APW7080 [ANPEC]

4A, 26V, 380kHz, Asynchronous Step-Down Converter; 4A , 26V , 380kHz ,异步降压转换器
APW7080
型号: APW7080
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

4A, 26V, 380kHz, Asynchronous Step-Down Converter
4A , 26V , 380kHz ,异步降压转换器

转换器
文件: 总23页 (文件大小:791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7080  
4A, 26V, 380kHz, Asynchronous Step-Down Converter  
General Description  
Features  
·
·
·
Wide Input Voltage from 4.5V to 26V  
The APW7080 is a 4A, asynchronous, step-down converter  
with integrated 80mW P-channel MOSFET. The device,  
with current-mode control scheme, can convert 4.5~26V  
Output Current up to 4A  
Adjustable Output Voltage from 0.8V to 90%VIN  
- 0.8V Reference Voltage  
input voltage to the output voltage adjustable from 0.8 to  
90% VIN to provide excellent output voltage regulation.  
- ±2.5% System Accuracy  
The APW7080 regulates the output voltage in automatic  
PSM/PWM mode operation, depending on the output  
current, for high efficiency operation over light to full load  
current.The APW7080 is also equipped with power-on-  
reset, soft-start, and whole protections (undervoltage, over  
temperature, and current-limit) into a single package. In  
shutdown mode, the supply current drops below 5mA.  
·
·
80mW Integrated P-Channel Power MOSFET  
High Efficiencyup to 91%  
-Pulse-SkippingMode(PSM)/PWM ModeOperation  
·
Current-Mode Operation  
- Stable with Ceramic Output Capacitors  
- Fast Transient Response  
·
·
·
·
Power-On-Reset Monitoring  
This device, available in an 8-pin SOP-8P package,  
provides a very compact system solution with minimal  
external components and good thermal conductance.  
Fixed 380kHz Switching Frequencyin PWM Mode  
Built-in Digital Soft-Start  
Output Current-Limit Protection with Frequency  
Foldback  
100  
90  
·
·
·
·
·
70% Undervoltage Protection  
VOUT =5V  
80  
Over-Temperature Protection  
<5mA Quiescent Current during Shutdown  
Thermal-Enhanced SOP-8P Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
70  
60  
50  
40  
30  
20  
10  
VOUT =3.3V  
Simplified Application Circuit  
0.001  
10  
0.1  
1
0.01  
Output Current, IOUT (A)  
VIN  
+12  
C1  
10mF  
Applications  
C2  
VIN  
·
·
·
·
·
·
·
LCD Monitor / TV  
L1  
4A  
VCC  
UGND  
LX  
C3  
Set-Top Box  
VOUT  
+3.3V  
U1  
APW7080  
Portable DVD  
D1  
C4  
22mF  
Wireless LAN  
R1  
VIN  
EN  
COMP  
1%  
FB  
ADSL, Switch HUB  
Notebook Computer  
R2  
1%  
R4  
C5  
GND  
C6  
C7  
(Optional)  
Step-down Converters Requiring High Efficiency  
and 4A Output Current  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Ordering and Marking Information  
Package Code  
KA : SOP-8P  
APW7080  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
°
I : -40 to 85 C  
Handling Code  
Temperature Range  
Package Code  
TR : Tape & Reel  
Assembly Material  
L : Lead Free Device  
G : Halogen and Lead Free Device  
APW7080  
XXXXX  
APW7080 KA :  
XXXXX - Date Code  
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish;  
which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-  
020C for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and  
halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed  
1500ppm by weight).  
Pin Configuration  
8
1
2
3
4
GND  
FB  
VIN  
EN  
9
LX  
7
6
5
UGND  
VCC  
COMP  
LX  
SOP-8P  
Top View  
The Pin 5 must be connected to the Exposed Pad  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
VIN Supply Voltage (VIN to GND)  
Rating  
-0.3 ~ 30  
Unit  
VIN  
V
-2 ~ VIN+0.3  
-5 ~ VIN+6  
-0.3 ~ 6.5  
> 100ns  
< 100ns  
VIN > 6.2V  
VLX  
VCC  
LX to GND Voltage  
V
V
VCC Supply Voltage (VCC to GND)  
£
<
VIN+0.3  
VIN 6.2V  
VUGND_GND  
VVIN_UGND  
UGND to GND Voltage  
VIN to UGND Voltage  
-0.3 ~ VIN+0.3  
-0.3 ~ 6.5V  
-0.3 ~ 20  
V
V
EN to GND Voltage  
V
FB, COMP to GND Voltage  
Maximum Junction Temperature  
-0.3 ~ VCC +0.3  
150  
V
°C  
°C  
°C  
TSTG  
TSDR  
Storage Temperature  
-65 ~ 150  
260  
Maximum Lead Soldering Temperature, 10 Seconds  
Note 1: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Junction-to-Ambient Resistance in Free Air (Note 2)  
oC/W  
qJA  
SOP-8P  
SOP-8P  
50  
Junction-to-Case Resistance in Free Air (Note 3)  
qJC  
oC/W  
10  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of SOP-8P is  
soldered directly on the PCB.  
Note 3: The case temperature is measured at the center of the exposed pad on the underside of the SOP-8P package.  
Recommended Operating Conditions (Note 4)  
Symbol  
Parameter  
Range  
4.5 ~ 26  
Unit  
V
VIN  
VIN Supply Voltage  
VCC Supply Voltage  
4.0 ~ 5.5  
0.8 ~ 90% VIN  
0 ~ 4  
V
VOUT  
IOUT  
Converter Output Voltage  
Converter Output Current  
VCC Input Capacitor  
V
A
0.22 ~ 2.2  
0.22 ~ 2.2  
-40 ~ 85  
mF  
mF  
oC  
oC  
VIN-to-UGND Input Capacitor  
Ambient Temperature  
Junction Temperature  
TA  
TJ  
-40 ~ 125  
Note 4: Refer to the typical application circuits  
Electrical Characteristics  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless otherwise  
specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7080  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SUPPLY CURRENT  
IVIN  
IVIN_SD  
IVCC  
VIN Supply Current  
VFB = 0.85V, VEN=3V, LX=Open  
VEN = 0V, VIN=26V  
-
-
-
-
1.0  
-
2.0  
5
mA  
mA  
VIN Shutdown Supply Current  
VCC Supply Current  
VEN = 3V, VCC = 5.0V, VFB=0.85V  
VEN = 0V, VCC = 5.0V  
0.7  
-
-
mA  
IVCC_SD  
VCC Shutdown Supply Current  
1
m
A
VCC 4.2V LINEAR REGULATOR  
Output Voltage  
VIN = 5.2 ~ 26V, IO = 0 ~ 8mA  
IO = 0 ~ 8mA  
4.0  
-60  
8
4.2  
-40  
-
4.5  
0
V
Load Regulation  
mV  
mA  
Current-Limit  
VCC > POR Threshold  
30  
VIN-to-UGND 5.5V LINEAR REGULATOR  
Output Voltage (VVIN-UGND  
Load Regulation  
)
VIN = 6.2 ~ 26V, IO = 0 ~ 10mA  
IO = 0 ~ 10mA  
5.3  
-80  
10  
5.5  
-60  
-
5.7  
0
V
mV  
mA  
Current-Limit  
VIN = 6.2 ~ 26V  
30  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Electrical Characteristics (Cont.)  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless otherwise  
specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7080  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
POWER-ON-RESET (POR) AND LOCKOUT VOLTAGE THRESHOLDS  
VCC POR Voltage Threshold  
VCC POR Hysteresis  
VCC rising  
VEN rising  
3.7  
-
3.9  
0.15  
2.5  
4.1  
-
V
V
V
V
EN Lockout Voltage Threshold  
EN Lockout Hysteresis  
2.3  
-
2.7  
-
0.2  
VIN-to-UGND Lockout Voltage  
Threshold  
VVIN-UGND rising  
-
-
3.5  
0.2  
-
-
V
V
VIN-to-UGND Lockout Hysteresis  
REFERENCE VOLTAGE  
VREF  
Reference Voltage  
-
0.8  
-
-
V
TJ = 25oC, IOUT=0A, VIN=12V  
-1.0  
+1.0  
TJ = -40 ~ 125oC, IOUT = 0 ~ 4A,  
Output Voltage Accuracy  
%
-2.5  
-
+2.5  
VIN = 4.5 ~ 26V  
Line Regulation  
Load Regulation  
VIN = 4.5V to 26V, IOUT = 0A  
IOUT = 0 ~ 4A  
-
-
0.36  
0.4  
-
-
%
%
OSCILLATOR AND DUTY  
FOSC Free Running Frequency  
VIN = 4.5 ~ 26V  
VFB = 0V  
340  
380  
80  
420  
kHz  
kHz  
%
Foldback Frequency  
-
-
-
-
-
-
Maximum Converter’s Duty Cycle  
Minimum Pulse Width of LX  
93  
VIN = 4.5 ~ 26V  
COMP = Open  
200  
ns  
CURRENT-MODE PWM CONVERTER  
Gm  
Error Amplifier Transconductance  
Error Amplifier DC Gain  
-
60  
-
400  
80  
-
-
-
m
A/V  
dB  
Current-Sense Resistance  
0.12  
W
P-channel Power MOSFET  
Resistance  
Between VIN and Exposed Pad,  
TJ=25oC  
-
80  
100  
mW  
PROTECTIONS  
P-channel Power MOSFET  
ILIM  
Peak Current  
VFB falling  
5.0  
6.5  
8.0  
A
Current-limit  
VUV  
FB Under-Voltage Threshold  
FB Under-Voltage Hysteresis  
FB Under-Voltage Debounce  
Over-Temperature Trip Point  
Over-Temperature Hysteresis  
66  
-
70  
40  
2
74  
-
%
mV  
-
-
m
s
TOTP  
-
150  
50  
-
oC  
oC  
-
-
SOFT-START, ENABLE AND INPUT CURRENTS  
tSS  
Soft-Start Interval  
9
9
10.8  
12  
12  
-
ms  
ms  
V
Preceding Delay before Soft-Start  
EN Shutdown Voltage Threshold  
EN Enable Voltage Threshold  
EN Pin Clamped Voltage  
10.8  
VEN falling, VIN = 4 ~ 26V  
VEN rising, VIN = 4 ~ 26V  
IEN=10mA  
0.5  
-
-
-
-
2.1  
17  
V
12  
V
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Electrical Characteristics (Cont.)  
Refer to the typical application circuits. These specifications apply over VIN=12V, VOUT=3.3V and TA= -40 ~ 85oC, unless otherwise  
specified. VCC is regulated by an internal regulator. Typical values are at TA=25oC.  
APW7080  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
SOFT-START, ENABLE, AND INPUT CURRENTS (Cont.)  
P-channel Power MOSFET  
VEN = 0V, VLX = 0V, VIN = 26V  
-
-
4
mA  
Leakage Current  
IFB  
IEN  
FB Pin Input Current  
EN Pin Input Current  
VFB = 0.8V  
VEN < 3V  
-100  
-500  
-
-
+100  
+500  
nA  
nA  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Typical Operating Characteristics  
Reference Voltage vs. Junction Temperature  
Switching Frequency vs. Junction Temperature  
420  
0.816  
410  
400  
390  
380  
370  
360  
350  
340  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Junction Temperature, TJ (oC)  
Junction Temperature, TJ (oC)  
Output Voltage vs. Supply Voltage  
Output Voltage vs. Output Current  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
IOUT = 1A  
VIN = 12V  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage, VIN (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
Output Current, IOUT (A)  
Current-Limit Level (Peak Current)  
vs. Junction Temperature  
VIN Input Current vs. SupplyVoltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
VFB=0.85V  
0.4  
0.2  
0.0  
0
4
8
12  
16  
20  
24  
28  
-50 -25  
0
25  
50  
75 100 125 150  
VIN Supply Voltage, VIN (V)  
Junction Temperature, TJ (oC)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Typical Operating Characteristics (Cont.)  
Efficiency vs. Output Current  
EN Clamp Voltage vs. EN Input Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
18  
16  
V=5V
OUT  
14  
12  
10  
8
VOUT=3.3V  
TJ=-30oC  
TJ=25oC  
TJ=100oC  
6
4
2
0
VIN=12v, L=10mH (DCR=50mW)  
C1=10mF, C4=22mF  
0.001  
0.01  
0.1  
1
10  
1
10  
100  
1000  
10000  
Output Current, IOUT (A)  
EN Input Current, IEN (mA)  
Operating Waveforms  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Load Transient Response  
Load Transient Response  
IOUT = 50mA -> 3A -> 50mA  
IOUT rise/f all time=10ms  
IOUT = 0.5A -> 3A -> 0.5A  
IOUT rise/f all time=10ms  
VOUT  
VOUT  
1
1
3A  
3A  
IL1  
IL1  
2
0.5A  
2
0A  
Ch1 : VOUT, 200mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2 : IL1, 1A/Div, DC  
Time : 50ms/Div  
Ch1 : VOUT, 100mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2 : IL1, 1A/Div, DC  
Time : 50ms/Div  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Operating Waveforms (Cont.)  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Power On  
Power Off  
IOUT = 3A  
IOUT = 3A  
VIN  
VIN  
1
1
2
VOUT  
VOUT  
2
3
IL1  
IL1  
3
Ch1 : VIN, 5V/Div, DC  
Ch2 : VOUT, 2V/Div, DC  
Ch3 : IL1, 2A/Div, DC  
Time : 5ms/Div  
Ch1 : VIN, 5V/Div, DC  
Ch2 : VOUT, 2V/Div, DC  
Ch3 : IL1, 2A/Div, DC  
Time : 5ms/Div  
Enable Through EN Pin  
Shutdown Through EN Pin  
IOUT = 3A  
IOUT = 3A  
1
1
VEN  
VEN  
VOUT  
VOUT  
2
3
2
3
IL1  
IL1  
Ch1 : VEN, 5V/Div, DC  
Ch2 : VOUT, 2V/Div, DC  
Ch3 : IL1, 2A/Div, DC  
Time : 5ms/Div  
Ch1 : VEN, 5V/Div, DC  
Ch2 : VOUT, 2V/Div, DC  
Ch3 : IL1, 2A/Div, DC  
Time : 5ms/Div  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Operating Waveforms (Cont.)  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Over Current  
Short Circuit  
IOUT = 1 -> 6A  
VOUT is shorted to ground by a short wire  
VOUT  
VOUT  
1
1
2
IL1  
IL1  
2
Ch1 : VOUT, 1V/Div, DC  
Ch2 : IL1, 2A/Div, DC  
Time : 50ms/Div  
Ch1 : VOUT, 1V/Div, DC  
Ch2 : IL1, 2A/Div, DC  
Time : 50ms/Div  
Switching Waveform  
Switching Waveform  
IOUT = 0.2A  
IOUT = 3A  
VLX  
VLX  
1
2
1
2
IL1  
IL1  
Ch1 : VLX, 5V/Div, DC  
Ch2 : IL1, 1A/Div, DC  
Time : 1.25ms/Div  
Ch1 : VLX, 5V/Div, DC  
Ch2 : IL1, 2A/Div, DC  
Time : 1.25ms/Div  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Operating Waveforms (Cont.)  
(Refer to the application circuit 1 in the section “Typical Application Circuits”, VIN=12V, VOUT=3.3V, L1=10mH)  
Line Transient Response  
VIN = 12V --> 24V --> 24V  
VIN rise/f all time=20ms  
VOUT  
1
VIN  
24V  
12V  
2
Ch1 : VOUT, 50mV/Div, DC,  
Voltage Offset = 3.3V  
Ch2 : VIN, 5V/Div, DC,  
Voltage Offset = 12V  
Time : 50ms/Div  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Input. VIN supplies the power (4.5V to 26V) to the control circuitry, gate driver and step-down  
converter switch. Connecting a ceramic bypass capacitor and a suitably large capacitor between  
VIN and GND eliminates switching noise and voltage ripple on the input to the IC.  
1
VIN  
Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the  
regulator, drive it low to turn it off. Pull up with 100kW resistor for automatic startup.  
2
3
EN  
Gate driver power ground of the P-channel Power MOSFET. A linear regulator regulates a 5.5V  
voltage between VIN and UGND to supply power to P-channel MOSFET gate driver. Connect a  
UGND  
m
ceramic capacitor (1 F typ.) between VIN and UGND for noise decoupling and stability of the linear  
regulator.  
Bias input and 4.2V linear regulator’s output. This pin supplies the bias to some control circuits. The  
4.2V linear regulator converts the voltage on VIN to 4.2V to supply the bias when no external 5V  
4
VCC  
m
power supply is connected with VCC. Connect a ceramic capacitor (1 F typ.) between VCC and  
GND for noise decoupling and stability of the linear regulator.  
5
6
LX  
Power Switching Output. Connect this pin to the underside Exposed Pad.  
Output of error amplifier. Connect a series RC network from COMP to GND to compensate the  
regulation control loop. In some cases, an additional capacitor from COMP to GND is required for  
noise decoupling.  
COMP  
Feedback Input. The IC senses feedback voltage via FB and regulate the voltage at 0.8V.  
Connecting FB with a resistor-divider from the output set the output voltage in the range from 0.8V  
to 90% VIN.  
7
8
FB  
GND  
LX  
Power and Signal Ground.  
Power Switching Output. LX is the Drain of the P-channel MOSFET to supply power to the output.  
The Exposed Pad provides current with lower impedance than Pin 5. Connect the pad to output LC  
filter via a top-layer thermal pad on PCBs. The PCB will be a heat sink of the IC.  
9
(Exposed Pad)  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Block Diagram  
VIN  
Current Sense  
Amplifier  
4.2V Regulator  
Current  
Limit  
and  
VCC  
Power-On-Reset  
VCC  
POR  
UVP  
UG  
Soft-Start  
and  
Fault Logic  
70%VREF  
Gate  
Driver  
Soft-Start  
Inhibit  
Gate  
Control  
UGND  
LX  
FB  
VREF  
0.8V  
Error  
Amplifier  
Current  
Compartor  
COMP  
EN  
VIN  
5.5V  
Slope  
Compensation  
ENOK  
2.5V  
0.8V  
Oscillator  
380kHz  
Over  
Temperature  
Protection  
Enable  
GND  
VIN-to-UGND  
Linear Regulator  
FB  
Typical Application Circuit  
1. 4.5~26V Single Power Input Step-down Converter (with Ceramic Input/Output Capacitors)  
VIN  
4.5~26V  
C1  
10mF  
C2  
1mF  
VIN  
4
3
L1  
4A  
VCC  
UGND  
C3  
1mF  
9
5
LX  
LX  
VOUT  
0.8V~90%VIN  
/4A  
U1  
APW7080  
D1  
C4  
22mF  
R5  
100kW  
2
6
R1  
1%  
EN  
VIN  
7
COMP  
FB  
R4  
GND  
R2  
1%  
C6  
C7  
(Optional)  
C5  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Typical Application Circuit (Cont.)  
Recommended Feedback Compensation Network Components List:  
C6  
(pF)  
L1  
(mH)  
15  
C4  
(mF)  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
22  
44  
C4 ESR  
(mW)  
R2  
(kW)  
10  
R4  
(kW)  
62  
VIN  
(V)  
VOUT  
(V)  
R1  
(kW)  
140  
140  
63  
C7  
(pF)  
C5  
(pF)  
24  
24  
24  
24  
12  
12  
12  
12  
12  
12  
12  
12  
5
12  
12  
5
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
22  
22  
820  
820  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
15  
10  
120  
24  
10  
12  
33  
1500  
1500  
820  
5
10  
63  
12  
33  
51  
5
10  
63  
12  
68  
24  
5
10  
63  
12  
68  
51  
820  
3.3  
3.3  
2
10  
46.9  
46.9  
30  
15  
82  
15  
1000  
1000  
2200  
2200  
3300  
3300  
560  
10  
15  
82  
33  
4.7  
4.7  
3.3  
3.3  
3.3  
3.3  
2.2  
2.2  
2.2  
2.2  
20  
56  
10  
2
30  
20  
56  
20  
1.2  
1.2  
3.3  
3.3  
1.2  
1.2  
0.8  
0.8  
7.5  
7.5  
46.9  
46.9  
7.5  
7.5  
0
15  
150  
150  
68  
6.2  
12  
15  
15  
15  
5
15  
68  
33  
560  
5
15  
270  
270  
NC  
NC  
5.6  
12  
1500  
1500  
2700  
2700  
5
15  
5
NC  
NC  
2.7  
6.2  
5
0
2. Dual Power Inputs Step-down Converter (VIN=4.5~26V)  
+5V  
VIN  
4.5~26V  
C1  
10mF  
D2  
Schottky  
Diode  
C2  
1mF  
VIN  
4
3
L1  
4A  
VCC  
UGND  
C3  
1mF  
9
5
LX  
LX  
VOUT  
0.8V~90%VIN  
/4A  
U1  
APW7080  
D1  
C4  
22mF  
R5  
100kW  
2
6
R1  
1%  
EN  
VIN  
7
COMP  
FB  
R4  
GND  
R2  
1%  
C6  
C7  
(Optional)  
C5  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Typical Application Circuit (Cont.)  
3. 4.5~5.5V Single Power Input Step-down Converter  
VIN  
4.5~5.5V  
C1  
10mF  
C2  
1mF  
VIN  
4
2
3
VCC  
UGND  
L1  
4A  
C3  
1mF  
9
5
LX  
LX  
VOUT  
0.8V~90%VIN  
/4A  
U1  
APW7080  
R5  
100kW  
D1  
C4  
22mF  
R1  
1%  
EN  
VIN  
7
6
COMP  
FB  
R4  
GND  
R2  
1%  
C6  
C7  
(Optional)  
C5  
4. +12V Single Power Input Step-down Converter (with Electrolytic Input/Output Capacitors)  
VIN  
+12V  
C1  
2.2mF  
C8  
470mF  
C2  
1mF  
VIN  
L1  
10uH  
4A  
4
3
VCC  
UGND  
C3  
1mF  
9
5
LX  
LX  
VOUT  
+3.3V/4A  
U1  
APW7080  
D1  
C4  
470mF  
(ESR=30mW)  
R5  
100kW  
R1  
46.9k  
1%  
2
6
EN  
VIN  
7
COMP  
FB  
R4  
56k  
R2  
15k  
1%  
GND  
C6  
22pF  
C5  
4700pF  
C7  
33pF  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Typical Application Circuit (Cont.)  
5. -8V Inverting Converter with 4.5~5.5V Single Power Input  
VIN  
4.5~5.5V  
C1  
10mF  
R5  
100kW  
C2  
1mF  
VIN  
3
2
UGND  
EN  
9
5
LX  
LX  
L1  
6.8mH  
4A  
4
6
VCC  
U1  
APW7080  
PGND  
D1  
C3  
1mF  
R1  
90kW  
7
COMP  
FB  
R4  
39kW  
R2  
10kW  
AGND  
C6  
22pF  
GND  
C4  
22mF  
C5  
560pF  
C7  
27pF  
VOUT  
-8V/4A  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Function Description  
Main Control Loop  
physically close to the IC to provide good noise  
decoupling. The linear regulator is not intended for  
powering up any external loads. Do not connect any  
external loads to VCC. The linear regulator is also  
equipped with current-limit protection to protect itself dur-  
ing over-load or short-circuit conditions on VCC pin.  
The APW7080 is a constant frequency current mode  
switching regulator. During normal operation, the internal  
P-channel power MOSFET is turned on each cycle when  
the oscillator sets an internal RS latch and would be turned  
off when an internal current comparator (ICMP) resets  
the latch. The peak inductor current at which ICMP resets  
the RS latch is controlled by the voltage on the COMP pin,  
which is the output of the error amplifier (EAMP). An  
external resistive divider connected between VOUT and  
ground allows the EAMP to receive an output feedback  
voltage VFB at FB pin. When the load current increases, it  
causes a slight decrease in VFB relative to the 0.8V  
reference, which in turn causes the COMP voltage to in-  
crease until the average inductor current matches the  
new load current.  
VIN-to-UGND 5.5V Linear Regulator  
The built-in 5.5V linear regulator regulates a 5.5V voltage  
between VIN and UGND pins to supply bias and gate  
charge for the P-channel Power MOSFET gate driver. The  
linear regulator is designed to be stable with a low-ESR  
ceramic output capacitor of at least 0.22mF. It is also  
equipped with current-limit function to protect itself  
during over-load or short-circuit conditions between VIN  
and UGND.  
The APW7080 shuts off the output of the converters when  
the output voltage of the linear regulator is below 3.5V  
(typical). The IC resumes working by initiating a new soft-  
start process when the linear regulator’s output voltage  
is above the undervoltage lockout voltage threshold.  
VCC Power-On-Reset(POR) and EN Undervoltage  
Lockout  
The APW7080 keeps monitoring the voltage on VCC pin  
to prevent wrong logic operations which may occur when  
VCC voltage is not high enough for the internal control  
circuitry to operate. The VCC POR has a rising threshold  
of 3.9V (typical) with 0.15V of hysteresis.  
Digital Soft-Start  
The APW7080 has a built-in digital soft-start to control the  
output voltage rise and limit the input current surge  
during start-up. During soft-start, an internal ramp,  
connected to the one of the positive inputs of the error  
amplifier, rises up from 0V to 1V to replace the reference  
voltage (0.8V) until the ramp voltage reaches the reference  
voltage.  
An external undervoltage lockout (UVLO) is sensed and  
programmed at the EN pin. The EN UVLO has a rising  
threshold of 2.5V with 0.2V of hysteresis. The EN UVLO  
should be programmed by connecting a resistive divider  
from VIN to EN to GND.  
After the VCC, EN, and VIN-to-UGNDvoltages exceed their  
respective voltage thresholds, the IC starts a start-up  
process and then ramps up the output voltage to the  
setting of output voltage. Connect a RC network from EN  
to GND to set a turn-on delay that can be used to sequence  
the output voltages of multiple devices.  
The device is designed with a preceding delay about  
10.8ms (typical) before soft-start process.  
Output Undervoltage Protection  
In the process of operation, if a short-circuit occurs, the  
output voltage will drop quickly. Before the current-limit  
circuit responds, the output voltage will fall out of the  
required regulation range. The undervoltage continually  
monitors the FB voltage after soft-start is completed. If a  
load step is strong enough to pull the output voltage lower  
than the undervoltage threshold, the IC shuts down  
converter’s output.  
VCC 4.2V Linear Regulator  
VCC is the output terminal of the internal 4.2V linear  
regulator which is powered from VIN and provides power  
to the APW7080. The linear regulator is designed to be  
stable with a low-ESR ceramic output capacitor powers  
the internal control circuitry. Bypass VCC to GND with a  
ceramic capacitor of at least 0.22mF. Place the capacitor  
The undervoltage threshold is 70% of the nominal output  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Function Description (Cont.)  
Output Undervoltage Protection (Cont.)  
voltage. The undervoltage comparator has a built-in 2ms  
noise filter to prevent the chips from wrong UVP shut-  
down caused by noise. The undervoltage protection works  
in a hiccup mode without latched shutdown. The IC will  
initiate a new soft-start process at the end of the  
preceeding delay.  
Over-Temperature Protection (OTP)  
The over-temperature circuit limits the junction tempera-  
ture of the APW7080. When the junction temperature ex-  
ceeds TJ = +150oC, a thermal sensor turns off the power  
MOSFET, allowing the devices to cool. The thermal sensor  
allows the converter to start a start-up process and  
regulate the output voltage again after the junction  
temperature is cooled by 50oC. The OTP is designed  
with a 50oC hysteresis to lower the average TJ during con-  
tinuous thermal overload conditions, increasing lifetime  
of the IC.  
Enable/Shutdown  
Driving EN to ground places the APW7080 in shutdown.  
When in shutdown, the internal power MOSFET turns off,  
all internal circuitry shuts down and the quiescent supply  
current of VIN reduces to <1mA (typical).  
Current-Limit Protection  
TheAPW7080 monitors the output current, flowing through  
the P-channel power MOSFET, and limits the current peak  
at current-limit level to prevent loads and the IC from  
damages during overload or short-circuit conditions.  
FrequencyFoldback  
When the output is shortened to ground, the frequency of  
the oscillator will be reduced to about 80kHz. This lower  
frequency allows the inductor current to safely discharge,  
thereby preventing current runaway. The oscillator’s  
frequency will gradually increase to its designed rate  
when the feedback voltage on FB again approaches 0.8V.  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Application Information  
Power Sequencing  
VIN  
VIN  
IQ1  
The APW7080 can operate with sigle or dual power input(s).  
In dual-power applications, the voltage (VCC) applied at  
VCC pin must be lower than the voltage (VIN) on VIN pin.  
The reason is the internal parasitic diode from VCC to VIN  
will conduct due to the forward-voltage between VCC and  
VIN. Therefore, VIN must be provided before VCC.  
CIN  
Q1  
IOUT  
IL  
LX  
VOUT  
L
ESR  
COUT  
ICOUT  
D1  
Setting Output Voltage  
The regulated output voltage is determined by:  
T=1/FOSC  
R1  
VOUT = 0.8 ×(1+  
)
(V)  
R2  
VLX  
Suggested R2 is in the range from 1K to 20kW. For  
portable applications, a 10kW resistor is suggested for  
R2. To prevent stray pickup, locate resistors R1 and R2  
close to APW7080.  
DT  
I
IOUT  
IL  
IOUT  
Input Capacitor Selection  
IQ1  
It is necessary to turn on the P-channel power MOSFET  
(Q1) each time when using small ceramic capacitors for  
high frequency decoupling and bulk capacitors to sup-  
ply the surge current. Place the small ceramic capcaitors  
physically close to the VIN and between VIN and the an-  
ode of the Schottky diode (D1)  
I
ICOUT  
VOUT  
VOUT  
Figure 1 Converter Waveforms  
The important parameters for the bulk input capacitor are  
the voltage rating and the RMS current rating. For reliable  
operation, select the bulk capacitor with voltage and  
current ratings above the maximum input voltage and  
largest RMS current required by the circuit. The capacitor  
voltage rating should be at least 1.25 times greater than  
the maximum input voltage and a voltage rating of 1.5  
Output Capacitor Selection  
An output capacitor is required to filter the output and  
supply the load transient current. The filtering requirements  
are the function of the switching frequency and the ripple  
current (DI). The output ripple is the sum of the voltages,  
having phase shift, across the ESR and the ideal output  
capacitor. The peak-to-peak voltage of the ESR is calcu-  
lated as the following equations:  
times is a conservative guideline. The RMS current (IRMS  
)
of the bulk input capacitor is calculated as the following  
equation:  
VOUT + VD  
........... (1)  
IRMS =IOUT × D×(1-D)  
(A)  
D =  
VIN + VD  
where D is the duty cycle of the power MOSFET.  
VOUT ·(1-D)  
........... (2)  
........... (3)  
DI =  
FOSC ·L  
For a through hole design, several electrolytic capacitors  
may be needed. For surface mount designs, solid  
tantalum capacitors can be used, but caution must be  
exercised with regard to the capacitor surge current  
rating.  
VESR = DI·ESR  
(V)  
where VD is the forward voltage drop of the diode.  
The peak-to-peak voltage of the ideal output capacitor is  
calculated as the following equation:  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Application Information (Cont.)  
Output Capacitor Selection (Cont.)  
and greater core losses. A reasonable starting point for  
setting ripple current is DI £ 0.4 × IOUT(MAX) . Remember, the  
maximum ripple current occurs at the maximum input  
voltage. The minimum inductance of the inductor is  
calculated by using the following equation:  
D I  
........... (4)  
DVCOUT =  
(V)  
8×FOSC ×COUT  
For the applications using bulk capacitors, the DVCOUT  
is much smaller than the VESR and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT ) is  
shown below:  
VOUT ·(VIN - VOUT)  
£ 1.2  
380000 ·L ·VIN  
........... (5)  
DVOUT = D I×ESR  
(V)  
VOUT ·(VIN - VOUT)  
........... (6)  
L ³  
(H)  
For the applications using ceramic capacitors, the VESR is  
much smaller than the DVCOUT and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT ) is  
456000 ·VIN  
V
= V  
where  
IN  
IN(MAX)  
Output Diode Selection  
close to DVCOUT  
.
The Schottky diode carries load current during the off-time.  
The average diode current is therefore dependent on the  
P-channel power MOSFET duty cycle.At high input voltages  
the diode conducts most of the time. As VIN approaches  
VOUT the diode conducts only a small fraction of the time.  
The most stressful condition for the diode is when the  
output is short-circuited. Therefore, it is important to  
adequately specify the diode peak current and average  
power dissipation so as not to exceed the diode ratings.  
The load transient requirements are a function of the  
slew rate (di/dt) and the magnitude of the transient load  
current. These requirements are generally met with a  
mix of capacitors and careful layout. High frequency  
capacitors initially supply the transient and slow the  
current load rate seen by the bulk capacitors. The bulk  
filter capacitor values are generally determined by the ESR  
(Effective Series Resistance) and voltage rating require-  
ments rather than actual capacitance requirements.  
Under normal load conditions, the average current  
conducted by the diode is:  
High frequency decoupling capacitors should be placed  
as close to the power pins of the load as physically  
possible. Be careful not to add inductance in the circuit  
board wiring that could cancel the usefulness of these  
low inductance components. An aluminum electrolytic  
capacitor’s ESR value is related to the case size with lower  
ESR available in larger case sizes. However, the  
Equivalent Series Inductance (ESL) of these capacitors  
increases with case size and can reduce the usefulness  
of the capacitor to high slew-rate transient loading.  
VIN - VOUT  
ID =  
×IOUT  
VIN + VD  
The APW7080 is equipped with whole protections to  
reduce the power dissipation during short-circuit  
condition. Therefore, the maximum power dissipation of  
the diode is calculated from the maximum output current  
as:  
PDIODE(MAX) = VD ·ID(MAX)  
Inductor Value Calculation  
IOUT = IOUT(MAX)  
where  
The operating frequency and inductor selection are  
interrelated in that higher operating frequencies permit  
the use of a smaller inductor for the same amount of  
inductor ripple current. However, this is at the expense of  
efficiency due to an increase in MOSFET gate charge  
losses. The equation (2) shows that the inductance value  
has a direct effect on ripple current.  
Remember to keep lead length short and observe proper  
grounding to avoid ringing and increased dissipation.  
Accepting larger values of ripple current allows the use of  
low inductances, but results in higher output voltage ripple  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Layout Consideration  
In high power switching regulator, a correct layout is  
important to ensure proper operation of the regulator. In  
general, interconnecting impedance should be minimized  
by using short, wide printed circuit traces. Signal and  
power grounds are to be kept separate and finally  
combined using ground plane construction or single  
point grounding. Figure 2 illustrates the layout, with bold  
lines indicating high current paths. Components along  
the bold lines should be placed close together. Below is  
a checklist for your layout:  
5. Place the decoupling ceramic capacitor C1 near the  
VIN as close as possible. The bulk capacitors C8 are  
also placed near VIN. Use a wide power ground plane  
to connect the C1, C8, C4, and Schottky diode to  
provide a low impedance path between the com-  
ponents for large and high slew rate current.  
1. Begin the layout by placing the power components  
first. Orient the power circuitry to achieve a clean power  
flow path. If possible, make all the connections on  
one side of the PCB with wide, copper filled areas.  
SOP-8P  
VOUT  
L1  
VLX  
Load  
GND  
VIN  
2. In Figure 2, the loops with same color bold lines  
conduct high slew rate current. These interconnecting  
impedances should be minimized by using wide and  
short printed circuit traces.  
GND  
Figure 3 Recommended Layout Diagram  
Thermal Consideration  
3. Keep the sensitive small signal nodes (FB, COMP)  
away from switching nodes (LX or others) on the PCB.  
Therefore, place the feedback divider and the feed-  
back compensation network close to the IC to avoid  
switching noise. Connect the ground of feedback  
divider directly to the GND pin of the IC using a  
dedicated ground trace.  
In Figure 4, the SOP-8P is a cost-effective package  
featuring a small size, like a standard SOP-8, and a  
bottom exposed pad to minimize the thermal resistance  
of the package, being applicable to high current  
applications. The exposed pad must be soldered to the  
top VLX plane. The copper of the VLX plane on the Top layer  
conducts heat into the PCB and air. Please enlarge the  
area of VLX plan to reduces the case-to-ambient resistance  
(qCA).  
4. The VCC decoupling capacitor should be right next  
to the VCC and GND pins. Capacitor C2 should be  
connected as close to the VIN and UGND pins as  
possible.  
102 mil  
1
2
3
4
8
+
VIN  
-
7
6
5
1
VIN  
SOP-8P  
118 mil  
C2  
C3  
C1 C8  
5
9
L1  
LX  
LX  
3
4
UGND  
+
-
D1  
C4  
VCC  
Load  
VOUT  
U1  
APW7080  
EN  
COMP  
2
6
Exposed  
Pad  
R1  
7
FB  
Top  
VLX  
Die  
GND  
R4  
C5  
C6  
8
C7  
R2  
(Optional)  
plane  
Feedback  
Divider  
Compensation  
Network  
Ambient  
Air  
PCB  
Figure 2 Current Path Diagram  
Figure 4  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Package Information  
SOP-8P  
D
SEE VIEW  
A
D1  
THERMAL  
PAD  
°
e
b
c
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-8P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.60  
MIN.  
MAX.  
0.063  
0.006  
A
0.000  
0.049  
0.012  
0.007  
0.15  
A1  
A2  
b
0.00  
1.25  
0.31  
0.17  
0.020  
0.010  
0.51  
0.25  
c
D
0.189  
0.098  
0.197  
0.138  
4.80  
2.25  
5.80  
3.80  
2.00  
5.00  
3.50  
6.20  
4.00  
3.00  
D1  
E
0.228  
0.150  
0.079  
0.244  
0.157  
0.118  
E1  
E2  
e
h
L
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0o  
0.020  
0.050  
8o  
0.25  
0.40  
0o  
0.50  
1.27  
8o  
0
Note : 1. Follow JEDEC MS-012 BA.  
2. Dimension "D" does not include mold flash, protrusions  
or gate burrs. Mold flash, protrusion or gate burrs shall not  
exceed 6 mil per side .  
3. Dimension "E" does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP- 8(P)  
A
H
T1  
C
d
D
W
E1  
F
12.4+2.00 13.0+0.50  
-0.00 -0.20  
330.0±2.00 50 MIN.  
1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05  
P0  
P1  
P2 D0  
D1  
T
A0  
B0  
K0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10 8.0±0.10 2.0±0.05  
1.5 MIN.  
6.40±0.20 5.20±0.20 2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP- 8P  
Unit  
Quantity  
Tape & Reel  
2500  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-  
down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Reliability Test Program  
Test item  
Method  
Description  
SOLDERABILITY  
HOLT  
PCT  
TST  
ESD  
Latch-Up  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
245°C, 5 sec  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Average ramp-up rate  
(TL to TP)  
Preheat  
3°C/second max.  
3°C/second max.  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classification Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package. Measured on the body surface.  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  
APW7080  
Classification Reflow Profiles (Cont.)  
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the  
stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C)  
at the rated MSL level.  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
23  
www.anpec.com.tw  
Rev. A.6 - Jun., 2008  

相关型号:

APW7080KA

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7080KAI-TRG

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7080KAI-TRL

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7083

5A, 26V, 380kHz, Synchronous Step-Down Converter
ANPEC

APW7083QBI-TRG

5A, 26V, 380kHz, Synchronous Step-Down Converter
ANPEC

APW7085

2A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7085KI-TRG

2A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7088

Two-Phase Buck PWM Controller with Integrated MOSFET Drivers
ANPEC

APW7088QAE-TRG

Two-Phase Buck PWM Controller with Integrated MOSFET Drivers
ANPEC

APW7089

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7089KAI-TRG

4A, 26V, 380kHz, Asynchronous Step-Down Converter
ANPEC

APW7089QBE-TBG

6-Channel DC/DC Converter Control IC
ANPEC