Debug Unit - DBGU  
DRXD  
DTXD  
Debug Receive Data  
Debug Transmit Data  
Input  
Output  
Advanced Interrupt Controller - AIC  
IRQ0 - IRQ2  
FIQ  
External Interrupt Inputs  
Fast Interrupt Input  
Input  
Input  
PIO Controller - PIOA - PIOB - PIOC  
PA0 - PA31  
PB0 - PB31  
PC0 - PC31  
Parallel IO Controller A  
I/O  
I/O  
I/O  
Pulled-up input at reset  
Pulled-up input at reset  
Pulled-up input at reset  
Parallel IO Controller B  
Parallel IO Controller C  
External Bus Interface - EBI  
D0 - D31  
A0 - A25  
NWAIT  
Data Bus  
I/O  
Pulled-up input at reset  
0 at reset  
Address Bus  
Output  
Input  
External Wait Signal  
Low  
Static Memory Controller - SMC  
NCS0 - NCS7  
NWR0 - NWR3  
NRD  
Chip Select Lines  
Write Signal  
Output  
Low  
Low  
Low  
Low  
Low  
Output  
Read Signal  
Output  
Output  
NWE  
Write Enable  
NBS0 - NBS3  
Byte Mask Signal  
Output  
CompactFlash Support  
CFCE1 - CFCE2  
CFOE  
CompactFlash Chip Enable  
CompactFlash Output Enable  
CompactFlash Write Enable  
CompactFlash IO Read  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
CFWE  
CFIOR  
CFIOW  
CompactFlash IO Write  
CFRNW  
CompactFlash Read Not Write  
CompactFlash Chip Select Lines  
CFCS0 - CFCS1  
Low  
NAND Flash Support  
NANDCS  
NANDOE  
NAND Flash Chip Select  
Output  
Output  
Low  
Low  
NAND Flash Output Enable  
6
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Signal Name  
NANDWE  
Function  
Type  
Output  
Output  
Output  
Level  
Low  
Low  
Comments  
NAND Flash Write Enable  
NANDALE  
NANDCLE  
NAND Flash Address Latch Enable  
NAND Flash Command Latch Enable  
SDRAM Controller  
Low  
SDCK  
SDRAM Clock  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
SDCKE  
SDCS  
SDRAM Clock Enable  
SDRAM Controller Chip Select  
Bank Select  
High  
Low  
BA0 - BA1  
SDWE  
SDRAM Write Enable  
Row and Column Signal  
SDRAM Address 10 Line  
Low  
Low  
RAS - CAS  
SDA10  
Multimedia Card Interface MCI  
MCCK  
Multimedia Card Clock  
Output  
I/O  
MCCDA  
Multimedia Card Slot A Command  
Multimedia Card Slot A Data  
Multimedia Card Slot B Command  
Multimedia Card Slot B Data  
MCDA0 - MCDA3  
MCCDB  
I/O  
I/O  
MCDB0 - MCDB3  
I/O  
Universal Synchronous Asynchronous Receiver Transmitter USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
DTR0  
DSR0  
DCD0  
RI0  
USARTx Serial Clock  
I/O  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
USARTx Request To Send  
USARTx Clear To Send  
USART0 Data Terminal Ready  
USART0 Data Set Ready  
USART0 Data Carrier Detect  
USART0 Ring Indicator  
Input  
Output  
Input  
Output  
Input  
Input  
Input  
Synchronous Serial Controller - SSC  
TD  
RD  
TK  
RK  
TF  
RF  
SSC Transmit Data  
Output  
Input  
I/O  
SSC Receive Data  
SSC Transmit Clock  
SSC Receive Clock  
I/O  
SSC Transmit Frame Sync  
SSC Receive Frame Sync  
I/O  
I/O  
Timer/Counter - TCx  
7
6221ES–ATARM–12-Mar-07  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Signal Name  
TCLKx  
Function  
Type  
Input  
I/O  
Comments  
TC Channel x External Clock Input  
TIOAx  
TC Channel x I/O Line A  
TC Channel x I/O Line B  
TIOBx  
I/O  
Serial Peripheral Interface - SPIx_  
SPIx_MISO  
Master In Slave Out  
I/O  
I/O  
SPIx_MOSI  
Master Out Slave In  
SPIx_SPCK  
SPI Serial Clock  
I/O  
SPIx_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPIx_NPCS1-SPIx_NPCS3  
Output  
Two-Wire Interface  
TWD  
Two-wire Serial Data  
Two-wire Serial Clock  
I/O  
I/O  
TWCK  
USB Host Port  
HDPA  
HDMA  
HDPB  
HDMB  
USB Host Port A Data +  
USB Host Port A Data -  
USB Host Port B Data +  
USB Host Port B Data +  
Analog  
Analog  
Analog  
Analog  
USB Device Port  
Ethernet 10/100  
DDM  
DDP  
USB Device Port Data -  
USB Device Port Data +  
Analog  
Analog  
ETXCK  
ERXCK  
ETXEN  
ETX0-ETX3  
ETXER  
ERXDV  
ERX0-ERX3  
ERXER  
ECRS  
Transmit Clock or Reference Clock  
Receive Clock  
Input  
Input  
MII only, REFCK in RMII  
MII only  
Transmit Enable  
Output  
Output  
Output  
Input  
Transmit Data  
ETX0-ETX1 only in RMII  
MII only  
Transmit Coding Error  
Receive Data Valid  
Receive Data  
RXDV in MII , CRSDV in RMII  
ERX0-ERX1 only in RMII  
Input  
Receive Error  
Input  
Carrier Sense and Data Valid  
Collision Detect  
Input  
MII only  
MII only  
ECOL  
Input  
EMDC  
Management Data Clock  
Management Data Input/Output  
Force 100Mbit/sec.  
Output  
I/O  
EMDIO  
EF100  
Output  
High  
Image Sensor Interface  
8
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Signal Name  
Function  
Type  
Input  
Output  
Input  
Input  
Input  
Level  
Comments  
ISI_D0-ISI_D11  
ISI_MCK  
Image Sensor Data  
Image Sensor Reference Clock  
Image Sensor Horizontal Synchro  
Image Sensor Vertical Synchro  
Image Sensor Data clock  
ISI_HSYNC  
ISI_VSYNC  
ISI_PCK  
Analog to Digital Converter  
Digital pulled-up inputs at  
reset  
AD0-AD3  
Analog Inputs  
Analog  
ADVREF  
ADTRG  
Analog Positive Reference  
ADC Trigger  
Analog  
Input  
9
6221ES–ATARM–12-Mar-07  
4. Package and Pinout  
The AT91SAM9260 is available in two packages:  
• 208-pin PQFP Green package (0.5mm pitch) (Figure 4-1)  
• 217-ball LFBGA RoHS-compliant package (0.8 mm ball pitch) (Figure 4-2).  
4.1  
208-pin PQFP Package Outline  
Figure 4-1 shows the orientation of the 208-pin PQFP package.  
A detailed mechanical description is given in the section “AT91SAM9260 Mechanical Character-  
istics” of the product datasheet.  
Figure 4-1. 208-pin PQFP Package  
156  
105  
157  
104  
208  
53  
1
52  
10  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
4.2  
208-pin PQFP Pinout  
Table 4-1.  
Pinout for 208-pin PQFP Package  
Pin  
1
2
3
4
5
6
7
8
Signal Name  
PA24  
PA25  
PA26  
PA27  
VDDIOP0  
GND  
PA28  
PA29  
PB0  
PB1  
PB2  
PB3  
VDDIOP0  
GND  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PB14  
PB15  
PB16  
VDDIOP0  
GND  
PB17  
PB18  
PB19  
TDO  
TDI  
TMS  
VDDIOP0  
GND  
TCK  
NTRST  
NRST  
RTCK  
VDDCORE  
GND  
Pin  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
Signal Name  
GND  
DDM  
DDP  
PC13  
PC11  
PC10  
PC14  
PC9  
PC8  
PC4  
PC6  
PC7  
VDDIOM  
GND  
PC5  
NCS0  
CFOE/NRD  
CFWE/NWE/NWR0  
NANDOE  
NANDWE  
A22  
A21  
A20  
A19  
VDDCORE  
GND  
A18  
BA1/A17  
BA0/A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
VDDIOM  
GND  
A7  
A6  
A5  
A4  
A3  
A2  
NWR2/NBS2/A1  
NBS0/A0  
SDA10  
CFIOW/NBS3/NWR3  
CFIOR/NBS1/NWR1  
SDCS/NCS1  
CAS  
Pin  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
Signal Name  
RAS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
Pin  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
Signal Name  
ADVREF  
PC0  
PC1  
VDDANA  
PB10  
PB11  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
VDDIOP1  
GND  
PB26  
PB27  
GND  
VDDCORE  
PB28  
PB29  
PB30  
PB31  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
VDDIOP0  
GND  
PA8  
PA9  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
VDDIOP0  
GND  
PA18  
PA19  
VDDCORE  
GND  
PA20  
PA21  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
VDDIOM  
SDCK  
SDWE  
SDCKE  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
PC15  
PC16  
PC17  
PC18  
PC19  
VDDIOM  
GND  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
GND  
VDDCORE  
VDDPLL  
XIN  
XOUT  
GNDPLL  
NC  
GNDPLL  
PLLRCA  
VDDPLL  
GNDANA  
BMS  
OSCSEL  
TST  
JTAGSEL  
GNDBU  
XOUT32  
XIN32  
VDDBU  
WKUP  
SHDN  
HDMA  
HDPA  
VDDIOP0  
PA22  
PA23  
11  
6221ES–ATARM–12-Mar-07  
4.3  
217-ball LFBGA Package Outline  
Figure 4-2 shows the orientation of the 217-ball LFBGA package.  
A detailed mechanical description is given in the section “AT91SAM9260 Mechanical Character-  
istics” of the product datasheet.  
Figure 4-2.  
217-ball LFBGA Package (Top View)  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B C D E F G H J K L M N P R T U  
Ball A1  
12  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
4.4  
217-ball LFBGA Pinout  
Table 4-2.  
Pin  
Pinout for 217-ball LFBGA Package  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
CFIOW/NBS3/NWR3  
NBS0/A0  
NWR2/NBS2/A1  
A6  
A8  
A11  
A13  
BA0/A16  
D5  
D6  
D7  
D8  
A5  
GND  
A10  
GND  
VDDCORE  
GND  
VDDIOM  
GND  
DDM  
HDPB  
NC  
VDDBU  
XIN32  
D10  
D5  
D3  
J14  
J15  
J16  
J17  
K1  
K2  
K3  
K4  
K8  
TDO  
PB19  
TDI  
P17  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
PB5  
NC  
GNDANA  
PC29  
VDDANA  
PB12  
PB23  
GND  
PB26  
PB28  
PA0  
PB16  
PC24  
PC20  
D15  
PC21  
GND  
GND  
GND  
PB4  
PB17  
GND  
PB15  
GND  
PC26  
PC25  
VDDIOP0  
PA28  
PB9  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
E1  
E2  
E3  
E4  
E14  
E15  
E16  
E17  
F1  
F2  
F3  
F4  
F14  
F15  
F16  
F17  
G1  
G2  
G3  
G4  
G14  
G15  
G16  
G17  
H1  
A9  
A18  
A21  
A22  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
K9  
R9  
K10  
K14  
K15  
K16  
K17  
L1  
L2  
L3  
L4  
L14  
L15  
L16  
L17  
M1  
M2  
M3  
M4  
M14  
M15  
M16  
M17  
N1  
N2  
N3  
N4  
N14  
N15  
N16  
N17  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
CFWE/NWE/NWR0  
PA4  
PA5  
CFOE/NRD  
NCS0  
PC5  
PC6  
PC4  
SDCK  
CFIOR/NBS1/NWR1  
SDCS/NCS1  
SDA10  
A3  
A7  
A12  
A15  
A20  
NANDWE  
PC7  
PC10  
PC13  
PC11  
PC14  
PC8  
WKUP  
D8  
D1  
CAS  
A2  
A4  
A9  
A14  
BA1/A17  
A19  
NANDOE  
PC9  
PC12  
DDP  
HDMB  
NC  
VDDIOP0  
SHDN  
D9  
PA10  
PA21  
PA23  
PA24  
PA29  
PLLRCA  
GNDPLL  
PC0  
D4  
HDPA  
HDMA  
GNDBU  
XOUT32  
D13  
SDWE  
D6  
GND  
OSCSEL  
BMS  
JTAGSEL  
TST  
PC15  
D7  
SDCKE  
VDDIOM  
GND  
NRST  
RTCK  
TMS  
PC18  
D14  
D12  
D11  
GND  
GND  
PB8  
PC1  
PB14  
VDDCORE  
PC31  
GND  
PC22  
PB1  
PB2  
PB3  
PB7  
XIN  
VDDPLL  
PC23  
PC27  
PA31  
PA30  
PB0  
PB10  
PB22  
GND  
PB29  
PA2  
PA6  
PA8  
PA11  
VDDCORE  
PA20  
GND  
PA22  
PA27  
GNDPLL  
ADVREF  
PC2  
H2  
H3  
H4  
H8  
PB6  
PC3  
XOUT  
VDDPLL  
PC30  
PC28  
PB11  
PB13  
PB24  
VDDIOP1  
PB30  
PB31  
PA1  
PA3  
PA7  
PA9  
PA26  
PA25  
PB20  
PB21  
PB25  
PB27  
PA12  
PA13  
PA14  
PA15  
PA19  
PA17  
PA16  
PA18  
VDDIOP0  
H9  
H10  
H14  
H15  
H16  
H17  
J1  
J2  
J3  
J4  
J8  
GND  
VDDCORE  
TCK  
NTRST  
PB18  
PC19  
PC17  
VDDIOM  
PC16  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
D2  
D3  
D4  
D2  
RAS  
D0  
J9  
J10  
GND  
GND  
13  
6221ES–ATARM–12-Mar-07  
5. Power Considerations  
5.1  
Power Supplies  
The AT91SAM9XE512 has several types of power supply pins:  
• VDDCORE pins: Power the core, including the processor, the embedded memories and the  
peripherals; voltage ranges from 1.65V and 1.95V, 1.8V nominal.  
• VDDIOM pins: Power the External Bus Interface I/O lines; voltage ranges between 1.65V and  
1.95V (1.8V typical) or between 3.0V and 3.6V (3.3V nominal). The expected voltage range is  
selectable by software.  
• VDDIOP0 pins: Power the Peripheral I/O lines and the USB transceivers; voltage ranges from  
3.0V and 3.6V, 3V or 3.3V nominal.  
• VDDIOP1 pins: Power the Peripherals I/O lines involving the Image Sensor Interface; voltage  
ranges from 1.65V and 3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.  
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage  
ranges from 1.65V to 1.95V, 1.8V nominal.  
• VDDPLL pin: Powers the Main Oscillator and PLL cells; voltage ranges from 1.65V and  
1.95V, 1.8V nominal.  
• VDDANA pin: Powers the Analog to Digital Converter; voltage ranges from 3.0V and 3.6V,  
3.3V nominal.  
The power supplies VDDIOM, VDDIOP0 and VDDIOP1 are identified in the pinout table and the  
multiplexing tables. These supplies enable the user to power the device differently for interfacing  
with memories and for interfacing with peripherals.  
Ground pins GND are common to VDDCORE, VDDIOM, VDDIOP0 and VDDIOP1 pins power  
supplies. Separated ground pins are provided for VDDBU, VDDPLL and VDDANA. These  
ground pins are respectively GNDBU, GNDPLL and GNDANA.  
5.2  
5.3  
Power Consumption  
The AT91SAM9260 consumes about 500 µA of static current on VDDCORE at 25°C. This static  
current rises up to 5 mA if the temperature increases to 85°C.  
On VDDBU, the current does not exceed 10 µA in worst case conditions.  
For dynamic power consumption, the AT91SAM9260 consumes a maximum of 100 mA on  
VDDCORE at maximum conditions (1.8V, 25°C, processor running full-performance algorithm  
out of high speed memories).  
Programmable I/O Lines Power Supplies  
The power supplies pins VDDIOM accept two voltage ranges. This allows the device to reach its  
maximum speed either out of 1.8V or 3.3V external memories.  
The target maximum speed is 100 MHz on the pin SDCK (SDRAM Clock) loaded with 30 pF for  
power supply at 1.8V and 50 pF for power supply at 3.3V. The other signals (control, address  
and data signals) do not exceed 50 MHz.  
The voltage ranges are determined by programming registers in the Chip Configuration registers  
located in the Matrix User Interface.  
At reset, the selected voltage defaults to 3.3V nominal, and power supply pins can accept either  
1.8V or 3.3V. Obviously, the device cannot reach its maximum speed if the voltage supplied to  
14  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
the pins is 1.8V only. The user must program the EBI voltage range before getting the device out  
of its Slow Clock Mode.  
6. I/O Line Considerations  
6.1  
JTAG Port Pins  
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.  
TDO and RTCK are outputs, driven at up to VDDIOP0, and have no pull-up resistors.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level (tied  
to VDDBU). It integrates a permanent pull-down resistor of about 15 kto GNDBU, so that it can  
be left unconnected for normal operations.  
The NTRST signal is described in Section 6.3.  
All the JTAG signals are supplied with VDDIOP0.  
6.2  
6.3  
Test Pin  
The TST pin is used for manufacturing test purposes when asserted high. It integrates a perma-  
nent pull-down resistor of about 15 kto GNDBU, so that it can be left unconnected for normal  
operations. Driving this line at a high level leads to unpredictable results.  
This pin is supplied with VDDBU.  
Reset Pins  
NRST is a bidirectional with an open-drain output integrating a non-programmable pull-up resis-  
tor. It can be driven with voltage at up to VDDIOP0.  
NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the  
processor.  
As the product integrates power-on reset cells, which manages the processor and the JTAG  
reset, the NRST and NTRST pins can be left unconnected.  
The NRST and NTRST pins both integrate a permanent pull-up resistor to VDDIOP0. Its value  
can be found in the table “DC Characteristics” in the section “AT91SAM9260 Electrical Charac-  
teristics” in the product datasheet.  
The NRST signal is inserted in the Boundary Scan.  
6.4  
PIO Controllers  
All the I/O lines managed by the PIO Controllers integrate a programmable pull-up resistor.  
Refer to the section on DC Characteristics in “AT91SAM9260 Electrical Characteristics” for  
more information. Programming of this pull-up resistor is performed independently for each I/O  
line through the PIO Controllers.  
After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which  
are multiplexed with the External Bus Interface signals and that must be enabled as Peripheral  
at reset. This is explicitly indicated in the column “Reset State” of the PIO Controller multiplexing  
tables.  
15  
6221ES–ATARM–12-Mar-07  
6.5  
6.6  
I/O Line Drive Levels  
The PIO lines are high-drive current capable. Each of these I/O lines can drive up to 16 mA  
permanently.  
Shutdown Logic Pins  
The SHDN pin is an output only, which is driven by the Shutdown Controller.  
The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.  
6.7  
Slow Clock Selection  
The AT91SAM9260 slow clock can be generated either by an external 32,768 Hz crystal or the  
on-chip RC oscillator.  
Table 6-1 on page 16 defines the states for OSCSEL signal.  
Table 6-1.  
Slow Clock Selection  
Slow Clock  
OSCSEL  
Startup Time  
240 µs  
0
1
Internal RC  
External 32768 Hz  
1200 ms  
The startup counter delay for the slow clock oscillator depends on the OSCSEL signal. The  
32,768 Hz startup delay is 1200 ms whereas it is 200 µs for the internal RC oscillator (refer to  
Table 6-1). The pin OSCSEL must be tied either to GND or VDDBU for correct operation of the  
device.  
7. Processor and Architecture  
7.1  
ARM926EJ-S Processor  
• RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java  
acceleration  
Two Instruction Sets  
– ARM High-performance 32-bit Instruction Set  
– Thumb High Code Density 16-bit Instruction Set  
• DSP Instruction Extensions  
• 5-Stage Pipeline Architecture:  
– Instruction Fetch (F)  
– Instruction Decode (D)  
– Execute (E)  
– Data Memory (M)  
– Register Write (W)  
• 8-Kbyte Data Cache, 8-Kbyte Instruction Cache  
– Virtually-addressed 4-way Associative Cache  
– Eight words per line  
– Write-through and Write-back Operation  
– Pseudo-random or Round-robin Replacement  
16  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
• Write Buffer  
– Main Write Buffer with 16-word Data Buffer and 4-address Buffer  
– DCache Write-back Buffer with 8-word Entries and a Single Address Entry  
– Software Control Drain  
• Standard ARM v4 and v5 Memory Management Unit (MMU)  
– Access Permission for Sections  
– Access Permission for large pages and small pages can be specified separately for  
each quarter of the page  
– 16 embedded domains  
• Bus Interface Unit (BIU)  
– Arbitrates and Schedules AHB Requests  
– Separate Masters for both instruction and data access providing complete Matrix  
system flexibility  
– Separate Address and Data Buses for both the 32-bit instruction interface and the  
32-bit data interface  
– On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit  
(Words)  
7.2  
Bus Matrix  
• 6-layer Matrix, handling requests from 6 masters  
• Programmable Arbitration strategy  
– Fixed-priority Arbitration  
– Round-Robin Arbitration, either with no default master, last accessed default master  
or fixed default master  
• Burst Management  
– Breaking with Slot Cycle Limit Support  
– Undefined Burst Length Support  
• One Address Decoder provided per Master  
– Three different slaves may be assigned to each decoded memory area: one for  
internal boot, one for external boot, one after remap  
• Boot Mode Select  
– Non-volatile Boot Memory can be internal or external  
– Selection is made by BMS pin sampled at reset  
• Remap Command  
– Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory  
– Allows Handling of Dynamic Exception Vectors  
17  
6221ES–ATARM–12-Mar-07  
7.2.1  
Matrix Masters  
The Bus Matrix of the AT91SAM9260 manages six Masters, which means that each master can  
perform an access concurrently with others, according the slave it accesses is available.  
Each Master has its own decoder that can be defined specifically for each master. In order to  
simplify the addressing, all the masters have the same decodings.  
Table 7-1.  
Master 0  
Master 1  
Master 2  
Master 3  
Master 4  
Master 5  
List of Bus Matrix Masters  
ARM926Instruction  
ARM926 Data  
PDC  
ISI Controller  
Ethernet MAC  
USB Host DMA  
7.2.2  
Matrix Slaves  
Each Slave has its own arbiter, thus allowing a different arbitration per Slave to be programmed.  
Table 7-2.  
Slave 0  
List of Bus Matrix Slaves  
Internal SRAM0 4kBytes  
Slave 1  
Internal SRAM1 4kBytes  
Internal ROM  
Slave 2  
USB Host User Interface  
External Bus Interface  
Internal Peripherals  
Slave 3  
Slave 4  
7.2.3  
Master to Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
such as allowing access from the Ethernet MAC to the Internal Peripherals. Thus, these paths  
are forbidden or simply not wired, and shown “-” in the following table.  
Table 7-3.  
AT91SAM9260 Masters to Slaves Access  
Master  
0 & 1  
2
3
4
5
ARM926  
Instruction &  
Data  
Peripheral  
DMA  
Controller  
ISI  
Controller  
Ethernet  
MAC  
USB Host  
Controller  
Slave  
Internal SRAM  
4 KBytes  
0
1
X
X
X
X
X
X
X
X
X
X
Internal SRAM  
4 KBytes  
Internal ROM  
X
X
X
X
X
-
-
-
-
-
X
-
2
UHP User Interface  
External Bus Interface  
Internal Peripherals  
3
4
X
X
X
-
X
-
X
X
18  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
7.3  
Peripheral DMA Controller  
• Acting as one Matrix Master  
• Allows data transfers from/to peripheral to/from any memory space without any intervention  
of the processor.  
• Next Pointer Support, forbids strong real-time constraints on buffer management.  
Twenty-two channels  
Two for each USART  
Two for the Debug Unit  
Two for each Serial Synchronous Controller  
Two for each Serial Peripheral Interface  
– One for Multimedia Card Interface  
– One for Analog-to-Digital Converter  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
– DBGU Transmit Channel  
– USART5 Transmit Channel  
– USART4 Transmit Channel  
– USART3 Transmit Channel  
– USART2 Transmit Channel  
– USART1 Transmit Channel  
– USART0 Transmit Channel  
– SPI1 Transmit Channel  
– SPI0 Transmit Channel  
– SSC Transmit Channel  
– DBGU Receive Channel  
– USART5 Receive Channel  
– USART4 Receive Channel  
– USART3 Receive Channel  
– USART2 Receive Channel  
– USART1 Receive Channel  
– USART0 Receive Channel  
– ADC Receive Channel  
– SPI1 Receive Channel  
– SPI0 Receive Channel  
– SSC Receive Channel  
– MCI Transmit/Receive Channel  
7.4  
Debug and Test Features  
• ARM926 Real-time In-circuit Emulator  
Two real-time Watchpoint Units  
Two Independent Registers: Debug Control Register and Debug Status Register  
19  
6221ES–ATARM–12-Mar-07  
Test Access Port Accessible through JTAG Protocol  
– Debug Communications Channel  
• Debug Unit  
Two-pin UART  
– Debug Communication Channel Interrupt Handling  
– Chip ID Register  
• IEEE1149.1 JTAG Boundary-scan on All Digital Pins  
20  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
8. Memories  
Figure 8-1. AT91SAM9260 Memory Mapping  
Address Memory Space  
Internal Memory Mapping  
Notes :  
(1) Can be ROM, EBI_NCS0 or SRAM  
0x0000 0000  
0x0000 0000  
0x10 0000  
0x10 8000  
0x20 0000  
0x20 1000  
0x30 0000  
0x30 1000  
0x50 0000  
0x50 4000  
depending on BMS and REMAP  
Boot Memory (1)  
ROM  
Internal Memories 256M Bytes  
32K Bytes  
4K Bytes  
4K Bytes  
0x0FFF FFFF  
0x1000 0000  
Reserved  
EBI  
Chip Select 0  
256M Bytes  
SRAM0  
0x1FFF FFFF  
0x2000 0000  
Reserved  
EBI  
Chip Select 1/  
256M Bytes  
SRAM1  
SDRAMC  
0x2FFF FFFF  
0x3000 0000  
Reserved  
UHP  
EBI  
Chip Select 2  
16K Bytes  
256M Bytes  
256M Bytes  
0x3FFF FFFF  
0x4000 0000  
Reserved  
EBI  
0x0FFF FFFF  
Chip Select 3/  
NANDFlash  
0x4FFF FFFF  
0x5000 0000  
EBI  
Chip Select 4/  
Compact Flash  
Slot 0  
256M Bytes  
256M Bytes  
0x5FFF FFFF  
0x6000 0000  
EBI  
Peripheral Mapping  
Chip Select 5/  
Compact Flash  
Slot 1  
0xF000 0000  
0xFFFA 0000  
System Controller Mapping  
0x6FFF FFFF  
0x7000 0000  
Reserved  
TCO, TC1, TC2  
UDP  
0xFFFF C000  
16K Bytes  
EBI  
Chip Select 6  
256M Bytes  
256M Bytes  
Reserved  
ECC  
0xFFFA 4000  
0xFFFA 8000  
0xFFFF E800  
0xFFFF EA00  
0xFFFF EC00  
0xFFFF EE00  
16K Bytes  
0x7FFF FFFF  
0x8000 0000  
512 Bytes  
512 Bytes  
512 Bytes  
EBI  
Chip Select 7  
16K Bytes  
16K Bytes  
MCI  
TWI  
0xFFFA C000  
SDRAMC  
SMC  
0x8FFF FFFF  
0x9000 0000  
0xFFFB 0000  
0xFFFB 4000  
0xFFFB 8000  
0xFFFB C000  
0xFFFC 0000  
0xFFFC 4000  
0xFFFC 8000  
USART0  
USART1  
USART2  
SSC  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
MATRIX  
CCFG  
0xFFFF EF10  
0xFFFF F000  
512 Bytes  
512 Bytes  
AIC  
0xFFFF F200  
0xFFFF F400  
0xFFFF F600  
DBGU  
PIOA  
512 Bytes  
512 Bytes  
512 bytes  
ISI  
EMAC  
1,518M Bytes  
Undefined  
(Abort)  
SPI0  
PIOB  
PIOC  
0xFFFC C000  
0xFFFF F800  
0xFFFF FA00  
0xFFFF FC00  
0xFFFF FD00  
SPI1  
512 bytes  
0xFFFD 0000  
0xFFFD 4000  
16K Bytes  
16K Bytes  
16K Bytes  
USART3  
Reserved  
USART4  
PMC  
256 Bytes  
0xFFFD 8000  
0xFFFD C000  
0xFFFE 0000  
0xFFFE 4000  
0xFFFF C000  
USART5  
RSTC  
16 Bytes  
16 Bytes  
0xFFFF FD10  
0xFFFF FD20  
SHDC  
RTTC  
PITC  
TC3, TC4, TC5  
16K Bytes  
16K Bytes  
16 Bytes  
16 Bytes  
0xFFFF FD30  
0xFFFF FD40  
ADC  
0xEFFF FFFF  
0xF000 0000  
WDTC  
GPBR  
16 Bytes  
16 Bytes  
0xFFFF FD50  
0xFFFF FD60  
Reserved  
SYSC  
Internal Peripherals 256M Bytes  
16K Bytes  
Reserved  
0xFFFF FFFF  
0xFFFF FFFF  
0xFFFF FFFF  
21  
6221ES–ATARM–12-Mar-07  
A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the  
Advanced High Performance Bus (AHB) for its Master and Slave interfaces with additional  
features.  
Decoding breaks up the 4G bytes of address space into 16 banks of 256 Mbytes. The banks 1 to  
7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to  
EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a second level  
of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved for the peripherals  
and provides access to the Advanced Peripheral Bus (APB).  
Other areas are unused and performing an access within them provides an abort to the master  
requesting such an access.  
Each Master has its own bus and its own decoder, thus allowing a different memory mapping  
per Master. However, in order to simplify the mappings, all the masters have a similar address  
decoding.  
Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are  
assigned to the memory space decoded at address 0x0: one for internal boot, one for external  
boot, one after remap. Refer to Table 8-1, “Internal Memory Mapping,” on page 22 for details.  
A complete memory map is presented in Figure 8-1 on page 21.  
8.1  
Embedded Memories  
• 32 KB ROM  
– Single Cycle Access at full matrix speed  
Two 4 KB Fast SRAM  
– Single Cycle Access at full matrix speed  
8.1.1  
Boot Strategies  
Table 8-1 summarizes the Internal Memory Mapping for each Master, depending on the Remap  
status and the BMS state at reset.  
Table 8-1.  
Internal Memory Mapping  
REMAP = 0  
REMAP = 1  
SRAM0 4K  
Address  
BMS = 1  
ROM  
BMS = 0  
0x0000 0000  
EBI_NCS0  
The system always boots at address 0x0. To ensure a maximum number of possibilities for boot,  
the memory layout can be configured with two parameters.  
REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This  
is done by software once the system has booted. When REMAP = 1, BMS is ignored. Refer to  
the Bus Matrix Section for more details.  
When REMAP = 0, BMS allows the user to lay out to 0x0, at his convenience, the ROM or an  
external memory. This is done via hardware at reset.  
Note:  
Memory blocks not affected by these parameters can always be seen at their specified base  
addresses. See the complete memory map presented in Figure 8-1 on page 21.  
22  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
The AT91SAM9260 matrix manages a boot memory that depends on the level on the BMS pin  
at reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is reserved  
for this purpose.  
If BMS is detected at 1, the boot memory is the embedded ROM.  
If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the  
External Bus Interface.  
8.1.1.1  
BMS = 1, Boot on Embedded ROM  
The system boots using the Boot Program.  
• Boot on slow clock (On-chip RC or 32,768 Hz)  
• Auto baudrate detection  
• Downloads and runs an application from external storage media into internal SRAM  
• Downloaded code size depends on embedded SRAM size  
• Automatic detection of valid application  
• Bootloader on a non-volatile memory  
– SPI DataFlash® connected on NPCS0 and NPCS1 of the SPI0  
– 8-bit and/or 16-bit NANDFlash  
• SAM-BABoot in case no valid program is detected in external NVM, supporting  
– Serial communication on a DBGU  
– USB Device Port  
8.1.1.2  
BMS = 0, Boot on External Memory  
• Boot on slow clock (On-chip RC or 32,768 Hz)  
• Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit  
data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.  
The customer-programmed software must perform a complete configuration.  
To speed up the boot sequence when booting at 32 kHz EBI CS0 (BMS=0), the user must take  
the following steps:  
1. Program the PMC (main oscillator enable or bypass mode).  
2. Program and start the PLL.  
3. Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them  
to the new clock.  
4. Switch the main clock to the new value.  
8.2  
External Memories  
The external memories are accessed through the External Bus Interface. Each Chip Select line  
has a 256-Mbyte memory area assigned.  
Refer to the memory map in Figure 8-1 on page 21.  
8.2.1  
External Bus Interface  
• Integrates three External Memory Controllers  
– Static Memory Controller  
– SDRAM Controller  
23  
6221ES–ATARM–12-Mar-07  
– ECC Controller  
• Additional logic for NANDFlash  
• Full 32-bit External Data Bus  
• Up to 26-bit Address Bus (up to 64MBytes linear)  
• Up to 8 chip selects, Configurable Assignment:  
– Static Memory Controller on NCS0  
– SDRAM Controller or Static Memory Controller on NCS1  
– Static Memory Controller on NCS2  
– Static Memory Controller on NCS3, Optional NAND Flash support  
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlash support  
– Static Memory Controller on NCS6-NCS7  
8.2.2  
Static Memory Controller  
• 8-, 16- or 32-bit Data Bus  
• Multiple Access Modes supported  
– Byte Write or Byte Select Lines  
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)  
• Multiple device adaptability  
– Compliant with LCD Module  
– Control signals programmable setup, pulse and hold time for each Memory Bank  
• Multiple Wait State Management  
– Programmable Wait State Generation  
– External Wait Request  
– Programmable Data Float Time  
• Slow Clock mode supported  
8.2.3  
SDRAM Controller  
• Supported devices  
– Standard and Low-power SDRAM (Mobile SDRAM)  
• Numerous configurations supported  
– 2K, 4K, 8K Row Address Memory Parts  
– SDRAM with two or four Internal Banks  
– SDRAM with 16- or 32-bit Datapath  
• Programming facilities  
– Word, half-word, byte access  
– Automatic page break when Memory Boundary has been reached  
– Multibank Ping-pong Access  
– Timing parameters specified by software  
– Automatic refresh operation, refresh rate is programmable  
• Energy-saving capabilities  
– Self-refresh, power down and deep power down modes supported  
24  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
• Error detection  
– Refresh Error Interrupt  
• SDRAM Power-up Initialization by software  
• CAS Latency of 1, 2 and 3 supported  
• Auto Precharge Command not used  
8.2.4  
Error Corrected Code Controller  
Tracking the accesses to a NAND Flash device by trigging on the corresponding chip select  
• Single bit error correction and 2-bit Random detection  
• Automatic Hamming Code Calculation while writing  
– ECC value available in a register  
• Automatic Hamming Code Calculation while reading  
– Error Report, including error flag, correctable error flag and word address being  
detected erroneous  
– Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-bytes  
pages  
25  
6221ES–ATARM–12-Mar-07  
9. System Controller  
The System Controller is a set of peripherals that allows handling of key elements of the system,  
such as power, resets, clocks, time, interrupts, watchdog, etc.  
The System Controller User Interface also embeds the registers that configure the Matrix and a  
set of registers for the chip configuration. The chip configuration registers configure EBI chip  
select assignment and voltage range for external memories  
The System Controller’s peripherals are all mapped within the highest 16 Kbytes of address  
space, between addresses 0xFFFF E800 and 0xFFFF FFFF.  
However, all the registers of System Controller are mapped on the top of the address space. All  
the registers of the System Controller can be addressed from a single pointer by using the stan-  
dard ARM instruction set, as the Load/Store instruction has an indexing mode of ±4 Kbytes.  
Figure 9-1 on page 27 shows the System Controller block diagram.  
Figure 8-1 on page 21 shows the mapping of the User Interfaces of the System Controller  
peripherals.  
26  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
9.1  
Block Diagram  
Figure 9-1. AT91SAM9260 System Controller Block Diagram  
System Controller  
VDDCORE Powered  
nirq  
irq0-irq2  
Advanced  
Interrupt  
nfiq  
fiq  
periph_irq[2..24]  
Controller  
pit_irq  
rtt_irq  
int  
wdt_irq  
dbgu_irq  
pmc_irq  
rstc_irq  
ntrst  
ARM926EJ-S  
por_ntrst  
proc_nreset  
MCK  
Debug  
dbgu_irq  
dbgu_txd  
periph_nreset  
Unit  
PCK  
dbgu_rxd  
debug  
MCK  
Periodic  
Interval  
Timer  
debug  
pit_irq  
periph_nreset  
jtag_nreset  
Boundary Scan  
TAP Controller  
SLCK  
debug  
Watchdog  
Timer  
wdt_irq  
idle  
proc_nreset  
MCK  
wdt_fault  
WDRPROC  
Bus Matrix  
periph_nreset  
NRST  
rstc_irq  
por_ntrst  
jtag_nreset  
periph_nreset  
proc_nreset  
VDDCORE  
POR  
Reset  
UHPCK  
Controller  
backup_nreset  
periph_clk[20]  
USB Host  
Port  
VDDBU  
periph_nreset  
periph_irq[20]  
VDDBU Powered  
VDDBU  
POR  
SLCK  
SLCK  
rtt_irq  
rtt_alarm  
Real-time  
Timer  
backup_nreset  
UDPCK  
SLCK  
SHDN  
WKUP  
periph_clk[10]  
periph_nreset  
periph_irq[10]  
USB  
Device  
Port  
Shutdown  
Controller  
RC  
OSC  
backup_nreset  
rtt0_alarm  
OSC_SEL  
SLOW  
CLOCK  
OSC  
4 General-purpose  
Backup Registers  
XIN32  
XOUT32  
SLCK  
periph_clk[2..27]  
pck[0-1]  
int  
XIN  
PCK  
MAINCK  
MAIN  
OSC  
XOUT  
Power  
Management  
Controller  
UDPCK  
UHPCK  
PLLRCA  
PLLA  
PLLB  
PLLACK  
PLLBCK  
MCK  
pmc_irq  
idle  
periph_nreset  
periph_clk[6..24]  
periph_nreset  
periph_nreset  
periph_clk[2..4]  
dbgu_rxd  
periph_irq[2..4]  
irq0-irq2  
fiq  
Embedded  
Peripherals  
PIO  
Controllers  
periph_irq[6..24]  
PA0-PA31  
PB0-PB31  
PC0-PC31  
dbgu_txd  
in  
out  
enable  
27  
6221ES–ATARM–12-Mar-07  
9.2  
Reset Controller  
• Based on two Power-on-reset cells  
– One on VDDBU and one on VDDCORE  
• Status of the last reset  
– Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software  
reset, user reset or watchdog reset  
• Controls the internal resets and the NRST pin output  
– Allows shaping a reset signal for the external devices  
9.3  
9.4  
Shutdown Controller  
• Shutdown and Wake-up logic  
– Software programmable assertion of the SHDWN pin  
– Deassertion Programmable on a WKUP pin level change or on alarm  
Clock Generator  
• Embeds a Low-power 32,768 Hz Slow Clock Oscillator and a Low-power RC oscillator  
selectable with OSCSEL signal  
– Provides the permanent Slow Clock SLCK to the system  
• Embeds the Main Oscillator  
– Oscillator bypass feature  
– Supports 3 to 20 MHz crystals  
• Embeds 2 PLLs  
– PLLA outputs 80 to 240 MHz clock  
– PLLB outputs 70 to 130 MHz clock  
– Both integrate an input divider to increase output accuracy  
– PLLB embeds its own filter  
28  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
Figure 9-2. Clock Generator Block Diagram  
Clock Generator  
OSC_SEL  
On Chip  
RC OSC  
Slow Clock  
SLCK  
XIN32  
XOUT32  
XIN  
Slow Clock  
Oscillator  
Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
PLLRCA  
PLL and  
Divider B  
PLLB Clock  
PLLBCK  
Status  
Control  
Power  
Management  
Controller  
9.5  
Power Management Controller  
• Provides:  
– the Processor Clock PCK  
– the Master Clock MCK, in particular to the Matrix and the memory interfaces  
– the USB Device Clock UDPCK  
– independent peripheral clocks, typically at the frequency of MCK  
– 2 programmable clock outputs: PCK0, PCK1  
• Five flexible operating modes:  
– Normal Mode, processor and peripherals running at a programmable frequency  
– Idle Mode, processor stopped waiting for an interrupt  
– Slow Clock Mode, processor and peripherals running at low frequency  
– Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency,  
processor stopped waiting for an interrupt  
– Backup Mode, Main Power Supplies off, VDDBU powered by a battery  
29  
6221ES–ATARM–12-Mar-07  
Figure 9-3. AT91SAM9260 Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
PCK  
int  
Master Clock Controller  
Idle Mode  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Divider  
/1,/2,/3,/4  
Prescaler  
/1,/2,/4,...,/64  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
ON/OFF  
Prescaler  
/1,/2,/4,...,/64  
pck[..]  
USB Clock Controller  
ON/OFF  
UDPCK  
UHPCK  
Divider  
/1,/2,/4  
PLLBCK  
9.6  
Periodic Interval Timer  
• Includes a 20-bit Periodic Counter, with less than 1 µs accuracy  
• Includes a 12-bit Interval Overlay Counter  
• Real Time OS or Linux®/Windows CE® compliant tick generator  
9.7  
9.8  
Watchdog Timer  
• 16-bit key-protected only-once-Programmable Counter  
• Windowed, prevents the processor being in a dead-lock on the watchdog access  
Real-time Timer  
– Real-time Timer 32-bit free-running back-up Counter  
– Integrates a 16-bit programmable prescaler running on slow clock  
– Alarm Register capable of generating a wake-up of the system through the  
Shutdown Controller  
9.9  
General-purpose Back-up Registers  
• Four 32-bit backup general-purpose registers  
9.10 Advanced Interrupt Controller  
• Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor  
• Thirty-two individually maskable and vectored interrupt sources  
– Source 0 is reserved for the Fast Interrupt Input (FIQ)  
– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)  
30  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
– Programmable Edge-triggered or Level-sensitive Internal Sources  
– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive  
• Three External Sources plus the Fast Interrupt signal  
• 8-level Priority Controller  
– Drives the Normal Interrupt of the processor  
– Handles priority of the interrupt sources 1 to 31  
– Higher priority interrupts can be served during service of lower priority interrupt  
• Vectoring  
– Optimizes Interrupt Service Routine Branch and Execution  
– One 32-bit Vector Register per interrupt source  
– Interrupt Vector Register reads the corresponding current Interrupt Vector  
• Protect Mode  
– Easy debugging by preventing automatic operations when protect models are  
enabled  
• Fast Forcing  
– Permits redirecting any normal interrupt source on the Fast Interrupt of the  
processor  
9.11 Debug Unit  
• Composed of two functions:  
Two-pin UART  
– Debug Communication Channel (DCC) support  
Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel ® USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
• Debug Communication Channel Support  
– Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from  
the ARM Processor’s ICE Interface  
9.12 Chip Identification  
• Chip ID: 0x019803A0  
• JTAG ID: 0x05B1303F  
• ARM926 TAP ID: 0x0792603F  
31  
6221ES–ATARM–12-Mar-07  
10. Peripherals  
10.1 User Interface  
The peripherals are mapped in the upper 256 Mbytes of the address space between the  
addresses 0xFFFA 0000 and 0xFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of  
address space. A complete memory map is presented in Figure 8-1 on page 21.  
10.2 Identifiers  
Table 10-1 defines the Peripheral Identifiers of the AT91SAM9XE512. A peripheral identifier is  
required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for  
the control of the peripheral clock with the Power Management Controller.  
Table 10-1. AT91SAM9260 Peripheral Identifiers  
Peripheral ID  
Peripheral Mnemonic  
Peripheral Name  
Advanced Interrupt Controller  
System Controller Interrupt  
Parallel I/O Controller A  
Parallel I/O Controller B  
Parallel I/O Controller C  
Analog to Digital Converter  
USART 0  
External Interrupt  
0
AIC  
FIQ  
1
SYSC  
PIOA  
PIOB  
PIOC  
ADC  
US0  
US1  
US2  
MCI  
UDP  
TWI  
SPI0  
SPI1  
SSC  
-
2
3
4
5
6
7
USART 1  
8
USART 2  
9
Multimedia Card Interface  
USB Device Port  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Two-wire Interface  
Serial Peripheral Interface 0  
Serial Peripheral Interface 1  
Synchronous Serial Controller  
Reserved  
-
Reserved  
TC0  
TC1  
TC2  
UHP  
EMAC  
ISI  
Timer/Counter 0  
Timer/Counter 1  
Timer/Counter 2  
USB Host Port  
Ethernet MAC  
Image Sensor Interface  
USART 3  
US3  
US4  
US5  
TC3  
TC4  
TC5  
AIC  
USART 4  
USART 5  
Timer/Counter 3  
Timer/Counter 4  
Timer/Counter 5  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
Advanced Interrupt Controller  
IRQ0  
IRQ1  
IRQ2  
AIC  
AIC  
Note:  
Setting AIC, SYSC, UHP, ADC and IRQ0-2 bits in the clock set/clear registers of the PMC has no effect. The ADC clock is auto-  
matically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion.  
32  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
10.2.1  
Peripheral Interrupts and Clock Control  
10.2.1.1  
System Interrupt  
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:  
• the SDRAM Controller  
• the Debug Unit  
• the Periodic Interval Timer  
• the Real-time Timer  
• the Watchdog Timer  
• the Reset Controller  
• the Power Management Controller  
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used  
within the Advanced Interrupt Controller.  
10.2.1.2  
External Interrupts  
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to  
IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these  
peripheral IDs.  
10.3 Peripheral Signal Multiplexing on I/O Lines  
The AT91SAM9XE512 features 3 PIO controllers (PIOA, PIOB, PIOC) that multiplex the I/O  
lines of the peripheral set.  
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral  
functions, A or B. Table 10-2 on page 34, Table 10-3 on page 35 and Table 10-4 on page 36  
define how the I/O lines of the peripherals A and B are multiplexed on the PIO Controllers. The  
two columns “Function” and “Comments” have been inserted in this table for the user’s own  
comments; they may be used to track how pins are defined in an application.  
Note that some peripheral functions which are output only might be duplicated within both  
tables.  
The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral  
mode. If I/O appears, the PIO Line resets in input with the pull-up enabled, so that the device is  
maintained in a static state as soon as the reset is released. As a result, the bit corresponding to  
the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.  
If a signal name appears in the “Reset State” column, the PIO Line is assigned to this function  
and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories,  
in particular the address lines, which require the pin to be driven as soon as the reset is  
released. Note that the pull-up resistor is also enabled in this case.  
33  
6221ES–ATARM–12-Mar-07  
10.3.1  
PIO Controller A Multiplexing  
Table 10-2. Multiplexing on PIO Controller A  
PIO Controller A  
Application Usage  
I/O Line  
PA0  
Peripheral A  
SPI0_MISO  
SPI0_MOSI  
SPI0_SPCK  
SPI0_NPCS0  
RTS2  
Peripheral B  
MCDB0  
Comments  
Reset State Power Supply Function  
Comments  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
PA1  
MCCDB  
PA2  
PA3  
MCDB3  
MCDB2  
MCDB1  
PA4  
PA5  
CTS2  
PA6  
MCDA0  
MCCDA  
MCCK  
PA7  
PA8  
PA9  
MCDA1  
MCDA2  
MCDA3  
ETX0  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30(1)  
PA31(1)  
ETX2  
ETX3  
ETX1  
ERX0  
ERX1  
ETXEN  
ERXDV  
ERXER  
ETXCK  
EMDC  
EMDIO  
ADTRG  
TWD  
ETXER  
ETX2  
TWCK  
ETX3  
TCLK0  
TIOA0  
ERX2  
ERX3  
ERXCK  
ECRS  
ECOL  
RXD4  
TXD4  
TIOA1  
TIOA2  
SCK1  
SCK2  
SCK0  
Note:  
1. Not available in the 208-lead PQFP package.  
34  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
10.3.2  
PIO Controller B Multiplexing  
Table 10-3. Multiplexing on PIO Controller B  
PIO Controller B  
Application Usage  
I/O Line  
PB0  
Peripheral A  
SPI1_MISO  
SPI1_MOSI  
SPI1_SPCK  
SPI1_NPCS0  
TXD0  
Peripheral B  
TIOA3  
Comments Reset State Power Supply Function  
Comments  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
VDDIOP1  
PB1  
TIOB3  
PB2  
TIOA4  
PB3  
TIOA5  
PB4  
PB5  
RXD0  
TXD1  
PB6  
TCLK1  
TCLK2  
PB7  
RXD1  
TXD2  
PB8  
PB9  
RXD2  
TXD3  
PB10  
PB11  
PB12(1)  
PB13(1)  
PB14  
PB15  
PB16  
PB17  
PB18  
PB19  
PB20  
PB21  
PB22  
PB23  
PB24  
PB25  
PB26  
PB27  
PB28  
PB29  
PB30  
PB31  
ISI_D8  
ISI_D9  
ISI_D10  
ISI_D11  
RXD3  
TXD5  
RXD5  
DRXD  
DTXD  
TK0  
TCLK3  
TCLK4  
TIOB4  
TF0  
TD0  
RD0  
TIOB5  
RK0  
ISI_D0  
RF0  
ISI_D1  
DSR0  
DCD0  
DTR0  
ISI_D2  
ISI_D3  
ISI_D4  
RI0  
ISI_D5  
RTS0  
ISI_D6  
CTS0  
ISI_D7  
RTS1  
ISI_PCK  
ISI_VSYNC  
ISI_HSYNC  
ISI_MCK  
CTS1  
PCK0  
PCK1  
Note:  
1. Not available in the 208-lead PQFP package.  
35  
6221ES–ATARM–12-Mar-07  
10.3.3  
PIO Controller C Multiplexing  
Table 10-4. Multiplexing on PIO Controller C  
PIO Controller C  
Application Usage  
I/O Line  
PC0  
Peripheral A  
Peripheral B  
SCK3  
Comments  
AD0  
Reset State Power Supply Function  
Comments  
I/O  
I/O  
I/O  
I/O  
A23  
A24  
I/O  
I/O  
I/O  
I/O  
A25  
I/O  
I/O  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOP0  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
PC1  
PCK0  
AD1  
PC2(1)  
PC3(1)  
PC4  
PCK1  
AD2  
SPI1_NPCS3  
SPI1_NPCS2  
SPI1_NPCS1  
CFCE1  
AD3  
A23  
PC5  
A24  
PC6  
TIOB2  
PC7  
TIOB1  
CFCE2  
PC8  
NCS4/CFCS0  
NCS5/CFCS1  
A25/CFRNW  
NCS2  
RTS3  
PC9  
TIOB0  
PC10  
PC11  
PC12(1)  
CTS3  
SPI0_NPCS1  
NCS7  
IRQ0  
RDY/BUSY  
signal for  
NANDFlash in  
the ROM boot  
PC13  
FIQ  
NCS6  
I/O  
VDDIOM  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
NCS3/NANDCS  
NWAIT  
D16  
IRQ2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
VDDIOM  
IRQ1  
SPI0_NPCS2  
SPI0_NPCS3  
SPI1_NPCS1  
SPI1_NPCS2  
SPI1_NPCS3  
EF100  
D17  
D18  
D19  
D20  
D21  
D22  
TCLK5  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
Note:  
1. Not available in the 208-lead PQFP package.  
36  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
10.4 Embedded Peripherals  
10.4.1  
Serial Peripheral Interface  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Very fast transfers supported  
Transfers with baud rates up to MCK  
– The chip select line may be left active to speed up transfers on the same device  
10.4.2  
10.4.3  
Two-wire Interface  
• Master, MultiMaster and Slave modes supported  
• General Call supported in Slave mode  
USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Optional modem signal management DTR-DSR-DCD-RI  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
37  
6221ES–ATARM–12-Mar-07  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
The USART contains features allowing management of the Modem Signals DTR, DSR, DCD  
and RI. In the AT91SAM9260, only the USART0 implements these signals, named DTR0,  
DSR0, DCD0 and RI0.  
The USART1 and USART2 do not implement all the modem signals. Only RTS and CTS (RTS1  
and CTS1, RTS2 and CTS2, respectively) are implemented in these USARTs for other features.  
Thus, programming the USART1, USART2 or the USART3 in Modem Mode may lead to unpre-  
dictable results. In these USARTs, the commands relating to the Modem Mode have no effect  
and the status bits relating the status of the modem signals are never activated.  
10.4.4  
Serial Synchronous Controller  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers a configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
10.4.5  
Timer Counter  
• Six 16-bit Timer Counter Channels  
• Wide range of functions including  
– Frequency Measurement  
– Event Counting  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains  
– Three external clock inputs  
– Five internal clock inputs  
Two multi-purpose input/output signals  
Two global registers that act on all three TC Channels  
10.4.6  
Multimedia Card Interface  
• One double-channel MultiMedia Card Interface  
• Compatibility with MultiMedia Card Specification Version 2.2  
• Compatibility with SD Memory Card Specification Version 1.0  
38  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
• Compatibility with SDIO Specification Version V1.0.  
• Card clock rate up to Master Clock divided by 2  
• Embedded power management to slow down clock rate when not used  
• MCI has two slots, each supporting  
– One slot for one MultiMediaCard bus (up to 30 cards) or  
– One SD Memory Card  
• Support for stream, block and multi-block data read and write  
10.4.7  
USB Host Port  
• Compliance with Open HCI Rev 1.0 Specification  
• Compliance with USB V2.0 Full-speed and Low-speed Specification  
• Supports both Low-Speed 1.5 Mbps and Full-speed 12 Mbps devices  
• Root hub integrated with two downstream USB ports in the 217-LFBGA package  
Two embedded USB transceivers  
• Supports power management  
• Operates as a master on the Matrix  
10.4.8  
USB Device Port  
• USB V2.0 full-speed compliant, 12 MBits per second  
• Embedded USB V2.0 full-speed transceiver  
• Embedded 2,432-byte dual-port RAM for endpoints  
• Suspend/Resume logic  
• Ping-pong mode (two memory banks) for isochronous and bulk endpoints  
• Six general-purpose endpoints  
– Endpoint 0 and 3: 64 bytes, no ping-pong mode  
– Endpoint 1 and 2: 64 bytes, ping-pong mode  
– Endpoint 4 and 5: 512 bytes, ping-pong mode  
• Embedded pad pull-up  
10.4.9  
Ethernet 10/100 MAC  
• Compatibility with IEEE Standard 802.3  
• 10 and 100 MBits per second data throughput capability  
• Full- and half-duplex operations  
• MII or RMII interface to the physical layer  
• Register Interface to address, data, status and control registers  
• DMA Interface, operating as a master on the Memory Controller  
• Interrupt generation to signal receive and transmit completion  
• 28-byte transmit and 28-byte receive FIFOs  
• Automatic pad and CRC generation on transmitted frames  
• Address checking logic to recognize four 48-bit addresses  
• Support promiscuous mode where all valid frames are copied to memory  
• Support physical layer management through MDIO interface  
39  
6221ES–ATARM–12-Mar-07  
10.4.10 Image Sensor Interface  
• ITU-R BT. 601/656 8-bit mode external interface support  
• Support for ITU-R BT.656-4 SAV and EAV synchronization  
• Vertical and horizontal resolutions up to 2048 x 2048  
• Preview Path up to 640*480  
• Support for packed data formatting for YCbCr 4:2:2 formats  
• Preview scaler to generate smaller size image  
• Programmable frame capture rate  
10.4.11 Analog-to-Digital Converter  
• 4-channel ADC  
• 10-bit 312K samples/sec. Successive Approximation Register ADC  
• -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity  
• Individual enable and disable of each channel  
• External voltage reference for better accuracy on low voltage inputs  
• Multiple trigger source – Hardware or software trigger – External trigger pin – Timer Counter  
0 to 2 outputs TIOA0 to TIOA2 trigger  
• Sleep Mode and conversion sequencer – Automatic wakeup on trigger and back to sleep  
mode after conversions of all enabled channels  
• Four analog inputs shared with digital signals  
40  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
11. Package Drawings  
Figure 11-1. 208-lead TQFP Package Drawing  
41  
6221ES–ATARM–12-Mar-07  
Figure 11-2. 217-ball LFBGA Package Drawing  
42  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
AT91SAM9260 Preliminary  
12. AT91SAM9260 Ordering Information  
Table 12-1. AT91SAM9260 Ordering Information  
Ordering Code  
AT91SAM9260-QU  
AT91SAM9260-CJ  
Package  
PQFP208  
BGA217  
Package Type  
Temperature Operating Range  
Green  
Industrial  
-40°C to 85°C  
RoHS-compliant  
43  
6221ES–ATARM–12-Mar-07  
13. Revision History  
Table 13-1. Revision History  
Change Request  
Ref.  
Revision  
Comments  
6221AS  
First issue.  
Power consumption figures updated with current values in Section 5.2 ”Power  
Consumption” on page 14.  
6221BS  
2843  
2874  
Change to signal name for pin 47 in Section 4-1 ”Pinout for 208-pin PQFP Package”  
on page 11.  
For VDDIOP1, added supported voltage levels in Table 3-1, “Signal Description List,”  
on page 5 and corrected supported voltage levels in Section 5.2 ”Power  
Consumption” on page 14.  
Removed package marking and updated package outline information in Section 4.  
”Package and Pinout” on page 10.  
2922  
2907  
2947  
2979  
Change to signal name for pin 147 in Section 4-1 ”Pinout for 208-pin PQFP Package”  
on page 11.  
6221CS  
Inserted new voltage information for JTAGSEL signal in Table 3-1, “Signal Description  
List” and in Section 6.1 ”JTAG Port Pins” on page 15.  
In Table 3-1, “Signal Description List,” on page 5, added new voltage information for  
OSCSEL and TST pins.  
In Section 6.3 ”Reset Pins” on page 15, new information on NRST and NRTST pins.  
Corrected ADC features in Section 10.4.11 ”Analog-to-Digital Converter” on page 40.  
3003  
2923  
Removed references to VDDOSC in “Features” , in Table 3-1, “Signal Description  
List”, and in Section 5.1 ”Power Supplies” on page 14. Corrected VDDPLLA and  
VDDPLLB with VDDPLL and GNDPLLA and GNDPLLB with GNDPLL in Table 4-1,  
“Pinout for 208-pin PQFP Package,” on page 11 and in Table 4-2, “Pinout for 217-ball  
LFBGA Package,” on page 13.  
3183  
In Figure 2-1 on page 4, corrected range for SCKx pins; label change on matrix block. 3235, 3071  
6221DS  
In Figure 2-1 on page 4 and Section 7.3 ”Peripheral DMA Controller” on page 19,  
3066  
removed TWI PDC channels.  
In Section 6.3 ”Reset Pins” on page 15, added NRST as bidirectional.  
In Figure 9-3 on page 30, added UHPCK as USB Clock Controller output.  
In Section 10.4.3 ”USART” on page 37, added information on modem signals.  
3236  
3237  
3245  
Updated information on programmable pull-up resistor in Section 6.4 ”PIO  
Controllers” on page 15.  
3972  
Updated Section 6.7 ”Slow Clock Selection” on page 16.  
6221ES  
In Table 10-1, “AT91SAM9260 Peripheral Identifiers,” on page 32, added Note on  
clocking and corrected Peripheral Name for PID12, PID13 and PID14.  
3504 and 3543  
3406  
Placed comment on RDY/BUSY with PC13 in Table 10-4, “Multiplexing on PIO  
Controller C,” on page 36.  
44  
AT91SAM9260 Preliminary  
6221ES–ATARM–12-Mar-07  
Headquarters  
Operations  
Atmel Corporation  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
International  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Fax: 1(719) 540-1759  
Biometrics  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-47-50  
Fax: (33) 4-76-58-47-60  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
Atmel Europe  
Le Krebs  
8, rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-Yvelines  
Cedex  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Fax: 1(719) 540-1759  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, DataFlash® and others are reg-  
istered trademarks, SAM-BAand others are trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARMPowered® logo, Thumb® and  
others are the registered trademarks or trademarks of ARM Ltd. Windows® and others are the registered trademarks of Microsoft Corporation in  
the US and/or other countries. Other terms and product names may be the trademarks of others.  
6221ES–ATARM–12-Mar-07  

相关型号:

AT91SAM9260B-CU

AT91 ARM Thumb Microcontrollers
ATMEL

AT91SAM9260B-CU-999

IC MCU 32BIT 32KB ROM 217BGA
MICROCHIP

AT91SAM9260B-QU

AT91 ARM Thumb Microcontrollers
ATMEL

AT91SAM9260B-QU

IC MCU 32BIT 32KB ROM 208QFP
MICROCHIP

AT91SAM9260_06

Thumb Microcontrollers
ATMEL

AT91SAM9260_08

AT91 ARM Thumb Microcontrollers
ATMEL

AT91SAM9260_09

AT91 ARM Thumb Microcontrollers
ATMEL

AT91SAM9260_1

AT91 ARM Thumb Microcontrollers
ATMEL

AT91SAM9261

ARM926EJ-S BASED MICROCONTROLLER
ATMEL

AT91SAM9261-CJ

ARM926EJ-S BASED MICROCONTROLLER
ATMEL

AT91SAM9261-EK

The AT91SAM9261-EK evaluation kit is an effective platform for evaluating chip performance and developing code for applications based on the AT91SAM92
ATMEL

AT91SAM9261B-CU

AT91 ARM Thumb-based Microcontrollers
ATMEL