AT84AS004VTP [ATMEL]

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, Bipolar, PBGA317, 25 X 35 MM, MS-034, EBGA-317;
AT84AS004VTP
型号: AT84AS004VTP
厂家: ATMEL    ATMEL
描述:

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, Bipolar, PBGA317, 25 X 35 MM, MS-034, EBGA-317

ATM 异步传输模式 转换器
文件: 总56页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
10-bit Resolution  
2 Gsps Sampling Rate  
Selectable 1:2 or 1:4 Demultiplexed Output  
500 mVpp Differential 100or Single-ended 50Analog Input  
100Differential or Single-ended 50Clock Input  
LVDS Output Compatibility  
Functions:  
– ADC Gain Adjust  
10-bit  
2 Gsps ADC  
With  
– Sampling Delay Adjust  
– 1:4 Demultiplexed Simultaneous or Staggered Digital Outputs  
– Data Ready Output with Asynchronous Reset  
– Out-of-range Output Bit (11th Bit)  
Power Consumption: 6.5W  
Power Supplies: -5V, -2.2V, 3.3V and VPLUSD Output Power Supply  
Package  
1:4 DMUX  
– Cavity Down EBGA 317 (Enhanced Ball Grid Array)  
– 25 × 35 mm Dimensions  
AT84AS004  
Performances  
• 3 GHz Full Power Analog Input Bandwidth  
• -0.5 dB Gain Flatness from DC up to 1.5 GHz  
• Single-tone Performance at Fs = 2 Gsps, Full First and Second Nyquist (- 1 dBFS)  
– ENOB = 7.8 Effective Bits, FIN = 1000 MHz  
– SNR = 51 dBc, SFDR = -55 dBc, FIN = 1000 MHz  
– ENOB = 7.5 Effective Bits, FIN = 2 GHz  
– SNR = 50 dBc, SFDR = -54 dBc, FIN = 2 GHz  
• Dual-tone Performance (IMD3) at Fs = 2 Gsps (-7 dBFS Each Tone)  
– Fin1 = 945 MHz, Fin2 = 955 MHz: IMD3 = -60 dBFS  
– Fin1 = 1545 MHz, Fin2 = 1555 MHz: IMD3 = -60 dBFS  
Screening  
Temperature Range:  
– Tamb > 0°C; TJ < 90°C (Commercial C Grade)  
– Tamb > -40°C; TJ < 110°C (Industrial V Grade)  
Applications  
• Direct RF Down Conversion  
• Broadband Digital Receivers  
Test Instrumentation  
• High Speed Data Acquisition  
• High Energy Physics  
5431C–BDC–01/06  
1. Description  
The AT84AS004 combines a 10-bit 2 Gsps analog-to-digital converter with a 1:4 DMUX,  
designed for accurate digitization of broadband signals in either first or second Nyquist zone. It  
features 7.8 Effective Number of Bits (ENOB) and -55 dBFS Spurious Free Dynamic Range  
(SFDR) at 2 Gsps over the full first Nyquist zone and 7.5-bit with 54 dB SFDR over full second  
Nyquist.  
The 1:4 demultiplexed digital outputs are LVDS logic compatible, allowing easy interfacing with  
standard FPGAs or DSPs. The AT84AS004 operates at up to 2 Gsps.  
The AT84AS004 comes in a 25 × 35 mm EBGA317 package. This package has the same TCE  
as FR4 boards, offering excellent reliability when subjected to large thermal shocks.  
2. Block Diagram  
Figure 2-1. Block Diagram  
BIST  
ASYNRST  
PGEB  
DRRB  
SDA  
2
20  
CLK/CLKN  
Port A  
SDA  
2
AOR/AORN  
Port B  
20  
2
BOR/BORN  
VIN  
Demultiplexer  
1:2 or 1:4  
20  
2
Port C  
S/H  
COR/CORN  
VINN  
20  
2
Port D  
DOR/DORN  
DR/DRN  
2
GA  
B/GB  
SLEEP  
STAGG  
RS  
DRTYPE  
2
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
3. Functional Description  
The AT84AS004 is a 10-bit 2 Gsps ADC combined with a 1:4 demultiplexer (DMUX) allowing to  
lower the 11 bit output data stream (10-bit data and one out-of-range bit) by a selectable factor  
of 4 or 2. The ADC works in fully differential mode from analog input through to digital outputs.  
The ADC should be 50reverse terminated, as close as possible to the EBGA Package input  
pin (1 mm maximum). The ADC Clock input is on-chip 100differentially terminated. The output  
clock and the output data are LVDS logic compatible, and should be 100differentially  
terminated.  
The AT84AS004 ADC features two asynchronous resets:  
– DRRB, which ensures that the first digitized data corresponds to the first acquisition.  
– ASYNCRST, which ensures that the first digitized data will be output on port A of the  
DMUX.  
The ADC gain can be tuned-in to unity gain by the means of the GA analog control input A Sam-  
pling Delay Adjust function (SDA analog control input, activated via the SDAEN signal) may be  
used to fine-tune the ADC aperture delay by 120 ps around its center value. The SDA function  
may be of interest for interleaving multiple ADCs.The control pin B/GB is provided to select  
either a binary or gray data output format.  
A tunable delay cell (controlled via CLKDACTRL) is integrated between the ADC and the DMUX  
on the clock path to fine tune the data vs. clock alignment at the interface between the ADC and  
the DMUX. This delay can be tuned from -275 to 275 ps around default center value, featuring a  
550 ps typical delay tuning range. An extra standalone delay cell is also provided, (controlled via  
DACTRL analog control input and activated via DAEN). The tuning range is typically 550 ps.  
A pattern generator (PGEB) is integrated in the ADC part for debug or acquisition setup. Simi-  
larly, a Built-in Self Test (BIST) is provided for quick debug of the DMUX part. The output  
demultiplexing 1:4 or 1:2 ratio can be selected by the means of RS digital control input.  
Two modes for the output clock (via DRTYPE) can be selected:  
• DR mode: only the output clock rising edge is active, the output clock rate is the same as the  
output data rate  
• DR/2 mode: both the output clock rising and falling edges are active, the output clock rate is  
half the output data rate  
The data outputs are available at the output of the AT84AS004 in two different modes:  
• Staggered: even and odd bits come out with half a data period delay  
• Simultaneous: even and odd bits come out at the same time  
A Power reduction mode (SLEEP control input) is provided to reduce the DMUX power  
consumption.  
The ADC junction temperature monitoring is made possible through the DIODE input by sensing  
the voltage drop across 1 diode implemented on the ADC close to chip hot point.  
The AT84AS004 is delivered in an Enhanced Ball Grid Array (EBGA), very suitable for applica-  
tions subjected to large thermal variations (thanks to its TCE which is similar to FR4 material  
TCE).  
3
5431C–BDC–01/06  
Table 3-1.  
Name  
Functions Description  
Function  
VCCA  
Analog 3.3V power supply  
VCCA VEEVMINUSD VCCDVPLUSD  
VCCD  
Digital 3.3 V power supply  
Analog -5V power supply  
Output 2.5 V power supply  
Output -2.2V power supply  
Analog ground  
3.3V -5V -2.2V  
3.3V 2.5V  
20  
VEE  
[A0…A9]  
2
2
[A0N…A9N]  
AOR/DRAN,  
AORN/DRA  
2
VIN, VINN  
VPLUSD  
CLK, CLKN  
DRRB  
20  
2
[B0…B9]  
VMINUSD  
AGND  
[B0N…B9N]  
BOR/DRBN,  
BORN/DRB  
ASYNCRST  
SDAEN  
SDA  
20  
2
[C0…C9]  
GA  
[C0N…C9N]  
COR/DRCN,  
CORN/DRC  
DGND  
Digital ground  
PGEB  
AT84AS004  
B/GB  
CLK, CLKN  
VIN, VINN  
DRRB  
Input clock signals  
2
DACTRL, CLKDACTRL  
20  
2
[D0…D9]  
[D0N…D9N]  
2
DAI, DAIN  
DOR/DRDN,  
Analog input data  
SLEEP  
STAGG  
CLKTYPE  
RS  
DORN/DRD  
2
2
ADC reset  
DR, DRN  
DAO, DAON  
DIODE ADC  
DAEN  
ASYNCRST  
DR/DRN  
DMUX asynchronous reset  
Output clock signals  
BIST  
DRTYPE  
AGND  
DGND  
A0…A9  
Output data port A  
A0N…A9N  
Additional output bit port A  
AOR/DRAN,  
AORN/DRA  
or output clock in staggered mode for  
port A  
Name  
Function  
B0…B9  
Output data port B  
DAI, DAIN  
Input signals for standalone delay cell  
B0N…B9N  
Output signals for standalone delay  
cell  
DAO, DAON  
BOR/DRBN,  
BORN/DRB  
Additional output bit port B or output  
clock in staggered mode for Port B  
GA  
ADC gain adjust  
SDAEN  
SDA  
ADC SDA enable  
C0…C9  
Output data Port C  
C0N…C9N  
ADC sampling delay adjust  
Additional output bit port C  
COR/DRCN,  
CORN/DRC  
PGEB  
ADC pattern generator  
or Output clock in staggered mode for  
Port C  
B/GB  
Binary or gray output code selection  
Sleep mode selection signal  
D0…D9  
Output data Port D  
D0N…D9N  
SLEEP  
DOR/DRDN,  
DORN/DRD  
Additional output bit Port D or output  
clock in staggered mode for Port D  
Staggered mode selection for data  
outputs  
STAGG  
Input clock type selection signal (to be  
connected to VCCD or left floating)  
RS  
DMUX ratio selection signal  
CLKTYPE  
CLKDACTRL  
DACTRL  
Control signal for clock delay cell  
DRTYPE  
BIST  
Output clock type selection signal  
Built-in Self Test  
Control signal for standalone delay cell  
Diode for die junction temperature  
monitoring (ADC)  
DAEN  
Enable signal for standalone delay cell  
DIODE ADC  
4
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
4. Specifications  
4.1  
Absolute Maximum Ratings  
Table 4-1.  
Parameter  
Absolute Maximum Ratings  
Symbol  
VCCA  
Value  
Unit  
V
Analog positive supply voltage  
Digital positive supply voltage  
Analog negative supply voltage  
Digital positive supply voltage  
Digital negative supply voltage  
Maximum difference between  
GND to 6  
GND to 3.6  
GND to -5.5  
GND to 3  
GND to -3  
VCCD  
V
VEE  
V
VPLUSD  
VMINUSD  
V
V
VPLUSD - VMINUSD  
5
V
V
VPLUSD and VMINUSD  
Analog input voltages  
V
IN or VINN  
-1.5 to 1.5  
-1.5 to 1.5  
-1 to 1  
Maximum difference between  
VIN and VINN  
VIN or VINN  
Clock input voltage  
V
CLK or VCLKN  
V
Maximum difference between  
VCLK and VCLKN  
VCLK - VCLKN  
-1 to 1  
Vpp  
Control input voltage  
Digital input voltage  
ADC reset voltage  
GA, SDA  
SDAEN, B/GB, PGEB, DECB  
DRRB  
-1 to 0.8  
-5 to 0.8  
V
V
V
-0.3 to VCCA +0.3  
RS, CLKTYPE, DRTYPE, SLEEP,  
STAGG, BIST, DAEN  
DMUX function input voltage  
-0.3 to VCCD +0.3  
V
DMUX asynchronous reset  
DMUX input voltage  
ASYNCRST  
DAI, DAIN  
-0.3 to VCCD +0.3  
-0.3 to VCCD +0.3  
V
V
DMUX control voltage  
CLKDACTRL, DACTRL  
DIODE ADC  
DIODE ADC  
TJ  
-0.3 to VCCD +0.3  
Maximum input voltage on DIODE  
Maximum input current on DIODE  
Junction temperature  
700  
1
mV  
mA  
°C  
135  
Notes: 1. Absolute maximum ratings are short term limiting values (referenced to GND = 0 V), to be applied individually, while other  
parameters are within specified operating conditions. Long exposure to maximum ratings may affect device reliability.  
2. All integrated circuits have to be handled with appropriate care to avoid damage due to ESD. Damage caused by inappropri-  
ate handling or storage could range from performance degradation to complete failure.  
5
5431C–BDC–01/06  
Table 4-2.  
Parameter  
Recommended Condition of Use  
Symbol  
Comments  
Recommended Value  
Unit  
Positive supply voltage  
VCCA  
VCCD  
3.3  
3.3  
V
V
Positive supply voltage  
Negative supply voltage  
VEE  
-5.0  
-2.2  
500  
V
Positive negative supply voltage  
Differential analog input voltage  
VMINUSD  
VIN - VINN  
V
mVpp  
50single-ended  
(VINN grounded through 50)  
125  
500  
mV  
Differential clock input level  
Vinclk  
mVpp  
50single-ended clock input  
or  
Clock input power level  
(ground common mode)  
PCLK PCLKN  
GA, SDA  
0
dBm  
100differential clok  
(recommended)  
ADC control input voltage  
ADC functions  
-0.5 to 0.5  
V
V
SDAEN, B/GB,  
PGEB, DECB  
GND or VEE  
ADC reset  
DRRB  
GND to 3.3V  
GND to 3.3V  
V
V
DMUX standalone delay cell inputs  
DAI, DAIN  
SLEEP, STAGG,  
ASYNCRST,  
BIST, RS, DAEN,  
DRTYPE,  
DMUX control inputs  
GND to 3.3V  
V
CLKDACTRL,  
DACTRL  
0°C < TC ; TJ < 90°C  
-20°C < TC; TJ < 110°C  
Commercial C grade industrial  
V grade  
Operating temperature range  
TC ; TJ  
°C  
Storage temperature  
Tstg  
TJ  
-65 to 150  
125  
°C  
°C  
Maximum junction temperature  
6
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
4.2  
Electrical Operating Characteristics  
• VCCA = VCCD = 3.3V, VEE = -5V, VMINUSD = -2.2V  
• VINN - VINN = 1 dBFS ( single-ended driven with VINN connected to ground via 50)  
• PCLK = 0 dBm (differential driven)  
Table 4-3.  
DC Electrical Characteristics at Ambient Temperature and Hot Temperature (TJ Max)  
Test  
Parameter  
Level  
Symbol  
Min  
Typ  
Max  
Unit  
Resolution  
10  
Bit  
Power Requirements  
Positive  
Supply  
-analog  
VCCA  
VCCD  
3.15  
3.15  
2.4  
3.3  
3.3  
2.5  
3.45  
3.45  
2.6  
V
V
V
-digital  
1
1
Voltages  
-digital outputs  
VPLUSD  
-analog VCCA = 3.3V  
IVCCA  
IVCCD  
80  
100  
590  
620  
470  
mA  
mA  
mA  
mA  
Positive  
Supply  
Current  
-digital VCCD = 3.3V (1:2 DMUX)  
-digital VCCD = 3.3V (1:4 DMUX)  
-output VPLUSD = 2.5V  
535  
565  
450  
IVCCD  
IVPLUSD  
Negative supply voltage VEE  
Negative supply current  
Negative supply voltage  
Negative supply current  
Power Dissipation (1:2 DMUX)  
Analog Inputs  
VEE  
IVEE  
-5.25  
-2.3  
-5  
-4.75  
660  
-2.1  
200  
7.1  
V
mA  
V
620  
-2.2  
190  
6.5  
1
VMINUSD  
IVMINUSD  
PD  
mA  
W
Full-scale input voltage range  
VIN  
-125  
-125  
125  
125  
mV  
mV  
Differential mode 0V common mode voltage  
VINN  
Full-scale input voltage range  
Single-ended input option  
0V common mode voltage  
VIN, VINN  
-250  
0
250  
mV  
4
4
Analog input power level (50single-ended)  
Analog input capacitance (die)  
Input leakage current  
PIN  
CIN  
IIN  
-2  
0.3  
10  
50  
dBm  
pF  
µA  
RIN  
49  
98  
51  
-single-ended  
Input resistance  
-differential  
RIN  
100  
102  
7
5431C–BDC–01/06  
Table 4-3.  
DC Electrical Characteristics at Ambient Temperature and Hot Temperature (TJ Max) (Continued)  
Test  
Parameter  
Level  
Symbol  
Min  
Typ  
Max  
Unit  
Clock Inputs  
Logic common mode  
Differential ECL to LVDS  
(AC coupling)  
compatibility for clock inputs  
Clock input common voltage range  
(VCLK or VCLKN  
)
VCM  
-1.2  
-4  
0
0.3  
4
V
(0V common mode)  
Clock input power level  
(low-phase noise sinewave input) 50Ω  
single-ended or 100differential  
PCLK  
0
dBm  
mV  
4
Clock input swing  
VCLK  
200  
141  
320  
500  
354  
(single ended with CLKN = 50to GND)  
Clock input swing  
V
CLK, VCLKN  
226  
0.3  
mV  
pF  
(differential voltage) on each clock input  
Clock input capacitance (die)  
CLK  
Clock input resistance  
- Single-ended  
RCLK  
RCLK  
45  
90  
50  
55  
- Differential ended  
100  
110  
Digital Data Outputs  
Logic compatibility  
LVDS  
50transmission lines, 100(2 × 50)  
differential termination)  
- Logic low  
VOL  
VOH  
1.075  
1.425  
350  
1.25  
V
V
1
- Logic high  
1.25  
250  
- Differential output  
- Common mode  
VODIFF  
VOCM  
500  
1.375  
mV  
V
1.125  
1.25  
Control Function Inputs  
DRRB and ASYNCRST  
- Logic low  
V
V
V
1
4
VIL  
VIH  
0
1.0  
3.3  
- Logic high  
1.6  
RS, DRTYPE, SLEEP, STAGG, BIST, DAEN  
VIL  
RIL  
VIH  
RIH  
0.5  
10  
V
V
- Logic low  
- Logic high  
0
2
10 K  
Infinite  
SDAEN, PGEB, B/GB  
- Logic low  
1
1
VIL  
VIH  
VEE  
0
- 3  
0
V
V
- Logic high  
-2  
DAI, DAIN  
- Differential input  
- Common mode  
VIDIFF  
VICM  
1
1.25  
350  
1.6  
-
V
100  
mV  
8
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table 4-3.  
DC Electrical Characteristics at Ambient Temperature and Hot Temperature (TJ Max) (Continued)  
Test  
Parameter  
Level  
Symbol  
Min  
-0.5  
Typ  
Max  
0.5  
Unit  
V
GA, SDA  
1
1
CLKDACTRL, DACTRL  
DC accuracy  
1/3 × VCCD  
2/3 × VCCD  
V
DNLrms  
1
1
1
1
1
4
1
DNLrms  
DNL+  
INL-  
0.2  
0.8  
-2  
0.3  
1.5  
LSB  
LSB  
LSB  
LSB  
Differential non-linearity (1)  
Integral non-linearity (1)  
Integral non-linearity (1)  
Gain central value (2)  
Gain error drift  
-4  
INL+  
2
4
1.05  
35  
0.95  
-10  
1
23  
ppm/°C  
Input offset voltage  
10  
mV  
Note:  
1. Histogram testing at Fs = 390 Msps Fin = 100 MHz.  
2. This range of gain can be set to 1 thanks to the gain adjust function.  
9
5431C–BDC–01/06  
Table 4-4.  
AC Electrical Characteristics at Ambient Temperature and Hot Temperature (TJ Max)  
Test  
Parameter  
Level  
Symbol  
Min  
Typ  
Max  
Unit  
AC Analog Inputs  
Full power input bandwidth (1)  
FPBW  
SSBW  
3
GHz  
GHz  
Small signal input bandwidth (10% full-scale) (1)  
3.3  
4
Gain flatness (2)  
BF  
- 0.5  
dB  
Input voltage standing wave ration (3)  
VSWR  
1.1: 1  
1.2: 2  
AC Performance: Nominal Condition  
-1 dBFS single-ended input mode (unless otherwise specified); 50% clock duty cycle; 0 dBm differential clock (CLK,CLKN)  
binary output data format.  
Effective Number of Bits  
Fs = 1 Gsps  
Fs = 1.5 Gsps  
Fs = 2 Gsps  
Fs = 2 Gsps  
Fin = 100 MHz  
Fin = 750MHz  
Fin = 1000 MHz  
Fin = 2 GHz  
1
1
4
4
7.4  
7.4  
7.3  
7.1  
8
8
ENOB  
SNR  
Bit  
7.8  
7.5  
Signal to Noise Ratio  
Fs = 1 Gsps  
Fs = 1.5 Gsps  
Fs = 2 Gsps  
Fs = 2 Gsps  
Fin = 100 MHz  
Fin = 750MHz  
Fin = 1000 MHz  
Fin = 2 GHz  
1
1
4
4
50  
49  
48  
48  
52  
52  
51  
50  
dBc  
dBc  
Total Harmonic Distortion  
Fs = 1 Gsps  
Fs = 1.5 Gsps  
Fs = 2 Gsps  
Fs = 2 Gsps  
Fin = 100 MHz  
1
1
4
4
46  
46  
45  
45  
52  
52  
49  
49  
Fin = 750MHz  
Fin = 1000 MHz  
Fin = 2 GHz  
|THD|  
Spurious Free Dynamic Range  
Fs = 1 Gsps  
Fs = 1.5 Gsps  
Fs = 2 Gsps  
Fs = 2 Gsps  
Fin = 100 MHz  
1
1
4
4
50  
50  
48  
48  
58  
58  
55  
54  
Fin = 750MHz  
Fin = 1000 MHz  
Fin = 2 GHz  
|SFDR|  
|IMD3|  
dBc  
Two-tone Third-order Inter-modulation Distortion  
Fs = 2 Gsps  
Fin1 = 945 MHz, Fin2 = 955 MHz [-7 dBFS]  
Fin1 = 1545 MHz, Fin2 = 1555 MHz [- 7 dBFS]  
4
4
60  
60  
dBFS  
Note:  
1. See ”Definitions of Terms” on page 41.  
2. From DC to 1.5 GHz.  
3. Specified from DC up to 2.5 GHz input signal. Input VSWR is measured on a soldered device. It assumes an external  
502controlled impedance line, and a 50driving source impedance (S11 30 dB).  
10  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table 4-5.  
Parameter  
Transient and Switching Performances  
Test  
Level  
Symbol  
Min  
Typ  
Max  
Unit  
Transient Performance  
10-11  
Error/  
sample  
Bit error rate (1)  
4
BER  
ADC setting time (VIN-VINN = 400 mVpp)  
Overvoltage recovery time  
ADC step response rise/fall time (10 –90%)  
Overshoot  
4
4
4
5
5
TS  
400  
ps  
ps  
ps  
%
ORT  
500  
100  
80  
4
Ringback  
2
%
Switching Performance and Characteristics  
Maximum clock frequency (2)  
Minimum clock frequency (2)  
Maximum clock pulse width (high)  
Minimum clock pulse width (low)  
Aperture delay (2)  
FS Max  
FS Min  
TC1  
2
Gsps  
Msps  
ns  
150  
200  
2.5  
2.5  
0.22  
0.22  
TC2  
ns  
4
TA  
160  
150  
ps  
Aperture uncertainty  
Jitter  
fs rms  
ns  
DRRB pulse width  
1
1
ASYNCRST pulse width  
ns  
Output Data  
Data Output Delay (3)  
TOD  
Tskew  
7.1  
ns  
ps  
Data output delay Skew  
400  
650  
Data pipeline delay  
- Synchronized 1:2 ratio  
- Synchronized 1:4 ratio  
- Staggered 1:2 ratio  
- Staggered 1:4 ratio  
5.5  
7.5  
4
Clock  
TPD  
cycles  
4.5/5.5  
4.5/5.5/6.5/7.5  
Data output rise/fall time (20% –80%)  
Output Clock  
TR/TF  
ps  
Output clock delay (3)  
TDR  
6.6  
ns  
ps  
Output clock rise/fall time (20% –80%)  
TR/TF  
650  
600  
4
TD2-TD1  
TOD-TDR  
Output data to output clock propagation  
delay  
200  
500  
ps  
11  
5431C–BDC–01/06  
Table 4-5.  
Parameter  
Transient and Switching Performances (Continued)  
Test  
Level  
Symbol  
Min  
Typ  
Max  
Unit  
Standalone Delay Cell (DACTRL) and Tunable Delay cell (CLKDACTRL)(4)  
Input frequency  
Input duty cycle  
FMSDA  
600  
40  
MHz  
%
4
4
DCYCSDA  
50  
60  
Propagation delay with  
TSDAMIN  
1.70  
2.00  
2.30  
ns  
CLKDACTRL or DACTRL = VCCD/3  
Propagation delay  
4
4
TSDAMAX  
2.1  
2.50  
550  
2.90  
600  
ns  
ps  
with CLKDACTRL or DACTRL = 2 × VCCD/3  
Tuning range (4)  
SDARANGE  
400  
Note:  
1. Output error amplitude < 6 LSB. Fs = 2 Gsps TJ = 110°C.  
2. See ”Definitions of Terms” on page 41.  
3. TOD and TDR propagation times are defined at package input/outputs. They are given for reference only. See ”Definitions of  
Terms” on page 41.  
4. The delay cell used in both standalone delay cell and input clock path (DR) has a characteristic that is not linear with junction  
temperature. The largest tuning range is obtained near ambient temperature.  
4.3  
Explanation of Test Levels  
Level  
Comments  
1
2
3
4
5
100% production tested at 25°C (for C Temperature range ).  
100% production tested at 25°C, and sample tested at specified temperatures (for V and M temperature  
ranges).  
Sample tested only at specified temperatures  
Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified  
temperature).  
Parameter is a typical value only guaranteed by design only  
Note:  
Unless otherwise specified:  
Only minimum and maximum values are guaranteed (typical values are issued from characterization results).  
12  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
4.4  
Digital Coding  
Differential  
Analog Input  
Voltage Level  
Digital Output  
Binary (B/GB = GND or floating)  
MSB…LSB out-of-range  
GRAY (B/GB = VEE  
)
MSB………..LSB out-of-range  
> 250.25 mV  
250.25 mV  
249.75 mV  
125.25 mV  
124.75 mV  
0.25 mV  
>Top end of full-scale + ½ LSB  
Top end of full-scale + ½ LSB  
Top end of full-scale - ½ LSB  
3/4 full-scale + ½ LSB3/4  
full-scale - ½ LSB  
1 1 1 1 1 1 1 1 1 1  
1
0
0
0
0
0
0
0
0
0
0
1
1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 1  
1 0 1 0 0 0 0 0 0 0  
1 1 1 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0  
0 1 1 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
1
0
0
0
0
0
0
0
0
0
0
1
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 0  
1 1 0 0 0 0 0 0 0 0  
1 0 1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0 0 0  
01 1 1 1 1 1 1 1 1  
0 1 0 0 0 0 0 0 0 0  
0 0 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
Mid scale + ½ LSB  
-0.25 mV  
Mid scale - ½ LSB  
- 124.75 mV  
- 124.25 mV  
- 249.75 mV  
- 250.25 mV  
250.25 mV  
1/4 full-scale + ½ LSB  
1/4 full-scale - ½ LSB  
Bottom end of full-scale + ½ LSB  
Bottom end of full-scale - ½ LSB  
< Bottom end of full-scale - ½ LSB  
13  
5431C–BDC–01/06  
5. Characterization Results  
5.1  
Nominal Conditions  
Unless otherwise specified:  
• VCCA = 3.3V, VCCD = 3.3V, VEE = -5V, VPLUSD = 2.5V, VMINUSD = -2.2V  
• TJ = 80°C  
• 50% clock duty cycle, binary output data format  
• -1 dBFS analog input  
5.2  
Full Power Input Bandwidth  
• Analog input level = -1 dBFS  
• Gain flatness at -0.5 dB from DC to 1.5 GHz  
Figure 5-1. Full Power Input Bandwidth at -3 dB  
0,0  
-0,5  
-1,0  
-1,5  
-2,0  
-2,5  
-3,0  
-3,5  
-4,0  
-4,5  
-5,0  
-5,5  
-6,0  
-0.5 dB Gain Flatness  
-3 dB  
Bandwidth  
Fin (MHz)  
14  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
5.3  
VSWR Versus Input Frequency  
Figure 5-2. VSWR Curve for the Analog Input (VIN) and Clock (CLK)  
2,60  
2,40  
2,20  
2,00  
1,80  
1,60  
1,40  
1,20  
1,00  
CLK  
VIN  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Frequency (MHz)  
5.4  
Step Response  
Tr measured = 114.8 ps = sqrt (TrPulseGenerator ² + TrADC²)  
TrPulseGenerator (estimated) = 41 ps  
• Actual TrADC = 107 ps  
Figure 5-3. Step Response Rise Time (Fs = 2 Gsps, Fin = 1 GHz)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100%  
90%  
10%  
0%  
-100  
-200  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000 1100  
Time (ps)  
15  
5431C–BDC–01/06  
5.5  
Dynamic Performance Versus Sampling Frequency  
Figure 5-4. Dynamic Parameters Versus Sampling Frequency in Nyquist Conditions (Fin = Fs/2)  
-20  
10  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
9
8
7
6
5
4
3
2
1
0
Signal dependent and independent SFDR  
SFDR without the first 4 Harmonics  
1000  
1200  
1400  
1600  
1800  
2000  
1000  
1200  
1400  
1600  
1800  
2000  
Fs (Msps)  
Fs (Msps)  
90  
80  
70  
60  
50  
40  
30  
20  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1000  
1200  
1400  
1600  
1800  
2000  
1000  
1200  
1400  
1600  
1800  
2000  
Fs (Msps)  
Fs (Msps)  
5.6  
Dynamic Performance Versus Input Frequency  
Figure 5-5. Dynamic Parameters Versus Input Frequency at Fs = 2 Gsps  
10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
9
8
7
6
0
400  
800  
1200  
Fin (MHz)  
1600  
2000  
0
400  
800  
1200  
Fin (MHz)  
1600  
2000  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
400  
800  
1200  
Fin (MHz)  
1600  
2 000  
0
400  
800  
1200  
Fin (MHz)  
1600  
2000  
16  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
5.7  
Signal Spectrum  
Figure 5-6. Fs = 2 Gsps, Fin = 998 MHz -1 dBFS Analog Input, 1:4 Demultiplexing Factor, 32  
kpoint FFT  
20  
H1 Fundamental (998 MHz)  
ENOB = 7.8  
0
-20  
SFDR (H2) = - 58 dBFS  
-40  
F
S/4  
-60  
-80  
-100  
-120  
-140  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
MHz  
Figure 5-7. Fs = 2 Gsps, Fin = 1998 MHz -1 dBFS Analog Input, 1:4 Demultiplexing Factor,  
32 kpoint FFT  
20  
H1 Fundamental image (2 GHz - 1.998 GHz = 2 MHz)  
0
ENOB = 7.5  
-20  
SFDR (H4)  
= - 58 dBFS  
-40  
-60  
F
S/4  
-80  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
MHz  
17  
5431C–BDC–01/06  
5.8  
Dynamic Performance Sensitivity Versus Temperature and Power Supply  
Figure 5-8. Dynamic Parameters Versus Junction Temperature at Fs = 2 Gsps, Fin = 998 MHz,  
-1 dBFS Analog Input  
-20  
-30  
10  
9
-40  
-50  
-60  
-70  
-80  
-90  
8
7
6
5
4
3
2
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
Tj (˚C)  
Tj (˚C)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
Tj (˚C)  
Tj (˚C)  
Figure 5-9. Dynamic Parameters at Min., Typ. and Max. Power Supplies, Fs = 2 Gsps, Fin = 998 MHz,  
-1 dBFS Analog Input  
10  
-40  
-42  
-44  
9
-46  
-48  
8
-50  
-52  
7
-54  
-56  
6
-58  
-60  
5
-62  
-64  
4
-66  
-68  
3
-70  
2
Min. Power Supplies  
Typ. Power Supplies  
Max. Power Supplies  
Min. Power Supplies Typ. Power Supplies Max. Power Supplies  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
-70  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
Min. Power Supplies Typ. Power Supplies Max. Power Supplies  
Min. Power Supplies Typ. Power Supplies Max. Power Supplies  
Note:  
Minimum power supplies: VCC = 3.45,V VEE = -4.75V  
Typical power supplies: VCC = 3.3V, VEE = - 5V  
Maximum power supplies: VCC = 3.15V, VEE = -5.25V  
18  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
5.9  
Dual Tone Performance  
Figure 5-10. Dual Tone Signal Spectrum at Fs = 2 Gsps, Fin1 = 1545 MHz,  
Fin2 = 1555 MHz (-7 dBFS)  
20  
F2 =Fs - Fin2 = 445 MHz  
F1 = Fs - Fin1 = 455 MHz  
-7 dBFS  
-7 dBFS  
0
-20  
IMD3  
-40  
-60  
2F1 - Fin2  
= 435 MHz  
2F2 - F1  
= 465 Mz  
F1 + F2  
= 900 Mz  
-80  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
MHz  
600  
700  
800  
900  
1000  
5.10 NPR Performance  
Figure 5-11. Digitizing of 575 MHz Broadband Pattern at 1.4 Gsps, 25 MHz Notch Centered  
Around 290 MHz, -12 dBFS Loading Factor  
0
NPR = 40.22 dB  
-20  
25MHz  
Input antiliasing  
Filter roll-off  
25MHz  
-40  
-60  
-80  
-100  
-120  
0
50 100 150 200 250 300 350 400 450 500 550 600 650 700  
F(MHz)  
19  
5431C–BDC–01/06  
6. Pin Description  
Figure 6-1. EBGA317 Pinout Table (View from Bottom Package)  
20  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table 6-1.  
Symbol  
Pin Description  
Pin Number  
Function  
Power Supplies  
C17, C18, D17, D18, F3, F4, H3, H4, M3,  
M4, P3, P4, R18, T18, U16, U17  
DGND  
Digital ground  
B21, B23, C21, C23, D21, D23, E21, E23,  
F21, F23, F26, F27, G25, G26, G27, H25,  
H26, J25, J26, K27, N25, P25, R22, R23,  
R24, R25, R26, R27, T22, t23, T24, T25,  
T26, T27, U22, U23, U24, U25, U26, U27,  
V21, V23, V24, V26, V27, W22, W25,  
W26, W27  
AGND  
Analog ground  
A24, A26, A27, B24, B26, B27, C24, C26,  
C27, D24, D26, D27, E24, E26, F25, L25,  
L26, M27, R21, T21, U21,  
VCCA  
ADC analog positive power supply  
A25, B22, B25, C20, C22, C25, D20, D22,  
D25, E20; E22, E25, F20, F22, F24, K25,  
K26, L27, M25, M26, N26, N27, R20, T20  
VEE  
ADC analog negative power supply  
Connect to VEE  
SUB  
D14, D15, R17  
C4, C5, C6, C7, C9, C11, C13, C14, C15,  
C16, C19, D5, D6, D7, D9, D11, D13,  
D19, E3, E19, F19, J3, J4, L3, L4, N3, N4,  
R3, R4, R19, T6, T7, T9, T11, T13, T14,  
T15, T19, U4, U5, U6, U7, U9, U11, U13,  
U14, U15  
VPLUSD  
ADC and DMUX output power supply  
C3, C8, C10, C12, D3, D4, D8, D10, D12,  
D16, E4, E17, G3, G4, K3, K4, R16, T3,  
T4, T5, T8, T10, T12, T16, T17, U3, U8,  
U10, U12  
VCCD  
DMUX digital power supply  
VMINUSD  
A19, A20, B19, B20, E18, F18, U19, U20  
ADC digital negative power supply (-2.2V)  
Inputs  
ADC clock differential Inputs  
ECL/PECL/LVDS compatible  
CLK, CLKN  
VIN  
H27, J27  
V25, W24  
ADC in-phase analog input (double pin:  
one of the two has to be terminated via  
50to ground)  
ADC Inverted-phase analog input (double  
pin: one of the two has to be terminated  
via 50to ground)  
VINN  
V22, W23  
Outputs  
In-phase digital outputs port A  
LVDS compatible  
B16, B15, B14, B13, B12, B11, B10, B9,  
B8, B7  
A0…A9  
Inverted-phase digital outputs port A  
LVDS compatible  
A16, A15, A14, A13, A12, A11, A10, A9,  
A8, A7  
A0N…A9N  
Port additional bit or port A output clock in  
staggered mode  
AOR/DRAN, AORN/DRA  
B6, A6  
21  
5431C–BDC–01/06  
Table 6-1.  
Symbol  
Pin Description (Continued)  
Pin Number  
Function  
In-phase digital outputs port B  
LVDS compatible  
B0…B9  
B5, B4, B3, B2, C2, D2, E2, F2, G2, H2  
Inverted-phase digital outputs port B  
LVDS compatible  
B0N…B9N  
A5, A4, A3, A2, B1, C1, D1, E1, F1, G1  
J2, H1  
Port B additional bit or port B output clock  
in staggered mode  
BOR/DRBN, BORN/DRB  
C0…C9  
In-phase digital outputs port C  
LVDS compatible  
M2, N2, P2, R2, T2, U2, V1, V2, V3, V4  
L1, M1, N1, P1, R1, T1, U1, W2, W3, W4  
V5, W5  
Inverted-phase digital outputs port C  
LVDS compatible  
C0N…C9N  
Port C additional bit or port V output clock  
in staggered mode  
COR/DRCN, CORN/DRC  
D0…D9  
In-phase digital outputs port D  
LVDS compatible  
V6, V7, V8, V9, V10, V11, V12, V13, V14,  
V15  
Inverted-phase digital outputs port D  
LVDS compatible  
W6, W7, W8, W9, W10, W11, W12, W13,  
W14, W15  
D0N…D9N  
Port D additional bit or port D output clock  
in staggered mode  
DOR/DRDN, DORN/DRD  
V16, W16  
J1, K2  
DR, DRN  
Differential output clock LVDS compatible  
Control Functions Inputs  
ADC data ready reset LVCMOS (3.3V)  
compatible  
DRRB  
P27  
B17  
DMUX asynchronous reset  
-Leave floating or connect to VCCD for  
normal mode  
ASYNCRST  
-Connect to ground for reset mode  
ADC sampling delay adjust enable  
-SDA disabled when left floating or  
connected to ground  
SDAEN  
SDA  
P26  
E27  
A23  
-SDA enabled when connected to VEE  
ADC sampling delay adjust  
( 0.5V range)  
Pattern generator enable  
-Leave floating or connect to ground for  
normal mode  
PGEB  
-Connect to VEE for test mode  
Binary or gray output coding selection  
-Leave floating or connect to ground for  
binary coding  
B/GB  
A21  
-Connect to VEE for gray coding  
ADC gain adjust control pin ( 0.5V range)  
Connect to VCCD  
GA  
W21  
V18  
CLKTYPE  
22  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table 6-1.  
Symbol  
Pin Description (Continued)  
Pin Number  
Function  
DMUX SLEEP mode Enable  
-leave floating or connect to VCCD for  
normal mode  
SLEEP  
STAGG  
DRTYPE  
RS  
A18  
-connect to ground for SLEEP mode  
DMUX staggered mode enable  
-leave floating or connect to VCCD for  
normal mode  
A17  
K1  
-connect to ground for STAGG mode  
DMUX output clock mode selection  
-connect to ground for DR/2 type  
-leave floating or connect to VCCD for  
DR type  
DMUX Ratio mode selection  
-connect to ground for 1:2 ratio  
L2  
-leave floating or connect to VCCD for  
1:4 ratio  
DMUX BIST mode  
-leave floating or connect to VCCD for  
normal mode  
BIST  
V17  
-connect to ground for BIST mode  
DMUX clock delay control  
(from 1/3 × VCCD to 2/3 × VCCD  
CLKDACTRL  
DACTRL  
U18  
)
Standalone delay cell control (from 1/3 ×  
W18  
VCCD to 2/3 × VCCD  
)
Standalone delay cell enable  
-delay cell disabled when left floating or  
connected to VCCD  
DAEN  
W17  
-delay cell enabled when connected to  
ground  
Standalone delay cell differential inputs  
LVDS compatible  
DAI, DAIN  
W19, V19  
W20, V20  
Control Functions Outputs  
Standalone delay cell differential outputs  
LVDS compatible  
DAO, DAON  
DIODE ADC  
NC  
A22  
ADC die junction temperature monitoring  
No connect (leave this pin floating)  
A1, B18, W1  
23  
5431C–BDC–01/06  
7. Main Features  
7.1  
Reset  
There are two reset signals available: DRRB and ASYNCRST. DRRB is active low while ASYN-  
CRST is active high. These reset signals are required to start the device properly. It is  
recommended to apply both reset signals simultaneously. Please refer to the Application Sec-  
tion for more information on how to implement the reset functions. In the case of multiple  
channels, it is recommended to hold the input clock signal low during reset (as described in  
Figure 7-1) to ensure synchronization of the channels.  
The DRRB/ASYNCRST signal frequency should be 200 MHz maximum. The reset pulse should  
be 1 ns minimum.  
Figure 7-1. Asynchronous Reset Timing Diagram, 1:2 Mode, Simultaneous Mode (Principle of Operation)  
T
= 160 ps  
amb  
1 ns min  
1 ns min  
TPD: 5.5 cycles  
1 cycle  
TOD  
T
skew  
N
N + 2  
T
skew  
N + 1  
N + 3  
TDR  
TD1 TD2  
24  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Figure 7-2. Asynchronous Reset Timing Diagram, 1:4 Mode, Simultaneous Mode (Principle of Operation)  
T
= 160 ps  
amb  
VIN  
CLK  
1 ns min  
1 ns min  
DRRB  
TPD: 7.5 cycles  
2 cycles  
ASYNCRST  
TOD  
Tskew  
A0..A9  
B0..B9  
C0..C9  
D0..D9  
N
Tskew  
Tskew  
Tskew  
N + 1  
N + 2  
N + 3  
TDR  
DR (DR mode)  
DR (DR/2 mode)  
TD1  
TD2  
Note:  
1. TPD time is the delay between the first raising edge after the reset signal and before the TOD  
or TDR delay. This time is a number of clock cycle.  
2. Definition of TOD: it is the time between the falling edge and the next point of change of data  
3. Definition of TDR: it is the time between the falling edge and the next point of change of data  
ready.  
4. TOD - TDR is always lower to 600 ps over temperature and power supply  
5. TD1 = 2 clock cycles + TOD - TDR.  
6. TD2 = 2 clock cycles + TDR - TOD With TOD = 6.2 ns. This delay is long due to the several  
delay lines in the DMUX.  
25  
5431C–BDC–01/06  
7.2  
Control Signal Settings  
The SLEEP, RS, DAEN, STAGG, BIST and DRTYPE control signals use the same static buffer.  
ASYNCRST is activated on logic high (tied/switched to VCCD = 3.3V, or 10 kto ground, or left  
floating) and deactivated on logic low (grounded).  
SLEEP, DAEN, STAGG, BIST are activated on logic low (10grounded), and deactivated on  
logic high (10 kto ground, or tied to VCCD = 3.3V, or left floating). This is illustrated in Figure  
7-3.  
Figure 7-3. Control Signal Setting  
Not  
Control signal  
pin  
Control signal  
pin  
Control signal  
pin  
connected  
10  
KΩ  
10Ω  
GND  
Low level  
(‘0’)  
GND  
(‘1’)  
High level  
26  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table 7-1.  
Function  
DMUX Mode Settings - Summary  
Logic Level  
Electrical Level  
10to ground  
10 kto ground  
N/C  
Description  
0
BIST  
BIST  
1
Normal conversion  
0
Power reduction mode (the outputs  
are fixed at an arbitrary LVDS level)  
10to ground  
SLEEP  
10to ground  
N/C  
1
Normal conversion  
Staggered mode  
Simultaneous mode  
Standalone delay adjust activated  
Standalone delay adjust disabled  
1:2 ratio  
0
1
10to ground  
10 kto ground  
N/C  
STAGG  
DAEN  
0
1
10to ground  
10 kto ground  
N/C  
0
1
10to ground  
10 kto ground  
N/C  
RS  
1:4 ratio  
0
1
10to ground  
10 kto ground  
N/C  
Normal conversion  
Reset  
ASYNCRST  
DRTYPE  
0
1
10to ground  
10 kto ground  
N/C  
DR/2 mode  
DR mode  
27  
5431C–BDC–01/06  
7.3  
Programmable DMUX Ratio  
The demultiplexer ratio is programmable thanks to the RS ratio selection signal:  
RS  
0
DMUX Ratio  
1:2  
1:4  
1
Figure 7-4. DMUX in 1:2 Ratio  
Input Words:  
Output Words:  
1, 2, 3, 4, 5, 6, 7, 8…  
1:2  
Port A  
Port B  
Port C  
Port D  
1
2
3
4
5
Not Used  
Not Used  
Figure 7-5. DMUX in 1:4 Ratio  
Input Words:  
Output Words:  
1, 2, 3, 4, 5, 6, 7, 8…  
1:4  
Port A  
Port B  
Port C  
Port D  
1
2
3
4
5
6
7
8
9
7.4  
Output Mode (STAGG)  
Two output mode are provided:  
• Staggered: the output data come out of the DMUX the one after the other;  
• Simultaneous: the output data come out of the DMUX at the same time.  
In staggered mode, the output clock for each port is provided by the DRA, DRAN, DRB, DRBN,  
DRC, DRCN and DRD, DRDN signals which corresponds respectively to the AORN, AOR,  
BRON, BOR, CORN, COR, DORN and DOR.  
The simultaneous mode is the default mode (STAGG left floating of at logic 1).  
The staggered mode is activated by the means of the STAGG input (active low).  
28  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Figure 7-6. Simultaneous Mode in 1:4 Ratio (STAGG = 1)  
DR  
(in DR mode)  
DR  
(in DR/2 mode)  
Data Out  
Port A  
N
N + 4  
N + 5  
Data Out  
Port B  
N + 1  
N + 2  
N + 3  
Data Out  
Port C  
N + 6  
N + 7  
Data Out  
Port D  
Figure 7-7. Staggered Mode in 1:2 Ratio (STAGG = 0)  
Data Out  
N
N + 2  
Port A  
Data Out  
Port B  
N - 1  
N + 1  
N + 3  
DRA (AORN)  
in DR mode  
DRA (AORN)  
in DR/2 mode  
DRB  
in DR mode  
DRB (BORN)  
in DR/2 mode  
DR  
(in DR mode)  
DR  
(in DR/2 mode)  
29  
5431C–BDC–01/06  
Figure 7-8. Staggered Mode in 1:4 Ratio (STAGG = 0)  
Data Out Port A  
N
N + 4  
DRA (AORN)  
in DR mode  
DRA (AORN)  
in DR/2 mode  
Data Out Port B  
N + 1  
N + 5  
DRB (BORN)  
in DR mode  
DRB (BORN)  
in DR/2 mode  
Data Out Port C  
N
2
N + 2  
N + 6  
-
DRC (CORN  
(in DR mode)  
DRC (CORN  
(in DR/2 mode)  
Data Out Port D  
N - 1  
N + 3  
DRD (DORN)  
in DR mode  
DRD (DORN)  
in DR/2 mode  
DR  
in DR mode  
DR  
in DR/2 mode  
7.5  
Additional Bit  
In simultaneous output mode:  
The (AOR/DRAN, AORN/DRA), (BOR/DRBN, BORN/DRB), (COR/DRCN, CORN/DRC) and  
(DOR/DRDN, DORN/DRD) signals are used to process the out-of-range bit from the ADC as the  
ADC output data.  
In 1:2 ratio, (AOR, AORN) and (BOR, BORN) will output this signal at half its initial speed.  
In 1:4 ratio, (AOR, AORN), (BOR, BORN), (COR, CORN) and (DOR, DORN) will output this sig-  
nal at ¼ of its initial speed.  
In Staggered output mode: (AOR/DRAN, AORN/DRA), (BOR/DRBN, BORN/DRB),  
(COR/DRCN, CORN/DRC) and (DOR/DRDN, DORN/DRD) will output a Data Ready signal for  
each ports, centered on the corresponding data.  
30  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
The frequency of the (DRA, DRAN), (DRB, DRBN), (DRC, DRCN) and (DRD, DRDN) depends  
on the DRTYPE mode (same as data in DR mode, half in DR/2 mode).  
In 1:2 ratio, DR/DRN and DRB/DRBN are the same.  
In 1:4 ratio, DR/DRN and DRD/DRDN are the same.  
7.6  
Output Clock Type Selection  
Two modes for the output clock type can be chosen:  
• DR mode: only the output clock rising edge is active, the output clock rate is the same as the  
output data rate;  
• DR/2 mode: both the output clock rising and falling edges are active, the output clock rate is  
half the output data rate.  
This is illustrated in Figure 7-9 and Figure 7-10.  
Figure 7-9. DR Mode  
DR  
Data Out  
Figure 7-10. DR/2 Mode  
DR  
Data Out  
Table 7-2.  
Table 8. DMUX Output Clock Type Selection Settings  
DRTYPE  
DMUX Output Clock Type  
1
0
DR  
DR/2  
When DRTYPE is left floating, the default mode is DR.  
7.7  
7.8  
Power Reduction Mode (SLEEP)  
The power reduction (SLEEP) mode allows the user to reduce the power consumption of the  
device (demultiplexing part in Sleep mode). In this mode, the device's consumption is reduced to  
5W. The Power reduction mode is active when SLEEP is low. The device is in normal mode  
when SLEEP is high.  
Standalone Delay Cell  
A standalone delay cell is provided to allow the user to add a delay on the DAI/DAIN differential  
input signal. The delay is controlled via the DACTRL. The tuning range is about 550 ps varying  
from VCCD / 3 to (2 × VCCD) / 3. This function results in a delayed output signal: DAO/DAON. The  
DAI/DAIN and DAO/DAON are LVDS signals.  
31  
5431C–BDC–01/06  
Figure 7-11. Standalone Delay Cell Block Diagram  
2
Delay  
(550 ps)  
2
DAO/DAON  
DAI/DAIN  
DACTRL  
7.9  
Clock input Delay Cell  
A delay cell is provided to allow the user to tune the delay between clock and data at the  
DEMUX input. The delay is controlled via the CLKDACTRL. It ranges from -275 ps to 275 ps for  
CLKDACTRL varying from VCCD / 3 to (2 × VCCD) / 3.  
This function results in a delayed internal clock signal.  
Figure 7-12. Standalone Delay Cell Block Diagram  
Delay  
2
2
Internal clock  
signal  
(-275 to 275 ps)  
CLK/CLKN  
CLKDACTRL  
7.10 Built-In Self Test  
The Built-in Self Test allows to test rapidly the DMUX block of the device. It is activated via the  
BIST bit (active low). When this signal is left floating, the BIST is inactive.  
When in BIST mode, a clock must be applied to the device, which can be set to 1:2 or 1:4 mode.  
The output clock mode DRTYPE can be either DR or DR/2. In the BIST mode, all the bits are  
either all at low or high level (even and odd bits are in phase opposition) and transition every  
new cycle. For proper operation of the Built-In Self Test, VCCD should be set to 3.3V minimum.  
7.11 ADC Die Junction Temperature Monitoring  
A die junction temperature measurement setting is available, for maximum junction temperature  
monitoring (hot point measurement). The measurement method consists in forcing a 1 mA cur-  
rent into a diode mounted transistor and sensing the voltage across the DIODE pin and the  
closest available ground pin. The measurement setup is described in Figure 7-13 on page 33.  
32  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Figure 7-13. ADC Diode for Die Junction Temperature Monitoring Setup (10 in parallel of 3)  
DIODE  
10  
1 mA  
protection  
diodes  
AGND  
Protection  
Diodes  
Caution:  
Respect the current source polarity. In all cases, make sure that the maximum voltage compli-  
ance of the current source is limited to a maximum of 1V or use a resistor mounted in series with  
the current source to avoid damages, which may occur to the transistor device (this may occur  
for instance if the current source is connected in reverse).  
The diode VBE forward voltage versus junction temperature (in steady state conditions) charac-  
teristic is given in Figure 7-14. The forward voltage drop, (VDIODE) across diode component,  
versus junction temperature, (including chip parasitic resistance), is given below (IDIODE = 1 mA).  
33  
5431C–BDC–01/06  
Figure 7-14. ADC Diode Characteristic (I = 1 mA)  
Junction temperature Versus Diode Voltage for I= 1 mA  
950  
940  
930  
920  
910  
900  
890  
880  
870  
860  
850  
840  
830  
820  
810  
800  
790  
780  
770  
760  
750  
740  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Jonction temperature (˚C)  
Note:  
The operating die junction temperature must be kept below 125°C, to ensure long term device  
reliability.  
7.12 Pattern Generator Function  
The Pattern Generator function (enabled by connecting pin PGEB to VEE = -5V) allows to check  
rapidly the ADC operation thanks to a checker board pattern delivered internally to the ADC.  
Each output bit of the ADC should toggle from 0 to 1 successively. At the AT84AS004 output, all  
bits of each port are all 1 or all 0 and transition every cycle.  
7.13 ADC Gain Control  
The ADC gain is adjustable by the means of the pin W21 of the EBGA package.  
The gain adjust transfer function is given below:  
1.30  
1.20  
Typical  
1.10  
1.00  
Min  
0.90  
0.80  
0.70  
0.60  
0.50  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
V
Gain Adjust Voltage (V)  
GA  
34  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
7.14 Sampling Delay Adjust  
Sampling delay adjust (SDA pin) allows to fine tune the sampling ADC aperture delay TAD  
around its nominal value (160ps). This functionality is enabled thanks to the SDAEN signal,  
which is active when tied to VEE and inactive when tied to GND.  
This feature is particularly interesting for interleaving ADCs to increase sampling rate.The varia-  
tion of the delay around its nominal value as a function of the SDA voltage is shown in the  
following graph (simulation result):  
Figure 7-15. Typical Tuning Range is 120 ps for Applied Control Voltage Varying Between  
-
0.5V to 0.5V on SDA pin.  
400 p  
Delay in the Variable Delay Cell at 60 C  
300 p  
200 p  
100 p  
-500 m  
-400 m  
-300 m  
-200 m  
-100 m  
0.00  
100 m  
200 m  
300 m  
400 m  
500 m  
SDA Voltage  
Note:  
The variation of the delay in function of the temperature is negligible.  
35  
5431C–BDC–01/06  
8. Equivalent Input/Output Schematics  
8.1  
Equivalent Analog Input Circuit and ESD Protection  
Figure 8-1. AT8AS004 Analog Input Buffer Schematic (VIN/VINN)  
VEE = - 5V  
Double  
Pad  
260fF  
ESD  
50Ω  
120fF  
VIN  
GND  
1mA  
50Controlled  
Transmission Lines  
(Bonding + Package + Ball)  
Package  
Pins  
Die Double Pads  
50Controlled  
Transmission Lines  
(Bonding + Package + Ball)  
1mA  
VINN  
50Ω  
ESD  
120f  
F
GND  
VEE = - 5V  
Note:  
External 50reverse termination are required.  
8.2  
Equivalent Clock Input Circuit and ESD Protection  
Figure 8-2. AT84AS004 Clock Input Buffer Schematic (CLK/CLKN)  
150Ω  
CLK  
400 µA  
Double Pad  
ESD  
260fF  
120fF  
50Ω  
VEE = -5V  
40pF  
GND  
ESD  
215fF  
Double Pad  
260fF  
VEE =  
-5V  
50Ω  
400 µA  
CLKB  
ESD  
120fF  
Double Pad  
260fP  
150Ω  
VEE = -5V  
Note:  
The 100termination mid point is on chip and AC coupled to ground through a 40 pF capacitor.  
36  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
8.3  
Equivalent Data/Clock Output Buffer Circuit and ESD Protection  
Figure 8-3. AT84AS004 Data (Ai/AiN…Di/DiN), Clock (DR/DRN) and DAO/DAON Output  
Buffer Schematic  
VPLUSD (2.5V 5%)  
200  
vccdiode  
ESD:  
vccdiode  
ESD:  
vccdiode  
vccdiode  
C = 435 fF C = 435 fF  
701  
701  
out  
361  
361  
outn  
ESD:  
ESD:  
gnddiode  
C = 272 fF  
gnddiode  
gnddiode  
C = 272 fF  
gnddiode  
50.0  
1.1K  
1.4K  
1.4K  
DGND (0V)  
SUBST (-5V)  
8.4  
Standalone Delay Cell Data Input (DAI/DAIN) Buffer Circuit and ESD Protection  
Figure 8-4. AT84AS004 Standalone Delay Cell Input DAI/DAIN Buffer Schematic  
VCCD (3.3V 5%)  
2.00K  
2.00K  
npn  
ESD:  
vccdiode  
C = 435 fF  
ESD:  
vccdiode  
C = 435 fF  
npn  
in  
49.9  
1.25V 0.175V  
1.25V 0.175V  
49.9  
inb  
ESD:  
ESD:  
gnddiode gnddiode  
C = 272fF C = 272fF  
4.00k  
5.00p  
DGND (0V)  
SUBST (-5V)  
37  
5431C–BDC–01/06  
8.5  
Delay Cell (DACTRL/DACTRLN and CLKCTRL/CLKCTRLN) Control Input  
Schematic and ESD Protection  
Figure 8-5. AT84AS004 Delay Cell Control Input DACTRL/DACTRLN and CLKCTRL/CLKC-  
TRLN Buffer Schematic  
VCCD (3.3V 5%)  
2.00K  
2.00K  
ESD:  
vccdiode  
C = 435 fF  
10.0K  
2.00K  
2.00K  
in  
698  
698  
ESD:  
gnddiode  
C = 272 fF  
600 µa  
10.0K  
2.00K  
2.00K  
DGND (0V)  
SUBST  
8.6  
DRRB Equivalent Input Schematic and ESD Protection  
Figure 8-6. AT84AS004 DRRB Reset Input Buffer Schematic  
VCC = 3.3V  
1.4V  
VCC = 3.3V  
VCC = 3.3V  
GND  
8 K  
DRRB  
-2.6V  
200  
130 fF  
10 K  
5 KΩ  
5 KΩ  
VEE =-5V GND  
GND  
VEE =-5V  
38  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
8.7  
ASYNCRST Equivalent Input Schematic and ESD Protection  
Figure 8-7. AT84AS004 Asynchronous Reset ASYNCRST Buffer Schematic  
VCCD (3.3V 5%)  
4.00K  
4.00K  
ESD:  
vccdiode  
C = 435 fF  
12.7K  
399  
399  
25.0K  
in  
ESD:  
gnddiode  
C = 272 fF  
75 ua  
9.32K  
4.00K 4.00K  
DGND (0V)  
SUBST (-5V)  
8.8  
ADC Gain Adjust Equivalent Input Circuits and ESD Protection  
Figure 8-8. AT84AS004 Gain Adjust Control Input Buffer Schematic (GA)  
VCC = 5 V  
ESD  
65fF  
0.9V  
0V  
1
kΩ  
GA  
20Ω  
10p  
PAD  
130fF  
ESD  
75fF  
F
VEE = -5V  
GND  
µ
100 A  
µ
A
100  
VEE = -5V  
39  
5431C–BDC–01/06  
8.9  
B/GB and PGEB Equivalent Input Schematics and ESD Protection  
Figure 8-9. AT84AS004 B/GB and PGEB Control Buffer Schematic  
GND  
GND  
GND  
2kΩ  
1kΩ  
ESD  
65fF  
5kΩ  
-1.3V  
B/GB  
ESD  
75fF  
µ
µ
250 A  
PAD  
130fF  
250 A  
VEE = -5V  
VEE = -5V  
8.10 Control Signals Input Buffers and ESD Protection  
Figure 8-10. AT84AS004 Control Signals Buffer Schematic (RS, DRTYPE, BIST, SLEEP,  
STAGG, RS, DAEN)  
VCCD (3.3V 5%)  
10.0K  
4.00K  
1.2K  
1.2K  
ESD:  
vccdiode  
C = 435 fF  
in  
8K  
10.0K  
16.00K  
10= 0  
ESD:  
10 K= 1  
gnddiode  
C = 272 fF  
DGND (0V)  
SUBST (-5V)  
40  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
9. Definitions of Terms  
Maximum Sampling  
Frequency  
(Fs max)  
(Fs min)  
Sampling frequency for which ENOB < 6bit.s  
Sampling frequency for which the ADC Gain has fallen by 0.5 dB with  
respect to the gain reference value. Performances are not guaranteed  
below this frequency.  
Minimum Sampling  
frequency  
Probability to exceed a specified error threshold for a sample at  
maximum specified sampling rate. An error code is a code that differs by  
more than 4 LSB from the correct code.  
(BER)  
Bit Error Rate  
Analog input frequency at which the fundamental component in the  
digitally reconstructed output waveform has fallen by 3 dB with respect  
to its low frequency value (determined by FFT analysis) for input at full-  
scale -1 dB (-1 dBFS).  
(FPBW)  
Full Power Input Bandwidth  
Analog input frequency at which the fundamental component in the  
digitally reconstructed output waveform has fallen by 3 dB with respect  
to its low frequency value (determined by FFT analysis) for input at full-  
scale -10 dB (- 10 dBFS).  
Small Signal Input  
Bandwidth  
(SSBW)  
Ratio expressed in dB of the RMS signal amplitude, set to 1 dB below  
full-scale (- 1 dBFS), to the RMS sum of all other spectral components,  
including the harmonics except DC.  
Signal to Noise and  
Distortion Ratio  
(SINAD)  
(SNR)  
Ratio expressed in dB of the RMS signal amplitude, set to 1dB below  
full-scale, to the RMS sum of all other spectral components excluding  
the twenty five first harmonics.  
Signal to Noise Ratio  
Ratio expressed in dB of the RMS sum of the first twenty five harmonic  
components, to the RMS input signal amplitude, set at 1 dB below full-  
scale. It may be reported in dB (i.e, related to converter -1 dB full-scale),  
or in dBc (i.e, related to input signal level).  
(THD)  
Total Harmonic Distortion  
Ratio expressed in dB of the RMS signal amplitude, set at 1 dB below  
full-scale, to the RMS value of the highest spectral component (peak  
spurious spectral component). The peak spurious component may or  
may not be a harmonic. It may be reported in dB (i.e., related to  
converter -1 dB full-scale), or in dBc (i.e, related to input signal level ).  
Spurious Free Dynamic  
Range  
(SFDR)  
(ENOB)  
(DNL)  
Where A is the actual  
A
-------------  
SINAD 176 + 20 log  
input amplitude and V is  
the full-scale range of the  
ADC under test.  
FS 2  
ENOB = -----------------------------------------------------------------------------  
Effective Number of Bits  
Differential Non-Linearity  
602  
The Differential Non Linearity for an output code i is the difference  
between the measured step size of code i and the ideal LSB step size.  
DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i).  
DNL error specification of less than 1 LSB guarantees that there are no  
missing output codes and that the transfer function is monotonic.  
The Integral Non Linearity for an output code i is the difference between  
the measured input voltage at which the transition occurs and the ideal  
value of this transition. INL (i) is expressed in LSBs, and is the maximum  
value of all INL (i).  
(INL)  
(TA)  
Integral Non-Linearity  
Aperture Delay  
Delay between the rising edge of the differential clock inputs  
(CLK,CLKB) (zero crossing point), and the time at which (VIN,VINB) is  
sampled.  
41  
5431C–BDC–01/06  
Sample to sample variation in aperture delay. The voltage error due to  
jitter depends on the slew rate of the signal at the sampling point.  
(JITTER)  
(TS)  
Aperture Uncertainty  
Settling Time  
Time delay to achieve 0.2 % accuracy at the converter output when a  
80% full-scale step function is applied to the differential analog input.  
Over Voltage Recovery  
Time  
Time to recover 0.2% accuracy at the output, after a 150 % full-scale  
step applied on the input is reduced to midscale.  
(ORT)  
Delay from the rising edge of the differential clock inputs (CLK,CLKB)  
(zero crossing point) to the next point of change in the differential output  
data (zero crossing) with specified load.  
(TOD)  
(TDR)  
Digital Data Output Delay  
Data Ready Output Delay  
Delay from the falling edge of the differential clock inputs (CLK,CLKB)  
(zero crossing point) to the next point of change in the differential output  
data (zero crossing) with specified load.  
Time Delay from Data  
Transition to Data Ready  
General expression is TD1 = TC1 + TDR - TOD with TC = TC1 + TC2 =  
1 encoding clock period.  
(TD1)  
(TD2)  
(TC)  
Time delay from Data  
Ready to Data  
General expression is TD2 = TC2 + TDR - TOD with TC = TC1 + TC2 =  
1 encoding clock period.  
TC1 = Minimum clock pulse width (high) TC = TC1 + TC2TC2 =  
minimum clock pulse width (low).  
Encoding Clock Period  
Pipeline Delay  
Number of clock cycles between the sampling edge of an input data and  
the associated output data being made available, (not taking in account  
the TOD).  
(TPD)  
Time delay for the output DATA signals to rise from 20% to 80% of delta  
between low level and high level.  
(TR)  
Rise Time  
Fall Time  
Time delay for the output DATA signals to fall from 20% to 80% of delta  
between low level and high level.  
(TF)  
Power Supply Rejection  
Ratio  
(PSRR)  
Ratio of input offset variation to a change in power supply voltage.  
When the input signal is larger than the upper bound of the ADC input  
range, the output code is identical to the maximum code and the out-of-  
range bit is set to logic one. When the input signal is smaller than the  
lower bound of the ADC input range, the output code is identical to the  
minimum code, and the out-of-range bit is set to logic one. (It is  
assumed that the input signal amplitude remains within the absolute  
maximum ratings).  
(NRZ)  
Non Return to Zero  
The two tones inter modulation distortion (IMD) rejection is the ratio of  
either input tone to the worst third order intermediation products.  
(IMD)  
Inter modulation distortion  
Noise Power Ratio  
The NPR is measured to characterize the ADC performance in  
response to broad bandwidth signals. When applying a notch-filtered  
broadband white-noise signal as the input to the ADC under test, the  
Noise Power Ratio is defined as the ratio of the average out-of-notch to  
the average in-notch power spectral density magnitudes for the FFT  
spectrum of the ADC output sample test.  
(NPR)  
The VSWR corresponds to the ADC input insertion loss due to input  
power reflection. For example a VSWR of 1.2 corresponds to a 20 dB  
return loss (i.e.. 99% power transmitted and 1% reflected).  
Voltage Standing Wave  
Ratio  
(VSWR)  
42  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
10. Thermal and Moisture Characteristics  
As there is no JEDEC standard definition for the thermal resistance applied to a multi-die device,  
only the thermal resistance for each die (ADC block powered on only or DMUX block powered  
on only) is provided. For easy understanding of the thermal behavior of the device, thermal data  
with both devices powered on are however provided.  
All results were computed with ANSYS thermal simulation tool and with the following  
assumptions:  
• Half geometry simulation  
• DC heating zone = 1.9 × 1.9 mm²  
• MUX heating 4.0 × 4.0 mm²  
• No air, pure conduction, no radiation  
10.1 Thermal Resistance from Junction To Bottom of Balls  
When both blocks are powered on, the thermal simulation results in:  
Temperature at the center of the ADC block = 32.9°C  
Temperature at the center of the DMUX block = 13.6°C  
When each block is powered on at a time, the resulting thermal resistance from junction to bot-  
tom of balls is:  
• Rth Junction-bottom of balls (ADC block on only) = 7°C/W  
• Rth Junction-bottom of balls (DMUX block on only) = 3.9°C/W  
10.2 Thermal Resistance from Junction To Top of Case  
When both blocks are powered on, the resulting thermal resistance from junction to top of  
case is:  
Temperature at the center of the ADC block = 18.5°C  
Temperature at the center of the DMUX block = 4.1°C  
When each block is powered on at a time, the resulting thermal resistance from junction to top of  
case is:  
• Rth Junction- top of case (ADC block on only) = 4.1°C/W  
• Rth Junction- top of case (DMUX block on only) = 1.5°C/W  
10.3 Thermal Resistance from Junction To Board  
When both blocks are powered on, the resulting thermal resistance from junction to board is:  
Temperature at the center of the ADC block = 57.6°C  
Temperature at the center of the DMUX block = 37.3°C  
When each block is powered on at a time, the resulting thermal resistance from junction to board  
is:  
• Rth Junction- board (ADC block on only) = 8°C/W  
• Rth Junction- board (DMUX block on only) = 4.9°C/W  
Note:  
Assumed board size = 53 × 43 mm²  
43  
5431C–BDC–01/06  
10.4 Thermal Resistance from Junction To Ambient  
When both blocks are powered on, the resulting thermal resistance from junction to ambient is:  
Temperature at the center of the ADC block = 106°C  
Temperature at the center of the DMUX block = 85.3°C  
When each block is powered on at a time, the resulting thermal resistance from junction to ambi-  
ent is:  
• Rth Junction- ambient (ADC block on only) = 17.1°C/W  
• Rth Junction- ambient (DMUX block on only) = 13.9°C/W  
10.5 Thermal Management Recommendations  
In still air and 25°C ambient temperature conditions, the maximum temperature of 106°C + 25°C  
= 131°C is reached for the ADC block. It is consequently necessary to manage the heat from the  
AT84AS004 very carefully to avoid permanent damages of the device due to over temperature  
operation.  
In no air cooling conditions, an external heatsink must be placed on top of package. An electrical  
isolation may be necessary as the top of the package is at VEE = -5V potential.  
It is advised to use an external heatsink with intrinsic thermal resistance better than 4°C/Watt  
when using air at room temperature 20~25°C.At 60°C, the external heatsink should have an  
intrinsic thermal resistance better than 3°C/Watt. Figure 10-1 provides the outlines of the heat  
sink used on the AT84AS004-EB evaluation board.  
Figure 10-1. AT84AS004-EB Evaluation Board Heat Sink Outlines  
50.4 x 50.7 x 16.5 heat sink  
60 x  
52  
26  
13 x  
Note:  
All units are in mm  
44  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
10.6 Moisture Characteristics  
This device is sensitive to the moisture (MSL3 according to JEDEC standard).  
Shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).  
After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or  
equivalent processing (peak package body temperature 220°C) must be:  
– mounted within 168 hours at factory conditions of 30°C/60% RH, or  
– stored at 20% RH  
Devices require baking, before mounting, if Humidity Indicator is >20% when read at 23°C  
5°C.  
If baking is required, devices may be baked for:  
– 192 hours at 40°C + 5°C/-0°C and <5% RH for low temperature device containers, or  
– 24 hours at 125°C 5°C for high-temperature device containers.  
11. Applying the AT84AS004  
11.1 Bypassing, Decoupling and Grounding  
All power supplies have to be decoupled to ground as close as possible to the signal accesses  
to the board by 1 µF in parallel to 100 nF.  
Figure 11-1. AT84AS004 Power supplies Decoupling and grounding Scheme  
Power Supply  
Plane  
Supply Access  
External Power  
nF  
100  
1
µF  
(VCCD , VCCA , V  
,
EE  
V
or VMINUSD  
)
PLUSD  
Ground  
Note:  
VCCD and VCCA planes should be separated but the two power supplies can be reunited by a strap  
on the board.  
Each group of neighboring power supply pins attributed to the same value should be bypassed  
with at least one pair of 100 pF in parallel to 10 nF capacitors. These capacitors should be  
placed as close as possible to the power supply package pins.  
The minimum required pairs of capacitors by power supply type is:  
– 10 for VCCA  
– 15 for VCCD  
– 11 for VEE  
– 22 for VPLUSD  
– 3 for VMINUSD  
45  
5431C–BDC–01/06  
Figure 11-2. AT84AS004 Power Supplies Bypassing Scheme  
AT84AS004  
VCCD  
pF  
pF  
100  
100  
VCCA  
pF  
pF  
100  
100  
X 15  
X 22  
X 3  
(min)  
(min)  
10  
10  
nF  
nF  
X 10  
(min)  
(min)  
DGN  
D
nF  
nF  
10  
10  
AGND  
V
D
PLUS  
DGN  
VMINU  
D
X 11  
pF  
100  
SD  
AGND  
(min)  
nF  
10  
DGN  
D
11.2 Analog Input Implementation  
Two pins are available for each positive (VIN) and negative (VINN) inputs. It is necessary to ter-  
minate one of each input pair by 50to ground as close as possible to the EBGA package pins.  
This is illustrated in Figure 11-3.  
Figure 11-3. AT84AS004 Analog Input Reverse Termination Scheme  
AT84AS004  
50  
VIN (V25)  
GND  
VIN (W24)  
Differential or  
50  
Lines  
single-ended signal  
VINN (W23)  
50Ω  
VINN (V22)  
GND  
The analog input of the AT84AS004 device can be indifferently entered in single-ended or differ-  
ential mode.  
46  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Figure 11-4. AT84AS004 Analog Input Termination Scheme (Single-ended)  
004  
AT84AS  
50Ω  
Single ended signal  
VIN (V25)  
VIN (W24)  
500 mVp-p  
Full-scale amplitude =  
on  
GND  
Centered  
mV  
50Ω Line  
0V common mode  
VI  
N
250  
VINN  
(W23)  
VINN  
50  
VINN (V22)  
mV  
-250  
50Ω  
GND  
Note:  
The two 50terminations connected to the two negative inputs (VINN) can be replaced by one  
25resistor to ground.  
Figure 11-5. AT84AS004 Analog Input Termination Scheme (Differential)  
AT84AS004  
50Ω  
Differential signal  
VIN (V25)  
VIN (W24)  
500  
mVp-p  
0V common mode  
VIN  
Full-scale amplitude =  
Centered on  
GND  
50Lines  
VINN  
125 mV  
VINN (W23)  
VINN (V22)  
-125 mV  
50Ω  
GND  
11.3 Clock Input Implementation  
The AT84AS004 clock inputs (CLK/CLKN) are designed for either single-ended or differential  
operation but it is recommended to drive the clock differentially to optimize the device's perfor-  
mances at high frequencies. No external 50termination are required for the clock inputs  
(CLK/CLKN) as they are already on-chip terminated by two 50resistors connected to ground  
via an on-chip 40 pF capacitor.  
The AT84AS004 input clock can be used in either DC coupled (0V common mode) or AC cou-  
pled (ECL, LVDS for example) mode. It is recommended to use a differential sinewave signal  
(0 dBm or 894 mVp-p differential) centered on 0V common mode to drive the clock signals. A  
balun (with Sqrt(2) ratio) may then be necessary to convert the single-ended clock signal to a dif-  
ferential clock signal.  
Note:  
If the clock frequency is fixed, then it is recommended to narrow-band filter the clock signal in  
order to minimize its jitter and the integrated noise over the band of interest.  
47  
5431C–BDC–01/06  
Figure 11-6. AT84AS004 Clock Input Termination Scheme (Single-ended)  
AT84AS004  
Single ended signal  
-
632 mVp-p  
Full-scale amplitude = 0 dBm =  
CLK (H27)  
common mode  
Centered on 0V  
50Line  
CLK  
316  
mV  
mV  
CLKN  
(J27)  
CLKN  
50Ω  
-316  
GND  
Figure 11-7. AT84AS004 Clock Input Recommended Termination Scheme (Differential)  
AT84AS004  
Differential signal  
Full-scale amplitude = 0 dBm = 894 mVp - p  
CLK (H27)  
Centered on common mode  
CLK  
50Line  
50Line  
CLKN  
223 mV  
-223 mV  
CLKN (J27)  
11.4 LVDS Input Implementation  
The DAI/DAIN input data of the standalone delay cell is LVDS compatible. It is 2 × 50differen-  
tially on-chip terminated as described in Figure 11-8.  
Figure 11-8. AT84AS004 LVDS Input (DAI/DAIN) Termination Scheme  
004  
AT84AS  
50Line  
DAI  
50Line  
5 pF  
50Line  
50Line  
DAIN  
48  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
11.5 LVDS Output Implementation  
The data (Ai/AiN…Di/DiN, AOR/AORN…DOR/DORN and DAO/DAON) and clock outputs  
(DR/DRN) are LVDS compatible. They have to be 100differentially terminated as described in  
Figure 11-9.  
Figure 11-9. AT84AS004 LVDS Output Termination Scheme  
AT84AS004  
50Line  
Positive output signal  
100Ω  
50Line  
Negative output signal  
11.6 DRRB and ASYNCRST Implementation  
The DRRB and ASYNCRST are required to start the device properly. DRRB is active at low level  
while ASYNCRST is active at high level.  
As it is recommended to apply both reset signals simultaneously, one possible solution is to use  
a differential driver so that DRRB and ASYNCRST are generated as the two signals of a differ-  
ential pair. This would allow for both the simultaneous application of the signals to the device a  
simple way to drive both signals. An example is provided below, Figure 11-10.  
Figure 11-10. AT84AS004 DRRB and ASYNCRST Driver Scheme  
DRRB  
1 ns Pulse Source  
ASYNCRST  
Please refer to the AT84AS004 “Reset Implementation Application Note” for more information.  
49  
5431C–BDC–01/06  
12. Package Information  
Figure 12-1. .EBGA317 Package Outline  
Note:  
The two pads at the bottom of the EBGA package are the dice moldings and should not be soldered to the board.  
50  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
13. Ordering Information  
Table 13-1. Ordering Information  
Part Number  
Package  
Temperature Range Screening  
Comments  
Commercial C  
AT84AS004CTP  
EBGA 317  
0°C < Tamb  
TJ < 90°C  
Standard  
Industrial V  
-40°C < Tamb  
TJ < 110°C  
AT84AS004VTP  
AT84XAS004TPY  
AT84AS004CTPY  
EBGA 317  
Standard  
Prototype  
Please contact  
your local Atmel  
sales office  
EBGA 317  
RoHS  
Ambient  
Commercial C  
0°C < Tamb  
TJ < 90°C  
Please contact  
your local Atmel  
sales office  
EBGA 317  
RoHS  
Standard  
Standard  
Prototype  
Industrial V  
-40°C < Tamb  
TJ < 110°C  
Please contact  
your local Atmel  
sales office  
EBGA 317  
RoHS  
AT84AS004VTPY  
AT84AS004TP-EB  
EBGA 317  
Ambient  
Evaluation kit  
51  
5431C–BDC–01/06  
52  
AT84AS004  
5431C–BDC–01/06  
AT84AS004  
Table of Contents  
Features..................................................................................................... 1  
Performances............................................................................................ 1  
Screening................................................................................................... 1  
Applications .............................................................................................. 1  
Description ............................................................................................... 2  
Block Diagram .......................................................................................... 2  
Functional Description ............................................................................ 3  
Specifications ........................................................................................... 5  
1
2
3
4
4.1  
4.2  
4.3  
4.4  
Absolute Maximum Ratings .................................................................................5  
Electrical Operating Characteristics ....................................................................7  
Explanation of Test Levels ................................................................................12  
Digital Coding ....................................................................................................13  
5
Characterization Results ....................................................................... 14  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Nominal Conditions ...........................................................................................14  
Full Power Input Bandwidth ...............................................................................14  
VSWR Versus Input Frequency ........................................................................15  
Step Response ..................................................................................................15  
Dynamic Performance Versus Sampling Frequency .........................................16  
Dynamic Performance Versus Input Frequency ................................................16  
Signal Spectrum ................................................................................................17  
Dynamic Performance Sensitivity Versus Temperature and Power Supply ......18  
Dual Tone Performance ....................................................................................19  
5.10 NPR Performance .............................................................................................19  
Pin Description ....................................................................................... 20  
Main Features ......................................................................................... 24  
6
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Reset .................................................................................................................24  
Control Signal Settings ......................................................................................25  
Programmable DMUX Ratio ..............................................................................27  
Output Mode (STAGG) ......................................................................................27  
Additional Bit .....................................................................................................29  
Output Clock Type Selection .............................................................................30  
i
5431C–BDC–01/05  
7.7  
7.8  
7.9  
Power Reduction Mode (SLEEP) ......................................................................30  
Standalone Delay Cell .......................................................................................30  
Clock input Delay Cell .......................................................................................31  
7.10 Built-In Self Test ................................................................................................31  
7.11 ADC Die Junction Temperature Monitoring .......................................................31  
7.12 Pattern Generator Function ...............................................................................33  
7.13A DC Gain Control ................................................................................................33  
7.14 Sampling Delay Adjust ......................................................................................34  
8
Equivalent Input/Output Schematics ................................................... 35  
8.1 Equivalent Analog Input Circuit and ESD Protection ..........................................35  
8.2 Equivalent Clock Input Circuit and ESD Protection ............................................35  
8.3 Equivalent Data/Clock Output Buffer Circuit and ESD Protection ......................36  
8.4  
Standalone Delay Cell Data Input (DAI/DAIN) Buffer Circuit and  
ESD Protection  
36  
8.5  
Delay Cell (DACTRL/DACTRLN and CLKCTRL/CLKCTRLN) Control Input  
Schematic and ESD Protection  
37  
8.6  
8.7  
8.8  
8.9  
DRRB Equivalent Input Schematic and ESD Protection ...................................37  
ASYNCRST Equivalent Input Schematic and ESD Protection ..........................38  
ADC Gain Adjust Equivalent Input Circuits and ESD Protection .......................38  
B/GB and PGEB Equivalent Input Schematics and ESD Protection .................39  
8.10 Control Signals Input Buffers and ESD Protection ............................................39  
9
Definitions of Terms .............................................................................. 40  
10 Thermal and Moisture Characteristics ................................................. 42  
10.1 Thermal Resistance from Junction To Bottom of Balls ......................................42  
10.2 Thermal Resistance from Junction To Top of Case ..........................................42  
10.3 Thermal Resistance from Junction To Board ....................................................42  
10.4 Thermal Resistance from Junction To Ambient .................................................43  
10.5 Thermal Management Recommendations ........................................................43  
10.6 Moisture Characteristics ....................................................................................44  
11 Applying the AT84AS004 ...................................................................... 44  
11.1 Bypassing, Decoupling and Grounding .............................................................44  
11.2 Analog Input Implementation .............................................................................45  
11.3 Clock Input Implementation ...............................................................................46  
11.4 LVDS Input Implementation ..............................................................................47  
11.5 LVDS Output Implementation ............................................................................48  
ii  
AT84AS004  
5431C–BDC–01/05  
AT84AS004  
11.6 DRRB and ASYNCRST Implementation ...........................................................48  
12 Package Information .............................................................................. 49  
13 Ordering Information ............................................................................. 50  
Table of Contents....................................................................................... i  
iii  
5431C–BDC–01/05  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trade-  
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
5431B–BDC–01/05  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY