AT73C224-B_14 [ATMEL]

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management;
AT73C224-B_14
型号: AT73C224-B_14
厂家: ATMEL    ATMEL
描述:

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management

电池
文件: 总75页 (文件大小:1254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
DC/DC Step-up Converter (BOOST) 3.3V to 5.2V, 1A, up to 90% Efficiency. Can be Used  
as BUCK/BOOST in SEPIC Configuration  
DC/DC Step-down (BUCK) Synchronous Converter 0.9V to 3.4V, 500mA, up to 90%  
Efficiency, Pulse Skipping Capabilities for High Efficiency at Light Load Currents  
Two Low-Drop-Out Regulators 1.3V, 1.5V to 1.8V, 2.5V to 2.8V (100 mV Step), 3.3V,  
200 mA Maximum Load  
Ultra-low Power Real-time Clock (RTC) and Backup Battery Management  
– 2.6V RTC LDO for Backup Battery Charging  
Power  
– 32 kHz Crystal RTC Oscillator (1 µA)  
– RTC Circuit for Time and Date Information  
Management  
and Analog  
Companions  
(PMAAC)  
Activation of the Power Management Modules via Dedicated Enable Pin  
Automatic Start-up Sequences, POK Signal Indicating When Start-up is Completed  
Activation and Control of the Power Management Modules in Dynamic Mode (via SPI or  
TWI) or in Static Mode (On/Off of the Four Power Supplies)  
ITB Signal Indicating Short-circuits in DC/DC Converters  
Very Low Quiescent Current  
Minimum External Components Count  
Supply: from 2.8V to 5.25V (typ: Li-Ion Battery 3V to 4.2V)  
Available in a 32-pin 5x5 QFN Package  
Applications Include:  
AT73C224-A  
AT73C224-B  
AT73C224-C  
AT73C224-D  
AT73C224-E  
AT73C224-F  
AT73C224-G  
AT73C224-H  
– WLAN Portable Devices  
– Multimedia Devices  
– Portable Music Players  
1. Description  
The AT73C224-x is a family of ultra low cost Power Management Unit, available in a  
small outline QFN 5x5mm package.  
The AT73C224-x family is optimized for portable applications, typically powered by a  
Li-Ion battery. The AT73C224-x device is also suitable to operate from a standard  
3.3V to 5.25V voltage rail. It includes four power supplies and a very low power Real-  
time Clock (RTC). In normal mode (main battery present), the backup battery is  
recharged through a 2.6V RTC LDO.  
The AT73C224-x series offer different automatic start-up sequences (with varying  
orders of power-on and specific default output values) and different soft management  
modes: dynamic (via SPI or TWI) with register access or static, with access to power  
on/off of the four power supplies.  
4x Channels  
Power Supply:  
DC/DC BOOST  
Each AT73C224-x device is equipped with a very low power bandgap reference, low  
power 32 kHz and 1 MHz oscillators and an internal LDO used to generate the internal  
supply (VINT) equal to 2.8V. Auxiliary cells, such as a power-on reset (POR) and a  
voltage monitor are used to control the system power-on (battery plugged in) and  
power-off (battery unplugged).  
DC/DC BUCK  
.
2x LDOs  
RTC  
The four power supplies are named: BOOST1, BUCK2, LDO3 and LDO4.  
Table 1-1 lists the different devices available in the AT73C224-x series.  
6266A–PMAAC–08-Sep-08  
For more details concerning the Automatic start-up sequences, see Section 5.2.  
For more details concerning the Management Modes, see Section 5.3.  
.
Table 1-1.  
AT73C224-x device series  
Part Number  
Automatic Start-up Sequence  
Management Mode Comments  
Order of power-on and output default values.  
1 - BUCK2= 1.8V  
2 - LDO4 = 2.8V  
3 - LDO3 = 2.7V  
BOOST1 can be activated after Start-up  
sequence by a user command.  
AT73C224-A  
AT73C224-B  
AT73C224-C  
AT73C224-D  
Dynamic  
Dynamic  
Dynamic  
Dynamic  
1 - BUCK2 = 1.2V  
2 - LDO4 = 1.8V  
3 - LDO3 = 1.8V  
BOOST1 can be activated after Start-up  
sequence by a user command.  
1 - LDO4 = 2.8V  
2 - BUCK2 = 1.8V  
3 - LDO3 = 2.7V  
BOOST1 can be activated after Start-up  
sequence by a user command.  
1 - LDO4 = 1.8V  
2 - BUCK2 = 1.2V  
3 - LDO3 = 1.8V  
BOOST1 can be activated after Start-up  
sequence by a user command.  
BUCK2 can be activated after Start-up  
sequence by a user command.  
1 - BOOST11 = 5.2V  
2 - LDO4 = 3.3V  
3 - LDO3 = 3V  
AT73C224-E  
Dynamic  
LDO3 & LDO4 are supplied by BOOST1.  
(See Section 4. “Application examples”, Figure  
4-3 on page 7: Application Schematic 3.)  
1 - BUCK2 = 1.8V  
2 - LDO4 = 2.8V  
3 - LDO3 = 2.7V  
AT73C224-F  
AT73C224-G  
AT73C224-H  
Static  
Static  
Static  
Same as AT73C224-A.  
Same as AT73C224-C.  
Same as AT73C224-E.  
1 - LDO4 = 2.8V  
2 - BUCK2= 1.8V  
3- LDO3 = 2.7V  
1 - BOOST1 = 5.2V  
2 - LDO4 = 3.3V  
3 - LDO3 = 3V  
2
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
2. Block Diagram  
Figure 2-1. Block Diagram  
LDO3  
VOUT  
1.3V  
1.5V-1.8V  
2.5V-2.8V  
3.3V  
VDD1  
22  
VDD3  
2
1
3
VO3  
VSENSE1  
BOOST1  
21  
20  
GNDANA  
VOUT  
3.3V-5.2V  
ILOAD  
1A  
ILOAD  
200 mA  
DL1  
VO1  
LDO4  
VDD4  
VO4  
23  
24  
VOUT  
1.3V  
18  
1.5V-1.8V  
2.5V-2.8V  
3.3V  
ILOAD  
200 mA  
VBAT_LDORTC  
10  
32  
30  
31  
VDD2  
SW2  
POR RTC  
RTC LDO  
RTC OSC  
9
VBACKUP  
XOUT  
P
N
XIN  
BUCK2  
CK32  
29  
VOUT  
0.9V-3.4V  
ILOAD  
16  
VDDIO  
D1  
25  
26  
27  
500 mA  
GND2  
VO2  
Digital  
Interface  
(TWI / SPI)  
17  
11  
D2  
D3  
28  
13  
14  
15  
PMC  
D4  
Status  
Register  
POK  
ITB  
Die  
Paddle  
GND/AVSS  
VBG  
VBG  
OSC 900kHz  
8
POR,  
VMON  
(Voltage Monitor)  
LPVBG  
(Low power VBG)  
VINT  
Regulator  
VDD0  
6
EN  
12  
VCAPP  
VCAPN  
VINT  
7
5
4
3
6266A–PMAAC–08-Sep-08  
3. Pinout  
Table 3-1.  
Pin Name  
VO3  
AT73C224 Pinout  
I/O  
O
Pin #  
Type  
Analog LDO3 output voltage  
Power LDO3 supply voltage  
Function  
Comments  
1
2
3
4
5
Ext. 2.2 µF capacitor (mandatory)  
VDD3  
PS  
PS  
I/O  
PS  
GNDANA  
VCAPP  
VINT  
Ground Analog ground  
Analog Not connected  
Power  
Output of the internal LDO  
Ext. 470 nF capacitor (mandatory)  
Must be connected to the main  
battery (mandatory)  
VDD0  
PS  
6
Analog Supply of the internal LDO  
VCAPN  
VBG  
I/O  
O
7
8
9
Analog Not connected  
Analog Bandgap reference voltage  
Should not be resistively loaded  
VDD2  
PS  
Power  
Power  
BUCK2 supply voltage  
Must be connected to the main  
battery (mandatory)  
VBAT_LDORTC  
PS  
10  
LDO_RTC Supply voltage  
VO2  
I
I
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Analog BUCK2 output voltage  
EN  
Digital  
Digital  
Digital  
Digital  
Enable signal  
Internal 100 Kpull up  
Internal 100 Kpull up  
D4  
I
Digital interface  
POK  
O
I/O  
O
PS  
I
Power Ok: indicates when start-up is completed  
User Interrupt, GPIO and Shutdown control  
ITB/RDY  
SW2  
GND2  
VO1  
Internal 100 Kpull up  
Analog BUCK2 inductor (NMOS switcher output)  
Ground BUCK2 ground  
Analog BOOST1 output voltage  
DH1  
O
O
I
Analog Not connected  
DL1  
Analog BOOST1 NMOS control signal  
Analog BOOST1 current limitation sense voltage  
VSENSE1  
Must be connected to the main  
battery  
VDD1  
PS  
22  
Power  
BOOST1 supply voltage  
VDD4  
VO4  
PS  
O
23  
24  
Power  
LDO4 supply voltage  
Analog LDO4 output voltage  
Digital  
Ext. 2.2 µF capacitor (mandatory)  
VDDIO  
PS  
25  
Supply voltage for Digital I/O  
supply  
Digital  
Digital  
Digital  
Digital  
D1  
I
26  
27  
28  
29  
30  
31  
32  
Digital interface  
open drain  
open drain  
open drain  
D2  
I/O  
I
Digital interface  
D3  
Digital interface  
CK32  
XOUT  
XIN  
O
32 kHz RTC output clock  
I/O  
I/O  
O
Analog RTC crystal oscillator output  
Analog RTC crystal oscillator input  
Analog Backup Battery and RTC supply  
VBACKUP  
die paddle connected to ground  
(mandatory)  
GND/AVSS  
PS  
33  
Ground Main GND and AVSS ground  
4
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
4. Application examples  
Figure 4-1. Application Schematic 1: Microcontroller with 5V VBUS for 2 USB Host Transceivers  
LDO3 = 2.7V  
R2  
(AUX ADC, PLL)  
VBAT  
C9  
Rechargeable  
Backup  
Battery  
X1  
C11  
C12  
C4  
uP  
uP  
uP  
32  
(NBL type)  
LDO4 = 2.8V  
VDDIO  
1
VBAT  
C6  
VO4  
VDD4  
VDD1  
VSENSE1  
DL1  
VO3  
VBAT  
R1  
VDD3  
C3  
C8  
D1  
GNDANA  
L1  
VO1  
Microcontroller  
nc  
VCAPP  
C1  
AT73C224-A  
VINT  
C14  
VBAT  
Q1  
DH1  
nc  
VDD0  
VCAPN  
C5  
nc  
VO1  
USB HOST  
transceiver  
GND2  
VBG  
BOOST1 = 5V  
(VBUS USB)  
C10  
GND/AVSS  
Die  
Paddle  
uP  
uP  
uP  
USB HOST  
transceiver  
VBAT  
C13  
VBAT  
C7  
VBAT  
Pushbutton  
L2  
3V  
to  
4.2V  
SPI / TWI  
BUCK2 = 1.8V  
Li-Ion  
Battery  
VO2  
C2  
VCORE  
C16  
POK  
D1 D2 D3 D4  
ITB/RDY  
In the Application Schematic 1, the AT7373C224-A is used: the BOOST(VO1) supplies the  
“VBUS” of two USB transceivers, the BUCK(VO2) supplies the digital core of the microcontroller,  
the LDO3 supplies the I/Os of the microcontroller and LDO4 supplies analog cells, such as aux-  
iliary ADC or PLL.  
For external components, see Table 4-1.  
5
6266A–PMAAC–08-Sep-08  
Figure 4-2. Application Schematic 2: Supply of a Microprocessor and External Analog Cells  
BOOST1 = 5V  
Analog Cells  
R2  
VBAT  
C9  
VO4  
Rechargeable  
Backup  
Battery  
X1  
C11  
C12  
C4  
uP  
uP  
uP  
32  
(NBL type)  
LDO4 = 1.8V  
VDDIO  
1
VBAT  
C6  
VO4  
VDD4  
VDD1  
VSENSE1  
DL1  
VO3  
VBAT  
R1  
VDD3  
C3  
C8  
D1  
GNDANA  
L1  
VO1  
nc  
nc  
VCAPP  
C1  
VINT  
AT73C224-B  
C14  
Q1  
VBAT  
nc  
VDD0  
VCAPN  
DH1  
C5  
VO1  
Microcontroller  
BOOST1 = 5V  
BUCK2 = 1.2V  
GND2  
VBG  
C10  
GND/AVSS  
Die  
Paddle  
uP  
uP  
uP  
VBAT  
C13  
VBAT  
C7  
VBAT  
L2  
BUTTON  
SPI / TWI  
3V  
to  
4.2V  
Li_Ion  
Battery  
VO2  
C2  
VCORE  
C16  
POK  
D1 D2 D3 D4  
ITB/RDY  
In the Application Schematic 2, the AT73C224-B is used: the BOOST (VO1) supplies the  
“VBUS” of one USB transceiver and supplies also LDO3 and LDO4. The BUCK(VO2) supplies  
the digital core of the microcontroller and the LDOs supply the I/Os and Analog cells, such as  
auxiliary ADC or PLL.  
For external components, see Table 4-1.  
6
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
Figure 4-3. Application Schematic 3: BOOST in SEPIC Configuration (BUCK/BOOST)  
BOOST1 = 3.3V  
Analog Cells  
R2  
VBAT  
C9  
VO4  
Rechargeable  
Backup  
Battery  
X1  
C11  
C12  
C4  
uP  
uP  
uP  
32  
(NBL type)  
LDO4 = 1.8V  
VDDIO  
1
VBAT  
C6  
VO4  
VDD4  
VDD1  
VSENSE1  
DL1  
VO3  
VBAT  
R1  
VDD3  
C3  
C8  
D1  
GNDANA  
C15  
L1  
VO1  
nc  
nc  
VCAPP  
C1  
VINT  
AT73C224-B  
C14  
L3  
Q1  
VBAT  
nc  
VDD0  
VCAPN  
DH1  
C5  
VO1  
Microcontroller  
BOOST1 = 3.3V  
BUCK2 = 1.2V  
GND2  
VBG  
C10  
GND/AVSS  
Die  
Paddle  
uP  
uP  
uP  
VBAT  
C13  
VBAT  
C7  
VBAT  
L2  
BUTTON  
SPI / TWI  
3V  
to  
4.2V  
Li_Ion  
Battery  
VO2  
C2  
VCORE  
C16  
POK  
D1 D2 D3 D4  
ITB/RDY  
In the Application Schematic 3, the BOOST (VO1) is in SEPIC configuration (BUCK/BOOST)  
and generates a 3.3V output voltage for analog cells. The BUCK (VO2) supplies the core of the  
microcontroller, and LDO4 supplies the I/Os.  
Note that, in the SEPIC configuration, the maximum load current on VO1 should not exceed 300  
mA.  
For external components, see Table 4-1.  
7
6266A–PMAAC–08-Sep-08  
Table 4-1.  
External Components  
Schematic reference  
Reference  
Manufacturer  
AVX®  
Value  
100 µF  
33 µF  
C1  
C2  
Tantalum TPS Case B  
Tantalum TPS Case A  
AVX  
GRM155R60J225ME15  
C1005X5R0J225MT  
Murata®  
TDK  
C3, C4  
2.2 µF  
22 µF  
1 µF  
GRM21BR60J226ME39  
C2012X5R0J226MT  
Murata  
TDK  
C6  
GRM155R60J105KE19  
C1005X5R0J105KT  
Murata  
TDK  
C5, C7, C8, C9, C11, C13  
GRM155R61A104KA01  
C0603X5R0J104KT  
Murata  
TDK  
C10  
100 nF  
470 nF  
4.7 µF  
10 µF  
GRM155R60J474KE18  
C1005X5R1A474KT  
Murata  
TDK  
C12, C14  
C15  
GRM188R60J475KE19  
C1608X5R0J475KT  
Murata  
TDK  
GRM188R60J106ME47  
C1608X5R0J106MT  
Murata  
TDK  
C16  
L1  
744773022  
744773068  
Wurth® Elektronik  
Wurth Elektronik  
Epcos®  
On Semiconductor®  
Vishay®  
2.2 µH  
6.8 µH  
6.8 µH  
L1, L3 (in SEPIC config.)  
L2  
B82467-G0682-M  
MBRM120LT1  
Si1470DH  
D1  
Q1  
X1  
FX135B-327  
Fox  
32.768 kHz  
50 mΩ  
R1 (can be printed on the  
board (Cu line))  
LR2010R050J  
Welwyn  
R2  
MR-CRG0402J2k2  
TycoElectronics  
2 kΩ  
8
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
5. Detailed Description  
The AT73C224-x is a family of Power Management Units with four power supplies and an ultra  
low-power Real-time Clock.  
By choosing a specific ordering code “x” from A to H, different automatic start-up sequences and  
management modes can be selected.  
The start-up sequence includes the order of power-on, as well as the default value of the power  
supplies (see Section 5.2 ”Automatic Start-up Sequences and Shut-down”). The user can after-  
wards change this default value via SPI or TWI, if the dynamic mode has been chosen (see  
Section 5.3 ”Digital Control and Protocol”).  
5.1  
Core  
The core of the AT73C224-x device integrates the following blocks:  
• Power-On-Reset for the backup battery.  
• Internal switch and LDO dedicated to the backup battery. The output of the LDO_RTC is set  
to 2.6V and the switch is on when the main battery higher than 2.8V (charge of the backup  
battery).See Section 7.7 for electrical details.  
• Real-Time-Clock digital bloc + 32 kHz oscillator.  
• Power-On-Reset for the main battery.  
• Voltage Monitor (VMON) of the main battery.  
• Digital Power Management Control (PMC) for automatic start-up sequences. Digital output  
POK indicates when start-up is completed, whereas ITB digital output signal informs the user  
(typically the microcontroller) of a default in the DC/DCs (short-circuit) or too low main battery  
value.  
• TWI and SPI protocol blocs.  
• DC/DC Step-up converter BOOST1: A 3.3V to 5.2V(100 mV step), 1A, asynchronous DC/DC  
Step-up Converter available for overall system requirements. The DC/DC can be  
implemented through proper external components in BUCK/BOOST (SEPIC) configuration.  
The output voltage can be programmed via the internal registers. BOOST1 is supplied  
directly by the battery.  
• DC/DC Step-down converter BUCK2: A 0.9V to 3.4V, 500 mA fully integrated synchronous  
PWM DC/DC Step-down Converter. The output voltage can be programmed via the internal  
registers. A Pulse Skipping mode is available in order to improve efficiency at very light load  
current values. In order to guarantee very low supply voltage functionality, the controller is  
supplied by the max voltages between the main battery and the output of BOOST1 (VO1).  
BUCK2 can be directly supplied by the battery or by the output of BOOST1.  
• LDO3: A 1.3V, 1.5V to 1.8V (100 mV of step), 2.5V to 2.8V (100 mV of step), 3.3V, 200 mA –  
Low Drop out regulators. The output voltage can be programmed via the internal registers.  
LDO3 can work with supply from 1.8V up to 5.5V. This LDO can be supplied by the battery, by  
the output of BOOST1, or by the output of BUCK2.  
• LDO4: same functionality than LDO3.  
• Main Bandgap: 1.18V reference voltage.  
• 900 kHz Oscillator.  
• Internal LDO (VINT) at 2.8V for internal supply.  
9
6266A–PMAAC–08-Sep-08  
5.2  
Automatic Start-up Sequences and Shut-down  
5.2.1  
Start-up/Wakeup  
If the backup battery (only) is present, the RTC is running (1.2 µA). This mode is called “Backup  
mode”. When the main battery is plugged in and voltage is higher than 2.8V, the LDO_RTC  
recharges the backup battery through an internal switch (if the main battery is lower than 2.8V,  
nothing happens, RTC still running). This mode is called “Standby mode”. Note that when the  
battery is plugged in (and higher than 2.8V), a reset of the RTC is performed only if the backup  
battery was lower than 1.8V.  
Now, the system waits for wake-up information coming from the pushbutton (EN pin) or an RTC  
alarm. When one of the previous conditions occurs, the automatic start-up sequence starts  
(without any external commands).  
Different automatic start-up sequences can be chosen from the AT73C224-x family (see Figure  
5-1 on page 11 and Figure 5-2 on page 12).  
When the automatic start-up sequence has been completed, the POK signal (which is an open  
drain signal) goes high, thus implementing a sort of POR for the user (i.e., a microcontroller) and  
enters into “Normal mode”.  
Note: Power On is controlled by default by an external pushbutton, connected on EN pin (the EN  
pad has an internal 100 kpull up). A switch can also be used as shown bellow but should be a  
request from the customer  
.
EN  
(Default: Pushbutton)  
EN  
(On request: switch)  
5.2.2  
Shut-down  
Static and Dynamic modes are explained in detail in Section 5.3.  
5.2.2.1  
Static Mode  
In Static mode, the Power-off condition is an OR between the following conditions: main battery  
lower than 2.8V or electrical default in the DC/DC (short-circuit). When Power-off condition  
occurs, POK signal is cleared, then the AT73C224-x device waits for the signal ITB/RDY to shut  
down all power supplies.  
5.2.2.2  
Dynamic Mode  
In Dynamic mode, Power-off condition is an OR between the following conditions: electrical  
default in the DC/DC (short-circuit) or software shutdown. When main battery lower than 2.8V,  
an interrupt is generated on signal ITB/RDY. It is the responsibility of the host microcontroller to  
perform a software shut-down by properly writing the AT73C224-x device registers through the  
serial interface. After that, the POK signal is cleared, and all is turned off. A check on the push-  
button is then performed to assure that it has been released, thus avoiding continuous on-off-on  
behavior. The “normal” shutdown is performed by software. Note that the microcontroller has to  
write the proper register to enable the power off (see Section 6. ”Register Tables”).  
10  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
Figure 5-1 illustrates the complete automatic start-up sequence of the AT73C224-A and  
AT73C224-F, whereas Figure 5-2 illustrates the automatic start-up sequence of the other  
AT73C224-x device versions.  
Figure 5-1. Start up Sequence of the AT73C224-A and AT73C224-F  
VBAT  
POR  
(internal Vth = 1.6V)  
VMON  
(internal Vth = 2.8V)  
30 ms min  
VINT  
(internal supply)  
PWRGDINT  
(internal- Vth = 1.6V)  
VBG  
36 ms typ.  
Automatic Start-up Sequence:  
BUCK2  
(Default value: 1.8V)  
3ms  
LDO4  
(Default value: 2.8V)  
3ms  
LDO3  
(Default value: 2.7V)  
3ms  
45ms typ  
POK -> uP  
(Start-up sequence  
completed)  
BOOST1  
User Command:  
. AT73C224-A: Through Dynamic mode (using TWI or SPI)  
. AT73C224-F: Through Static mode (using D1 pin)  
11  
6266A–PMAAC–08-Sep-08  
Figure 5-2. Automatic Start-up Sequence of all Other Versions of the AT73C224-x Device Series  
POK (Automatic Start-up  
sequence completed)  
V
BUCK2  
(Default value: 1.2V)  
3ms  
LDO4  
(Default value: 1.8V)  
3ms  
LDO3  
(Default value: 1.8V)  
3ms  
BOOST1  
User Command:  
. AT73C224-B: Through Dynamic mode (using TWI or SPI)  
AT73C224-B, AT73C224-G  
BUCK2  
(Default value: 1.8V)  
LDO4  
(Default value: 2.8V)  
LDO3  
(Default value: 2.7V)  
BOOST1  
User command:  
. AT73C224-C: Through Dynamic mode (using TWI or SPI)  
. AT73C224-G: Through Static mode (using D1 pin)  
AT73C224-C, AT73C224-H  
BUCK2  
(Default value: 1.2V)  
LDO4  
(Default value: 1.8V)  
LDO3  
(Default value: 1.8V)  
BOOST1  
User Command:  
. AT73C224-D: Through Dynamic mode (using TWI or SPI)  
AT73C224-D, AT73C224-I  
BUCK2  
User command:  
. AT73C224-E: Through Dynamic mode (using TWI or SPI)  
. AT73C224-H: Through Static mode (using D2 pin)  
LDO4  
(Default value: 3.3V)  
LDO3  
(Default value: 3V)  
BOOST1  
(Default value: 5.2V)  
AT73C224-E, AT73C224-J  
12  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
5.3  
Digital Control and Protocol  
The AT73C224-x family offers a choice of devices in static mode or dynamic mode (see Table 1-  
1 on page 2). In dynamic mode, the user can manage the chip via SPI or TWI. The selection  
between SPI or TWI is done at start-up via the D4 pin (see Section 5.3.2 on page 14).  
5.3.1  
Static Mode  
When the AT73C224-x is established in Static Mode, the digital interface signals, D1 to D4,  
directly drive the enable of the four supplies. During start-up, these enable signals are driven by  
the internal state machine. To ensure a safe transition between the start-up state and the estab-  
lished state, a handshake protocol must be respected. This transition period is especially  
important in a microcontroller environment, as the microcontroller controlling the D1-D4 signals  
may require an unknown period of time to actually drive these pins.  
In Static Mode, the ITB/RDY pin is configured as an input with controllable pull-up resistor. When  
the internal state machine completes the supply start-up, it latches the value of ITB/RDY and  
then sets the POK signal to 1. This means that start-up is accomplished. The state machine then  
checks for changes on ITB/RDY. If no changes are detected, the control of the four supply chan-  
nels remains with the state machine. If a change is detected the internal pullup is disconnected  
and the control is passed on to D1-D4, with the assignment shown in Table 5-2 below.  
Table 5-1.  
D1-D4 Signal Assignment  
Digital Interface Signal  
Supply Enable  
Enables BOOST1  
Enables BUCK2  
Enables LDO3  
Enables LDO4  
D1  
D2  
D3  
D4  
The illustrations in Figure 5-3, Figure 5-5 and Figure 5-5 represent possible static mode  
scenarios.  
Figure 5-3. Fully Static Mode  
0 or 1  
D1  
D2  
D3  
D4  
ITB/RDY  
POK  
Open or 1  
Power OK  
Since ITB/RDY is 1 or open (weak internal pullup), the state of each supply channel is deter-  
mined by the internal state machine (Automatic Start-up sequence and default values for the  
three power supplies). In this configuration, the 4th power supply is off and can not be used. D1-  
D4 is not considered, but must be valid. The POK signal can be used as a global system reset.  
13  
6266A–PMAAC–08-Sep-08  
Figure 5-4. Configurable Static Mode  
0
1
D1  
D2  
D3  
D4  
ITB/RDY  
POK  
Power OK  
The state of each channel is determined by the internal state machine during the start-up  
sequence. POK is looped back onto ITB/RDY. When this signal changes from 0 to 1 (i.e., the  
start-up is completed), the control of each supply channel is passed on to D1-D4. This allows  
changing the output values defined by the state machine. This mode can be used when the 4th  
channel is needed.  
Figure 5-5. GPIO (µC Controlled)  
D1  
D2  
D3  
D4  
I/O  
I/O  
I/O  
I/O  
µC  
ITB/RDY  
POK  
I/O  
RST or NMI  
When the system is powered, the microcontroller is not necessarily well configured and may be  
unable to drive D1-D4 correctly. Since ITB/RDY is not actively controlled, its state is an unknown  
logic level. If ITB/RDY is in hi-Z, the weak internal pullup pulls the level to 1. The power channels  
are controlled by the internal state machine. After some initialization time, the microcontroller  
configures its GPIOs to drive D1-D4 as wished. At the end of the software configuration, the  
microcontroller changes the level of ITB/RDY to 0 in order to get control on the four power chan-  
nels through D1-D4.  
5.3.2  
Dynamic Mode  
For the devices of the AT73C224-x family that work in dynamic mode, supply management can  
be performed by the SPI or TWI digital interface. Selection between the two digital interfaces is  
done through D4 pin when the AT73C224-x is enabled. Pin D4 is a digital input pin that features  
a controllable pull-up resistor with active low control signal. When the AT73C224-x starts, the  
pullup is disabled until a push button event is detected. The state machine enables the pull-up  
resistor on D4, waits for a time and then checks back on the value on the pad.  
• If D4 is high (i.e., the level externally applied on D4 is HZ or logic 1), SPI interface is selected.  
D4 will become SCS.  
• If D4 is low (i.e., D4 is externally grounded), TWI interface is selected. D4 is not used.  
After signal dynamic has been determined the state machine disables the pull-up resistor to  
save power and the D4 pin can be normally used (if SPI has been selected).  
14  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
The selection between SPI versus TWI is performed once, each time the start-up sequence is  
executed. A timing diagram of the interface selection is shown in Figure 5-6. Care must be taken  
to leave enough time between the activation of the pullup and the moment when D4 is sampled  
back. This time is necessary to load the capacitance of the net layout where D4 is connected  
through the pull-up resistor (100 ktyp.). This time is in the order of magnitude of 1 µs (10 pF *  
100 k), i.e. only a few cycles of the 900 kHz oscillator are needed.  
Figure 5-6. Dynamic Mode Interface Selection  
D4  
Hz  
SPI selected, D4 => SCS  
D4 pull-up control signal  
dynamic  
D4  
D4 pull-up control signal  
dynamic  
TWI selected  
SCS = Serial Chip Select  
Table 5-2.  
Digital Interface Selection  
SPI Selection  
Direction  
TWI Selection  
Signal  
Digital Signal  
Interface  
Pad  
I
Signal  
SCK  
Direction  
D1  
D2  
In  
TWCK  
In  
BIDIR  
SDO  
Out  
TWD  
I/O  
Select the 7-bit  
fixed address  
D3  
I
I
SDI  
In  
In  
In  
-
D4(1)  
SCS  
grounded  
Note:  
1. On D4, I = Input pad with controllable pull-up resistor.  
5.3.2.1  
SPI Operation  
When SPI mode is selected, the control interface to the AT73C224-x chip is a 4-wire interface  
modeled after commonly available microcontroller and serial-peripheral devices. The interface  
consists of a serial clock (SCK), chip select (SCS), serial data input (SDI) and serial data output  
(SDO). Data is transferred one byte at a time with each register access consisting of a pair of  
byte transfers. Figure 5-7 below illustrates read and write operations in SPI mode.  
15  
6266A–PMAAC–08-Sep-08  
Figure 5-7. SPI Read and Write Operations  
SCK  
SCS  
SDI  
0
A6 A5 A4  
A3 A2 A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
Hz  
SDO  
SPI Write  
SCK  
SCS  
SDI  
1
A6 A5 A4  
A3 A2 A1  
Hz  
A0  
SDO  
D7 D6 D5 D4 D3 D2 D1  
D0  
SPI Read  
The first byte of a pair is the command/address byte. The most significant bit of this byte indi-  
cates register read when 1 and register write when 0. The remaining seven bits of the  
command/address byte indicate the address of the register to be accessed.  
The second byte of the pair is the data byte. During a read operation, the SDO becomes active  
and the 8-bit contents of the register are driven out MSB first. The SDO will be in high imped-  
ance on either the falling edge of SCK following the LSB or the rising edge of SCS, whichever  
occurs first.  
SDI is a don't care during the data portion of read operations. During write operations, data is  
driven into the AT73C224-x via the SDI pin, MSB first. The SDO pin will remain in high imped-  
ance during write operations. Data always transitions with the falling edge of the clock and is  
latched on the rising edge. The clock should return to a logic high when no transfer is in  
progress.  
Continuous clocking: In normal operation, the SCK should not transition out of byte transfer  
periods. However, in test mode, the SCK is used as the main clock. This implies that all data  
transfers must be controlled by the assertion of the SCS pin.  
3-wire operation: SDI and SDO can be treated as two separate lines or wired together if the  
master is capable of tri-stating its output during the data-byte transfer of a read operation.  
SCK vs internal clock rates: It is very likely that the bit rate commanded by SCK will be  
much higher than the internal clock (900 kHz/64) used to read and write the registers. This  
implies that a minimal delay between byte transfers must be imposed to allow some time to  
decode the address and actually access the physical register. It is not acceptable to sample  
SCK with the internal clock.  
16  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
5.3.2.2  
TWI Operation  
The TWI interface allows a microcontroller to proceed to read or write accesses to the internal  
registers of the AT73C224-x. Unlike the SPI, the TWI operation is based on a standard which  
defines a data-link layer and an addressing scheme. The TWI implementation used in the  
AT73C224-x conforms to this standard, with the following restrictions:  
• slave only  
• bit rate: 400 kbps max  
• 7-bit fixed address: the default value is 1001001 (D3 is high). But the external D3 bit can  
modify it. When D3 is low, the 7-bit fixed address is 1001000.  
• TWCK is an input pin for the clock  
• TWD is a bidirectional pin driving (open drain with external resistor connected to VDDIO) or  
receiving the serial data.  
The data put on TWD line must be 8 bits long. Data is transferred MSB first. Each byte must be  
followed by an acknowledgement. Each transfer begins with a Start condition and terminates  
with a STOP condition.  
• A high-to-low transition on TWD while TWCK is high defines a START condition.  
• A low-to-high transition on TWD while TWCK is high defines a STOP condition.  
Figure 5-8.  
TWI Start/Stop Condition  
TWD  
TWCK  
START  
STOP  
Figure 5-9.  
TWI Protocol  
TWD  
TWCK  
START  
STOP  
Address  
R/W  
Ack  
Data  
Ack  
Data  
Ack  
After the host initiates a START condition, it sends the 7-bit slave address, as defined above, to  
notify the slave device. A Read/Write bit follows (Read = 1, Write = 0). The device acknowledges  
each received byte. The first byte sent after device address and R/W bit is the address of the  
device register the host wants to read or write. For a write operation, the data follows the internal  
address. For a read operation, a repeated START condition needs to be generated followed by  
a read on the device.  
Write and Read operations are shown in Figure 5-8 and Figure 5-9.  
17  
6266A–PMAAC–08-Sep-08  
The TWI abbreviations are defined below.  
S = Start  
P = Stop  
W = Write  
R = Read  
A = Acknowledge  
N = Not Acknowledge  
ADDR = Device Address  
IADDR = Internal Address  
Figure 5-10. Write Operation  
TWD  
S
ADDR  
W
A
IADDR  
A
DATA  
A
P
Figure 5-11. Read Operation  
TWD  
S
ADDR  
W
A
IADDR  
A
S
ADDR  
R
A
DATA  
N
P
5.3.3  
Interrupt Controller  
In dynamic mode, the ITB/RDY pin is an output and operates as an interrupt to an external  
microcontroller. The output logic is active low (a 0 level means interrupt).  
Several sources can potentially trigger an interrupt:  
• the RTC, when a real-time alarm event occurs (see Section 7.8 ”Real-time Clock (RTC)” for  
more details)  
• the push-button, when its state changes  
• the power monitor, when it detects a failure or main battery lower than 2.7V  
• the boost, when it detects a failure  
• the buck, when it detects a failure  
Each of these sources can be individually masked to disable the corresponding interrupt. All the  
interrupt logic can also be globally disabled when the microcontroller needs to enter an uninter-  
ruptible state. The interrupt enable/disable logic is controlled through two independent registers.  
Refer to Section 6. ”Register Tables” for detailed register and bit assignment. IRQ_EN is used to  
enable the interrupts, while IRQ_DIS is used to disable the interrupts. This strategy allows the  
controlling software to handle the interrupt mask completely independently for each interrupt  
source while avoiding read-modify-write operations. The register IRQ_MSK can be read to know  
the current interrupt mask.  
The sequence shown below in Table 5-3 shows an example of interrupt masking/unmasking.  
Table 5-3.  
Action  
Interrupt Masking/Unmasking  
What it Does  
Contents of IRQ_MSK  
Reset  
Disables all interrupts individually and globally.  
00000000  
Enables the RTC interrupt and the power failure interrupt individually. The  
interrupts are still globally masked, no interrupt can be triggered yet.  
Write 00000101 in IRQ_EN  
Write 00000000 in IRQ_EN  
Write 10000000 in IRQ_EN  
00000101  
00000101  
10000101  
10000100  
Nothing happens, only bits set at one have an effect.  
Enables the interrupts globally. The ITB pin will toggle to 0 if either the  
RTC or the power monitor requests an interrupt.  
Write 00000001 in IRQ_DIS Disables the RTC interrupt. The power failure interrupt remains active.  
18  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
Once the interrupt request is active on the ITB/RDY pin, the microcontroller has to handle it. To  
determine the reason for being interrupted, it reads the interrupt status register IRQ_STA (this  
action resets ITB/RDY). In this register, each potential interrupt source has a bit which indicates  
if it is responsible for triggering the request.  
Once the source is identified, the microcontroller performs the handling routine in an application-  
dependant manner. It then needs to acknowledge the interrupt source to avoid being interrupted  
again for the same reason.  
19  
6266A–PMAAC–08-Sep-08  
6. Register Tables  
Default values appear beneath the bit fields in the register description tables that follow.  
6.1  
System Registers  
6.1.1  
7-bit Fixed Address for TWI  
Register Name:  
Access Type:  
Address:  
TWIADDR  
Read-only  
0x01  
7
ALT  
1
6
5
4
3
ADDR  
1
2
1
0
1
0
0
0
0
1
• ADDR:  
Reads the TWI address currently in use. This field can be used to check the connectivity of the TWI, or to identify the  
AT73C224-x device. When ALT bit is 0, ADDR contains the alternate address (0x48). When ALT is 1, ADDR contains the  
default address (0x49).  
• ALT:  
Indicates if the TWI address is the default or the alternate.  
0: the default address is selected.  
1: the alternate address is selected.  
The reset value depends on the configuration of the fuses. When the fuses are blank, the reset value is 0 (manufacturing  
default).  
6.1.2  
Button Status Register  
Register Name:  
Access Type:  
Address:  
BT_SR  
Read-only  
0x02  
7
6
5
4
3
2
1
HIGH  
0
0
LOW  
0
• Low:  
0: the button input has not been seen low.  
1: the button input has been seen low.  
• High:  
0: the button input has not been seen high.  
1: the button input has been seen high.  
20  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.1.3  
Button Status Clear Command Register  
Register Name:  
Access Type:  
Address:  
BT_SCCR  
Write-only  
0x03  
7
6
5
4
3
2
1
HIGH  
0
0
LOW  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• Low:  
0: no effect.  
1: clears LOW in BT_SR.  
• High:  
0: no effect.  
1: clears HIGH in BT_SR.  
6.1.4  
Button Interrupt Enable Register  
Register Name:  
Access Type:  
Address:  
BT_IER  
Write-only  
0x04  
7
6
5
4
3
2
1
HIGH  
0
0
LOW  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• Low:  
0: no effect.  
1: the button low interrupt is enabled.  
• High:  
0: no effect.  
1: the button high interrupt is enabled.  
21  
6266A–PMAAC–08-Sep-08  
6.1.5  
Button Interrupt Disable Register  
Register Name:  
Access Type:  
Address:  
BT_IDR  
Write-only  
0x05  
7
6
5
4
3
2
1
HIGH  
0
0
LOW  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• Low:  
0: no effect.  
1: the button low interrupt is disabled.  
• High:  
0: no effect.  
1: the button high interrupt is disabled.  
6.1.6  
Button Interrupt Mask Register  
Register Name:  
Access Type:  
Address:  
BT_IMR  
Read-only  
0x06  
7
6
5
4
3
2
1
HIGH  
0
0
LOW  
0
• Low:  
0: the button low interrupt is disabled.  
1: the button low interrupt is enabled.  
• High:  
0: the button low interrupt is disabled.  
1: the button low interrupt is enabled.  
6.1.7  
Software Shutdown Command Register  
Register Name:  
Access Type:  
Address:  
SHUTDN  
Write-only  
0x07  
7
6
5
4
3
2
1
0
LOW  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
0: no effect.  
1: shutdown the whole chip.  
22  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2  
PMU Registers  
6.2.1  
BOOST Command Register  
Register Name:  
Access Type:  
Address:  
BST_CLR  
Read/Write  
0x10  
7
6
5
4
3
2
1
0
EN(*)  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• EN:  
Writing EN to 1 starts the BOOST/SEPIC converter.  
Writing En to 0 stops the BOOST/SEPIC converter.  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
23  
6266A–PMAAC–08-Sep-08  
6.2.2  
BOOST Configuration Register  
Register Name:  
Access Type:  
Address:  
BST_CFG  
Read/Write  
0x11  
7
6
5
4
3
2
1
0
ISHORT  
1
0
1
1
• ISHORT:  
Selects the overcurrent threshold. When the external sense resistor is 50 mOhms, the lookup table below applies.  
ISHORT  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
Threshold (Amps)  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
At the startup, it is recommended to put 1 Amp over current threshold in order not to generate a reset of the product.  
24  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.3  
BOOST Voltage Register  
Register Name:  
Access Type:  
Address:  
BST_VOLT  
Read/Write  
0x12  
7
6
5
4
3
2
1
0
VOUT(*)  
• VOUT:  
Selects the output voltage of the regulator following the table below. VOUT should always be higher than VDD1 in BOOS T  
configuration (Application schematic 1). It can be programmed lower in SEPIC configuration (Application Schematic 2).  
VOUT [5:0]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
VOUT [V]  
VOUT [5:0]  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
VOUT [V]  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
not permitted  
3.2  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2). The chosen value should always be higher  
than the supply of the cell (VDD1).  
25  
6266A–PMAAC–08-Sep-08  
6.2.4  
BUCK2 Control Register  
Register Name:  
Access Type:  
Address:  
BCK_CTROL  
Read/Write  
0x13  
7
6
5
4
3
2
1
0
BYP  
EN(*)  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• EN:  
Writing EN to 1 starts the BUCK converter.  
Writing EN to 0 stops the BUCK converter.  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
• BYP:  
Writing BYP to 1 puts the BUCK2 output voltage to VDD2.  
Writing BYP to 0 configures the BUCK2 in Normal operation (default).  
26  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.5  
BUCK2 Configuration Register  
Register Name:  
Access Type:  
Address:  
BCK_CFG  
Read/Write  
0x14  
7
OUTZ  
1
6
5
4
3
2
1
0
SLIM  
MODE  
ISHORT  
1
0
0
1
0
0
0
• ISHORT:  
Selects the overcurrent threshold. When the external sense resistor is 50 mOhms, the lookup table below applies.  
ISHORT  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
Threshold (Amps)  
1.01  
1.08  
1.15  
1.22  
1.29  
1.36  
1.43  
1.5  
1.57  
1.64  
1.71  
1.78  
1.85  
1.92  
1.99  
2.06  
• MODE:  
Selects the PWM pulse skipping mode.  
MODE  
00  
Operation  
Auto  
01  
PWM  
10  
Pulse skipping  
Pass-through  
11  
• SLIM:  
Selects the power-up mode.  
0: current limitation.  
1: slow start.  
27  
6266A–PMAAC–08-Sep-08  
• OUTZ:  
Defines the state of the voltage output when the converter is off.  
0: the output is forced to ground.  
1: the output is left floating (Hz).  
28  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.6  
BUCK2 Voltage Register  
Register Name:  
Access Type:  
Address:  
BCK_VOLT  
Read/Write  
0x15  
7
6
5
4
3
2
1
0
VOUT(*)  
• VOUT:  
Selects the output voltage of the regulator following the table below.  
V
OUT [4:0]  
VOUT [V]  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
VOUT [4:0]  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
VOUT [V]  
1.28  
1.42  
1.56  
1.7  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.86  
2.00  
2.14  
2.29  
2.43  
2.57  
2.71  
2.86  
3.00  
3.14  
3.30  
3.42  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
29  
6266A–PMAAC–08-Sep-08  
6.2.7  
LDO3 Control Register  
Register Name:  
Access Type:  
Address:  
LDO3_CTRL  
Read/Write  
0x16  
7
6
5
4
3
2
1
0
EN(*)  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• EN:  
Writing EN to 1 starts the LDO3 regulator.  
Writing EN to 0 stops the LDO3 regulator.  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
6.2.8  
LDO3 Configuration Register  
Register Name:  
Access Type:  
Address:  
LDO3_CFG  
Read/Write  
0x17  
7
6
5
4
3
2
MODE  
1
1
OUTZ  
1
0
• OUTZ:  
Defines the state of the voltage output when the regulator is off.  
0: the output is forced to ground.  
1: the output is left floating (Hz).  
This bit should be at 1 when LDO is on.  
• MODE:  
0: RF mode, IMAX = 100 mA.  
1: Smoother mode, IMAX = 200 mA.  
30  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.9  
LDO3 Voltage Register  
Register Name:  
Access Type:  
Address:  
LDO3_VOLT  
Read/Write  
0x18  
7
6
5
4
3
2
1
0
VOUT(*)  
• VOUT  
Selects the output voltage of the regulator following the table below.  
V
OUT [3:0]  
VOUT [V]  
1.3  
1.5  
1.6  
1.7  
1.8  
2.5  
2.6  
2.7  
2.8  
3.3  
4.9  
1000  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1001  
1010  
others  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
31  
6266A–PMAAC–08-Sep-08  
6.2.10  
LDO4 Control Register  
Register Name:  
Access Type:  
Address:  
LDO4_CTRL  
Read/Write  
0x19  
7
6
5
4
3
2
1
0
EN(*)  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• EN:  
Writing EN to 1 starts the LDO4 regulator.  
Writing EN to 0 stops the LDO4 regulator.  
(*): Default value depends on the chosen AT73C224-x device (seeSection 5.2).  
6.2.11  
LDO4 Configuration Register  
Register Name:  
Access Type:  
Address:  
LDO4_CFG  
Read/Write  
0x1A  
7
6
5
4
3
2
MODE  
1
1
OUTZ  
1
0
• OUTZ:  
Defines the state of the voltage output when the regulator is off.  
0: the output is forced to ground.  
1: the output is left floating (Hz).  
This bit should be at 1 when LDO is on.  
• MODE:  
0: RF mode, IMAX = 100 mA.  
1: Smoother mode, IMAX = 200 mA.  
32  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.12  
LDO4 Voltage Register  
Register Name:  
Access Type:  
Address:  
LDO4_VOLT  
Read/Write  
0x1B  
7
6
5
4
3
2
1
0
VOUT(*)  
0
1
1
1
• VOUT  
Selects the output voltage of the regulator following the table below.  
VOUT[3:0]  
1000  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1001  
1010  
others  
VOUT [V]  
1.3  
1.5  
1.6  
1.7  
1.8  
2.5  
2.6  
2.7  
2.8  
3.3  
4.9  
(*): Default value depends on the chosen AT73C224-x device (see Section 5.2).  
33  
6266A–PMAAC–08-Sep-08  
6.2.13  
PMU Status Register  
Register Name:  
Access Type:  
Address:  
PMU_SR  
Read-only  
0x1C  
7
0
6
0
5
PF2  
0
4
PG2  
0
3
0
2
PF1  
0
1
PG1  
0
0
SHORT1  
0
• SHORT1:  
0: no overcurrent condition.  
1: an overcurrent condition has been detected on the BOOST/SEPIC1 converter.  
• PG1:  
0: no power good condition on BOOST/SEPIC1.  
1: the power good condition has been met on BOOST/SEPIC1.  
• PF1:  
0: no power failure condition on BOOST/SEPIC1.  
1: the power failure condition has been met on BOOST/SEPIC1.  
• PG2:  
0: no power good condition on BUCK2.  
1: the power good condition has been met on BUCK2.  
• PF2:  
0: no power failure condition on BUCK2.  
1: the power failure condition has been met on BUCK2.  
34  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.14  
PMU Status Clear Command Register  
Register Name:  
Access Type:  
Address:  
PMU_SCCR  
Write-only  
0x1D  
7
6
5
PF2  
4
PG2  
3
2
PF1  
1
PG1  
0
SHORT1  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• SHORT1:  
0: no effect.  
1: clears SHORT1 in the PMU_SR.  
• PG1:  
0: no power good condition on BOOST/SEPIC1.  
1: clears PG1 in the PMU_SR.  
• PF1:  
0: no effect.  
1: clears PF1 in the PMU_SR.  
• PG2:  
0: no effect.  
1: clears PG2 in the PMU_SR.  
• PF2:  
0: no effect.  
1: clears PF2 in the PMU_SR.  
35  
6266A–PMAAC–08-Sep-08  
6.2.15  
PMU Interrupt Enable Register  
Register Name:  
Access Type:  
Address:  
PMU_IER  
Write-only  
0x1E  
7
6
5
PF2  
0
4
PG2  
0
3
2
PF1  
0
1
PG1  
0
0
SHORT1  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• SHORT1:  
0: no effect.  
1: the overcurrent detection interrupt on BOOST/SEPIC1 is enabled.  
• PG1:  
0: no effect.  
1: the power good interrupt of BOOST/SEPIC1 is enabled.  
• PF1:  
0: no effect.  
1: the power fail interrupt of BOOST/SEPIC1 is enabled.  
• PG2:  
0: no effect.  
1: the power good interrupt of BUCK2 is enabled.  
• PF2:  
0: no effect.  
1: the power fail interrupt of BUCK2 is enabled.  
36  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.2.16  
PMU Interrupt Disable Register  
Register Name:  
Access Type:  
Address:  
PMU_IDR  
Write-only  
0x1F  
7
6
5
PF2  
4
PG2  
3
2
PF1  
1
PG1  
0
SHORT1  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• SHORT1:  
0: no effect.  
1: the overcurrent detection interrupt on BOOST/SEPIC1 is disabled.  
• PG1:  
0: no effect.  
1: the power good interrupt of BOOST/SEPIC1 is disabled.  
• PF1:  
0: no effect.  
1: the power fail interrupt of BOOST/SEPIC1 is disabled.  
• PG2:  
0: no effect.  
1: the power good interrupt of BUCK2 is disabled.  
• PF2:  
0: no effect.  
1: the power fail interrupt of BUCK2 is disabled.  
37  
6266A–PMAAC–08-Sep-08  
6.2.17  
PMU Interrupt Mask Register  
Register Name:  
Access Type:  
Address:  
PMU_IMR  
Read-only  
0x20  
7
6
5
PF2  
0
4
PG2  
0
3
2
PF1  
0
1
PG1  
0
0
SHORT1  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any read operation before doing a new register access.  
• SHORT1:  
0: the overcurrent detection interrupt on BOOST/SEPIC1 is disabled.  
1: the overcurrent detection interrupt on BOOST/SEPIC1 is enabled.  
• PG1:  
0: the power good interrupt of BOOST/SEPIC1 is disabled.  
1: the power good interrupt of BOOST/SEPIC1 is enabled.  
• PF1:  
0: the power fail interrupt of BOOST/SEPIC1 is disabled.  
1: the power fail interrupt of BOOST/SEPIC1 is enabled.  
• PG2:  
0: the power good interrupt of BUCK2 is disabled.  
1: the power good interrupt of BUCK2 is enabled.  
• PF2:  
0: the power fail interrupt of BUCK2 is disabled.  
1: the power fail interrupt of BUCK2 is enabled.  
38  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.3  
Interrupt Registers  
6.3.1  
Interrupt Enable Register  
Register Name:  
Access Type:  
Address:  
IRQ_EN  
Write-only  
0x30  
7
ALL  
6
5
DC2  
4
DC1  
3
2
PWR  
1
PB  
0
RTC  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• RTC:  
Enables the RTC interrupt when written to 1.  
Writing 0 has no effect.  
• PB:  
Enables the push-button interrupt when written to 1.  
Writing 0 has no effect.  
• PWR:  
Enables the power failure interrupt when written to 1.  
Writing 0 has no effect  
• DC1:  
Enables the BOOST/SEPIC1 interrupt when written to 1.  
Writing 0 has no effect.  
• DC2:  
Enables the BUCK2 interrupt when written to 1.  
Writing 0 has no effect.  
• ALL:  
Writing to 1 globally enables all the interrupt sources that had been previously enabled individually. The interrupt setting for  
each source is restored.  
Writing 0 has no effect.  
39  
6266A–PMAAC–08-Sep-08  
6.3.2  
Interrupt Disable Register  
Register Name:  
Access Type:  
Address:  
IRQ_DIS  
Write-only  
0x31  
7
ALL  
6
5
DC2  
4
DC1  
3
2
PWR  
1
PB  
0
RTC  
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
• RTC:  
Disables the RTC interrupt when written to 1.  
Writing 0 has no effect.  
• PB:  
Disables the push-button interrupt when written to 1.  
Writing 0 has no effect.  
• PWR:  
Disables the power failure interrupt when written to 1.  
Writing 0 has no effect  
• DC1:  
Disables the BOOST/SEPIC1 interrupt when written to 1.  
Writing 0 has no effect.  
• DC2:  
Disables the BUCK2 interrupt when written to 1.  
Writing 0 has no effect.  
• ALL:  
Writing to 1 globally disables all the interrupt sources. The individual setting of each interrupt source is saved.  
Writing 0 has no effect.  
40  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.3.3  
Interrupt Mask Register  
Register Name:  
Access Type:  
Address:  
IRQ_MSK  
Read-only  
0x32  
7
ALL  
0
6
0
5
DC2  
0
4
DC1  
0
3
0
2
PWR  
0
1
PB  
0
0
RTC  
0
This register summarizes the result of the successive interrupt enable/disable commands performed by writing into  
IRQ_EN/IRQ_DIS.  
• RTC:  
0: the RTC interrupt is masked.  
1: the RTC interrupt is unmasked.  
• PB:  
0: the push-button interrupt is masked.  
1: the push-button interrupt is unmasked.  
• PWR:  
0: the power failure interrupt is masked.  
1: the power failure interrupt is unmasked.  
• DC1:  
0: the BOOST/SEPIC1 interrupt is masked.  
1: the BOOST/SEPIC1 interrupt is unmasked.  
• DC2:  
0: the BUCK2 interrupt is masked.  
1: the BUCK2 interrupt is unmasked.  
• ALL:  
0: the interrupt sources are globally masked.  
1: the interrupt sources are globally unmasked.  
41  
6266A–PMAAC–08-Sep-08  
6.3.4  
Interrupt Status Register  
Register Name:  
Access Type:  
Address:  
IRQ_STA  
Read-only  
0x33  
7
0
6
0
5
DC2  
0
4
DC1  
0
3
0
2
PWR  
0
1
PB  
0
0
RTC  
0
A minimum of 3 clock cycles of 15 kHz clock must be waited after any write operation before doing a new register access.  
Reading IRQ de-asserts the ITB signal.  
• RTC:  
1: signals a pending interrupt request from the RTC.  
• PB:  
1: signals a pending interrupt request from the push-button.  
• PWR:  
1: signals a pending interrupt request from the power monitor.  
• DC1:  
1: signals a pending interrupt request from the BOOST/SEPIC1.  
• DC2:  
1: signals a pending interrupt request from the BUCK2.  
42  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4  
RTC Registers  
6.4.1  
RTC Control Register  
Register Name:  
Access Type:  
Address:  
RT_CR  
Read/Write  
0x40  
7
6
5
4
3
2
1
0
CALEVSEL  
TIMEVSEL  
UPDCAL  
0
UPDTIM  
0
0
0
0
0
• UPDTIM:  
Writing 1 requests the RTC to stop the time counter so that it can be safely updated. The time counter is actually stopped  
only when ACKUPD is set in RTC_SR.  
Writing 0 restarts the time counter.  
• UPDCAL:  
Writing 1 requests the RTC to stop the calendar counter so that it can be safely updated. The calendar counter is actually  
stopped only when ACKUPD is set in RTC_SR.  
Writing 0 restarts the calendar counter.  
• TIMEVSEL:  
Selects the type of event to cause TIMEV to change in RTC_SR.  
00  
01  
10  
11  
minute change  
hour change  
every day at midnight  
every day at noon  
• CALEVSEL:  
Selects the type of event to cause CALEV to change in RTC_SR.  
every  
Monday  
at time  
00:00:00  
00  
01  
week change  
month change  
year change  
every 1st of  
each month 00:00:00  
at time  
10  
11  
every 1st of  
January  
at time  
00:00:00  
43  
6266A–PMAAC–08-Sep-08  
6.4.2  
RTC Reset Register  
Register Name:  
Access Type:  
RT_RR  
Read/Write  
Address:  
0x41  
7
RST  
0
6
5
4
3
2
1
0
RST:  
RST = 0, Normal Operation  
RST=1, Reset the RTC  
6.4.3  
RTC Mode Register  
Register Name:  
Access Type:  
Address:  
RT_MR  
Read/Write  
0x44  
7
6
5
4
3
2
1
0
HRMOD  
0
• HRMOD:  
0: 24-hour mode.  
1: 12-hour mode.  
44  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
The three Time writing registers are only writable concomitantly and must be written in the order as shown below:  
1. RT_SEC  
2. RT_MIN  
3. RT_HOUR  
6.4.4  
Real-time Second Register  
Register Name:  
Access Type:  
Address:  
RT_SEC  
Read/Write  
0x48  
7
6
5
4
3
SEC  
0
2
1
0
0
0
0
0
0
0
• SEC:  
The range is 0-59 encoded in Binary Coded Decimal (BCD). The lowest four bits encode the units, the higher bits encode  
the tens.  
This field must not be written unless the time counter has been stopped.  
6.4.5  
Real-time Minute Register  
Register Name:  
Access Type:  
Address:  
RT_MIN  
Read/Write  
0x49  
7
6
5
4
3
MIN  
0
2
1
0
0
0
0
0
0
0
• MIN  
The range is 0-59 encoded in BCD. The lowest four bits encode the units, the higher bits encode the tens. This field must  
not be written unless the time counter has been stopped.  
6.4.6  
Real-time Hour Register  
Register Name:  
Access Type:  
Address:  
RT_HOUR  
Read/Write  
0x4A  
7
6
5
4
3
2
1
0
AMPM  
HOUR  
0
0
0
0
0
0
0
• HOUR:  
Depending on bit AMPM, the range can be 1-12 or 0-23, encoded in BCD. The lowest four bits encode the units, the higher  
bits encode the tens. This field must not be written unless the time counter has been stopped.  
• AMPM:  
This bit controls/reflects the AM/PM indicator in 12-hour mode.  
0: AM.  
1: PM.  
45  
6266A–PMAAC–08-Sep-08  
The four Date writing registers are only writable concomitantly and must be written in the order as shown below:  
1. RT_CENT  
2. RT_YEAR  
3. RT_MONTH  
4. RT_DATE  
6.4.7  
Real-time Century Register  
Register Name:  
Access Type:  
Address:  
RT_CENT  
Read/Write  
0x4C  
7
6
5
4
3
2
1
0
CENT  
0
1
1
0
0
1
• CENT:  
The range is 19 - 20, encoded in BCD. The lowest four bits encode the units, the higher bits encode the tens.  
6.4.8 Real-time Year Register  
Register Name:  
Access Type:  
Address:  
RT_YEAR  
Read/Write  
0x4C  
7
6
5
4
3
2
1
0
YEAR  
1
0
0
1
1
0
0
0
• YEAR:  
The range is 1 - 12, encoded in BCD. The lowest four bits encode the units, the higher bits encode the tens.  
6.4.9 Real-time Month Register  
Register Name:  
Access Type:  
Address:  
RT_Month  
Read/Write  
0x4E  
7
6
5
4
3
2
MONTH  
0
1
0
DAY  
1
0
0
0
0
0
1
• MONTH:  
The range is 1 - 12, encoded in BCD. The lowest four bits encode the units, the higher bits encode the tens.  
• DAY:  
The range is 1-7 and represents the day of the week. The relationship between the coding of this field and the actual day of  
the week, is user-defined. Especially, writing to this bit has no effect on the date counter.  
46  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4.10  
Real-time Date Register  
Register Name:  
Access Type:  
Address:  
RT_DATE  
Read/Write  
0x4F  
7
6
5
4
3
2
DATE  
0
1
0
DAY  
1
0
0
1
1
0
0
• DATE:  
The range is 1 - 31, encoded in BCD and represents the day of the month. The lowest four bits encode the units, the higher  
bits encode the tens.  
47  
6266A–PMAAC–08-Sep-08  
The three Time Alarm writing registers are only writable concomitantly and must be written in the order as shown below:  
1. RT_SECA  
2. RT_MINA  
3. RT_HOURA  
6.4.11  
Real-time Second Alarm Register  
Register Name:  
Access Type:  
Address:  
RT_SECA  
Read/Write  
0x50  
7
SECEN  
0
6
5
4
3
SEC  
0
2
1
0
0
0
0
0
0
0
• SEC:  
This field is the alarm field corresponding to the BCD-encoded second counter.  
• SECEN  
0: the second-matching alarm is disabled.  
1: the second-matching alarm is enabled.  
6.4.12  
Real-time Minute Alarm Register  
Register Name:  
Access Type:  
Address:  
RT_MINA  
Read/Write  
0x51  
7
MINEN  
0
6
5
4
3
MIN  
0
2
1
0
0
0
0
0
0
0
• MIN:  
This field is the alarm field corresponding to the BCD-encoded minute counter.  
• MINEN  
0: the minute-matching alarm is disabled.  
1: the minute-matching alarm is enabled.  
48  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4.13  
Real-time Hour Alarm Register  
Register Name:  
Access Type:  
Address:  
RT_HOURA  
Read/Write  
0x52  
7
HOUREN  
0
6
5
4
3
2
1
0
AMPM  
HOUR  
0
0
0
0
0
0
0
• HOUR:  
This field is the alarm field corresponding to the BCD-encoded hour counter.  
• AMPM:  
This field is the alarm field corresponding to the BCD-encoded hour counter.  
• HOUREN  
0: the hour-matching alarm is disabled.  
1: the hour-matching alarm is enabled.  
49  
6266A–PMAAC–08-Sep-08  
The two Date Alarm writing registers are only writable concomitantly and must be written in the order as shown below:  
1. RT_MONTHA  
2. RT_DATEA  
6.4.14  
Real-time Month Alarm Register  
Register Name:  
Access Type:  
Address:  
RT_MONTHA  
Read/Write  
0x56  
7
MTHEN  
0
6
5
4
3
2
MONTH  
0
1
0
0
0
0
1
• MONTH:  
This field is the alarm field corresponding to the BCD-encoded month counter.  
• MTHEN  
0: the month-matching alarm is disabled.  
1: the month-matching alarm is enabled.  
6.4.15  
Real-time DATE Alarm Register  
Register Name:  
Access Type:  
Address:  
RT_DATEA  
Read/Write  
0x56  
7
DATEEN  
0
6
5
4
3
2
1
0
DATE  
0
0
0
0
0
1
• DATE:  
This field is the alarm field corresponding to the BCD-encoded day of the month counter.  
• DATEEN:  
0: the day of the month-matching alarm is disabled.  
1: the day of the month-matching alarm is enabled.  
50  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4.16  
RTC Status Register  
Register Name:  
Access Type:  
Address:  
RTC_SR  
Read-only  
0x58  
7
6
5
4
CALEV  
0
3
TIMEV  
0
2
SEC  
0
1
ALARM  
0
0
ACKUPD  
0
• ACKUPD:  
0: time and calendar registers should not be updated.  
1: time and calendar can be updated safely (clock stopped).  
• ALARM:  
0: no alarm matching condition occurred.  
1: an alarm matching condition occurred.  
• SEC:  
0: no second event has occurred since last clear.  
1: at least one second event occurred since last clear.  
• TIMEV:  
0: no time event has occurred since last clear.  
1: at least one time event occurred since last clear.  
The time event is selected by the TIMEVSEL field in RTC_CR and can be any of the following events: minute change, hour  
change, noon, midnight (day change).  
• CALEV:  
0: no calendar event occurred since last clear.  
1: at least one calendar event occurred since last clear.  
The calendar event is selected in the CALEVSEL field in RTC_CR and can be any of the following events: week change,  
month change, or year change.  
51  
6266A–PMAAC–08-Sep-08  
6.4.17  
RTC Status Clear Command Register  
Register Name:  
Access Type:  
Address:  
RTC_SCCR  
Write-only  
0x5C  
7
6
5
4
CALCLR  
0
3
TIMCLR  
0
2
SECCLR  
0
1
ALRCLR  
0
0
ACKCLR  
0
• ACKCLR:  
0: no effect.  
1: clears the ACKUPD bit in RTC_SR.  
• ALCLR:  
0: no effect.  
1: clears the ALARM bit RTC_SR.  
• SECCLR:  
0: no effect.  
1: clears the SEC bit RTC_SR.  
• TIMCLR:  
0: no effect.  
1: clears the TIMEV bit RTC_SR.  
• CALCR:  
0: no effect.  
1: clears the CALEV bit RTC_SR.  
52  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4.18  
RTC Interrupt Enable Register  
Register Name:  
Access Type:  
Address:  
RTC_IER  
Write-only  
0x60  
7
6
5
4
CALEN  
0
3
TIMEN  
0
2
SECEN  
0
1
ALREN  
0
0
ACKEN  
0
• ACKEN:  
0: no effect.  
1: the acknowledge for update interrupt is enabled.  
• ALREN:  
0: no effect.  
1: the alarm interrupt is enabled.  
• SECEN:  
0: no effect.  
1: the second periodic interrupt is enabled.  
• TIMEN:  
0: no effect.  
1: the selected time event interrupt is enabled.  
• CALEN:  
0: no effect.  
1: the selected calendar event interrupt is enabled.  
53  
6266A–PMAAC–08-Sep-08  
6.4.19  
RTC Interrupt Disable Register  
Register Name:  
Access Type:  
Address:  
RTC_IDR  
Write-only  
0x64  
7
6
5
4
CALDIS  
0
3
TIMDIS  
0
2
SECDIS  
0
1
ALRDIS  
0
0
ACKDIS  
0
• ACKDIS:  
0: no effect.  
1: the acknowledge for update interrupt is disabled.  
• ALRDIS:  
0: no effect.  
1: the alarm interrupt is disabled.  
• SECDIS:  
0: no effect.  
1: the second periodic interrupt is disabled.  
• TIMDIS:  
0: no effect.  
1: the selected time event interrupt is disabled.  
• CALDIS:  
0: no effect.  
1: the selected calendar event interrupt is disabled.  
54  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
6.4.20  
RTC Interrupt Mask Register  
Register Name:  
Access Type:  
Address:  
RTC_IMR  
Read-only  
0x68  
7
6
5
4
CAL  
0
3
TIM  
0
2
SEC  
0
1
ALR  
0
0
ACK  
0
• ACK:  
0: the acknowledge for update interrupt is disabled.  
1: the acknowledge for update interrupt is enabled.  
• ALR:  
0: the alarm interrupt is disabled.  
1: the alarm interrupt is enabled.  
• SEC:  
0: the second periodic interrupt is disabled.  
1: the second periodic interrupt is enabled.  
• TIM:  
0: the selected time event interrupt is disabled.  
1: the selected time event interrupt is enabled.  
• CAL:  
0: the selected calendar event interrupt is disabled.  
1: the selected calendar event interrupt is enabled.  
55  
6266A–PMAAC–08-Sep-08  
6.4.21  
RTC Valid Entry Register  
Register Name:  
Access Type:  
Address:  
RTC_VER  
Read-only  
0x6C  
7
6
5
4
3
2
1
0
NVCALA  
NVTIMA  
NVCAL  
NVTIM  
• NVTIM:  
0: no invalid data has been detected in the time registers.  
1: invalid data has been detected.  
• NVCAL:  
0: no invalid data has been detected in the calendar registers.  
1: invalid data has been detected.  
• NVTIMA:  
0: no invalid data has been detected in the time alarm registers.  
1: invalid data has been detected.  
• NVCALA:  
0: no invalid data has been detected in the calendar alarm registers.  
1: invalid data has been detected.  
56  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7. Electrical Characteristics  
With external components as listed in Table 4-1, Ta = -40°C to 85°C typical values are at Ta =  
25°C (unless otherwise specified).  
7.1  
Absolute Maximum Ratings  
Table 7-1.  
Absolute Maximum Ratings  
*NOTICE:  
Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the  
device at these or other conditions beyond those indi-  
cated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
Operating Temperature (Industrial).............-40°C to + 85°C  
Storage Temperature..................................-55°C to + 150°C  
Power Supply Input........................................-0.3V to + 5.5V  
I/O Input.......................................................... -0.3V to + 5.5V  
ESD (all pins)-..................................................................2 KV  
7.2  
Recommended Operating Conditions  
Table 7-2.  
Parameter  
Recommended Operating Conditions  
Condition  
Min  
-40  
2.8  
Max  
85  
Unit  
°C  
Operating Temperature  
Power Supply Input  
5.25  
V
57  
6266A–PMAAC–08-Sep-08  
7.3  
Digital I/Os  
Digital I/Os are supplied by VDDIO. VDDIO is an input and must be externally connected.  
.
Table 7-3.  
Symbol  
VDDIO  
VDDIO Referred Digital I/Os  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Operating Supply Voltage  
1.75  
3.6  
5.25  
V
0.3x  
VIL  
Input Low Level Voltage  
Input High Level Voltage  
Output Low Level Voltage  
-0.3  
V
V
V
VDDIO  
0.7x  
VDDIO  
+ 0.3  
VIH  
VOL  
VDDIO  
0.75x  
VDDIO  
0.25x  
VOH  
Io  
Output high Level Voltage  
Output Current  
V
VDDIO  
8
mA  
kΩ  
Pull-Up or Pull Down  
resistance  
Rp  
when applicable  
90  
120  
150  
VDDIO referred pins EN, D1, D3, D4: CMOS inputs. Only VIH and VIL parameters are  
applicable.  
VDDIO referred pins POK: CMOS output. Only VOL, VOH parameters are applicable.  
VDDIO referred pin ITB, D2: CMOS BiDir. All parameters applicable.  
7.4  
Current Consumption Versus Modes  
Table 7-4.  
Status  
Quiescent Current in Different Operating Modes  
Conditions  
Battery Current  
Typ  
Max  
Off  
No battery is present  
N/A  
N/A  
No Main Battery is present  
Backup battery present (and charged):  
. Running:  
Backup mode  
RTC (dig + oscillator 32 kHz) - supply: vbackup pin  
1 µA  
2 µA  
Main Battery plugged in and higher than 2.8V  
Backup battery present (and charged)  
. Power supplies off (BOOST1, BUCK2, LDO3, LDO4)  
. Running:  
Stand by  
RTC, LDO_RTC - supply: vbat_ldortc  
POR, LPBG, VMON - supply: vdd0 pin  
4µA  
9µA  
7µA  
17µA  
58  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7.5  
BOOST1: Step-up Converter  
Table 7-5.  
Symbol  
VDD1  
Fs  
BOOST1 Electrical Characteristics  
Parameter  
Conditions  
Min  
2.8  
Typ  
3.6  
Max  
5.25  
1400  
1
Unit  
V
Operating Supply Voltage  
Converter Frequency  
Load Current  
400  
900  
kHz  
A
IO  
BST_VOLT register (@12) - Step 100 mV  
VDD1 < VO1  
VO1  
Output Voltage  
3.2  
-10  
5.2  
V
Error  
Output voltage precision  
Shutdown Current  
Iload > 100 mA  
-10  
1
%
µA  
A
Isc  
BST_CLR register (@10); EN = 0  
BST_CFG register (@11)  
IO = 1 A, VDD1 = 2.8V, VO1 = 3.3V  
IO = 1 A, VDD1 = 3.3V, VO1 = 5.2V  
No load  
ILIM  
Current Limitation  
0.5  
7(1)  
η2.8_3.3_1A  
h3.6_5.2_1A  
tSTART  
Efficiency at VDD1 = 2.8 V  
Efficiency at VDD1 = 3.6 V  
Start-up Time  
90  
85  
%
%
µs  
200  
peak-to-peak, IO = 1 A, VO1 = 5.2V  
Bandwidth = 20 MHz  
VO1_5.2V  
VO1_5.2V  
VO1_5.2V  
Ripple Voltage  
200  
200  
50  
mV  
mV  
mV  
Static Line Regulation  
Static Load Regulation  
VDD1: 2.8 to 4.2V - IO = 1 A - VO1 = 5.2V  
VDD1: 3.6V - IO: 100 mA to 900 mA -  
VO1 = 5.2V  
Note:  
1. Before the BOOST is turned on, it is recommended to establish low current limitation (typic: 1 Amp) to avoid current peak on  
main supply.  
59  
6266A–PMAAC–08-Sep-08  
7.5.1  
BOOST1: Typical Characteristics  
Figure 7-1. Efficiency BOOST1 - VO1 = 5V -  
100  
95  
90  
85  
80  
75  
70  
65  
VDD1 = 4.2V  
VDD1 = 3.6V  
VDD1 = 3V  
VDD1 = 2.8V  
60  
0.01  
0.1  
1
Iload (A)  
60  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
Figure 7-2. Load Regulation BOOST1 - VO1 = 5V -  
5.32  
5.3  
5.28  
5.26  
5.24  
5.22  
5.2  
5.18  
5.16  
5.14  
5.12  
5.1  
VDD1 = 4.2V  
VDD1 = 3.6V  
VDD1 = 3V  
5.08  
5.06  
5.04  
5.02  
VDD1 = 2.8V  
1
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
Iload (A)  
The BOOST1 cell can be implemented using proper external components. (See Figure 4-3  
“Application Schematic 3: BOOST in SEPIC Configuration (BUCK/BOOST)”.)  
61  
6266A–PMAAC–08-Sep-08  
7.6  
BUCK2: Step-down Converter  
Table 7-6.  
BUCK2 Electrical Characteristics  
Symbol Parameter  
Conditions  
Min  
2.8  
Typ  
3.6  
Max  
5.25  
1400  
0.5  
Unit  
V
VDD2  
Fs  
Operating Supply Voltage  
Converter Frequency  
Load Current  
PWM mode  
400  
900  
kHz  
A
ILOAD  
BCK_VOLT register (@15) - Step 100mV  
VDD2 > (VO2 + 0.2V)  
VO2  
Output Voltage  
0.9(1)  
-10  
3.4  
V
Error  
ISC  
Output Voltage Precision  
Shutdown Current  
10  
6
%
µA  
µA  
A
BCK_CTROL register (@13), EN = 0  
BCK_CTROL register (@13), EN = 1, clock not present  
BCK_CFG register (@14)  
1
ISTB  
IMAX  
Stand-by Current  
20  
50  
2
Short Circuit Current  
1
PWM – Pulse SKipping  
Current Threshold  
IPWM-PSK  
Automatic mode- VDD2 = 3.6V- VO2 = 1.8V  
70  
mA  
v  
Ripple Voltage  
Rise Time  
PWM mode  
10  
1
mV  
ms  
TR  
Bandgap already started, slow-start power up selected  
ILOAD = 500 mA, VDD2 from 2.8V to 5V  
PWM mode  
VDC  
Static Line Regulation  
Static Load Regulation  
80  
40  
mV  
mV  
1 mA <iload<500 mA,  
PWM mode  
VDC  
Note:  
1. for device commanded in Dynamic Mode only. For devices commanded in Static Mode, the minimum voltage is 1.8V.  
The BUCK2 is a Pulse Width Modulator (PWM) / Pulse-Skipping (PSK) synchronous regulator  
that can be used to provide an accurate 0.9V to 3.4V programmable output voltage at 500 mA of  
maximum load current.  
Integrated current sensing is used to sense the DC/DC converter load current used for the over-  
current circuit protection and for the PWM / PSK mode selector.  
By default, the BUCK2 is in Automatic Mode: according to the load current value, the regulator is  
either in Pulse-Skipping mode (light load) or in PWM mode (high load). In dynamic mode, the  
user can select PWM or PSK mode, using the bits 4 and 5 of the BCK_CFG register (see Sec-  
tion 6 Register Tables).  
Note that the Automatic mode should not be used for output voltages below 1.8V.  
62  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7.6.1  
BUCK2: Typical Characteristics  
Figure 7-3. Efficiency Manual/Automatic Modes  
Efficiency VO2 = 1.2V - Manual Mode: PSK/PWM  
Efficiency VO2 = 0.9V - Manual Mode: PSK/PWM  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
VDD2 = 2.8V  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD2 = 2.8V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 5V  
VDD2 = 5V  
VDD2 = 2.8V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 5V  
VDD2 = 2.8V  
VDD2 = 3.6V  
PWM  
PSK  
PWM  
PSK  
VDD2 = 4.2V  
VDD2 = 5V  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Iload (A)  
Iload (A)  
Efficiency VO2 = 1.8V - Manual Mode: PSK/PWM  
Efficiency VO2 = 3.3V - Manual Mode: PSK/PWM  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD2 = 4.2V  
VDD2 = 2.8V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 5V  
VDD2 = 5V  
VDD2 = 2.8V  
PWM  
PSK  
PWM  
PSK  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 5V  
VDD2 = 4.2V  
VDD2 = 5V  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Iload (A)  
Iload (A)  
Efficiency VO2 = 3.3V - Automatic Mode  
Efficiency VO2 = 1.8V - Automatic Mode  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VDD2 = 4.2V  
VDD2 = 5V  
VDD2 = 2.8V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 5V  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Iload (A)  
Iload (A)  
63  
6266A–PMAAC–08-Sep-08  
7.6.2  
BUCK2: Load Regulation of VO2  
Figure 7-4. Load Regulation  
Load Regulation: VO2 = 0.9V (PWM mode)  
Load Regulation: VO2 = 1.2V (PWM mode)  
VDD2 = 2.8V  
1.23  
1.22  
1.21  
1.2  
0.93  
0.92  
0.91  
0.9  
VDD2 = 2.8V  
VDD2 = 3.6V  
VDD2 = 4.2V  
VDD2 = 3.6V  
VDD2 = 4.2V  
1.19  
1.18  
1.17  
1.16  
1.15  
0.89  
0.88  
0.87  
0.86  
0.85  
VDD2 = 5V  
VDD2 = 5.5V  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
I load (A)  
I load (A)  
Load Regulation: VO2 = 3.3V (PWM mode)  
Load Regulation: VO2 = 1.8V (PWM Mode)  
VDD2 = 2.8V  
3.3  
1.84  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
3.22  
1.82  
1.8  
VDD2 = 4.2V  
VDD2 = 3.6V  
VDD2 = 4.2V  
1.78  
1.76  
1.74  
1.72  
VDD2 = 5.5V  
VDD2 = 5.5V  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
I load (A)  
I load (A)  
64  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7.7  
LDO3 & LDO4  
LDO3 and LDO4 are low-drop-out voltage regulators that can provide a 1.3V, 1.5V to 1.8V (step  
100 mV), 2.5V to 2.8V (100 mV step) or 3.3V output voltage.  
Two kinds of applications are defined: “RF” mode (high PSRR and low noise) with 100 mA max-  
imum load and “Smoother” mode with 200 mA maximum load.  
By default, the LDOs are configured in RF mode. If the load is higher than 100 mA, the user  
should pass into Smoother mode (see the register tables in Section 6.2.8 ”LDO3 Configuration  
Register” and Section 6.2.11 ”LDO4 Configuration Register”).  
An external 2.2 µF ceramic capacitor is needed for the stability of each LDO.  
Table 7-7.  
Symbol  
VDD3&4  
ILOAD_S  
LDO3 and LDO4 Electrical Characteristics  
Parameter  
Conditions  
Min  
2.8  
0
Typ  
Max  
5.25  
200  
100  
Unit  
V
Operating Supply Voltage  
Smoother Load current  
RF Load current  
3.6  
In Smoother mode  
In RF mode  
mA  
mA  
ILOAD_RF  
0
Selection in LDO3_VOLT @ 18 and  
LDO4_VOLT @ 1B  
VO3,  
VO4  
Output Voltage  
1.3  
-8  
3.3  
V
VDD3 > VO3 + 200mV  
VDD4 > VO4 + 200mV  
Vo  
Accuracy  
ILOAD=10mA  
8
1
%
GND output  
ISC  
Shutdown Current  
µA  
(LDO3_CFG@17 and LDO4_CFG@1A)  
IQQ  
Quiescent Current  
Rise Time  
No load  
20  
100  
10  
µA  
µs  
tR  
VDC  
VDC  
Line Regulation Static  
Load Regulation Static  
2.8V < VDD3 < 5.25V, full load  
10 mA <ILOAD <100 mA  
mV  
mV  
10  
5
In RF mode  
n
Output Noise  
1.5  
µVrms  
Bandwidth: [22 - 80kHz]  
In RF mode:  
I
LOAD=100mA, 100 Hz  
70  
65  
55  
45  
dB  
dB  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
ILOAD=100mA, 1kHz  
ILOAD=100mA, 10kHz  
ILOAD=100mA, 100kHz  
65  
6266A–PMAAC–08-Sep-08  
7.7.1  
LDO3 and LDO4: Typical Characteristics  
Figure 7-5. LDO Load Regulation  
Load regulation VO3 = 1.8V  
Load regulation VO3 = 3.3V  
1.771  
1.77  
3.276  
3.275  
3.274  
3.273  
3.272  
3.271  
3.27  
1.769  
1.768  
1.767  
1.766  
1.765  
1.764  
1.763  
1.762  
1.761  
VDD3 = 5V  
VDD3 = 4.2V  
VDD3 = 3.6V  
VDD3 = 3V  
VDD3 = 2.8V  
VDD3 = 3.6V  
VDD3 = 4.2V  
VDD3 = 5V  
3.269  
3.268  
3.267  
3.266  
3.265  
3.264  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0.18  
0.21  
0.24  
0.27  
0.3  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0.18  
Iload (A)  
0.21  
0.24  
0.27  
0.3  
Iload (A)  
Shown below is VO3 Ripple (same as VO4) in response to a load current pulse from 10 mA to  
200 mA.  
Channel 2: VO3 = 1.8V and VO3 = 3.3V (50mV/div)  
Channel 1: Iload = 10 mA - 200 mA (100 mA/div)  
66  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7.8  
Real-time Clock (RTC)  
The Real-time Clock architecture is shown in Figure 7-6 and is comprised of the following  
blocks: 2.6V LDO_RTC voltage regulator with backup switch, RTC oscillator and RTC block.  
7.8.1  
Block Diagram  
Figure 7-6.  
RTC Block Diagram  
AT73C224-x  
VDD0  
VMON  
VBAT_LDORTC  
VDD0 < 2.8V  
switch open  
LDO_RTC off  
R2  
LDO  
RTC  
2.6V  
VBACKUP  
Recharchable  
Backup  
Battery 2.5V  
(NBL type)  
C11  
XIN  
RTC  
Clock  
X1  
RTC  
OSC  
32.768 kHz  
crystal  
RTC  
XOUT  
D0 to D4  
Serial  
Interface  
The LDO_RTC is used to charge the backup battery at 2.6V. When the main battery is plugged  
in, the LDO is enabled and the backup switch is closed, thus charging the battery. If the  
VBACKUP initial value is lower than the minimum backup voltage admissible (1.8V typical), an  
active low reset is generated on reset signal.  
The C11 capacitor is used for LDO compensation while the R2 resistor limits the charge current  
for the backup battery.  
The RTC oscillator is suited to work with a 32.768 kHz crystal oscillator and generates the  
32.768 kHz clock for the RTC. The RTC block provides seconds, minutes, hours, days, date,  
month, and year information. RTC time data is stored into a register that can be accessed via  
the AT73C224-x device serial interface.  
67  
6266A–PMAAC–08-Sep-08  
7.8.2  
LDO RTC  
Table 7-8.  
Symbol  
VBAT_LDORTC  
VBACKUP  
IOUT  
LDO RTC Electrical Characteristics  
Parameter  
Conditions  
Min  
2.8  
Typ  
Max  
5.25  
2.65  
2
Unit  
V
Operating Supply Voltage  
Output Voltage  
Vbat_ldortc present  
Dc load current  
en = 1  
2.55  
2.6  
V
Load Current  
mA  
µA  
IQQ  
Battery Quiescent Current  
3
5
Backup Battery Quiescent  
Current  
IBKQQ  
en = 0  
200  
300  
nA  
ISC  
TS  
Shutdown Current  
Start-up Time  
1
1
µA  
ms  
V
VTH  
Reset Threshold  
reset is active low  
1.8  
The LDO_Backup is a low drop out voltage regulator that is used to charge a 2.5V RTC  
rechargeable backup battery (type NBL621). The max load current is 2 mA. An external 1 µF  
ceramic capacitor (C11) is needed for compensation.  
7.8.3  
RTC Oscillator  
Table 7-9.  
Symbol  
VBACKUP  
FCK  
RTC Oscillator Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage  
Operating frequency  
Duty cycle  
1.75  
2.65  
32.768  
50  
kHz  
%
Duty  
40  
60  
900  
360  
0.1  
5
Ton  
Startup time  
ms  
VSIN  
Level sinus wave on xin  
Drive level  
RS = 50 KΩ  
160  
260  
0.8  
mVpp  
µW  
DRV  
RS = 50 KΩ  
OFF  
nA  
I
Current dissipation  
ON  
2
µA  
ACC  
Accuracy  
T = 25 °C  
3
mn/month  
kΩ  
RS  
Equivalent series resistance  
Motional capacitance  
Shunt capacitance  
Load capacitance  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
50  
3
CMT  
1
0.6  
6
fF  
CSHUNT  
CLOAD  
2
pF  
12.5  
pF  
The RTC Oscillator is a low-frequency, 2-Pad, Pierce-type Xtal oscillator, optimized for 32.768  
kHz crystal. For operation with 6 pF load capacitance crystals, no external components are  
needed on “xin” and “xout”. It may be necessary to add external capacitors on “xin” and “xout” to  
ground in special cases, for example, to exactly set the frequency or for crystals with a load  
capacitance superior to 6 pF. The “clock” output is low during standby. “xin” and “xout” must not  
be used to drive other circuitry.  
68  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
7.9  
VINT  
One external capacitor (47 0nF) is necessary on VINT pin for functionality of the internal LDO  
supply. This voltage should not be used by the user.  
69  
6266A–PMAAC–08-Sep-08  
8. Package Drawing  
Figure 8-1. QFN 32-lead Package Drawing (all dimensions in millimeters)  
R-QFN032_H  
70  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
9. Revision History  
Change  
Request  
Ref.  
Doc. Rev.  
Comments  
6266A  
First issue.  
71  
6266A–PMAAC–08-Sep-08  
72  
AT73C224  
6266A–PMAAC–08-Sep-08  
AT73C224  
Table of Contents  
Features..................................................................................................... 1  
Description ............................................................................................... 1  
Block Diagram .......................................................................................... 3  
Pinout ........................................................................................................ 4  
Application examples .............................................................................. 5  
Detailed Description ................................................................................ 9  
1
2
3
4
5
5.1  
5.2  
5.3  
Core ...................................................................................................................9  
Automatic Start-up Sequences and Shut-down ...............................................10  
Digital Control and Protocol .............................................................................13  
6
7
Register Tables ...................................................................................... 20  
6.1  
6.2  
6.3  
6.4  
System Registers ............................................................................................20  
PMU Registers ................................................................................................23  
Interrupt Registers ...........................................................................................39  
RTC Registers .................................................................................................43  
Electrical Characteristics ...................................................................... 57  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Absolute Maximum Ratings .............................................................................57  
Recommended Operating Conditions .............................................................57  
Digital I/Os .......................................................................................................58  
Current Consumption Versus Modes ..............................................................58  
BOOST1: Step-up Converter ...........................................................................59  
BUCK2: Step-down Converter .........................................................................62  
LDO3 & LDO4 .................................................................................................65  
Real-time Clock (RTC) ....................................................................................67  
VINT ................................................................................................................69  
8
9
Package Drawing ................................................................................... 70  
Revision History ..................................................................................... 71  
Table of Contents....................................................................................... i  
i
6266A–PMAAC–08-Sep-08  
ii  
AT73C224  
6266A–PMAAC–08-Sep-08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contacts  
www.atmel.com  
pmaac@atmel.com  
www.atmel.com/contacts/  
www.atmel.com/PowerManagement Atmel techincal support  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
6266A–PMAAC–08-Sep-08  

相关型号:

AT73C224-C

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-C_14

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management
ATMEL

AT73C224-D

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-D_14

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management
ATMEL

AT73C224-E

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-E_14

Activation of the Power Management Modules via Dedicated Enable Pin
ATMEL

AT73C224-F

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-F_14

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management
ATMEL

AT73C224-G

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-G_14

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management
ATMEL

AT73C224-H

Power Management and Analog Companions (PMAAC)
ATMEL

AT73C224-H_14

Ultra-low Power Real-time Clock (RTC) and Backup Battery Management
ATMEL