APW7079-33DI-TRG [ANPEC]

Low-Supply-Current Synchronous Step-up DC-DC Converter; 低电源电流同步降压型DC- DC转换器
APW7079-33DI-TRG
型号: APW7079-33DI-TRG
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Low-Supply-Current Synchronous Step-up DC-DC Converter
低电源电流同步降压型DC- DC转换器

转换器
文件: 总15页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7079  
Low-Supply-Current Synchronous Step-up DC-DC Converter  
General Description  
Features  
The APW7079 is a compact, PFM mode, and step-up  
DC-DC converter with low quiescent current. The inter-  
·
·
·
·
·
0.9V Typical Start-up Input Voltage  
11mA Typical No Load Quiescent Current  
nal synchronous rectifier reduces cost and PCB space  
by eliminating the need for an external Schottky diode.  
Low on-resistance of the internal switches improves the  
efficiency up to 92%. The start-up voltage is guaranteed  
below 1V. After start-up, the device can operate with input  
voltage down to 0.7V. The APW7079 is suitable for por-  
table battery-powered applications. Consuming only 11mA  
quiescent current and an optimized control scheme al-  
lows the device to operate at very high efficiency over the  
entire load current range.  
PFM Operation  
High Efficiencyup to 92%  
Fixed 1.8V, 2.6V, 2.8V, 3V, 3.3V, 3.8V, 4.5V or 5V  
Output Voltage  
·
·
·
·
600mA Internal Switch Current  
Internal Synchronous Rectifier  
SOT-89 Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Efficiency vs. Output Current  
100  
90  
80  
70  
Applications  
·
·
·
Toy  
VIN=0.9V  
60  
Wireless Mouse  
Portable Instrument  
50  
40  
30  
20  
10  
0
VIN=1.0V  
VIN=2.4V  
VIN=1.2V  
VIN=1.5V  
Pin Configuration  
APW7079-30  
100 1000  
SOT89  
0.1  
1
10  
OutputCurrent, I (m A)  
OUT  
Simplified Application Circuit  
APW 7079  
LX VOUT  
GND  
VIN  
IIN  
L1  
IOUT VOUT  
Top View  
22mH  
C1  
22mF  
C2  
47mF  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
79  
APW7079  
Ordering and Marking Information  
Package Code  
D : SOT-89  
APW7079 -  
Operating Ambient Temperature Range  
I : -40 to 85oC  
Assembly Material  
Handling Code  
Handling Code  
TR : Tape & Reel  
Assembly Material  
L : Lead Free Device G : Halogen and Lead Free Device  
Voltage Code  
Temperature Range  
Package Code  
Voltage Code  
18: 1.8V  
26: 2.6V  
28: 2.8V  
30: 3.0V  
33: 3.3V  
38: 3.8V  
45: 4.5V  
50: 5.0V  
APW7079  
XXXXX18  
APW7079  
XXXXX26  
APW7079-18DI:  
APW7079-28DI:  
XXXXX - Date Code, 18: 1.8V  
XXXXX - Date Code, 28: 2.8V  
APW7079-26DI:  
XXXXX - Date Code, 26: 2.6V  
APW7079  
XXXXX28  
APW7079  
XXXXX30  
APW7079-28DI:  
APW7079-33DI:  
APW7079-50DI:  
XXXXX - Date Code, 30: 3.0V  
XXXXX - Date Code, 38: 3.8V  
XXXXX - Date Code, 50: 5.0V  
APW7079  
XXXXX33  
APW7079  
XXXXX38  
APW7079-33DI:  
APW7079-45DI:  
XXXXX - Date Code, 33: 3.3V  
XXXXX - Date Code, 45: 5.0V  
APW7079  
XXXXX45  
APW7079  
XXXXX50  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
-0.3 ~ 6  
Unit  
V
VOUT  
Output Voltage (VOUT to GND)  
VLX  
LX to GND Voltage  
-0.3 ~ VOUT+1  
-65 ~ 150  
V
°C  
TSTG  
Storage Temperature  
°C  
TSDR  
Maximum Lead Soldering Temperature, 10 Seconds  
260  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Thermal Characteristics  
Symbol  
Parameter  
Typical Value  
Unit  
Thermal Resistance -Junction to Ambient (Note 2)  
180  
oC/W  
qJA  
SOT-89  
Note 2: qJA is measured with the component mounted on a high effective thermal conductivity test board in free air.  
Recommended Operating Conditions (Note 3, 4)  
Symbol  
VOUT  
VIN  
Parameter  
Range  
0.7 ~ 5.5  
Unit  
V
Output Voltage (VOUT to GND)  
Converter Supply Voltage  
LX to GND Voltage  
0.3 ~ VOUT+1  
-0.3 ~ VOUT+0.3  
0 ~ 0.9 x IOUT(MAX)  
-40 ~ 85  
V
VLX  
V
IOUT  
TA  
Converter Output Current  
Ambient Temperature  
Junction Temperature  
A
°C  
°C  
TJ  
-40 ~ 125  
Note 3: Refer to the typical application circuit  
Note 4: Refer to “Application Information” for detail value.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Electrical Characteristics  
Refer to Typical Application Circuits. VIN=1.5V, RLOAD = ∞,and TA= -40 ~ 85oC, unless otherwise noted. Typical values are at TA=25oC.  
APW7079  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Typ.  
Max.  
VIN  
Converter Supply Voltage  
Start-up Voltage  
0.7  
-
5.5  
V
V
-
0.9  
1.8  
2.6  
2.8  
3.0  
3.3  
3.8  
4.5  
5.0  
1
RLOAD=3kW  
APW7079-18  
1.764  
2.548  
2.744  
2.94  
3.234  
3.724  
4.41  
4.9  
1.836  
2.652  
2.856  
3.06  
APW7079-26  
APW7079-28  
APW7079-30  
APW7079-33  
APW7079-38  
APW7079-45  
APW7079-50  
VOUT  
Output Voltage  
V
3.366  
3.876  
4.59  
5.1  
VOUT = VOUT(Typ.)+0.5V  
Measured at VOUT  
IDD  
Supply Current  
7
11  
15  
mA  
No Inductor Connected  
TOFF(MIN)  
TON(MAX)  
Main Switch Min. Off-time  
Main Switch Max. On-time  
Main Switch Max. Duty  
0.6  
0.9  
4
1.2  
ms  
ms  
%
3
5
75  
-
85  
APW7079-18  
APW7079-26  
APW7079-28  
APW7079-30  
APW7079-33  
APW7079-38  
APW7079-45  
APW7079-50  
APW7079-18  
APW7079-26  
APW7079-28  
APW7079-30  
APW7079-33  
APW7079-38  
APW7079-45  
APW7079-50  
-
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
0.3  
0.3  
1
-
-
-
-
-
-
-
RN-FET  
Main Switch on Resistance  
ILX=100mA  
W
-
-
-
-
-
-
-
-
-
-
-
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.4  
600  
-
-
-
-
-
-
Synchronous Switch on  
Resistance  
RP-FET  
ILX=100mA  
W
-
-
-
-
-
-
-
500  
-
-
ILIM  
Main Switch Current Limit  
700  
1
mA  
Main Switch Leakage Current  
mA  
Synchronous Switch Leakage  
Current  
-
-
1
mA  
Over Temperature Shutdown  
Over Temperature Hysteresis  
-
-
150  
40  
-
-
°C  
°C  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Typical Operating Characteristics  
(Refer to the application circuit in the section Typical Application Circuit”, VIN=1.5V, L1=22mH, TA=25oC unless otherwise noted.)  
Efficiency vs. Output Current  
Output Voltage vs. Output Current  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=0.9V  
VIN=1.0V  
VIN=1.2V  
VIN=0.9V  
VIN=1.0V  
VIN=1.2V  
VIN=1.5V  
VIN=1.5V  
APW7079-18  
APW7079-18  
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
100  
1000  
OutputCurrent, IOUT (m A)  
Output Current, IOUT (mA)  
Efficiency vs. Output Current  
Output Voltage vs. Output Current  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=2.4V  
VIN=1.5V  
VIN=0.9V  
VIN=1.0V  
VIN=1.2V  
VIN=1.5V  
VIN=2.4V  
VIN=1.2V  
VIN=1.0V  
VIN=0.9V  
APW7079-30  
APW7079-30  
100 1000  
0
50 100 150 200 250 300 350 400  
0.1  
1
10  
OutputCurrent, IOUT (m A)  
OutputCurrent, IOUT (m A)  
Output Voltage vs. Output Current  
Output Voltage vs. Output Current  
100  
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=3.6V  
VIN=0.9V  
VIN=0.9V  
VIN=1.0V  
VIN=2.4V  
VIN=3.6V  
VIN=1.0V  
VIN=1.5V  
VIN=2.4V  
VIN=1.2V  
VIN=1.5V  
VIN=1.2V  
APW7079-50  
100 1000  
APW7079-50  
250 300 350  
0.1  
1
10  
0
50  
100  
150  
200  
OutputCurrent, IOUT (m A)  
OutputCurrent, IOUT (m A)  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Typical Operating Characteristics (Cont.)  
(Refer to the application circuit in the section Typical Application Circuit”, VIN=1.5V, L1=22mH, TA=25oC unless otherwise noted.)  
Start-up/Hold-on Voltage vs.  
Start-up/Hold-on Voltage vs.  
Output Current  
Output Current  
1.4  
1.2  
1
1.4  
1.2  
1
Start-up  
Start-up  
Hold-on  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
Hold-on  
APW7079-18  
40  
APW7079-30  
40  
0
10  
20  
30  
50  
0
10  
20  
30  
50  
OutputCurrent, IOUT (m A)  
OutputCurrent, IOUT (m A)  
Start-up/Hold-on Voltage vs.  
Output Current  
No Load Battery Current  
vs. Input Voltage  
1.4  
1.2  
1
70  
60  
50  
40  
30  
20  
10  
0
Start-up  
0.8  
0.6  
0.4  
0.2  
0
Hold-on  
APW7079-50  
APW7079-18  
APW7079-30  
APW7079-50  
0
10  
20  
30  
40  
50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
OutputCurrent, IOUT (m A)  
InputVoltage, VIN (V)  
Main Switch ON Resistance vs.  
Junction Temperature  
Synchronous Switch ON Resis-  
tance vs. Junction Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
APW7079-18  
APW7079-30  
APW7079-18  
APW7079-30  
APW7079-50  
APW7079-50  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
o
o
Junction Tem perature, TJ ( C)  
Junction Tem perature, TJ ( C)  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Operating Waveforms  
Load Transient Response  
Line Transient Response  
IOUT=10mA -> 110mA -> 10mA  
IOUT rise/fall time = 1ms  
VIN  
VIN=1.5V  
IOUT  
2V  
1.5V  
110mA  
2
10mA  
VOUT  
VOUT  
3
1
3
CH2:IOUT, 100m A/Div, DC  
CH3:VOUT, 50m V/Div, AC  
Tim e:0.1m s/Div  
CH1:VIN,0.5V/Div,DC  
CH3:VOUT,50m V/Div,AC  
Tim e:0.1m s/Div  
Heavy Load Switching Waveform  
IOUT=100mA, VIN=1.5V  
ILX  
2
3
VOUT  
VLX  
4
CH2:I ,200m A/Div,DC  
LX  
CH3:VOUT,50m V/Div,AC  
CH4:VLX,2V/Div,DC  
Tim e:5ms/Div  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Pin Description  
PIN  
FUNCTION  
NO.  
NAME  
Junction ofN-FET and P-FET Drains. Connectthe inductor here and m inim ize the trace area for  
1
LX  
lowestEM I.  
2
3
VOUT  
GND  
Converteroutputand controlcircuitrybiassupplypin.  
Ground.  
Block Diagram  
VOUT  
2
Zero Crossing  
Comparator  
+
Thermal  
Shutdown  
-
0.9µs Min.  
off-time  
Synchronous  
Switch  
Error  
Comparator  
3
LX  
-
+
Control  
Logic  
Gate  
Driver  
Main Switch  
VREF  
4µs Max.  
on-time  
Current Limit  
Comparator  
RSENSE  
+
-
Soft  
start  
1
GND  
Typical Application Circuit  
APW 7079  
VIN  
IIN  
IOUT  
L1  
LX  
VOUT  
GND  
22mH  
C1  
22mF  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Function Description  
Control Scheme  
The converter monitors the output voltage. When the in-  
ternal feedback voltage falls below the reference voltage,  
the main switch turns on and the inductor current ramps  
up. The main switch turns off when the current reaches  
the peak current limit of typical 600mA. The second crite-  
rion that turns off the switch is the maximum on-time of  
4ms (typical). As the main switch is turned off, the syn-  
chronous switch is turned on and delivers the current to  
the output. The main switch remains off for a minimum of  
900ns (typical), or until the internal feedback voltage drops  
below the reference voltage. By the control scheme with  
low quiescent current of 11mA (typical), the converter gets  
high efficiency over a wide load range.  
Start-Up  
A startup oscillator circuit is integrated in the APW7079.  
When the power is applied to the device, the circuit pumps  
the output voltage high. Once the output voltage reaches  
1.4V (typ), the main DC-DC circuitry turns on and boosts  
the output voltage to the final regulation point.  
Synchronous Rectification  
The internal synchronous rectifier eliminates the need  
for an external Schottky diode, thus reducing cost and  
board space. During the cycle off-time, the P-channel  
MOSFET turns on and shunts the MOSFET body diode.  
As a rewsult, the synchronous rectifier significantly im-  
proves efficiency without the addition of an external  
component. Conversion efficiency can be as high as 92%.  
Over-Temperature Protection  
The over-temperature circuit limits the junction tempera-  
ture of the APW7079. When the junction temperature ex-  
ceeds 150°C, a thermal sensor turns off the power  
MOSFETs, allowing the devices to cool. The thermal sen-  
sor allows the converter to start a start-up process and  
regulate the output voltage again after the junction tem-  
perature cools by 40°C.The OTP is designed with a 40°C  
hysteresis to lower the average TJ during continuous ther-  
mal overload conditions, increasing lifetime of the device.  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Application Information  
Input Capacitor Selection  
Since the output ripple is the product of the peak inductor  
current and the output capacitor ESR, using low-ESR tan-  
talum capacitors for the best performance or connecting  
two or more filter capacitors in parallel is recommended.  
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, it is  
recommended to select the capacitor voltage rating at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating of the input capacitor is  
calculated as the following equation:  
Inductor Selection  
The inductor value determines the inductor ripple current  
and affects the load transient response. It is recom-  
mended to select the boost inductor in order to keep the  
maximum peak inductor current below the current limit  
threshold of the power switch. For example, the current  
limit threshold of the APW7079’s switch is 600mA. For  
choosing an inductor which has peak current passed,  
firstly, it is necessary to consider the output load (IOUT),  
input (VIN), and output voltage (VOUT). Secondly, the de-  
sired current ripple in the inductor also needed to be  
taken into account. The current was calculated in “Output  
Capacitor Selection”. Since the output ripple is the prod-  
uct of the peak inductor current and the output capacitor  
ESR, the larger inductor value reduces the inductor cur-  
rent ripple and output voltage ripple but typically offers a  
larger physical size.  
V
IN × TON  
1
IRMS  
=
×
L
3
where  
TON = main switch max. on-time (4µs typical)  
VIN = inputvoltage  
L = inductorvalue in µH  
The capacitors should be placed close to the inductor  
and the GND.  
Output Capacitor Selection  
An output capacitor is required to filter the output and sup-  
ply the load transient current. The output ripple is the sum  
of the voltages across the ESR and the ideal output  
capacitor. The peak-to-peak voltage of the ESR is calcu-  
lated as the following equations:  
The inductor value also slightly affects the maximum out-  
put current. The maximum output current can be calcu-  
lated as below:  
DVESR =IPEAK x ESR  
VOUT ×IOUT  
VIN ×TON  
IPEAK  
=
+
£ ILIM  
VIN ×h  
2×L  
é
ù
- VIN  
ö
OUT  
VIN  
æ
V
IOUT(MAX)  
=
I
- TOFF  
ç
ç
÷ × h  
ú
ê LIM  
ë
Where  
÷
VOUT  
2´ L  
è
ø
û
IPEAK = peak current of inductor in amp  
where  
h
= efficiency (0.85 typical)  
TOFF = main switch min. off-time (0.9ms typical)  
The peak-to-peak voltage of the ideal output capacitor is  
calculated as the following equation:  
Therefore, to consider the balance of the efficiency and  
component size, an inductor value of 22mH to 47mH is  
recommended in most applications.  
IOUT ´ TON  
DVCOUT =  
COUT  
ILX  
IOUT  
VIN IIN  
LX  
VOUT  
For the applications using tantalum capacitors, the DVCOUT  
is much smaller than the VESR and can be ignored.  
Therefore, the AC peak-to-peak output voltage (DVOUT) is  
shown as below:  
ISWP  
ISWN  
N-FET  
CIN  
P-FET  
ESR  
COUT  
DVOUT = IPEAK x ESR  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Application Information (Cont.)  
ILX  
TJ = TA + TR  
ILIM  
where  
TA = the ambient temperature.  
IPEAK  
IIN  
The power dissipation can be calculated as below:  
PD = POUT x (1-h)/h  
where  
POUT = Output power (VOUT x IOUT  
)
ISWN  
h = Efficiency  
As an example, the APW7079-18 converts an input volt-  
age 1.2V to provide a load current of 175mA at ambient  
temperature of 85°C. Assume the efficiency (h) is 0.75.  
Therefore, the power dissipated on the converter is:  
ISWP  
PD = 1.8 x 0.175 x (1-0.75)/0.75= 0.105 Watt  
IOUT  
Since the power dissipation includes the loss of external  
components, the actual value is slightly lower. For the  
VOUT  
IPEAK x ESR  
SOT-89 package, the qJA is 180°C/W. Thus, the junction  
temperature of the regulator is as below:  
VOUT  
TJ = 85°C + (PD)(180) = 104 °C  
The maximum junction temperature should be less than  
125°C. Note that, the junction temperature is lower at  
higher output voltages due to reduced switch resistance.  
Thermal Consideration  
In most applications, the APW7079 does not dissipate  
much heat due to its high efficiency. However, in applica-  
tions where the APW7079 is running at high ambient tem-  
perature with low output voltage, the heat dissipated may  
exceed the maximum junction temperature of the part. If  
the junction temperature reaches approximately 150°C,  
both power switches will be turned off and the LX node  
will become high impedance. To avoid the APW7079 from  
exceeding the maximum junction temperature, the user  
will need to do some thermal analysis. The goal of the  
thermal analysis is to determine whether the power dis-  
sipated exceeds the maximum junction temperature of  
the part. The temperature rise is given by:  
Layout Consideration  
Forallswitching powersuppliesespeciallywith high peak  
currentsand switching frequency, the layoutisan im por-  
tantstep in the design. Ifthe layoutisnotcarefullydone,  
the regulator may show noise problems and duty cycle  
jitter.  
1.The input capacitor should be placed close to the  
device, which can reduce copper trace resistance and  
effect input ripple of the IC.  
2.The inductor should be placed as close as possible to  
the switch pin to minimize the switching noise.  
3.The output capacitor should be place closed to the  
VOUT and the GND.  
TR = (PD)(qJA)  
where PD is the power dissipated by the regulator and qJA  
is the thermal resistance from the junction of the die to  
the ambient temperature. The junction temperature, TJ,  
is given by:  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Application Information (Cont.)  
Layout Consideration (Cont.)  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Package Information  
SOT-89  
D
A
C
D1  
e
e1  
B
B1  
SOT-89  
S
Y
M
B
O
MILLIMETERS  
MIN. MAX.  
INCHES  
MIN.  
MAX.  
0.063  
0.022  
0.019  
0.017  
0.181  
0.072  
0.102  
0.090  
L
A
1.40  
0.44  
0.36  
0.35  
4.40  
1.60  
0.56  
0.48  
0.44  
4.60  
0.055  
0.017  
0.014  
0.014  
0.173  
0.064  
0.090  
0.084  
B
B1  
C
D
D1  
E
1.62  
2.29  
1.83  
2.60  
E1  
e
2.13  
2.29  
1.50 BSC  
3.00 BSC  
0.059 BSC  
0.118 BSC  
e1  
H
0.155  
0.035  
0.167  
0.047  
3.94  
0.89  
4.25  
1.20  
L
Note : Follow JEDEC TO-243 AA.  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOT-89  
A
H
T1  
12.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
12.0±0.30 1.75±0.10  
A0 B0  
F
5.50±0.05  
K0  
178.0±2.00  
P0  
50 MIN.  
P1  
1.5 MIN.  
D1  
20.2 MIN.  
T
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.05  
4.80±0.20 4.50±0.20 1.80±0.20  
1.5 MIN.  
(mm)  
Devices Per Unit  
Package Type  
SOT-89  
Unit  
Quantity  
1000  
Tape & Reel  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Taping Direction Information  
SOT-89  
USER DIRECTION OF FEED  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
PCT  
TST  
ESD  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
Description  
245°C, 5 sec  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Latch-Up  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  
APW7079  
Classification Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
3°C/second max.  
3°C/second max.  
Preheat  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classification Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Note: All temperatures refer to topside of the package. Measured on the body surface.  
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures  
Volume mm3  
350  
Volume mm3  
Package Thickness  
<350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Volume mm3  
Volume mm3  
Volume mm3  
>2000  
Package Thickness  
<350  
350-2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated  
classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL  
level.  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.3 - Oct., 2008  

相关型号:

APW7079-33DI-TRL

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-38DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-38DI-TRL

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-45DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-45DI-TRL

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-50DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW7079-50DI-TRL

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW707918DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW707926DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW707928DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW707930DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC

APW707933DI-TRG

Low-Supply-Current Synchronous Step-up DC-DC Converter
ANPEC