AT91R40008-70AI [ATMEL]

RISC Microcontroller, 32-Bit, 70MHz, CMOS, PQFP100, TQFP-100;
AT91R40008-70AI
型号: AT91R40008-70AI
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 32-Bit, 70MHz, CMOS, PQFP100, TQFP-100

微控制器 外围集成电路
文件: 总19页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Incorporates the ARM7TDMIARM® Thumb® Processor Core  
– High-performance 32-bit RISC Architecture  
– High-density 16-bit Instruction Set  
– Leader in MIPS/Watt  
– Little-endian  
– Embedded ICE (In-circuit Emulation)  
8-, 16- and 32-bit Read and Write Support  
256K Bytes of On-chip SRAM  
– 32-bit Data Bus  
– Single-clock Cycle Access  
AT91  
Fully-programmable External Bus Interface (EBI)  
– Maximum External Address Space of 64M Bytes  
– Up to Eight Chip Selects  
– Software Programmable 8/16-bit External Data Bus  
Eight-level Priority, Individually Maskable, Vectored Interrupt Controller  
– Four External Interrupts, Including a High-priority, Low-latency Interrupt Request  
32 Programmable I/O Lines  
ARM® Thumb®  
Microcontrollers  
Three-channel 16-bit Timer/Counter  
– Three External Clock Inputs  
– Two Multi-purpose I/O Pins per Channel  
Two USARTs  
– Two Dedicated Peripheral Data Controller (PDC) Channels per USART  
Programmable Watchdog Timer  
Advanced Power-saving Features  
AT91R40008  
Electrical  
Characteristics  
– CPU and Peripheral Can be Deactivated Individually  
Fully Static Operation  
– 0 Hz to 70 MHz Internal Frequency Range at VDDCORE = 1.65V, 85°C  
2.7V to 3.6V I/O Operating Range  
1.65V to 1.95V Core Operating Range  
Available in 100-lead TQFP Package  
-40°C to +85°C Temperature Range  
Description  
The AT91R40008 microcontroller is a member of the Atmel AT91 16-/32-bit microcon-  
troller family, which is based on the ARM7TDMI processor core. This processor has a  
high-performance, 32-bit RISC architecture with a high-density, 16-bit instruction set  
and very low power consumption. Furthermore, it features 256K bytes of on-chip  
SRAM and a large number of internally banked registers, resulting in very fast excep-  
tion handling, and making the device ideal for real-time control applications.  
The AT91R40008 microcontroller features a direct connection to off-chip memory,  
including Flash, through the fully-programmable External Bus Interface (EBI). An 8-  
level priority vectored interrupt controller, in conjunction with the Peripheral Data Con-  
troller, significantly improves the real-time performance of the device.  
The device is manufactured using Atmel’s high-density CMOS technology. By combin-  
ing the ARM7TDMI processor core with a large, on-chip, high-speed SRAM and a  
wide range of peripheral functions on a monolithic chip, the AT91R40008 is a powerful  
microcontroller that offers a flexible and high-performance solution to many compute-  
intensive embedded control applications.  
Rev. 1795A–01/02  
Absolute Maximum Ratings*  
Operating Temperature (Industrial) ....-40°C to + 85°C  
*NOTICE:  
Stresses beyond those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional  
operation of the device at these or other conditions  
beyond those indicated in the operational sections of  
this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect device reliability.  
Storage Temperature........................-60°C to + 150°C  
Voltage on Any Input Pin with Respect to Ground  
..................................................-0.3V to max of VDDIO  
..........................................................+ 0.3V and 3.6V  
Maximum Operating Voltage (VDDIO)....................3.6V  
Maximum Operating Voltage (VDDCORE) .............1.95V  
DC Output Current ...............................................TBD  
The following characteristics are applicable to the Operating Temperature range: TA = -40°C to +85°C, unless otherwise  
specified and are certified for a Junction Temperature up to 100°C.  
Table 1. DC Characteristics  
Symbol  
Parameter  
Conditions  
Min  
2.7  
Typ  
Max  
3.6  
Units  
VDDIO  
DC Supply I/Os  
V
V
V
VDDCORE DC Supply Core  
1.65  
-0.3  
1.95  
0.8  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
VDDIO  
0.3  
+
2.0  
V
NRD, NRW0, NWR1: IOL = 16 mA(1)  
Other EBI Output Pins: IOL = 8 mA(1)  
Other Output Pins: IOL = 2 mA(1)  
All Output Pins: IOL = 0 mA(1)  
0.4  
0.4  
0.4  
0.2  
V
V
V
V
VOL  
Output Low Voltage  
VDDIO  
0.4  
-
-
-
-
NRD, NWR0, NWR1: IOH = 16 mA(1)  
Other EBI Output Pins: IOH = 8 mA(1)  
Other Output Pins: IOH = 2 mA(1)  
All Output Pins: IOH = 0 mA(1)  
V
VDDIO  
0.4  
VOH  
Output High Voltage  
VDDIO  
0.4  
VDDIO  
0.2  
ILEAK  
IPULL  
CIN  
Input Leakage Current  
Input Pull-up Current  
Input Capacitance  
10  
µA  
µA  
pF  
µA  
µA  
VDDIO = 3.6V, VIN = 0V  
TQFP100 Package  
280  
5.3  
TA = 25°C  
TA = 85°C  
TBD  
TBD  
ISC  
Static Current  
TBD  
Note:  
1. IO = Output Current.  
2
AT91R40008  
1795A–01/02  
AT91R40008  
Power Consumption The values in the following tables are measured values in the operating conditions indi-  
cated (i.e., VDDIO = 3.3V, VDDCORE = 1.8V, TA = 25°C) on the AT91EB40A Evaluation  
Board.  
Table 2. Power Consumption  
Mode  
Conditions  
Consumption  
Unit  
Reset  
TBD  
Fetch in ARM mode out of internal SRAM  
All peripheral clocks activated  
0.32  
0.23  
Normal  
Idle  
Fetch in ARM mode out of internal SRAM  
All peripheral clocks deactivated  
mW/MHz  
All peripheral clocks activated  
All peripheral clocks deactivated  
0.14  
0.05  
Table 3. Power Consumption per Peripheral  
Peripheral  
Consumption  
Unit  
PIO Controller  
13.7  
12.9  
TBD  
13.7  
Timer/Counter Channel  
Timer/Counter Block (3 Channels)  
USART  
µW/MHz  
3
1795A–01/02  
Thermal and Reliability  
Considerations  
Thermal Data  
In Table 4, the device lifetime is estimated with the MIL-217 standard in the “moderately  
controlled” environmental model (this model is described as corresponding to an instal-  
lation in a permanent rack with adequate cooling air), depending on the device Junction  
Temperature. (For details see the section “Junction Temperature” on page 5.)  
Note that the user must be extremely cautious with this MTBF calculation: as the MIL-  
217 model is pessimistic with respect to observed values due to the way the data/mod-  
els are obtained (test under severe conditions). The life test results that have been  
measured are always better than the predicted ones.  
Table 4. MTBF Versus Junction Temperature  
Junction Temperature (TJ) (°C)  
Estimated Lifetime (MTBF) (Year)  
100  
125  
150  
175  
10  
5
3
2
Table 5 summarizes the thermal resistance data related to the package of interest.  
Table 5. Thermal Resistance Data  
Symbol  
θJA  
θJC  
Parameter  
Condition  
Package  
TQFP100  
TQFP100  
Typ  
40  
Unit  
=
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
Still Air  
°C/W  
6.4  
Reliability Data  
The number of gates and the device die size are provided for the user to calculate reli-  
ability data with another standard and/or in another environmental model.  
Table 6. Reliability Data  
Parameter  
Data  
280  
Unit  
K gates  
K gates  
mm2  
Number of Logic Gates  
Number of Memory Gates  
Device Die Size  
12,897  
21.2  
4
AT91R40008  
1795A–01/02  
AT91R40008  
Junction Temperature  
The average chip-junction temperature TJ in °C can be obtained from the following:  
1. TJ = TA + (PD × θJA  
)
2. TJ = TA + (PD × (θHEATSINK + θJC ))  
Where:  
θ
JA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 5  
on page 4.  
JC = package thermal resistance, Junction-to-case thermal resistance (°C/W),  
provided in Table 5 on page 4.  
HEAT SINK = cooling device thermal resistance (°C/W), provided in the device  
θ
θ
datasheet.  
PD = device power consumption (W) estimated from data provided in the section  
“Power Consumption” on page 3.  
TA = ambient temperature (°C).  
From the first equation, the user can derive the estimated lifetime of the chip and  
thereby decide if a cooling device is necessary or not. If a cooling device is to be fitted  
on the chip, the second equation should be used to compute the resulting average chip-  
junction temperature TJ in °C  
5
1795A–01/02  
Conditions  
Timing Results  
The delays are given as typical values in the following conditions:  
VDDIO = 3.0V  
VDDCORE = 1.8V  
Ambient Temperature = 25°C  
Load Capacitance = 0 pF  
The output level change detection is 0.5 x VDDIO  
The input level is 0.3 x VDDIO for a low-level detection and is 0.7 x VDDIO for a high  
level detection.  
The minimum and maximum values given in the AC characteristic tables of this  
datasheet take into account the process variation and the design.  
In order to obtain the timing for other conditions, the following equation should be used:  
t = δT° × ((δVDDCORE × tDATASHEET) + VDDIO  
Where:  
×
(CSIGNAL × δCSIGNAL)))  
δT is the derating factor in temperature given in Figure 1.  
°
δVDDCORE is the derating factor for the Core Power Supply given in Figure 2 on page  
7.  
tDATASHEET is the minimum or maximum timing value given in this datasheet for a load  
capacitance of 0 pF.  
δ
VDDIO is the derating factor for the I/O Power Supply given in Figure 3 on page 7.  
CSIGNAL is the capacitance load on the considered output pin.(1)  
CSIGNAL is the load derating factor depending on the capacitance load on the related  
output pins given in Min and Max values in this datasheet.  
The input delays are given as typical values.  
δ
Note:  
1. The user must take into account the package capacitance load contribution (CIN)  
described in Table 1 on page 2.  
Temperature  
Figure 1. Derating Curve for Different Operating Temperatures  
Derating Factor  
1.2  
1.1  
1
Derating Factor for  
Typ Case is 1  
0.9  
0.8  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Operating Temperature °C  
6
AT91R40008  
1795A–01/02  
AT91R40008  
Core Voltage  
Figure 2. Core Voltage Derating Factor  
Derating Factor  
3
2.5  
2
Derating Factor  
for Typ Case is 1  
1.5  
1
0.5  
1
1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95  
Core Supply Voltage (V)  
IO Voltage  
Derating Factor  
Figure 3. Derating Factor for Different VDDIO Power Supply Levels  
1.6  
Derating Factor for  
Typ Case is 1  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
DDIO Voltage Level  
7
1795A–01/02  
Clock Waveforms  
Table 7. Master Clock Waveform Parameters  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
MHz  
ns  
1/(tCP  
tCP  
tCH  
tCL  
tr  
)
Oscillator Frequency  
Oscillator Period  
High Half-period  
Low Half-period  
MCKI Rising Edge  
MCKI Falling Edge  
82.1  
12.2  
0.45 x tCP  
0.45 x tCP  
0.55 x tCP  
0.55 x tCP  
TBD  
ns  
ns  
ns  
tf  
TBD  
ns  
Note:  
1. Applicable only for Chip Select programmed with zero wait states.  
Table 8. Clock Propagation Times  
Symbol  
Parameter  
Conditions  
MCKO = 0 pF  
CMCKO derating  
Min  
Max  
6.6  
Units  
ns  
C
4.4  
0.199  
4.5  
tCDLH  
Rising Edge Propagation Time  
0.295  
6.7  
ns/pF  
ns  
CMCKO = 0 pF  
tCDHL  
Falling Edge Propagation Time  
CMCKO derating  
0.153  
0.228  
ns/pF  
Figure 4. Clock Waveform  
tCH  
tr  
tf  
0.7 VDDIO  
MCKI  
0.3 VDDIO  
tCL  
tCP  
0.5 VDDIO  
0.5 VDDIO  
MCKO  
tCDLH  
tCDHL  
8
AT91R40008  
1795A–01/02  
AT91R40008  
Table 9. NRST to MCKO  
Symbol  
Parameter  
Min  
Max  
Units  
tD  
NRST Rising Edge to MCKO Valid Time  
3(tCP/2)  
7(tCP/2)  
ns  
Figure 5. MCKO Relative to NRST  
NRST  
tD  
MCKO  
9
1795A01/02  
AC Characteristics  
EBI Signals Relative to MCKI  
The following tables show timings relative to operating condition limits defined in the section Timing Resultson page 6.  
See Figure 6 on page 14.  
Table 10. General-purpose EBI Signals  
Symbol  
Parameter  
Conditions  
Min  
4.4  
Max  
8.9  
Units  
ns  
C
C
C
C
NUB = 0 pF  
NUB derating  
NLB = 0 pF  
EBI1  
MCKI Falling to NUB Valid  
0.030  
3.7  
0.043  
6.7  
ns/pF  
ns  
EBI2  
EBI3  
EBI4  
MCKI Falling to NLB/A0 Valid  
MCKI Falling to A1 - A23 Valid  
NLB derating  
0.045  
3.4  
0.069  
7.8  
ns/pF  
ns  
CADD = 0 pF  
CADD derating  
CNCS = 0 pF  
0.045  
3.7  
0.076  
8.6  
ns/pF  
ns  
MCKI Falling to Chip Select  
Change  
CNCS derating  
0.045  
1.7  
0.078  
ns/pF  
ns  
EBI5  
EBI6  
NWAIT Setup before MCKI Rising  
NWAIT Hold after MCKI Rising  
1.7  
ns  
10  
AT91R40008  
1795A01/02  
AT91R40008  
Table 11. EBI Write Signals  
Symbol  
Parameter  
Conditions  
Min  
3.9  
Max  
6.3  
Units  
ns  
CNWR = 0 pF  
CNWR derating  
CNWR = 0 pF  
CNWR derating  
EBI7  
MCKI Rising to NWR Active (No Wait States)  
0.029  
4.4  
0.043  
7.0  
ns/pF  
ns  
EBI8  
MCKI Rising to NWR Active (Wait States)  
MCKI Falling to NWR Inactive (No Wait States)  
MCKI Rising to NWR Inactive (Wait States)  
MCKI Rising to D0 - D15 Out Valid  
NWR High to NUB Change  
0.029  
3.8  
0.043  
6.3  
ns/pF  
ns  
CNWR = 0 pF  
EBI9  
CNWR derating  
CNWR = 0 pF  
CNWR derating  
CDATA = 0 pF  
CDATA derating  
0.029  
4.2  
0.044  
6.7  
ns/pF  
ns  
EBI10  
EBI11  
EBI12  
EBI13  
EBI14  
EBI15  
0.029  
4.2  
0.044  
7.5  
ns/pF  
ns  
0.045  
3.1  
0.080  
7.0  
ns/pF  
ns  
CNUB = 0 pF  
CNUB derating  
0.030  
3.1  
0.043  
5.4  
ns/pF  
ns  
CNLB = 0 pF  
CNLB derating  
CADD = 0 pF  
CADD derating  
CNCS = 0 pF  
NWR High to NLB/A0 Change  
0.043  
2.9  
0.073  
7.0  
ns/pF  
ns  
NWR High to A1 - A23 Change  
0.043  
2.9  
0.076  
6.8  
ns/pF  
ns  
NWR High to Chip Select Inactive  
CNCS derating  
C = 0 pF  
0.052  
tCH - 1.8  
-0.080  
0.044  
n x tCP - 1.3(2)  
-0.080  
0.044  
2.2  
0.067  
ns/pF  
ns  
EBI16  
EBI17  
Data Out Valid before NWR High (No Wait States)(1)  
Data Out Valid before NWR High (Wait States)(1)  
CDATA derating  
ns/pF  
ns/pF  
ns  
CNWR derating  
C = 0 pF  
C
DATA derating  
NWR derating  
ns/pF  
ns/pF  
ns  
C
EBI18  
EBI19  
Data Out Valid after NWR High  
CNWR = 0 pF  
CNWR derating  
CNWR = 0 pF  
tCH - 0.6  
0
ns  
NWR Minimum Pulse Width (No Wait States)(1)  
ns/pF  
ns  
n x tCP - 0.9(2)  
EBI20  
NWR Minimum Pulse Width (Wait States)(1)  
CNWR derating  
0
ns/pF  
Notes: 1. The derating factor should not be applied to tCH or tCP.  
2. n = number of standard wait states inserted.  
11  
1795A01/02  
Table 12. EBI Read Signals  
Symbol  
Parameter  
Conditions  
Min  
Max  
7.9  
Units  
ns  
CNRD = 0 pF  
4.5  
EBI21  
MCKI Falling to NRD Active(1)  
C
NRD derating  
CNRD = 0 pF  
NRD derating  
CNRD = 0 pF  
NRD derating  
CNRD = 0 pF  
NRD derating  
0.029  
0.043  
7.3  
ns/pF  
ns  
3.8  
EBI22  
EBI23  
EBI24  
MCKI Rising to NRD Active(2)  
MCKI Falling to NRD Inactive(1)  
MCKI Falling to NRD Inactive(2)  
C
0.029  
0.043  
6.5  
ns/pF  
ns  
4.1  
C
0.030  
0.044  
5.8  
ns/pF  
ns  
3.9  
C
0.030  
0.044  
ns/pF  
ns  
EBI25  
EBI26  
D0 - D15 In Setup before MCKI Falling Edge(5)  
D0 - D15 In Hold after MCKI Falling Edge(5)  
1.5  
1.2  
ns  
CNUB = 0 pF  
3.2  
7.1  
0.043  
4.6  
ns  
EBI27  
EBI28  
EBI29  
EBI30  
EBI31  
EBI32  
EBI33  
EBI34  
NRD High to NUB Change  
CNUB derating  
0.030  
ns/pF  
ns  
CNLB = 0 pF  
CNLB derating  
CADD = 0 pF  
CADD derating  
CNCS = 0 pF  
3.2  
NRD High to NLB/A0 Change  
NRD High to A1 - A23 Change  
NRD High to Chip Select Inactive  
Data Setup before NRD High(5)  
Data Hold after NRD High(5)  
NRD Minimum Pulse Width(1)(3)  
NRD Minimum Pulse Width(2)(3)  
0.043  
0.073  
6.1  
ns/pF  
ns  
2.8  
0.043  
0.076  
6.2  
ns/pF  
ns  
2.9  
CNCS derating  
CNRD = 0 pF  
0.052  
0.067  
ns/pF  
ns  
8.0  
0.044  
C
NRD derating  
CNRD = 0 pF  
NRD derating  
CNRD = 0 pF  
NRD derating  
CNRD = 0 pF  
NRD derating  
ns/pF  
ns  
-3.1  
C
-0.030  
ns/pF  
ns  
(n +1) tCP - 1.9(4)  
C
0.001  
ns/pF  
ns  
n x tCP + (tCH - 1.5)(4)  
0.001  
C
ns/pF  
Notes: 1. Early Read Protocol.  
2. Standard Read Protocol.  
3. The derating factor should not be applied to tCH or tCP.  
4. n = number of standard wait states inserted.  
5. Only one of these two timings needs to be met.  
12  
AT91R40008  
1795A01/02  
AT91R40008  
Table 13. EBI Read and Write Control Signals. Capacitance Limitation  
Symbol  
Parameter  
Conditions  
Min  
7.3  
Max  
Units  
ns  
CNRD = 0 pF  
(1)  
TCPLNRD  
Master Clock Low Due to NRD Capacitance  
CNRD derating  
CNWR = 0 pF  
CNWR derating  
0.044  
7.6  
ns/pF  
ns  
(2)  
TCPLNWR  
Master CLock Low Due to NWR Capacitance  
0.044  
ns/pF  
Notes: 1. If this condition is not met, the action depends on the read protocol intended for use.  
Early Read Protocol: Programing an additional tDF (Data Float Output Time) cycle.  
Standard Read Protocol: Programming an additional tDF Cycle and an additional wait state.  
2. Applicable only for chip select programmed with 0 wait state. If this condition is not met, at least one wait state must be  
programmed.  
13  
1795A01/02  
Figure 6. EBI Signals Relative to MCKI  
MCKI  
EBI4  
EBI4  
NCS  
CS  
EBI3  
A1 - A23  
NWAIT  
EBI5  
EBI6  
EBI1/EBI2  
NUB/NLB/A0  
EBI21  
EBI27-30  
EBI23  
EBI33  
NRD(1)  
NRD(2)  
EBI22 EBI24  
EBI34  
EBI31  
EBI32  
EBI25  
EBI26  
D0 - D15 Read  
EBI9  
EBI19  
EBI12-15  
EBI7  
NWR (No Wait States)  
NWR (Wait States)  
D0 - D15 to Write  
EBI8  
EBI10  
EBI20  
EBI11  
EBI17  
EBI18  
EBI16  
EBI18  
No Wait  
Wait  
Notes: 1. Early Read Protocol.  
2. Standard Read Protocol.  
14  
AT91R40008  
1795A01/02  
AT91R40008  
Peripheral Signals  
USART Signals  
The inputs have to meet the minimum pulse width and period constraints shown in  
Table 14 and Table 15, and represented in Figure 7.  
Table 14. USART Input Minimum Pulse Width  
Symbol  
Parameter  
Min Pulse Width  
Units  
US1  
SCK/RXD Minimum Pulse Width  
5(tCP/2)  
ns  
Table 15. USART Minimum Input Period  
Symbol  
Parameter  
Min Input Period  
Units  
US2  
SCK Minimum Input Period  
9(tCP/2)  
ns  
Figure 7. USART Signals  
US1  
RXD  
SCK  
US2  
US1  
15  
1795A01/02  
Timer/Counter Signals  
Due to internal synchronization of input signals, there is a delay between an input event  
and a corresponding output event. This delay is 3(tCP) in Waveform Event Detection  
mode and 4(tCP) in Waveform Total-count Detection mode. The inputs have to meet the  
minimum pulse width and minimum input period shown in Table 16 and Table 17, and  
as represented in Figure 8.  
Table 16. Timer Input Minimum Pulse Width  
Symbol  
Parameter  
Min Pulse Width  
Units  
TC1  
TCLK/TIOA/TIOB Minimum Pulse Width  
3(tCP/2)  
ns  
Table 17. Timer Input Minimum Period  
Symbol  
Parameter  
Min Input Period  
Units  
TC2  
TCLK/TIOA/TIOB Minimum Input Period  
5(tCP/2)  
ns  
Figure 8. Timer Input  
TC2  
3(tCP/2)  
3(tCP/2)  
MCKI  
TC1  
TIOA/  
TIOB/  
TCLK  
Reset Signals  
A minimum pulse width is necessary, as shown in Table 18 and as represented in Figure 9.  
Table 18. Reset Minimum Pulse Width  
Symbol  
Parameter  
Min Pulse-width  
10(tCP  
Units  
RST1  
NRST Minimum Pulse Width  
)
ns  
Figure 9. Reset Signal  
RST1  
NRST  
Only the NRST rising edge is synchronized with MCKI. The falling edge is  
asynchronous.  
16  
AT91R40008  
1795A01/02  
AT91R40008  
Advanced Interrupt Controller Inputs have to meet the minimum pulse width and minimum input period shown in Table  
Signals  
19 and Table 20 and represented in Figure 10.  
Table 19. AIC Input Minimum Pulse Width  
Symbol  
Parameter  
Min Pulse Width  
Units  
AIC1  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum  
Pulse Width  
3(tCP/2)  
ns  
Table 20. AIC Input Minimum Period  
Symbol  
Parameter  
Min Input Period  
Units  
AIC2  
AIC Minimum Input Period  
5(tCP/2)  
ns  
Figure 10. AIC Signals  
AIC2  
MCKI  
AIC1  
FIQ/IRQ0/  
IRQ1/IRQ2/  
IRQ3 Input  
Parallel I/O Signals  
The inputs have to meet the minimum pulse width shown in Table 21 and represented in  
Figure 11.  
Table 21. PIO Input Minimum Pulse Width  
Symbol  
Parameter  
Min Pulse Width  
Units  
PIO1  
PIO Input Minimum Pulse Width  
3(tCP/2)  
ns  
Figure 11. PIO Signal  
PIO1  
PIO  
Inputs  
17  
1795A01/02  
ICE Interface Signals  
Table 22. ICE Interface Timing Specifications  
Symbol  
Parameter  
Conditions  
Min  
10.9  
0.9  
Max  
Units  
ns  
NTRST Minimum Pulse  
Width  
ICE0  
NTRST High Recovery  
to TCK High  
ICE1  
ICE2  
ns  
NTRST High Removal  
from TCK High  
-0.3  
23.5  
22.7  
46.1  
ns  
ns  
ns  
ns  
ICE3  
ICE4  
ICE5  
TCK Low Half-period  
TCK High Half-period  
TCK Period  
TDI, TMS Setup before  
TCK High  
ICE6  
ICE7  
0.4  
ns  
TDI, TMS Hold after  
TCK High  
0.4  
3.3  
ns  
ns  
CTDO = 0 pF  
ICE8  
ICE9  
TDO Hold Time  
CTDO derating  
0.001  
ns/pF  
ns  
C
C
TDO = 0 pF  
7.4  
TCK Low to TDO Valid  
TDO derating  
0.28  
ns/pF  
Figure 12. ICE Interface Signal  
ICE0  
NTRST  
ICE2  
ICE1  
ICE5  
TCK  
ICE3  
ICE4  
TMS/TDI  
ICE6  
ICE7  
TDO  
ICE8  
ICE9  
18  
AT91R40008  
1795A01/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Atmel Corporate  
Atmel Heilbronn  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Atmel SarL  
Microcontrollers  
Route des Arsenaux 41  
Casa Postale 80  
CH-1705 Fribourg  
Switzerland  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
Atmel Corporate  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
FAX 1(719) 540-1759  
Atmel Nantes  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Atmel Grenoble  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Atmel Rousset  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Atmel Smart Card ICs  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2001.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty  
which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademark of Atmel.  
ARM®, Thumb® and ARM Powered® are the registered trademarks of ARM Limited. ARM7TDMIis the trade-  
mark of ARM Limited. Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
1795A01/02/0M  

相关型号:

AT91R40008_02

ARM? Thumb? Microcontrollers
ATMEL

AT91R40008_05

AT91 ARM Thumb Microcontrollers
ATMEL

AT91R40008_06

AT91 ARM Thumb-based Microcontroller
ATMEL

AT91R40807

AT91 ARM Thumb Microcontrollers
ATMEL

AT91R40807-33AC

RISC Microcontroller, 32-Bit, 33MHz, CMOS, PQFP100, TQFP-100
ATMEL

AT91R40807-33AI

AT91 ARM Thumb Microcontrollers
ATMEL

AT91R40807-33AU

ARM® Thumb® Microcontrollers
ATMEL

AT91R40807_02

AT91 ARM Thumb Microcontrollers
ATMEL

AT91RM3400

ARM7TDMI⑩ based Microcontroller
ATMEL

AT91RM3400-AI-001

ARM7TDMI⑩ based Microcontroller
ATMEL

AT91RM9200

ARM920T⑩- based Microcontroller
ATMEL

AT91RM9200-CI-002

ARM920T⑩- based Microcontroller
ATMEL