AT49LD3200B-10 [ATMEL]

32-megabit (1M x 32 or 2M x 16) High-speed Synchronous Flash Memory; 32兆位( 1M ×32或2M ×16 )高速同步闪存
AT49LD3200B-10
型号: AT49LD3200B-10
厂家: ATMEL    ATMEL
描述:

32-megabit (1M x 32 or 2M x 16) High-speed Synchronous Flash Memory
32兆位( 1M ×32或2M ×16 )高速同步闪存

闪存
文件: 总39页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
3.0V to 3.6V Read/Write  
Burst Read Performance  
– <100 MHz (RAS Latency = 2, CAS Latency = 6), 10 ns Cycle Time  
tSAC = 7 ns  
– <75 MHz (RAS Latency = 2, CAS Latency = 5), 13 ns Cycle Time  
tSAC = 8 ns  
– <50 MHz (RAS Latency = 1, CAS Latency = 4), 20 ns Cycle Time  
t
SAC = 9 ns  
MRS Cycle with Address Key Programs  
– RAS Latency (1 and 2)  
– CAS Latency (2 ~ 8)  
– Burst Length: 4, 8  
– Burst Type: Sequential and Interleaved  
Word Selectable Organization  
32-megabit  
(1M x 32 or  
2M x 16)  
– 16 (Word Mode)/x 32 (Double Word Mode)  
Sector Erase Architecture  
High-speed  
Synchronous  
Flash Memory  
– Eight 256K Word or 128K Double Word (4-Mbit) Sectors  
Independent Asynchronous Boot Block  
– 8K x 16 Bits with Hardware Lockout  
Fast Program Time  
– 3-volt, 100 µs per Word/Double Word Typical  
– 12-volt, 30 µs per Word/Double Word Typical  
Fast Sector Erase Time  
– 2.5 Seconds at 3 Volts  
– 1.6 Seconds at 12 Volts  
Low-power Operation  
– ICC Read = 75 mA Typical  
Input and Output Pin Continuity Test Mode Optimizes Off-board Programming  
Package:  
– 86-pin TSOP Type II with Off-center Parting Line (OCPL) for Improved Reliability  
LVTTL-compatible Inputs and Outputs  
AT49LD3200  
AT49LD3200B  
SFlash™  
Description  
The AT49LD3200 or AT49LD3200B SFlashis a synchronous, high-bandwidth Flash  
memory fabricated with Atmel’s high-performance CMOS process technology and is  
organized either as 2,097,152 x 16 bits (word mode) or as 1,048,576 x 32 bits (double  
word mode), depending on the polarity of the WORD pin (see Pin Function Descrip-  
tion Table). Synchronous design allows precise cycle control. I/O transactions are  
possible on every clock cycle. All operations are synchronized to the rising edge of the  
system clock. The range of operating frequencies, programmable burst length and  
programmable latencies allow the same device to be useful for a variety of high-band-  
width, high-performance memory system applications.  
The AT49LD3200B will automatically activate the Asynchronous Boot Block after  
power-up, whereas with the AT49LD3200, the Asynchronous Boot Block can be acti-  
vated through Mode Register Set.  
The synchronous DRAM interface allows designers to maximize system performance  
while eliminating the need to shadow slow asynchronous Flash memory into high-  
speed RAM.  
The 32-megabit SFlash device is designed to sit on the synchronous memory bus and  
operate alongside SDRAM.  
Rev. 1940B–FLASH–11/01  
To maximize system manufacturing throughput the AT49LD3200(B) features high-  
speed 12-volt program and erase options. Additionally, stand-alone programming cycle  
time of individual devices or modules is optimized with Atmel’s unique input and output  
pin continuity test mode.  
Pin Configuration  
TSOP (Type II)  
Top View  
VCC  
DQ0  
VCCQ  
DQ16  
DQ1  
VSSQ  
DQ17  
DQ2  
VCCQ  
DQ18  
DQ3  
VSSQ  
DQ19  
MR  
1
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
DQ31  
VSSQ  
DQ15  
DQ30  
VCCQ  
DQ14  
DQ29  
VSSQ  
DQ13  
DQ28  
VCCQ  
DQ12  
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
VCC  
DQM  
NC  
VSS  
NC  
VPP  
WE  
CAS  
RAS  
CS  
CLK  
CKE  
A9  
WORD  
A12  
A8  
A11  
A7  
A10  
A6  
A0  
A5  
A1  
A4  
A2  
A3  
NC  
NC  
VCC  
NC  
VSS  
NC  
DQ4  
VSSQ  
DQ20  
DQ5  
VCCQ  
DQ21  
DQ6  
VSSQ  
DQ22  
DQ7  
VCCQ  
DQ23  
VCC  
DQ27  
VCCQ  
DQ11  
DQ26  
VSSQ  
DQ10  
DQ25  
VCCQ  
DQ9  
DQ24  
VSSQ  
DQ8  
VSS  
2
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Pin Function Description  
Pin  
CLK  
CS  
Name  
Input Function  
System Clock  
Chip Select  
Active on the rising edge to sample all inputs.  
Disables or enables device operation by masking or enabling all inputs except  
CLK and CKE.  
CKE  
Clock Enable  
Masks system clock to freeze operation from the next clock cycle. CKE should be  
enabled at least one cycle prior to new command. Disables input buffers for power-  
down in standby mode.  
A0 - A12  
RAS  
Address  
Row/column addresses are multiplexed on the same pins.  
Row address: RA0 ~ RA12, Column address: CA0 ~ CA6 (x32), CA0 ~ CA7 (x16)  
Row Address Strobe  
Column Address Strobe  
Latches row addresses on the rising edge of the CLK with RAS low.  
Enables row access.  
CAS  
Latches column addresses on the rising edge of the CLK with CAS low.  
Enables column access.  
MR  
Mode Register Set  
Data Input/Output  
Power Supply/Ground  
Enables mode register set with MR low. (Simultaneously CS, RAS and CAS are low).  
Data input for program/erase. Data output for read.  
DQ0 - DQ31  
VCC/VSS  
Power and ground for the input buffers and the core logic.  
VCCQ/VSSQ Data Output Power/Ground Power and ground for the output buffers.  
WORD  
x32/x16 Mode Selection  
Double word mode/word mode, depending on polarity of WORD pin (WORD = high,  
double word mode; WORD = low, word mode).  
Should be set to the desired state during power-up and prior to any device operation.  
DQM  
NC  
Data-out Masking  
No Connection  
Masks output operation when a complete burst is not required.  
Not connected  
WE  
Write Enable  
Enables the chip to be written.  
VPP  
Program/Erase Pin Supply  
Program/Erase power supply.  
3
1940B–FLASH–11/01  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Temperature under Bias ................................ -55LC to +125LC  
Storage Temperature..................................... -65LC to +150LC  
All Input Voltages  
(including NC Pins)  
with Respect to Ground.....................................-0.6V to +4.6V  
All Output Voltages  
with Respect to Ground.............................-0.6V to VCC + 0.6V  
Voltage on VPP  
with Respect to Ground...................................-0.6V to +13.5V  
Power Dissipation .............................................................. 1 W  
Functional Block Diagram  
DQ0  
DQ16  
DQ15  
DQ31  
IO Buffer  
Program/  
Erase  
WE  
VPP  
Logic  
ADD  
8K x 16 Boot Block  
CLK  
1M x 32  
Cell Array  
ADD  
LRAS  
Column Decoder  
Latency & Burst Length  
Programming Register  
LCKE  
LRAS  
LMR  
LCAS  
Timing Register  
CLK  
CKE  
MR  
RAS  
CAS  
CS  
DQM  
4
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
DC and AC Operating Range  
AT49LD3200(B)-10  
0LC - 70LC  
AT49LD3200(B)-13  
AT49LD3200(B)-20  
0LC - 70LC  
Commercial  
0LC - 70LC  
-40LC - 85LC  
3.0V to 3.6V  
Operating Temperature  
(Case)  
Industrial  
-40LC - 85LC  
3.0V to 3.6V  
-40LC - 85LC  
3.0V to 3.6V  
VCC, VCCQ Power Supply  
DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Max  
Units  
mA  
ISB1  
VCC Standby Current CMOS  
VCC Standby Current TTL  
VCC Active Standby Current  
VCC Active Current  
CKE = 0, tCC = Min  
20  
20  
ISB2  
CKE ?ꢁVIL (Max), tCC = Min  
CS O VIH (Min), tCC = Min  
tCC = Min, All Outputs Open  
mA  
ISB3  
50  
mA  
ICC  
150  
mA  
0V ? VIN ? VDD + 0.3V  
Pins not under test = 0V  
IIL  
Input Leakage Current  
-10  
-10  
10  
10  
µA  
µA  
Output Leakage Current (IOOUT  
Disabled)  
(0V ? VOUT ? VDD Max)  
All Outputs in High-Z  
IOL  
VIH  
VIL  
Input High Voltage, All Inputs  
Note(1)  
2.0  
-0.3  
2.4  
VDD + 0.3  
0.8  
V
V
V
V
Input Low Voltage, All Inputs  
Note(2)  
VOH  
VOL  
Output High Voltage Level (Logic 1)  
Output Low Voltage Level (Logic 0)  
IOH = -2 mA  
IOL = 2 mA  
0.4  
Notes: 1. VIH (max) = 4.6V for pulse width 10 ns acceptable, pulse width measured at 50% of pulse amplitude.  
2. VIL (min) = -1.5V for pulse width 10 ns acceptable, pulse width measured at 50% of pulse amplitude.  
AC Operating Test Conditions  
TA = 0 to 70LC, VCC = 3.3V ± 0.3V, unless otherwise noted.  
Parameter(1)  
Value  
1.4V  
Timing Reference Levels of Input/Output Signals  
Input Signal Levels  
VIH/VIL = 2.4V/0.4V  
tr/tf = 1 ns/1 ns  
LVTTL  
Transition Time (Rise & Fall) of Input Signals  
Output Load  
Note:  
1. If CLK transition time is longer than 1 ns, timing parameters should be compensated. Add [(tr + tf)/2-1] ns for transition time  
longer than 1 ns. Transition time is measured between VIL (max) and VIH (min).  
5
1940B–FLASH–11/01  
 
Figure 1. DC Output Load Circuit  
3.3V  
1200Ω  
VOH (DC) = 2.4V, IOH= -2 mA  
Output  
V
OL (DC) = 0.4V, IOL= 2 mA  
50 pF  
870Ω  
Figure 2. AC Output Load Circuit  
Vtt = 1.4V  
50Ω  
Output  
Z0 = 50Ω  
50pF  
Pin Capacitance(1)  
f = 1 MHz, T = 25°C  
Symbol  
Typ  
4
Max  
6
Units  
pF  
Conditions  
VIN = 0V  
CIN  
(2)  
COUT  
8
12  
pF  
VOUT = 0V  
Notes: 1. This parameter is characterized and is not 100% tested.  
2. VPP behaves as an output pin.  
6
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
AC Read Characteristics  
AC operating conditions unless otherwise noted.  
<100 MHz  
<75 MHz  
<50 MHz  
Symbol  
tCC  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
ns  
CLK Cycle Time  
10  
13  
20  
tSAC  
tOH  
CLK to Valid Output Delay  
Data Output Hold Time  
CLK High Pulse Width  
CLK Low Pulse Width  
Row-active to Row-active(1)  
Input Setup Time  
7
8
9
ns  
3
3
4
4
4
6.5  
6.5  
9
ns  
tCH  
ns  
tCL  
3
4
ns  
tRC  
11  
2
10  
4
clks  
ns  
tSS  
4
tSH  
Input Hold Time  
1
2
2
ns  
tSLZ  
tSHZ  
tT  
CLK to Output in Low-Z  
CLK to Output in High-Z  
Transition Time  
0
0
0
ns  
7
10  
10  
15  
10  
ns  
0.1  
9
10  
0.1  
8
0.1  
7
ns  
tVCVC  
Valid CAS Enable to Valid CAS Enable(2)  
clks  
Notes: 1. These tRC values are for BL = 8. For BL = 4, tRC = 7 CLKs for up to 100 MHz, tRC = 6 CLKs for up to 75 MHz, tRC = 5 CLKs for  
up to 50 MHz. RAS latency increase means a simultaneous tRC increase in the same number of cycles. (If RAS latency is  
3 CLKs, tRC is 12 CLKs for BL = 8.) Refer to page 27 for gapless operation.  
2. These tVCVC values are for BL = 8. For BL = 4, tVCVC = 5 CLKs for up to 100 MHz, tVCVC = 4 CLKs for up to 75 MHz,  
t
VCVC = 3 CLKs for up to 50 MHz. Refer to page 27 for gapless operation.  
7
1940B–FLASH–11/01  
Function Truth Table  
(V = Valid, X = Don’t Care, H = Logic High, L = Logic Low)  
Abbreviations (RA: Row Address, CA: Column Address, NOP: No Operation Command, DWM: Double Word Mode, WM:  
Word Mode)  
Command  
CKEn-1 CKEn CS RAS CAS MR(9) DQM  
Add.  
WORD VPP WE  
Register(1)  
Mode Register Set  
H
H
X
X
L
L
L
L
L
L
X
X
Code  
X
X
X
X
X
X
Row Access  
& Latch  
Row Active  
Read  
H
H
RA  
Column Access  
& Latch  
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
H
L
L
X
X
X
CA  
X
X
X
X
X
X
X
H
X
X
Burst Stop  
(Precharge on  
Synch. DRAM)  
X
Power-down  
and Clock  
Two  
Standby  
Mode  
Entry  
Exit  
H
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Suspend(2)  
H
DQM(3)  
H
H
H
X
X
X
X
H
L
X
X
H
X
X
H
X
X
H
V
X
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
No Operation Command(4)  
Organization Control(5)  
H
X
L
H
L
H
X
CA  
X
H
Program/Erase(6)  
H
H
H
H
H
H
X
X
X
X
X
X
X
X
L
L
H
L
L
L
X
H
H
X
L
L
L
X
L
L
L
X
X
X
X
L
X
X
X
X
X
X
X
CA  
CA  
X
X
X
X
X
X
X
X
12V  
X
L
L
Fast Program/Erase(6)  
Program/Erase Inhibit  
X
X
X
H
L
Mode Register Set  
Read  
A7 = H  
L
X
Product  
Identification(7)  
H
H
X
H
X
X
X
Entry  
CA  
X
Continuity Test Mode  
Exit  
Code(8)  
X
X
Notes: 1. A0 ~ A6: Program keys (@MRS). After power-up, mode register set can be set before issuing other input command. After the  
Mode Register Set command is completed, no new commands can be issued for 3 CLK Cycles, and CS or MR state must  
be defined “H” within 3 CLK cycles. Refer to the Mode Register Control Table.  
2. In the case CKE is low, two standby modes are possible. Those are standby mode in power-down, and active standby mode  
in clock suspend (non-power-down).  
Power-down: CKE = “L” (after no command is issued for 60 µs)  
Clock Suspend: CKE = “L” (at the range of Row Active, Read and Data Out)  
3. DQM sampled at rising edge of a CLK makes a high-Z state the data-out state, delayed by 2 CLK cycles.  
4. Precharge command on Synch. DRAM can be used for Burst Stop operation during burst read operation only.  
5. Mode selection is controlled by the polarity of WORD pin, “H” state is DWM, “L” state is WM. WORD should be set to the  
desired state during power-up and prior to any device operation.  
6. Data is provided through DQ0 ~ DQ31. Refer to AC programming and erasing waveforms.  
7. DQ0 ~ DQ31 will output Manufacturer Code/Device Code.  
8. A0 = A2 = A11 = “H”, A1 = A10 = A12 = “L”  
9. The user can tie MR and WE together to simplify the interface of the AT49LD3200(B) onto the standard SDRAM bus.  
8
AT49LD3200(B)  
1940B–FLASH–11/01  
 
AT49LD3200(B)  
Asynchronous Boot Block Function Truth Table  
Command  
CLK(2)  
CKE(2)  
CS  
RAS  
CAS  
MR  
DQM  
Add.  
Add  
X
WORD  
VPP  
X
WE  
X
Read  
X
X
X
X
H
H
H
L
X
X
X
L
H
X
X
X
X
X
X
X
X
Output Disable  
Program/Erase(1)  
Fast Program/Erase(1)  
Program/Erase Inhibit  
L
X
X
X
X
X
L
H
L
X
Add  
Add  
X
X
L
L
H
L
X
12V  
X
L
H
X
X
X
X
Notes: 1. Program/Erase is performed through the synchronous bus cycle operation after the boot block is activated through either  
power-up or Mode Register Set.  
2. It is recommended to hold CKE Low if CLK is running during asynchronous boot block mode except for synchronous com-  
mand cycle and MRS operations.  
Mode Register Control Table(1)  
Register Programmed with MRS  
Address  
Function  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Product ID  
RAS Latency  
CAS Latency  
Burst Type  
Burst Length  
Product ID  
RAS Latency  
Type  
CAS Latency  
A5 A4 A3 Length  
Burst Type  
Type  
Burst Length  
A7  
“Read”  
Array  
ID  
A6  
0
A2  
0
A1  
0
A0  
0
Length  
0
1
1
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Sequential  
Interleave  
Reserved  
1
2
3
4
5
6
7
8
1
0
1
4
8
1
0
1
1
Boot Block  
Note:  
1. After power-up, when the user wants to change Mode Register Set, the user must exit from power-down mode and start  
Mode Register Set before entering normal operation mode. Reserved modes are not to be used; device function in these  
modes is not guaranteed.  
9
1940B–FLASH–11/01  
 
Addressing Map  
WORD = “H”: x32 Organization(1)  
Function  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
RA7  
X
A8  
RA8  
X
A9  
RA9  
X
A10  
RA10  
X
A11  
RA11  
X
A12  
RA12  
X
Row Address  
Column Address  
RA0  
CA0  
RA1  
CA1  
RA2  
CA2  
RA3  
CA3  
RA4  
CA4  
RA5  
CA5  
RA6  
(1)  
CA6  
Note:  
1. Column Address MSB (at x32 organization) (X = Don’t Care)  
WORD = “L”: x16 Organization(1)  
Function  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
RA8  
X
A9  
RA9  
X
A10  
RA10  
X
A11  
RA11  
X
A12  
RA12  
X
Row Address  
Column Address  
RA0  
CA0  
RA1  
CA1  
RA2  
CA2  
RA3  
CA3  
RA4  
CA4  
RA5  
CA5  
RA6  
CA6  
RA7  
(1)  
CA7  
Note:  
1. Column Address MSB (at x16 organization) (X = Don’t Care)  
Each Address is Arranged as Follows(1)(2)  
For X32 operation,  
MSB  
LSB  
AR0  
CA0  
Address Register  
Address  
AR19  
RA12  
AR18  
RA11  
AR17  
RA10  
...  
...  
AR8  
RA1  
AR7  
RA0  
AR6  
CA6  
...  
...  
AR3  
CA3  
AR2  
CA2  
AR1  
CA1  
BL = 4  
* Initial Address BL = 8  
Notes: 1. For X16 operation, when CA0 is set to Low, data belonging to 0 ~ 15th registers are output to DQ0 ~ DQ15 pins, and when  
CA0 is set to High, data belonging to 16 ~ 31th registers are output to DQ0 ~ DQ15 pins.  
2. Asynchronous Boot Block uses x16 operation and A0 ~ A12 as address inputs.  
10  
AT49LD3200(B)  
1940B–FLASH–11/01  
 
 
AT49LD3200(B)  
Burst Sequence (Burst Length = 4)  
Initial Address  
A1  
0
A0  
0
Sequential  
Interleave  
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
Burst Sequence (Burst Length = 8)  
Initial Address  
A2  
0
A1  
0
A0  
0
Sequential  
Interleave  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
0
0
1
7
0
1
2
3
4
5
3
0
1
6
7
4
5
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Device Operations  
Clock (CLK)  
A square wave signal (CLK) must be applied externally at cycle time tCC. All operations  
are synchronized to the rising edge of the clock. The clock transitions must be mono-  
tonic between VIL and VIH. During operation with CKE high, all inputs are assumed to be  
in valid state (low or high) for the duration of setup and hold time around the positive  
edge of the clock for proper functionality and ICC specifications.  
Clock Enable (CKE)  
The clock enable (CKE) gates the clock into the AT49LD3200(B) and is asserted high  
during all cycles, except for power-down, standby and clock suspend mode. If CKE goes  
low synchronously with clock (setup and hold time same as other inputs), the internal  
clock is suspended from the next clock cycle and the state of output and burst address  
is frozen for as long as the CKE remains low. All other inputs are ignored from the next  
clock cycle after CKE goes low. The AT49LD3200(B) remains in the power-down mode,  
ignoring other inputs for as long as CKE remains low. The power-down exit is synchro-  
nous as the internal clock is suspended. When CKE goes high at least “1 CLK + tSS  
before the rising edge of the clock, then the AT49LD3200 becomes active from the  
same clock edge accepting all the input commands.  
NOP and Device  
Deselect  
When RAS, CAS and MR are high, the AT49LD3200(B) performs no operation (NOP).  
NOP does not initiate any new operation. Device deselect is also a NOP and is entered  
by asserting CS high. CS high disables the command decoder so that RAS, CAS, MR  
11  
1940B–FLASH–11/01  
and all the address inputs are ignored. In addition, entering a Mode Register Set com-  
mand in the middle of a normal operation results in an illegal state in the  
AT49LD3200(B).  
Power-up  
The following power-up sequence is recommended.  
1. Apply power and start clock. Hold the MR, CKE and DQM inputs high; all other  
pins are a NOP condition at the inputs before or along with VCC (and VCCQ  
)
supply.  
2. Set WORD to the desired state (prior to any device operation).  
3. To change the default Mode Register Set values, perform a Mode Register Set  
cycle to program the RAS latency, CAS latency, burst length and burst type.  
4. At the end of three clock cycles after the mode register set cycle, the device is  
ready for operation.  
When the above sequence is used for power-up, all outputs will be in high impedance  
state. The high impedance of outputs is not guaranteed in any other power-up  
sequence.  
For AT49LD3200B, Asynchronous Boot Block will be selected after power-up.  
Mode Selection Control  
Address Decoding  
Mode selection is controlled by the polarity of WORD pin. WORD should be set to the  
desired state during power-up and prior to any device operation. The AT49LD3200(B)  
can be organized as either double word wide (x32) or word wide (x16). The organization  
is selected via the WORD pin. When WORD is asserted high (VIH), the double word-  
wide organization is selected. When WORD is asserted low (VIL), the word-wide organi-  
zation is selected.  
The address bits required to decode one of the available cell locations out of the total  
depth are multiplexed onto the address select pins and latched by externally applying  
two commands. The first command, RAS asserted low, latches the row address into the  
device. A second command, CAS asserted low, subsequently latches the column  
address.  
Mode Register Set (MRS) The mode register stores the data for controlling the various operating modes of  
AT49LD3200(B). It programs the RAS latency, CAS latency, burst length, burst type,  
selects product ID Read or activates the Asynchronous Boot Block. For  
AT49LD3200(B), the default value of the mode register is defined as array read with  
RAS latency = 2, CAS latency = 5, burst length = 4, sequential burst type. When and if  
the user wants to change its values, the user must exit from power-down mode and start  
Mode Register Set before entering normal operation mode. The mode register is repro-  
grammed by asserting low on CS, RAS, CAS and MR (the AT49LD3200(B) should be in  
active mode with CKE already high prior to writing the mode register). The state of  
address pins A0 ~ A7 in the same cycle as CS, RAS, CAS and MR going low is the data  
written in the mode register. Three clock cycles are required to complete the program in  
the mode register, therefore after a Mode Register Set command is completed, no new  
commands can be issued for 3 clock cycles and CS or MR must be high within 3 clock  
cycles. The mode register is divided into various fields, depending on functionality. The  
burst length field uses A0 ~ A1, burst type uses A2, CAS latency (read latency from col-  
umn address) uses A3 ~ A5, RAS latency uses A6 (RAS to CAS delay), array read or  
product ID read uses A7. Refer to Mode Register Control Table for specific codes for  
various burst lengths, burst types, CAS latencies, RAS latencies, and read modes.  
12  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Latency  
There are latencies between the issuance of a Row Active command and when data is  
available on the I/O buffers. The RAS to CAS delay is defined as the RAS latency. The  
CAS to data out delay is the CAS latency. The CAS and RAS latencies are programma-  
ble through the mode register. RAS latencies of 1 and 2, and CAS latencies of 2 through  
6 are supported. It is understood that some RAS and CAS latency values are reserved  
for future use, and are not available in this generation of synchronous Flash. The follow-  
ing are the supported minimum values: RAS latency = 2, and CAS latency = 6 for 100  
MHz operation, and RAS latency = 2, and CAS latency = 5 for 66 MHz operation, and  
RAS latency = 1, and CAS latency = 4 for 50 MHz operation, and RAS latency = 1, and  
CAS latency = 3 for 33 MHz operation.  
DQM Operation  
Burst Read  
The DQM is used to mask output operations when a complete burst read is not required.  
It works similar to OE during a read operation. The read latency is two cycles from DQM,  
which means DQM masking occurs two cycles later in the read cycle. DQM operation is  
synchronous with the clock. The masking occurs for a complete cycle. (Also refer to the  
DQM timing diagram.)  
The Burst Read command is used to access a burst of data on consecutive clock cycles  
from an active row state. The Burst Read command is issued by asserting low CS and  
CAS with MR being high on the rising edge of the clock. The first output appears in CAS  
latency number of clock cycles after the issuance of the Burst Read command. The  
burst length, burst sequence and latency from the Burst Read command are determined  
by the mode register, which is already programmed. Burst read can be initiated on any  
column address of the active row. The output goes into high-impedance at the end of  
the burst, unless a new burst read is initiated to keep the data output gapless. The burst  
read can be terminated by issuing another burst read.  
Sector Erase  
Before a word/double word can be reprogrammed, it must be erased. The erased state  
of the memory bits is a logical “1”. The AT49LD3200(B) is organized into eight uniform  
four megabit sectors (SA0 - SA7) that can be individually erased. The Sector Erase  
command is a synchronous six-bus cycle operation (refer to the Command Definition  
table and Program Cycle and Erase Cycle waveforms). The erase code consists of 6-  
byte (DQ8 - DQ31 are Don’t Care inputs for the command) load commands to specific  
address locations with a specific data pattern. The sector address and 30H data input  
are latched in the sixth cycle. The sector erase starts at the following rising edge of CLK  
after the sixth cycle. The erase operation is internally controlled; it will automatically time  
to completion.  
Any commands written to the device during the erase cycle will be ignored. The maxi-  
mum time needed to erase one sector is tEC  
.
Word/Double Word  
Programming  
Once a sector is erased, it is programmed (to a logical “0”) on a word-by-word/double-  
word-by-double-word basis. Programming is accomplished via the internal device com-  
mand register and is synchronous four-bus cycle operation (refer to the Command  
Definition table and Program Cycle and Erase Cycle waveforms). The programming  
operation starts at the following rising edge of CLK after the fourth cycle. The device will  
automatically generate the required internal program pulses.  
Any commands written to the device during the embedded programming cycle will be  
ignored. Please note that a data “0” cannot be programmed back to a “1”; only erase  
operations can convert “0”s to “1”s. Programming is completed after the specified tPGM  
cycle time. The DATA polling feature may also be used to indicate the end of a program  
cycle.  
13  
1940B–FLASH–11/01  
Product Identification  
DATA Polling  
The product identification mode identifies the device and manufacturer as Atmel. This  
mode can be used by an on-board controller or external programmer to identify the cor-  
rect programming algorithm for the Atmel product.  
The AT49LD3200(B) features DATA polling to indicate the end of a program or sector  
erase cycle. DATA polling may begin at any time during the program or sector erase  
cycle.  
During a program cycle, an attempted read of the last word/double word loaded will  
result in the complement of the loaded data in DQ7. Once the program cycle has com-  
pleted, true valid data can be read on all outputs and the next cycle may begin.  
During a sector erase operation, an attempt to read the device will give a “0” on DQ7.  
Once the sector erase cycle has completed, logical “1” data can be read on all outputs  
from the device.  
Hardware Data  
Protection  
Hardware features protect against inadvertent programming or erasure to the  
AT49LD3200(B) in the following way: VCC sense: if VCC is below 2.3V (typical), the pro-  
gram or erase function is inhibited; but if VCC dips below 2.3V during program or erase  
cycle, the respective function will be interrupted and the data at the location being pro-  
grammed may be corrupted.  
Continuity Test Mode  
The AT49LD3200(B) has built-in circuitries to make input and output pin continuity  
check simple and easy. This mode can be activated via the internal device command  
register and is a synchronous five-bus cycle operation (refer to the Command Definition  
Table and Continuity Test Mode Entry Waveforms). After the bus cycle operation, keep  
DQM high (VIH) and allow 5 µsec for circuit setup time or until data is no longer asserted  
at DQ0 - DQ7, whichever takes longer. This will keep DQ0 - DQ7 from contention since  
data is asserted at DQ0 - DQ7 during the mode entry sequence. Then DQM can be  
asserted low (VIL) to enable DQ0 - DQ7 for test. Once in this asynchronous mode, input  
pins are virtually tied to output pins internally forming input - output pin pairs. The output  
pin of the pair will follow the logic state of the input pin of the pair (refer to the Input -  
Output Pin Pairs table). To exit the mode, A0, A2 and AII are asserted high (VIH) and A1,  
A10 and A12 are asserted low (VIL), allow 5 µsec for circuit recovery time before returning  
the device for normal operation.  
14  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Input - Output Pin Pairs  
Input  
MR  
RAS  
CAS  
DQM  
CS  
Output  
DQ0, DQ16  
DQ1, DQ17  
DQ2  
DQ18  
DQ3  
WORD  
A12  
A11  
A10  
A0  
DQ19  
DQ4  
DQ20  
DQ5  
DQ21  
A1  
DQ6, DQ22  
DQ7, DQ23  
DQ8, DQ24  
DQ9, DQ25  
DQ10  
A2  
A3  
A4  
A5  
A6  
DQ26  
A7  
DQ11  
A8  
DQ27  
A9  
DQ12  
CKE  
CLK  
WE  
VPP  
DQ28  
DQ13, DQ29  
DQ14, DQ30  
DQ15, DQ31  
Asynchronous Boot  
Block  
The AT49LD3200B will automatically activate the Asynchronous Boot Block after  
power-up and the AT49LD3200 can activate the Asynchronous Boot Block through the  
Mode Register Set. The size of the boot block is 8K x 16 bits with addresses A0 ~ A12  
and outputs DQ0 ~ DQ15. The contents of the boot block are accessed asynchronously,  
meaning the data at outputs will change according to the address inputs after tACC, with-  
out any external clocking signals.  
Programs and erases are performed using the synchronous bus cycle operation (refer  
to Command Definitions table and Program Cycle and Erase Cycle waveforms) after the  
boot block is activated either through power-up or Mode Register Set. Programming of  
the boot block is set up for x16 mode.  
This Asynchronous Boot Block has a lockout feature that prevents programming or  
erasing of data in this boot block once the feature has been enabled. This feature does  
not have to be activated; the boot block’s usage as a protected region is optional to the  
user. Once this feature is enabled, the data in the boot block can no longer be erased or  
programmed when input levels of 3.6V or less are used. To activate the lockout feature,  
15  
1940B–FLASH–11/01  
Boot Block Lockout command, which is a synchronous five-bus cycle operation, must be  
performed (refer to Command Definitions table and Program Cycle Waveforms).  
A software method is available to determine if programming or erasing of the boot block  
is locked out. Issue Boot Block Lockout Verify command and observe DQ0 ~ DQ7. If the  
data show 00H/02H, the boot block can be programmed or erased; if the data show  
01H/03H, the lockout feature has been enabled and the boot block cannot be pro-  
grammed or erased. The Boot Block Lockout Verify Exit command should be used to  
return to standard operation (refer to Command Definition table and Boot Block Lockout  
Verify Waveforms).  
The user can override the boot block lockout by taking the MR pin to 12 volts after the  
boot block is activated. When the MR pin is brought back to TTL levels, the boot block  
lockout feature is again active.  
16  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Command Definition in Hex(1)  
1st Bus Cycle  
2nd Bus Cycle  
3rd Bus Cycle  
4th Bus Cycle  
5th Bus Cycle  
6th Bus Cycle  
CA Data  
Command  
Bus  
Sequence Cycles RA  
CA Data RA CA Data RA  
CA Data RA  
CA Data RA  
CA Data RA  
Word/  
Double  
Word  
4
AA  
55  
AA  
55  
2A  
55  
AA  
55  
A0  
RA  
CA  
DIN  
Program  
Sector  
Erase  
6
5
5
5
AA  
AA  
AA  
AA  
55  
55  
55  
55  
AA  
AA  
AA  
AA  
55  
55  
55  
55  
2A  
2A  
2A  
2A  
55  
55  
55  
55  
AA  
AA  
AA  
AA  
55  
55  
55  
55  
80  
80  
80  
80  
AA  
AA  
AA  
AA  
55  
55  
55  
55  
AA  
AA  
AA  
AA  
55  
2A  
55  
55  
55  
55  
SA(2)  
X
30  
Continuity  
Test Mode  
Entry  
AA  
AA  
AA  
70  
40  
90  
Boot Block  
Lockout  
Boot Block  
Lockout  
Verify  
Boot Block  
Lockout  
5
AA  
55  
AA  
55  
2A  
55  
AA  
55  
80  
AA  
55  
AA  
AA  
55  
F0  
Verify Exit  
Notes: 1. The DATA FORMAT in each bus cycle is as follows: DQ31 - DQ8 (Don’t Care); DQ7 - DQ0 (Hex).  
2. SA = Sector Addresses: Any word/double word address within a sector can be used to designate the sector address.  
See Sector Address Mapping table below.  
3. Allow minimum 200 ns after Boot Block Lockout Verify command and before Read.  
4. Allow minimum 10 µs after Boot Block Lockout Verify Exit command for the device to return to standard operation.  
Sector Address Mapping  
x16  
x32  
Address Range  
Address Range  
Sector  
Size (Word/Double Word)  
CA7-0  
RA12-0  
CA6-0  
RA12-0  
00XX  
03XX  
00XX  
03XX  
SA0  
256K/128K  
X
X
04XX  
07XX  
04XX  
07XX  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
256K/128K  
256K/128K  
256K/128K  
256K/128K  
256K/128K  
256K/128K  
256K/128K  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
08XX  
0BXX  
08XX  
0BXX  
0CXX  
0FXX  
0CXX  
0FXX  
10XX  
13XX  
10XX  
13XX  
14XX  
17XX  
14XX  
17XX  
18XX  
1BXX  
18XX  
1BXX  
1CXX  
1FXX  
1CXX  
1FXX  
17  
1940B–FLASH–11/01  
Basic Feature and Function Descriptions  
MRS  
Mode Register Set  
CLK  
CMD  
MRS  
ACT  
(1)  
3CLK  
Clock Suspend  
Clock Suspended During Burst Read (BL=4)  
CLK  
CMD  
CKE  
RD  
Masked by CKE  
Internal  
CLK  
DQ0 DQ1  
Data  
DQ2  
DQ3  
: This command cannot be activated.  
Suspended Dout  
Clock Suspend Exit and Power-down Exit  
1) Clock Suspend Exit  
2) Power Down  
CLK  
CLK  
CKE  
tSS  
tSS  
CKE  
Internal  
CLK  
Internal  
CLK  
NOP ACT  
CMD  
CMD  
RD  
Note:  
After Mode Register Set command is completed, no new commands can be issued for 3 clock cycles, and MR or CS should be  
fixed “H” within a minimum of 3 clock cycles.  
18  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
DQM Operation  
1) Read Mask (BL=4)  
CLK  
CMD  
DQM  
RD  
Masked by DQM  
High-Z  
Data(CL2)  
Data(CL3)  
Data(CL4)  
DQ3  
DQ2  
DQ0  
DQ1  
DQ0  
High-Z  
High-Z  
DQ3  
DQ3  
DQ1 DQ2  
DQM to Data-out Mask = 2CLKs  
2) DQM with Clock Suspended (BL=8)  
CLK  
RD  
CMD  
CKE  
DQM  
(1)  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DQ0  
DQ1  
DQ0  
DQ5  
DQ7  
DQ6  
DQ  
DQ3  
DQ2  
DQ1  
Data(CL2)  
Data(CL3)  
Data(CL4)  
High-Z  
High-Z  
DQ4  
DQ3  
7
DQ  
DQ6 DQ7  
5
Note:  
DQM makes data out high-Z after 2 CLKs, which should be masked by CKE “L”.  
19  
1940B–FLASH–11/01  
Read Cycle I: Normal @RAS Latency = 2, CAS Latency = 5, Burst Length = 4  
tCH  
4
0
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
CKE  
tCL  
tCC  
HIGH  
tRC  
tSH  
tSS  
CS  
RAS  
Latency  
tSH  
tSS  
RAS  
CAS  
tSH  
RAa  
tSS  
ADDR  
CAa  
RAb  
CAb  
(1)  
tRC=6 clocks at BL=4  
tOH  
DQa0 DQa1 DQa2 DQa3  
tSAC  
DQb0 DQb1 DQb2 DQb3  
Data  
MR  
tSHZ  
: Don't Care  
Row Active  
Read  
Row Active  
Read  
Note:  
When the burst length is 4 at 66 MHz, tRC is equal to 6 clock cycles.  
20  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Read Cycle II: Consecutive Column Access @RAS Latency = 2, CAS Latency = 5, Burst Length = 4  
tCH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
CKE  
tCL  
tCC  
HIGH  
tSH  
CS  
t
SS  
RAS  
Latency  
t
SH  
SS  
RAS  
t
CAS  
t
SH  
RAa  
SS  
CAa  
CAb  
ADDR  
t
t
VCVC=4 clocks at BL=4  
tOH  
Burst Length=4  
DQa0 DQa1 DQa2 DQa3 DQb0 DQb1 DQb2 DQb3  
Data  
MR  
tSAC  
tSHZ  
Row Active  
Read  
Read  
: Don't Care  
Note:  
When column access is initiated beyond tVCVC, at BL = 4, CAa access read is completed, CAb access read begins.  
21  
1940B–FLASH–11/01  
Read Cycle III: Clock Suspend @RAS Latency = 2, CAS Latency = 5, Burst Length = 4  
t
CH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
CKE  
tCL  
t
CC  
(1)  
Internal  
CLK  
CS  
RAS  
Latency  
t
SH  
SS  
RAS  
t
CAS  
t
SH  
RAa  
SS  
CAa  
ADDR  
t
tVCVC= 4 clocks at BL=4  
(2)  
DQa2  
Burst Length=4  
DQa0  
DQa3  
DQa1  
Data  
MR  
Row Active  
Read  
Clock Suspend Resume  
: Don't Care  
Notes: 1. From next clock after CKE goes low, clock suspension begins.  
2. For clock suspension, data output state is held and maintained.  
22  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Read Interrupted by Precharge Command and Burst Read Stop Cycle @Burst Length = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
CKE  
HIGH  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
CL=2  
(1)  
DQb0 DQb1 DQb2 DQb3 DQb4 DQb5  
(1)  
DQa0 DQa1 DQa2 DQa3 DQa4  
Data  
(2)  
DQb0 DQb1 DQb2 DQb3 DQb4 DQb5  
(2)  
DQa0 DQa1 DQa2 DQa3 DQa4  
CL=3  
MR  
DQM  
(1)(2)  
Burst Stop  
Row Active  
Read  
Read  
Precharge  
: Don't Care  
Notes: 1. The Burst Stop command is valid at every page burst length. The data bus goes to high-Z after the CAS latency from the  
Burst Stop command is issued.  
2. The interval between Read command (column address presented) and Burst Stop command is 1 cycle (min).  
23  
1940B–FLASH–11/01  
Power-down and Clock Suspend Cycle: @RAS Latency = 2, CAS Latency = 5, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
tSS  
(1)  
(1)  
CKE  
Power Down  
Clock Suspend  
(3)  
CLK  
(internal)  
CS  
RAS  
CAS  
t
SH  
(2)  
ADDR  
NOP RAa  
SS  
CAa  
t
Data High-Z State  
DQa0 DQa1  
DQa2  
DQa3  
Data  
(High)  
MR  
Row Active  
Read  
Power-down  
Entry  
Power-down  
Exit  
Clock Suspend  
Exit  
Clock Suspend  
Entry  
: Don't Care  
Notes: 1. From next clock after CKE goes low, clock suspend and power-down begins.  
2. After power-down exit, NOP should be issued and new command can be issued after 1 clock.  
3. Clock suspend is in active standby mode.  
24  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Mode Register Set: @RAS Latency = 2, CAS Latency = 5, Burst Length = 4  
t
CH  
4
0
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
CKE  
tCL  
tCC  
HIGH  
tSH  
CS  
t
SS  
RAS  
CAS  
ADDR  
Data  
Code  
RAa  
CAa  
Data High-Z State  
DQa0 DQa1 DQa2 DQa3  
MR  
MRS  
Row Active  
: Don't Care  
Notes: 1. After the Mode Register Set is completed, no new commands can be issued for 3 CLK cycles.  
2. After power-up, necessarily Mode Register Set should be completed at least one time and CS or MR must be fixed “H” within  
3 clock cycles, and when user wants to change Mode Register Set, user must exit from power-down mode and start Mode  
Register Set before chip enters normal operation mode.  
25  
1940B–FLASH–11/01  
Detailed Functional Truth Table  
Input Signal  
Current  
State  
CKE  
L
CS  
X
RAS  
CAS  
X
MR  
X
Add.  
X
Next State Operation  
Power-down  
X
L
L
After  
H
L
H
H
RA  
Row Active; latch RA  
Mode Register Set  
Power-up(1)  
H
L
L
L
Code  
If consecutive row access is issued within tRC (min.)  
without CAS enabling, only the final RA is valid.  
H
L
L
H
H
RA  
H
H
L
L
L
X
H
L
L
L
X
H
L
CA  
Code  
X
Begin READ; latch CA  
Illegal(1)  
Row Active  
X
X
Clock Suspend  
Row Access in Read State, within the tRC, previous  
read is ignored and new row is activated. Beyond the  
tRC, previous read is completed and new read  
begins.  
H
H
L
L
L
H
L
H
H
RA  
CA  
Consecutive Column Access, within the tVCVC, only  
the final CA is valid and the previous burst read is  
ignored. Beyond the tVCVC, the previous read is  
completed and new read begins.  
H
READ  
H
H
H
L
L
L
L
X
L
L
L
L
L
H
L
H
H
L
L
L
X
X
NOP (after Burst Read)/Read Interrupt  
NOP (after Burst Read)/Read Interrupt  
L
Code  
X
Illegal(1)  
X
L
X
L
X
H
H
H
L
Clock Suspend/Power-down  
Any State  
Any State  
L
X
Low Power Consumption Mode  
H
H
H
H
L
H
L
X
NOP  
X
Illegal  
Illegal  
Any State  
H
L
CA  
Note:  
1. After the power-up, when user wants to change MR Set, user must exit from power-down mode and start MR Set before chip  
enters normal operation mode.  
26  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Technical Notes  
Frequency vs. AC Parameter Relationship Table(1)  
<100 MHz  
Burst Length  
RAS Latency  
CAS Latency  
tRC (min)  
tVCVC (min)  
6
7
6
7
7
8
5(2)  
4
2
6
11  
12  
9(2)  
10  
8
2
<75 MHz  
Burst Length  
RAS Latency  
CAS Latency  
tRC (min)  
tVCVC (min)  
5
6
5
6
6
7
4(2)  
4
2
5
10  
11  
8(2)  
9
8
2
<50 MHz  
Burst Length  
RAS Latency  
CAS Latency  
tRC (min)  
tVCVC (min)  
4
5
6
4
5
6
4(2)  
3/4(2)  
4(2)  
5
4
1
5
6
8(2)  
7/8(2)  
8(2)  
9
8
1
9
10  
Notes: 1. Above tables are not specifications values, but rather the actual number of clock cycles. There are no gapless operations for  
CAS latency 7 and 8.  
2. Minimum clocks for gapless operation.  
3. tRC (max) = tVCVC (max) = 50 µs. If tRC (max) or tVCVC (max) has been reached, a new “ACTIVE” command is necessary for  
new access.  
27  
1940B–FLASH–11/01  
CAS Interrupt  
Read interrupted by Read (BL=4) (1)  
CLK  
RD RD  
CMD  
A
B
ADD  
Data(CL2)  
DQB0 DQB1  
DQB0  
2
DQB  
DQB3  
Data(CL3)  
Data(CL4)  
DQB1 DQB2 DQB3  
DQB0 DQB1 DQB2  
DQB3  
(2)  
Notes: 1. By “Interrupt”, it is meant to stop Burst Read by external command before the end of burst. By “CAS Interrupt”, to stop Burst  
Read by CAS access.  
2. CAS to CAS delay (=1 CLK).  
Read Interrupt Operation by Issuing the Precharge of Burst Stop Command  
CASE I ) Issued read Interrupt command during burst read operation period.  
CLK  
CMD  
CLK  
STOP  
RD  
PRE  
DQ0  
RD  
CMD  
(1)  
(1)  
Data(CL2)  
DQ1  
DQ0 DQ1  
DQ0 DQ1  
DQ0 DQ1  
Data(CL2)  
Data(CL3)  
Data(CL4)  
DQ0 DQ1  
Data(CL3)  
Data(CL4)  
DQ0 DQ1  
CASE II ) Issued read Interrupt command between read command and data out.  
CLK  
CLK  
STOP  
RD PRE  
RD  
CMD  
CMD  
(2)  
(2)  
Data(CL2)  
DQ0  
DQ0  
Data(CL2)  
Data(CL3)  
Data(CL4)  
DQ0  
DQ0  
Data(CL3)  
Data(CL4)  
DQ0  
DQ0  
Notes: 1. The data bus goes to high-Z after CAS latency from the Burst Stop (or precharge) command.  
2. Valid output data will last up to CL-1 clock cycle from PRE command.  
28  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Read Cycle Depending on tRC  
@RL = 2, CL = 6, BL = 4; 100 MHz  
CLK  
tRC(min)=7  
tCC=10ns  
CASE I )  
CMD  
ACT  
RDa  
ACT  
RDb  
ACT  
CASE II )  
ACT  
RDb  
CASE III )  
RDb  
High-Z  
CASE I )  
DQb  
0
DQb  
1
DQb  
DQb  
DQb  
2
DQb  
DQb  
DQb  
3
DQa  
0
DQa  
1
DQa  
DQa  
2
DQa  
DQa  
3
DQb  
0
1
2
DQb  
3
CASE II )  
CASE III )  
DQa  
0
DQa  
1
2
3
0
1
DQb  
2 DQb3  
@RL = 2, CL = 5, BL = 4; 75 MHz  
CLK  
tRC(min)=6  
tCC=15ns  
CASE I )  
CMD  
ACT  
RDa  
ACT  
RDb  
ACT  
CASE II )  
ACT  
RDb  
CASE III )  
RDb  
High-Z  
CASE I )  
DQb0 DQb1 DQb2 DQb3  
DQb0 DQb1 DQb2 DQb3  
DQb0 DQb1 DQb2 DQb3  
DQa0 DQa1 DQa2 DQa3  
DQa0 DQa1 DQa2 DQa3  
CASE II )  
CASE III )  
@RL = 1, CL = 4, BL = 4; 50 MHz  
CLK  
tRC(min)=4  
tCC=20ns  
CASE I )  
CMD  
ACT RDa  
ACT RDb  
ACT  
CASE II)  
RDb  
CASE III)  
ACT RDb  
DQb  
DQa  
DQa  
0
DQb  
1
DQb  
2
DQb  
DQb  
DQb  
3
CASE I )  
(Gapless Operation)  
3
DQa  
0
DQa  
1
DQa  
DQa  
2
2
3
DQb  
0
DQb  
1
0
2
DQb  
DQb  
CASE II )  
CASE III )  
DQa  
0
DQa  
1
3
DQb  
1
2 DQb3  
29  
1940B–FLASH–11/01  
Read Cycle Depending on tVCVC  
@RL = 2, CL = 6, BL = 4; 100 MHz  
CLK  
tVCVC=5  
tCC=10ns  
CASE I)  
CMD  
RDa  
RDb  
ACT  
CASE II)  
RDb  
CASE III)  
RDb  
CASE I )  
DQb  
DQa  
DQa  
0
DQb  
1
DQb  
2
DQb  
3
2
(Gapless Operation)  
3
CASE II )  
CASE III )  
DQa  
0
DQa  
1
DQa  
DQa  
2
2
3
DQb  
0
DQb  
1
0
DQb  
DQb  
DQb  
3
DQa  
0
DQa  
1
DQb  
DQb  
1
2 DQb3  
@RL = 2, CL = 5, BL = 4; 75 MHz  
CLK  
tVCVC=4  
tCC=15ns  
CASE I)  
CMD  
RDa  
RDb  
ACT  
CASE II)  
RDb  
CASE III)  
RDb  
CASE I )  
DQb  
DQa  
DQa  
0
DQb  
1
DQb  
2
DQb  
3
2
(Gapless Operation)  
3
CASE II )  
CASE III )  
DQa  
0
DQa  
1
DQa  
DQa  
2
2
3
DQb  
0
DQb  
1
0
DQb  
DQb  
DQb  
3
DQa  
0
DQa  
1
DQb  
DQb  
1
2 DQb3  
@RL = 1, CL = 4, BL = 4; 50 MHz  
CLK  
tVCVC=3  
tCC=20ns  
CASE I)  
RDb  
CMD  
RDa  
RDb  
ACT  
CASE II)  
CASE III)  
RDb  
CASE I )  
DQb  
DQa  
DQa  
0
DQb  
1
DQb  
2
DQb  
3
2
CASE II )  
CASE III )  
DQa  
0
DQb  
1
DQb  
DQb  
3
DQa  
1
2
(Gapless Operation)  
DQa  
0
DQa  
1
2
DQa  
3
DQb  
0
DQb  
1
DQb  
2
DQb3  
: Invalid Data  
30  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
AC Characteristics for Boot Block Read Operation  
Symbol  
Parameter  
Condition  
Min  
Max  
Units  
CS = DQM  
= VIL  
tACC  
Address to Output Delay  
170  
ns  
tOE  
tDF  
tOH  
DQM to Output Delay  
CS = VIL  
60  
40  
ns  
ns  
ns  
DQM High to Output Float  
Output Hold from Address  
0
AC Waveforms for Boot Block Read Operation  
ADDRESS  
ADDRESS VALID  
CS  
tOE  
DQM  
tDF  
tACC  
tOH  
HIGH-Z  
OUTPUT  
OUTPUT VALID  
31  
1940B–FLASH–11/01  
l
3-volt Program and Erase Cycle Characteristics  
Symbol  
tPGM  
tEC  
Parameter  
Typ  
Max  
600  
Units  
µs  
Word/Double Word Programming Time  
Sector/Boot Block Erase Cycle Time  
Boot Block Lockout Enable Time  
VCC Current during Program and Erase Cycle  
50  
2.0/300  
10  
seconds/ms  
ms  
tBBL  
ICC2  
150  
mA  
High-speed 12-volt Program and Erase Cycle Characteristics  
Symbol  
tPGM  
tEC  
Parameter  
Typ  
Max  
200  
Units  
µs  
Word/Double Word Programming Time  
Sector/Boot Block Erase Cycle Time  
VCC Current During Program and Erase Cycle  
VPP Current During Program and Erase Cycle  
15  
1.2/200  
75  
seconds/ms  
mA  
ICC3  
IPP3  
75  
mA  
Program Cycle Waveforms  
PROGRAM CYCLE  
CLK  
CS  
t
PGM  
WE  
RAS  
CAS  
AA  
AA  
55  
55  
2A  
55  
RA  
55  
CA  
ADDR  
DATA  
PRECHARGE COMMAND  
PRECHARGE COMMAND  
PRECHARGE COMMAND  
PRECHARGE COMMAND  
AA  
A0  
D
IN  
Sector Erase Cycle Waveforms  
SECTOR ERASE CYCLE  
CLK  
CS  
tEC  
WE  
RAS  
CAS  
AA  
55  
55  
2A  
55  
AA  
AA  
55  
55  
2A  
55  
SA  
X
55  
80  
ADDR  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
AA  
AA  
30  
DATA  
Notes: 1. The Precharge command is optional. A Precharge command (CS, RAS, MR = L) during Program and Sector Erase cycles  
(WE = L) will be treated as NOP, and the number of clock cycles between the bus cycle and the Precharge command or vice  
versa should be “Don’t Care”.  
2. For boot block programming, RA = CA = A0 ~ A12 and be held valid throughout program cycle; DQM should be held “H” dur-  
ing the four-bus cycle command operation.  
3. For boot block erasing, SA = X; DQM should be held “H” during the six-bus cycle command operation.  
32  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Data Polling Waveforms  
tPGM/tEC  
CLK  
DQM  
CS  
WE  
RAS  
CAS  
RA  
CA  
RA  
CA  
ADDR  
READ  
READ  
(DATA POLLING)  
DQ7  
DATA  
DATA  
(RL2, CL5, BL4)  
Note:  
During Program cycle, DATA = complement of loaded DQ7.  
After Program cycle, DATA = same state as loaded DQ7.  
During Sector Erase cycle, DATA = 0”; after Sector Erase cycle, DATA = 1”.  
Data Polling Waveforms for Boot Block  
t
/t  
PGM EC  
CLK  
DQM  
CS  
WE  
RAS  
CAS  
VALID ADDRESS  
ADDR  
READ  
READ  
(DATA POLLING)  
DQ7  
DATA  
DATA  
(RL2, CL5, BL4)  
Note:  
During Program cycle, DATA = complement of loaded DQ7.  
After Program cycle, DATA = same state as loaded DQ7.  
During Sector Erase cycle, DATA = 0”; after Sector Erase cycle, DATA = 1”.  
33  
1940B–FLASH–11/01  
Product ID Cycle Waveforms  
PRODUCT ID CYCLE  
CLK  
DQM  
CS  
WE  
RAS  
CAS  
ADDR  
A7  
DATA  
DC  
MC  
C
(CL5, BL4, X16)  
DATA  
(CL5, BL4, X32)  
MR  
MRS  
READ  
Note:  
For x16 Mode, Manufacturer Code, MC = 001F(HEX), Device Code, DC = 32C2 (HEX).  
For x32 Mode, Code, C = 32C2001F (HEX).  
Continuity Test Mode Entry Waveforms  
CLK  
DQM  
CS  
WE  
RAS  
CAS  
AA  
AA  
55  
2A  
55  
AA  
55  
AA  
55  
70  
55  
55  
80  
ADDR  
DATA  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
AA  
AA  
34  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Boot Block Lockout Cycle Waveforms  
BOOT BLOCK LOCKOUT CYCLE  
CLK  
CS  
t
BBL  
WE  
RAS  
CAS  
AA  
AA  
55  
55  
2A  
55  
AA  
55  
AA  
55  
40  
55  
80  
ADDR  
DATA  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
AA  
AA  
Boot Block Lockout Verify Cycle Waveforms  
BOOT BLOCK LOCKOUT VERIFY CYCLE  
CLK  
CS  
200 ns  
WE  
RAS  
CAS  
AA  
55  
55  
2A  
55  
AA  
AA  
55  
AA  
55  
55  
80  
ADDR  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
READ  
DATA  
(CL5, BL4)  
AA  
DQ  
AA  
90  
Note:  
DQ = XX00 (Hex) implies Boot Block not activated and Lockout not enabled.  
DQ = XX01 (Hex) implies Boot Block not activated and Lockout enabled.  
DQ = XX02 (Hex) implies Boot Block activated and Lockout not enabled.  
DQ = XX03 (Hex) implies Boot Block activated and Lockout enabled.  
35  
1940B–FLASH–11/01  
Boot Block Lockout Verify Exit Cycle Waveforms  
BOOT BLOCK LOCKOUT VERIFY EXIT CYCLE  
CLK  
CS  
10 µs  
WE  
RAS  
CAS  
AA  
AA  
55  
55  
2A  
55  
AA  
55  
AA  
55  
F0  
55  
80  
ADDR  
DATA  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
PRECHARGE  
COMMAND  
AA  
AA  
36  
AT49LD3200(B)  
1940B–FLASH–11/01  
AT49LD3200(B)  
Ordering Information  
ICC (mA)  
Max Freq  
(MHz)  
Active  
Standby  
Ordering Code  
Package  
Operation Range  
100  
150  
0.05  
AT49LD3200-10TC  
86T  
Commercial  
(0L to 70LC)  
150  
150  
150  
150  
150  
0.05  
0.05  
0.05  
0.05  
0.05  
AT49LD3200-10TI  
AT49LD3200-13TC  
AT49LD3200-13TI  
AT49LD3200-20TC  
AT49LD3200-20TI  
86T  
86T  
86T  
86T  
86T  
Industrial  
(-40L to 85LC)  
75  
50  
Commercial  
(0L to 70LC)  
Industrial  
(-40L to 85LC)  
Commercial  
(0L to 70LC)  
Industrial  
(-40L to 85LC)  
Package Type  
86-lead, Thin Small Outline Package (TSOP Type II)  
86T  
37  
1940B–FLASH–11/01  
Packaging Information  
86T – TSOP Type II  
0˚ ~ 8˚  
c
E
E1  
L
PIN 1 Identifier  
L1  
b
PIN 1  
GAGE PLANE  
SEATING PLANE  
D
A
e
A2  
A1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
0.15  
1.05  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
22.12  
11.56  
10.06  
0.40  
1.00  
Notes:  
1. This package conforms to JEDEC reference MO-142, Variation EC.  
2. Dimensions D and E1 do not include mold protrusion. Allowable  
protrusion on E1 is 0.25 mm per side and on D is 0.15 mm per side.  
3. Lead coplanarity is 0.10 mm maximum.  
22.22  
11.76  
10.16  
0.50  
22.32 Note 2  
11.96  
E
E1  
L
10.26 Note 2  
0.60  
L1  
b
0.25 BASIC  
0.22  
0.17  
0.12  
0.27  
0.21  
c
e
0.50 BASIC  
10/18/01  
DRAWING NO. REV.  
86T  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
86T, 86-lead (10.16 mm Body Width) Thin Small Outline Package  
(TSOP Type ll)  
B
R
38  
AT49LD3200(B)  
1940B–FLASH–11/01  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Microcontrollers  
Europe  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
BP 123  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademark of Atmel. SFlashis a trademark of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
1940B–FLASH–11/01  
/xM  

相关型号:

AT49LD3200B-13

32-megabit (1M x 32 or 2M x 16) High-speed Synchronous Flash Memory
ATMEL

AT49LD3200B-20

32-megabit (1M x 32 or 2M x 16) High-speed Synchronous Flash Memory
ATMEL

AT49LH002

2-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH002-33JC

2-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH002-33TC

2-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH004

4-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH004-33JC

4-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH004-33JL

Flash, 512KX8, 11ns, PQCC32, PLASTIC, MS-016AE, LCC-32
ATMEL

AT49LH004-33JX

Flash, 512KX8, 11ns, PQCC32, GREEN, PLASTIC, MS-016AE, LCC-32
ATMEL

AT49LH004-33TC

4-megabit Firmware Hub and Low-Pin Count Flash Memory
ATMEL

AT49LH004-33TL

Flash, 512KX8, 11ns, PDSO40, 10 X 20 MM, PLASTIC, MO-142CD, TSOP1-40
ATMEL

AT49LH004-33TX

Flash, 512KX8, 11ns, PDSO40, 10 X 20 MM, GREEN, PLASTIC, MO-142CD, TSOP1-40
ATMEL