APA3002 [ANPEC]

12W Stereo Class-D Audio Power Amplifier; 12W立体声D类音频功率放大器
APA3002
型号: APA3002
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

12W Stereo Class-D Audio Power Amplifier
12W立体声D类音频功率放大器

放大器 功率放大器
文件: 总29页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APA3002  
12W Stereo Class-D Audio Power Amplifier  
Features  
General Description  
·
·
·
Class-D Operation with High Efficiency.  
The APA3002 is a monolithic integrated circuit, which pro-  
vides precise DC volume control, and a stereo Class-D  
32-Step DC Volume Control With Hysteresis  
9W Per Channel Output Power into 8W Load at  
12V, Class-D Output  
audio power amplifiers capable of producing 9W into 8W  
(12V) with less than 10% THD+N. The attenuator range  
of the volume control in the APA3002 is from 36dB  
(VVOLUME=5V) to -40dB (VVOLUME=0V) with 32 steps. The ad-  
vantage of internal gain setting can be less components  
and PCB area. The circuitries of both thermal and the  
over-current protections are integrated in the APA3002. It  
protects the chip from being destroyed by over tempera-  
ture and over current failure.  
·
·
·
·
·
12W Per Channel Output into 6W Load at 12V,  
Class-D Output  
5V LDO Output for Powering APA4801 Head-  
phone Driver  
Line Output for APA4801 Headphone Driver with  
DC Volume Control  
Low Current Consumption in Shutdown Mode  
(10mA, Typical)  
To simplify the audio system design, the APA3002 com-  
bines a line output for external headphone driver with  
volume control and a 5V regulator for external headphone  
drive, where the speaker output can be switched off by  
the headphone jack’s switch pin that connects to the  
APA3002’s mode pin as shown in the application circuit.  
APA3002 will Auto-Recovery after Over-Current  
Protection  
·
·
Thermal and Over-Current Protections  
TQFN7x7-48 with Thermal Pad Package  
TQFP7x7-48P with Thermal Pad Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
·
Applications  
·
·
LCDTV  
Active Speaker  
Ordering and Marking Information  
Package Code  
QB: TQFN7x7-48  
APA3002  
QCA:TQFP7x7-48P  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
I : -40 to 85 oC  
Handling Code  
TR: Tape & Reel  
Assembly Material  
G : Halogen and Lead Free Device  
Temperature Range  
Package Code  
APA3002  
XXXXX  
APA3002 QB:  
XXXXX - Date Code  
XXXXX - Date Code  
APA3002  
XXXXX  
APA3002 QCA:  
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and  
advise customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Pin Configurations  
36 RCLAMP  
SD  
RIN-  
1
2
3
4
5
6
7
8
9
SD  
RIN-  
1
2
3
4
5
6
7
8
9
36 RCLAMP  
35 MODEOUT  
35 MODEOUT  
RIN+  
34 MODE  
RIN+  
34 MODE  
33 AVDD  
2.5VREF  
33 AVDD  
2.5VREF  
LIN+  
LIN+  
LIN-  
32 RVAROUT  
31 LVAROUT  
30 AGND  
32 RVAROUT  
31 LVAROUT  
30 AGND  
LIN-  
APA3002  
APA3002  
LDOREF  
VREF  
LDOREF  
VREF  
29 5VLDO  
28 COSC  
29 5VLDO  
28 COSC  
27 ROSC  
26 AGND  
25 LCLAMP  
VARDIFF  
VARDIFF  
VARMAX 10  
VOLUME 11  
REFGND 12  
27 ROSC  
VARMAX 10  
VOLUME 11  
REFGND 12  
26 AGND  
25 LCLAMP  
TQFN7x7-48  
(TOP VIEW)  
TQFP7x7-48P  
(TOP VIEW)  
Absolute Maximum Ratings (Note 1)  
(Over operating free-air temperature range unless otherwise noted.)  
Symbol  
Parameter  
Rating  
Unit  
Supply Voltage (AVDD to AGND, LPVDD to LPGND, and  
RPVDD to RPGND)  
VDD  
-0.3 to 15  
V
VMODE, VVREF, VVOLUME  
VVARDIFF, VVARMAX  
VSD  
,
Input Voltage (MODE to AGND, VREF, VOLUME, VARDIFF,  
and VARMAX to REFGND)  
-0.3 to 5.5  
Input Voltage (SD to AGND)  
-0.3 to VDD+0.3  
V
VRIN+, VRIN-,VLIN+,VLIN-  
Input Voltage (RIN+, RIN-, LIN+, and LIN- to AGND)  
Input Voltage (RPGND and LPGND to AGND)  
Output Current (5VLDO)  
-0.3 to 7  
-0.3 to +0.3  
I5VLDO  
ILDOREF  
TJ  
120  
mA  
Output Current (LDOREF)  
20  
oC  
oC  
oC  
W
W
Maximum Junction Temperature  
150  
-65 to +150  
260  
TSTG  
TSDR  
PD  
Storage Temperature Range  
Maximum Lead Soldering Temperature, 10 Seconds  
Power Dissipation  
Internally Limited  
4
RL  
Class-D Power Amplifier Minimum Load Resistance  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Thermal Characteristics  
Symbol  
Parameter  
Thermal Resistance -Junction to Ambient (Note 2)  
Typical Value  
Unit  
qJA  
oC/W  
TQFN7x7-48  
TQFP7x7-48P  
21  
25  
Note 2: Please refer to “Thermal Pad Consideration”. The Thermal Pad on the bottom of the IC should be soldered directly to the PCB’s  
Thermal Pad area connected to the ground plan by several thermal vias, and the PCB is a 2-layer, 5-inch square area with 2oz copper  
thickness.  
Recommended Operating Conditions  
Range  
Symbol  
Parameter  
Unit  
Min.  
8.5  
3.0  
-
Max.  
14  
5.5  
5.5  
-
VDD  
Supply Voltage  
V
V
V
V
V
V
V
Volume Reference Voltage  
VREF  
Volume Control Pin, Input Voltage VOLUME, VARMAX, VARDIFF  
SD  
High-level Input Voltage  
MODE  
2
VIH  
3.5  
-
-
SD  
Low-level Input Voltage  
MODE  
0.8  
2
VIL  
-
V5VLDO  
-100m  
VOH  
High-level Output Voltage  
MODEOUT sources 1mA  
MODEOUT sinks 1mA  
-
V
VOL  
fOSC  
TA  
Low-level Output Voltage  
Oscillator Frequency  
-
+100m  
275  
85  
V
kHz  
°C  
225  
-40  
6
Operating Free-Air Temperature  
RL  
Class-D Power Amplifier Minimum Load Resistance  
-
W
Electrical Characteristics  
VDD =12V, DGND=AGND=0V, TA= 25oC (unless otherwise noted)  
APA3002  
Symbol  
Parameter  
Supply Voltage  
Test Condition  
Unit  
Min.  
Typ.  
Max.  
VDD  
8.5  
-
-
14  
V
Class-D mode, VMODE=0V, VSD =5V,  
20  
40  
mA  
no load  
IDD  
VDD Supply Current  
VAROUT mode, VMODE=5V, VSD =5V,  
no load  
-
-
3
6
mA  
ISD  
VDD Shutdown Current  
VSD = 0V  
10  
100  
mA  
CLASS-D MODE, AV=15.7dB (VOLTAGE GAIN=RATIO OF THE FILTERED OUTPUT VOLTAGE TO INPUT VOLTAGE)  
-
6
-
10  
7.5  
12  
9
-
-
-
-
THD+N = 1%, fin = 1kHz, RL = 6W  
THD+N = 1%, fin = 1kHz, RL = 8W  
THD+N = 10%, fin = 1kHz, RL = 6W  
THD+N = 10%, fin = 1kHz, RL = 8W  
PO  
Output Power  
W
%
-
Total Harmonic Distortion Plus  
Noise  
THD+N  
-
0.2  
-
PO= 5W, fin= 1kHz, RL = 8W  
Crosstalk  
PSRR  
Channel Separation  
-
-
90  
85  
-
-
dB  
dB  
PO= 5W, fin=1kHz, CB=1mF  
RL = 8W, fin = 120Hz  
Power Supply Rejection Ratio  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Electrical Characteristics (Cont.)  
VDD =12V, DGND=AGND=0V, TA= 25oC (unless otherwise noted)  
APA3002  
Typ.  
Symbol  
Parameter  
Test Condition  
Unit  
Min.  
Max.  
CLASS-D MODE, AV=15.7dB (VOLTAGE GAIN=RATIO OF THE FILTERED OUTPUT VOLTAGE TO INPUT VOLTAGE)  
(CONT.)  
With A-Weighting Filter  
PO = 5W, RL = 8W  
S/N  
VOS  
Vn  
-
-
-
85  
-
-
20  
-
dB  
Output Offset Voltage  
Noise Output Voltage  
mV  
RL = 8W  
mV  
(rms)  
250  
High side  
Low side  
Total  
-
-
-
300  
250  
550  
-
-
Power MOSFET Drain-Source  
On-State Resistance  
Rds(on)  
IO=1A  
mW  
650  
VAROUT OUTPUT, AV=10dB  
PO  
Output Power  
-
-
20  
25  
-
-
mW  
%
THD+N = 1%, fin = 1kHz, RL = 32W  
THD+N = 10%, fin = 1kHz, RL = 32W  
Total Harmonic Distortion Plus  
Noise  
THD+N  
-
-
-
0.05  
0.005  
63  
-
-
-
fin= 1kHz, RL = 32W, PO = 14mW,  
VO= 1Vrms, RL=47kW, fin=1kHz  
PO=14mW, RL = 32W, fin=1kHz,  
CB=1mF  
Crosstalk  
Channel Separation  
dB  
CB = 1mF, RL = 32W, fin =120Hz,  
VRR=0.2Vrms  
PSRR  
Vos  
Power Supply Rejection Ratio  
Output Offset Voltage  
-
-
-
85  
-
-
20  
-
dB  
mV  
dB  
RL = 32W  
With A-Weighting Filter  
PO= 20mW, RL = 32W,  
S/N  
80  
mV  
(rms)  
Vn  
Noise Output Voltage  
-
30  
-
CB = 1mF  
LINEAR REGULATORS (LDO)  
I5VLDO =0-100mA, VSD =5V  
No load  
V5VLDO  
V2.5VREF  
PSRR  
5V LDO Regulator Output  
4.5  
0.45X  
V5VLDO  
5
5.5  
0.55X  
V5VLDO  
V
V
0.50X  
V5VLDO  
2.5V Reference Voltage  
Power Supply Rejection Ratio  
-
73  
-
dB  
CB = 1mF, fin= 120Hz  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics  
Efficiency vs. Output Power  
Efficiency vs. Output Power  
100  
90  
100  
90  
80  
70  
60  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD =12V  
RL=8W  
AV=36dB  
Bead filter  
AUX-0025  
AES-17(20kHz)  
Class-D  
VDD =12V  
RL=8W+33mH  
AV=36dB  
Bead filter  
AUX-0025  
AES-17(20kHz)  
Class-D  
40  
30  
20  
10  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Output Power (W)  
Output Power (W)  
Output Power vs. Load Resistance  
Output Power vs. Supply Voltage  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
Ci=1mF  
Av=36dB  
fin=1kHz  
AUX-0025  
AES-17  
Ci=1mF  
RL=8W  
AV=36dB  
VDD=14V  
THD+N=10%  
fin=1kHz  
THD+N=10%  
AUX-0025  
AES-17 (20kHz)  
Class-D  
(20kHz)  
Class-D  
VDD=14V  
THD+N=1%  
THD+N=1%  
6
6
VDD=8.5V  
THD+N=10%  
4
4
2
VDD=8.5V  
THD+N=1%  
2
0
6
8
10  
12  
14  
16  
9
13  
14  
8.5  
10  
11  
12  
Load Resistance (W)  
Supply Voltage (V)  
Output Power vs. Supply Voltage  
THD+N vs. Output Power  
18  
10  
1
VDD=12V  
Ci=1mF  
RL=6W  
Av=15.7dB  
AUX-0025  
AES-17  
(20kHz)  
Class-D  
Ci=1mF  
RL=6W  
Av=36dB  
fin=1kHz  
AUX-0025  
16  
14  
12  
10  
8
fin=1kHz  
THD+N=10%  
AES-17 (20kHz)  
Class-D  
fin=50Hz  
0.1  
THD+N=1%  
fin=15kHz  
6
0.01  
0.005  
4
100m  
1
10 20  
10m  
8.5 9  
10  
11  
12  
13  
14  
Supply Voltage (V)  
Output Power (W)  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
THD+N vs. Output Power  
THD+N vs. Frequency  
10  
1
10  
R
VDD =14V  
Ci=1mF  
RL=8W  
AV=15.7dB  
AUX-0025  
AES-17 (20kHz)  
Class-D  
VDD =14V  
Ci=1mF  
RL=8W  
AV=15.7dB  
AUX-0025  
AES-17 (20kHz)  
Class-D  
1
fin=1kHz  
0.1  
PO=7W  
fin=50Hz  
0.1  
PO=3.5W  
1K  
fin=15kHz  
100m  
0.01  
PO=0.5W  
100  
0.005  
0.01  
10m  
1
10 20  
20  
10K 20K  
Frequency (Hz)  
Output Power (W)  
THD+N vs. Frequency  
Crosstalk vs. Frequency  
+0  
10  
VDD =14V  
VDD =14V  
Ci=1mF  
RL=8W  
PO=3.5W  
AV=15.7dB  
AUX-0025  
AES-17 (20kHz)  
Class-D  
-10  
Ci=1mF  
RL=8W  
PO=7W  
AUX-0025  
AES-17 (20kHz)  
Class-D  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
AV=36dB  
0.1  
AV=10.7dB  
Left channel to Right channel  
Right channel to Left channel  
AV=20.8dB  
0.01  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k20k  
Frequency (Hz)  
Frequency (Hz)  
Noise vs. Frequency  
THD+N vs. Output Power  
500m  
100m  
10  
1
VDD =12V  
Ci=1mF  
RL=8W  
Av=15.7dB  
AUX-0025  
Right Channel  
Left Channel  
fin=1kHz  
fin=50Hz  
0.1  
VDD =14V  
Ci=1mF  
RL=8W  
AV=15.6dB  
AUX-0025  
LPF=22~22kHz  
A-Weighting  
Class-D  
0.01  
fin=20kHz  
AES-17(20kHz)  
Class-D  
0.001  
10m  
20  
100  
1k  
10k 20k  
10m  
100m  
1
5 10  
Frequency (Hz)  
Output Power (W)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
THD+N vs. Frequency  
THD+N vs. Frequency  
10  
10  
VDD =12V  
Ci=1mF  
RL=8W  
VDD =12V  
Ci=1mF  
RL=8W  
AV=15.7dB  
AUX-0025  
AES-17(20kHz)  
Class-D  
PO=5W  
AUX-0025  
AES-17 (20kHz)  
Class-D  
1
1
PO=0.5W  
PO=5W  
AV=36dB  
0.1  
0.1  
PO=2.5W  
AV=10.7dB  
AV=20.8dB  
0.01  
0.01  
20  
100  
1k  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
Frequency (Hz)  
Crosstalk vs. Frequency  
Noise vs. Frequency  
+0  
500m  
VDD =12V  
Right Channel  
Left Channel  
Ci=1mF  
RL=8W  
-20  
PO=2.5W  
AV=15.7dB  
AUX-0025  
AES-17 (20kHz)  
Class-D  
-40  
-60  
100m  
VDD =12V  
Ci=1mF  
RL=8W  
AV=15.6dB  
AUX-0025  
-80  
Left channel to Right channel  
-100  
LPF=22~22kHz  
A-Weighting  
Class-D  
Right channel to Left channel  
10m  
20  
-120  
100  
1k  
10k 20k  
20  
100  
500  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
THD+N vs. Output Power  
THD+N vs. Frequency  
10  
1
10  
1
VDD =8.5V  
Ci=1mF  
RL=8W  
VDD =8.5V  
Ci=1mF  
RL=8W  
AV=15.7dB  
AUX-0025  
AES-17(20kHz)  
Class-D  
AV=15.7dB  
AUX-0025  
AES-17 (20kHz)  
fin=1kHz  
Class-D  
PO=2.5W  
PO=0.5W  
0.1  
0.1  
fin=50Hz  
PO=1.25W  
100  
fin=15kHz  
0.01  
0.01  
10m  
100m  
1
5
20  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
THD+N vs. Frequency  
Noise vs. Frequency  
10  
500m  
VDD =8.5V  
Ci=1mF  
Right Channel  
Left Channel  
RL=8W  
PO=2.5W  
AUX-0025  
AES-17 (20kHz)  
Class-D  
1
100m  
VDD =8.5V  
Ci=1mF  
RL=8W  
AV=36dB  
0.1  
AV=15.6dB  
AUX-0025  
LPF=22~22kHz  
A-Weighting  
Class-D  
AV=20.8dB  
1k  
AV=10.7dB  
100  
10m  
0.01  
20  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Input Resistance vs. Gain  
CMRR vs. Frequency  
160  
140  
120  
100  
80  
VDD =12V  
Ci=1mF  
RL=8W  
VO=1V  
AV=15.7dB  
AUX-0025  
Class-D  
Class-D  
-20  
-30  
-40  
-50  
60  
-60  
-70  
40  
20  
0
20  
100  
1k  
10k 20k  
-50  
-30  
-10  
10  
30  
50  
Gain (dB)  
Frequency (Hz)  
FrequencyResponse  
Shutdown Attenuation vs. Frequency  
+40  
+35  
+0  
-10  
VDD =12V  
Ci=1mF  
Gain (36dB)  
+150  
VDD =12V  
Ci=1mF  
RL=8W  
PO=0.75W  
AUX-0025  
Class-D  
-20 RL=8W  
-30  
+100  
+50  
+0  
PO=1W  
AV=36dB  
VSD=0V  
AUX-0025  
AES-17(20kHz)  
Class-D  
+30  
+25  
+20  
+15  
+10  
+5  
-40  
Phase (36dB)  
-50  
-60  
-70  
Phase (15.7dB)  
Gain (15.7dB)  
-80  
-90  
-50  
-100  
-100  
-110  
-120  
-130  
-150  
+0  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
Mode Attenuation vs. Frequency  
Mute Attenuation vs. Frequency  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VDD =12V  
Ci=1mF  
RL=8W  
VDD =12V  
Ci=1mF  
RL=8W  
PO=1W  
PO=1W  
Volume=0V  
AUX-0025  
AES-17(20kHz)  
Class-D  
AV=36dB  
Mode=5V  
AUX-0025  
AES-17(20kHz)  
Class-D  
-100  
-110  
-120  
-130  
20  
20k  
10k  
20  
100  
1k  
10k 20k  
100  
1k  
Frequency (Hz)  
Frequency (Hz)  
PSRR vs. Frequency  
Inter-modulation Performance  
+0  
-20  
-40  
+0  
VDD =12V  
Ci=1mF  
fin=19kHz&20kHz  
RL=8W  
PO=1W  
AV=36dB  
AUX-0025  
Class-D  
VDD =12V  
RL=8W  
-10  
VRR=0.5Vrms  
AV=36dB  
AUX-0025  
AES-17(20kHz)  
Class-D  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-60  
-80  
-100  
-120  
VRR: Ripple Voltage on VDD  
-100  
-140  
20  
100  
1k  
10k 20k  
50 100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
PSRR vs. Frequency  
PSRR vs. Frequency  
+0  
+0  
T
VDD =12V  
T
VDD =12V  
-10  
-10 No load  
VRR=0.5Vrms  
LDO  
RL=10kW  
VRR=0.5Vrms  
AV=20dB  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VAROUT  
VRR: Ripple Voltage on VDD  
VRR: Ripple Voltage on VDD  
-100  
-100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k20k  
Frequency (Hz)  
Frequency (Hz)  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
THD+N vs. Output Power  
THD+N vs. Frequency  
10  
1
10  
1
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=32W  
AV=10dB  
LPF=80kHz  
VAROUT  
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=32W  
AV=10dB  
PO=14mW  
LPF=80kHz  
VAROUT  
fin=20kHz  
fin=50Hz  
0.1  
0.1  
fin=1kHz  
0.01  
0.01  
0
5m  
10m 15m 20m  
Output Power (W)  
25m 30m  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Crosstalk vs. Frequency  
Noise vs. Frequency  
+0  
100m  
10m  
R
VDD =12V  
Ci=1mF  
COUT=150mF  
-10  
-20 RL=32W  
AV=10dB  
-30  
-40  
-50  
-60  
-70  
-80  
PO=14mW  
LPF=80kHz  
VAROUT  
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=32W  
AV=10dB  
Left channel to Right channel  
Right channel to Left channel  
A-weighting  
VAROUT  
1m  
-90  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
FrequencyResponse  
THD+N vs. Output Voltage  
+300  
10  
1
+10  
+9  
VDD =12V  
Ci=1mF  
Gain  
+280  
+260  
+240  
+220  
+200  
+180  
+160  
+140  
COUT=150mF  
RL=10kW  
AV=10dB  
LPF=80kHz  
VAROUT  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=32W  
AV=10dB  
PO=2mW  
VAROUT  
fin=20kHz  
0.1  
0.01  
fin=50Hz  
Phase  
1k  
fin=1kHz  
0.001  
+0  
+120  
0
500m  
1
1.5  
2
2.5  
20  
100  
10k  
200k  
Output Voltage (V)  
Frequency (Hz)  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
THD+N vs. Frequency  
Crosstalk vs. Frequency  
10  
1
+0  
TTTTT TTTT  
VDD =12V  
Ci=1mF  
-20  
COUT=150mF  
RL=10kW  
AV=10dB  
VO=1.25V  
LPF=80kHz  
VAROUT  
VDD =12V  
Ci=1mF  
-40  
-60  
COUT=150mF  
RL=10kW  
AV=10dB  
VO=1.25V  
LPF=80kHz  
VAROUT  
0.1  
-80  
0.01  
Left channel to Right channel  
-100  
Right channel to Left channel  
0.001  
-120  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k20k  
Frequency (Hz)  
Frequency (Hz)  
Noise vs. Frequency  
FrequencyResponse  
100m  
+10  
+9  
+230  
Gain  
+220  
+210  
+200  
+190  
+180  
+170  
+160  
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=10kW  
AV=10dB  
PO=0.18V  
VAROUT  
+8  
+7  
+6  
+5  
10m  
VDD =12V  
Ci=1mF  
COUT=150mF  
RL=10kW  
AV=10dB  
Phase  
A-Weighting  
VAROUT  
+4  
+150  
1m  
10  
100  
1k  
10k  
200k  
20  
100  
1k  
10k20k  
Frequency (Hz)  
Frequency (Hz)  
Input Resistance vs. Gain  
Supply Current vs. Output Power  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
160  
RL=8W&33mH  
fin=1kHz  
Ci=1mF  
Mono  
AUX-0025  
AES-17 (20kHz)  
VAROUT  
VDD=12V  
140  
120  
100  
80  
VDD=14V  
VDD=8.5V  
60  
40  
20  
0
0
-60  
-45  
-30  
-15  
0
15  
30  
0
2
4
6
8
10  
12  
Gain (dB)  
Output Power (W)  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Operating Characteristics (Cont.)  
SupplyCurrent vs. Supply Voltage  
30  
No Load  
25  
20  
15  
10  
5
0
5
10  
15  
0
Supply Voltage (V)  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Pin Description  
PIN  
I/O  
FUNCTION  
NO.  
NAME  
Shutdown mode control signal input. Pulling the voltage on SD below 0.8V makes the IC enter  
1
I
SD  
low-power shutdown mode with 10mA (typical) IDD  
.
2
3
4
5
6
7
8
RIN-  
RIN+  
I
I
Right channel negative input.  
Right channel positive input.  
2.5V reference for analog circuits.  
Left channel positive input.  
Left channel negative input.  
2.5VREF  
LIN+  
O
I
LIN-  
I
LDOREF  
VREF  
O
I
5V reference output (5V LDO), connect it to VREF pin.  
Gain control section’s reference voltage input.  
Input pin to set the difference in gain between the VAROUT and Class-D outputs by using the DC  
voltage. Connect this pin to the ground or LDOREF when the VAROUT is not used.  
9
VARDIFF  
I
Input pin to set the maximum gain of VAROUT by using the DC voltage. Connect this pin to  
ground or LDOREF directly when the VAROUT is not used.  
10  
11  
12  
13  
VARMAX  
VOLUME  
REFGND  
LBS-  
I
1
-
Input pin to set the gain of VAROUT and Class-D outputs by using the DC voltage.  
Ground for gain control circuitry. Connect to AGND. If using a DAC to control the volume, connect  
the DAC ground to this terminal.  
I/O Left channel bootstrap power input for negative high-side MOSFET.  
14,15,22  
,23  
LPVDD  
-
Power supply for left channel H-bridge.  
16,17  
18,19  
20,21  
24  
LOUT-  
LPGND  
LOUT+  
LBS+  
O
-
Class-D left channel negative output.  
Power ground for left channel H-bridge.  
Class-D left channel positive output.  
O
I/O Left channel bootstrap power input for positive high-side MOSFET.  
25  
LCLAMP  
AGND  
-
-
Left channel internal voltage supply output for bootstrap capacitor.  
Analog ground.  
26,30  
27  
ROSC  
I/O Voltage of ROSC pin equal 0.125VDD, current setting resistor for internal ramp generator.  
I/O Charge/Discharge capacitor for generating triangle wave.  
28  
COSC  
29  
5VLDO  
LVAROUT  
RVAROUT  
O
O
O
Internal 5V regulator output for external headphone driver used.  
Left channel variable audio output, for external headphone driver.  
Right channel variable audio output, for external headphone driver.  
31  
32  
33  
AVDD  
-
Analog power supply (8.5 to 14V).  
Control pin for amplifier operation. A logic high places the amplifier in variable output mode, and  
the Class-D output will disable; a logic low places the amplifier in variable output mode (line-level  
output for external amplifier) and stereo Class-D outputs.  
34  
MODE  
I
Inverse output of MODE pin, this pin can control the external headphone driver’s (APA4801) mute  
pin for changing operation from speaker operation to headphone operation. Leave this pin  
unconnected when the external headphone driver is not in using.  
35  
MODEOUT  
O
-
36  
37  
RCLAMP  
RBS+  
Right channel internal voltage supply output for bootstrap capacitor.  
I/O Right channel bootstrap voltage input for positive high-side MOSFET.  
38,39,46  
,47  
RPVDD  
-
Power supply for right channel H-bridge.  
40,41  
42,43  
44,45  
48  
ROUT+  
RPGND  
ROUT-  
RBS-  
O
-
Class-D right channel positive output.  
Power ground for right channel H-bridge.  
Class-D right channel negative output.  
O
I/O Right channel bootstrap voltage input for negative high-side MOSFET.  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Block Diagram  
RCLAMP  
VOLTAGE  
CLAMP  
GEN.  
RBS-  
RPVDD  
ROUT-  
Gate  
Drive  
RIN-  
RPGND  
RBS+  
RPVDD  
De-glitch &  
Modulation  
Logic  
Gain  
Adj.  
RIN+  
ROUT+  
Gate  
Drive  
RPGND  
Gain  
Adj.  
2.5VREF  
Over-Current  
Protection  
RVAROUT  
ROSC  
Thermal  
Shutdown  
RAMP  
GEN.  
Biases  
&
Reference  
Startup  
protection  
logic  
COSC  
VREF  
AVDD  
AGND  
5VLDO ok  
AVDD ok  
VARDIFF  
Gain  
Control  
VARMAX  
VOLUME  
5VLDO  
REFGND  
SD  
5VLDO  
LDOREF  
TTL Input  
Buffer  
Gain  
Adj.  
LCLAMP  
LBS-  
VOLTAGE  
CLAMP  
GEN.  
LPVDD  
LVAROUT  
LIN-  
LOUT-  
Gate  
Drive  
LPGND  
LBS+  
LPVDD  
De-glitch &  
Modulation  
Logic  
Gain  
Adj.  
LIN+  
LOUT+  
Gate  
Drive  
LPGND  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Operating Mode Selection Table  
SD  
L
MODE  
Operating mode  
Shutdown mode  
H
L
H
Class-D operation  
H
H
Class-D disable, VAROUT output.  
Class-D DC Volume Control Table  
GAIN  
Voltage range (% of VVREF)  
Increasing VVOLUME  
Decreasing VVOLMUE  
(dB)  
(%)  
(%)  
-75  
0 -4.5  
0 -2.9  
-40  
-37.5  
-35  
4.5 -6.7  
6.7 -8.9  
2.9 -5.1  
5.1 -7.2  
8.9 -11.1  
11.1 -13.3  
13.3 -15.5  
15.5 -17.7  
17.7 -19.9  
19.9 -22.1  
22.1 -24.3  
24.3 -26.5  
26.5 -28.7  
28.7 -30.9  
30.9 -33.1  
33.1 -35.3  
35.3 -37.5  
37.5 -39.7  
39.7 -41.9  
41.9 -44.1  
44.1 -46.4  
46.4 -48.6  
48.6 -50.8  
50.8 -53  
7.2 -9.4  
-32.4  
-29.9  
-27.4  
-24.8  
-22.3  
-19.8  
-17.2  
-14.7  
-12.2  
-9.6  
-7.1  
-4.6  
-2  
9.4 -11.6  
11.6 -13.8  
13.8 -16.0  
16.0 -18.2  
18.2 -20.4  
20.4 -22.6  
22.6 -24.8  
24.8 -27.0  
27.0 -29.1  
29.1 -31.3  
31.3 -33.5  
33.5 -35.7  
35.7 -37.9  
37.9 -40.1  
40.1 -42.3  
42.3 -44.5  
44.5 -46.7  
46.7 -48.9  
48.9 -51.0  
51.0 -53.2  
53.2 -55.4  
55.4 -57.6  
57.6 -59.8  
59.8 -62.0  
62.0 -64.2  
64.2 -66.4  
66.4 -68.4  
>68.6  
0.5  
3.1  
5.6  
8.1  
10.7  
13.2  
15.7  
18.3  
20.8  
23.3  
25.9  
28.4  
30.9  
33.5  
36  
53 -55.2  
55.2 -57.4  
57.4 -59.6  
59.6 -61.8  
61.8 -64  
64 -66.2  
66.2 -68.4  
68.4 -70.6  
>70.6  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
VAROUT VOLUME Control Table  
GAIN  
Voltage range (% of VVREF)  
Increasing VVOLUME  
Decreasing VVOLMUE  
(dB)  
(%)  
(%)  
-66  
0 -4.5  
0 -2.9  
-56  
-53.5  
-50.9  
-48.4  
-45.9  
-43.3  
-40.8  
-38.3  
-35.7  
-33.2  
-30.7  
-28.1  
-25.6  
-23.1  
-20.5  
-18.0  
-15.5  
-13.0  
-10.4  
-7.9  
4.5 -6.7  
6.7 -8.9  
2.9 -5.1  
5.1 -7.2  
8.9 -11.1  
11.1 -13.3  
13.3 -15.5  
15.5 -17.7  
17.7 -19.9  
19.9 -22.1  
22.1 -24.3  
24.3 -26.5  
26.5 -28.7  
28.7 -30.9  
30.9 -33.1  
33.1 -35.3  
35.3 -37.5  
37.5 -39.7  
39.7 -41.9  
41.9 -44.1  
44.1 -46.4  
46.4 -48.6  
48.6 -50.8  
50.8 -53  
7.2 -9.4  
9.4 -11.6  
11.6 -13.8  
13.8 -16.0  
16.0 -18.2  
18.2 -20.4  
20.4 -22.6  
22.6 -24.8  
24.8 -27.0  
27.0 -29.1  
29.1 -31.3  
31.3 -33.5  
33.5 -35.7  
35.7 -37.9  
37.9 -40.1  
40.1 -42.3  
42.3 -44.5  
44.5 -46.7  
46.7 -48.9  
48.9 -51.0  
51.0 -53.2  
53.2 -55.4  
55.4 -57.6  
57.6 -59.8  
59.8 -62.0  
62.0 -64.2  
64.2 -66.4  
66.4 -68.4  
>68.6  
-5.3  
-2.8  
-0.3  
53 -55.2  
2.3  
55.2 -57.4  
57.4 -59.6  
59.6 -61.8  
61.8 -64  
4.8  
7.3  
9.9  
12.4  
14.9  
17.5  
20.0  
64 -66.2  
66.2 -68.4  
68.4 -70.6  
>70.6  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Application Circuits  
Right  
channel  
SPEAKER  
1nF  
1nF  
VDD  
Bead  
Bead  
VDD  
10mF  
CBS(R-)  
10nF  
CBS(R+)  
10nF  
0.1mF  
0.1mF  
CCLAMP(R)  
1mF  
SD  
RCLAMP  
36  
1
2
3
4
SHUTDOWN  
Ci(RIN+)  
RIN-  
LIN-  
Ci(RIN-)  
1mF  
MODEOUT  
MODE  
RIN-  
MODEOUT  
35  
34  
1mF  
VDD  
RIN+  
MODE  
CB  
AVDD  
2.5VREF  
LIN+  
0.1mF  
33  
1mF  
1mF  
10mF  
1mF  
RVAROUT  
LVAROUT  
5
6
32  
31  
RVAROUT  
LVAROUT  
Ci(LIN+)  
LIN-  
TOP VIEW  
APA3002  
Ci(LIN-)  
AGND  
5VLDO  
COSC  
LDOREF  
VREF  
0.1mF  
30  
29  
28  
27  
26  
25  
7
5V  
8
COSC  
VARDIFF  
VARMAX  
50kW  
RVARDIFF  
9
220pF  
ROSC  
10  
50kW  
ROSC  
120kW  
AGND  
VOLUME  
REFGND  
11  
12  
50kW  
RVOLUME  
LCLAMP  
1mF  
CCLAMP(L)  
RVARMAX  
0.1mF  
0.1mF  
10mF  
CBS(L-)  
10nF  
10nF  
VDD  
AGnd  
PGnd  
VDD  
CBS(L+)  
Bead  
Bead  
1nF  
1nF  
Left  
channel  
SPEAKER  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise  
customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Typical Application Circuits (Cont.)  
Right  
SPEAKER  
channel  
1nF  
1nF  
VDD  
CBS(R+)  
Bead  
Bead  
10mF  
VDD  
CBS(R-)  
10nF  
10nF  
0.1mF  
0.1mF  
CCLAMP(R)  
1mF  
120kW  
SD  
RIN-  
RIN+  
RCLAMP  
Control  
Pin  
1
2
36  
SHUTDOWN  
Ci(RIN+)  
RIN-  
LIN-  
220mF  
Ring  
Ci(RIN-)  
1mF  
MODEOUT  
35  
34  
33  
1mF  
VDD  
1mF  
MODE  
3
CB  
AVDD  
2.5VREF  
10mF  
RVAROUT  
4
0.1mF  
1mF  
1mF  
Sleeve  
LIN+  
LIN-  
Tip  
1kW  
5
32  
31  
30  
29  
28  
27  
26  
25  
Ci(LIN+)  
Ci(LIN-)  
1mF  
Headphone  
Jack  
LVAROUT  
6
TOP VIEW  
APA3002  
0.1mF  
AGND  
5VLDO  
COSC  
ROSC  
LDOREF  
VREF  
7
APA4801  
8
COSC  
10mF  
VARDIFF  
VARMAX  
VOLUME  
REFGND  
1kW  
9
50kW  
220pF  
RVARDIFF  
50kW  
10  
11  
12  
220mF  
R
120kW  
1mF  
AGND  
OSC  
50kW  
4.7mF  
LCLAMP  
RVARMAX RVOLUME  
1mF  
CCLAMP(L)  
0.1mF  
CBS(L-) 0.1mF  
10nF  
10nF  
10mF  
VDD  
VDD  
CBS(L+)  
AGnd  
PGnd  
Bead  
1nF  
Bead  
1nF  
Left  
channel  
SPEAKER  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise  
customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Application Information  
Class-D Operation  
Square Wave Into the Speaker  
Output = 0V  
To apply the square wave into the speaker may cause the  
voice coil of speaker jumps out the air gap and defaces the  
voice coil. However, this depends on if the amplitude of  
square wave is high enough and the bandwidth of speaker  
is higher than the square wave’s frequency. For 250kHz  
switching frequency, this is not an issue for the  
speaker because the frequency is beyond the audio band,  
and can’t significantly move the voice coil, as cone move-  
ment is proportional to 1/f2 for frequency out of audio band.  
OUT+  
OUT-  
OUT  
(OUT+)-(OUT-)  
IOUT  
Output > 0V  
Input Resistor (Ri)  
OUT+  
In order to achieve the 32 steps gain setting, the Ri varies  
the input resistance network (Ri & Rf) of amplifier. The  
input resistor’s range from the smallest to the maximum  
is about 15 times, therefore, the input high-pass filter’s  
low cutoff frequency will change 15 times from low to  
high. The cutoff frequency can be calculated by equation  
1.  
OUT-  
OUT  
(OUT+)-(OUT-)  
IOUT  
Output < 0V  
OUT+  
Input Capacitor (Ci)  
In the typical application, an input capacitor, Ci, is required  
to allow the amplifier to bias the input signal to the proper  
DC level for optimum operation. In this case, Ci and the  
minimum input impedance Ri form a high-pass filter with  
the corner frequency is determined in the following  
OUT-  
(OUT+)-(OUT-)  
OUT  
IOUT  
equation:  
1
fC(highpass)  
=
(1)  
2pRiCi  
Figure1. APA3002 Output Waveform (Voltage & Current)  
The value of Ci must be considered carefully because  
it directly affects the low frequency performance of the  
circuit. Consider the example, where Ri is 10kW and  
the specification calls for a flat bass response down  
to 40Hz. The equation is reconfigured as below:  
The APA3002 modulation scheme is shown in Figure 1,  
the outputs OUT+ and OUT- are in phase with each other  
when no input signals. When output > 0V, the duty cycle  
of OUT+ is greater than 50% and OUT- is less than 50%;  
on the contrary, when output <0V, the duty cycle of OUT+  
is less than 50% and OUT- is greater than 50%. This  
method reduces the switching current across the load  
and reduces the I2R loss in the load that improves the  
amplifier’s efficiency.  
1
Ci =  
(2)  
2pRifc  
When the input resistance variation is considered, the Ci  
is 0.40mF, so a value in the range of 0.47mF to 1.0mF  
would be chosen. A further consideration for this ca-  
pacitor is the leakage path from the input source  
through the input network (Ri + Rf, Ci) to the load.  
This modulation scheme has very short pulses across  
the load. This makes the small ripple current and very  
little loss on the load, and the LC filter can be eliminated  
in most applications. Adding the LC filter can increase the  
efficiency by filter the ripple current.  
This leakage current creates a DC offset voltage at  
the input to the amplifier that reduces useful headroom,  
Copyright ã ANPEC Electronics Corp.  
19  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Application Information (Cont.)  
Input Capacitor (Ci) (Cont.)  
CLAMP Capacitor (CCLAMP  
)
especially in high gain applications. For this reason, a  
low-leakage tantalum or ceramic capacitor is the best  
choice. When polarized capacitors are used, the positive  
side of the capacitor should face the amplifier input in most  
applications because the DC level of the amplifiers’ inputs  
is held at 2.5VREF. Please note that it is important to  
confirm the capacitor polarity in the application.  
These capacitors are regulated the clamp voltage of N-  
channel power MOSFET’s gate voltage, ensuring the  
maximum gate-to-source voltage of the MOSFET not to  
exceed. 1mF/25V capacitors are recommended.  
Power SupplyDecoupling (Cs)  
The APA3002 is a high-performance CMOS audio amplifier  
that requires adequate power supply decoupling to en-  
sure the output total harmonic distortion (THD+N) is  
as low as possible. Power supply decoupling also pre-  
vents the oscillations being caused by long lead  
length between the amplifier and the speaker.  
COSC & ROSC  
The Class-D amplifier’s switching frequency is deter-  
mined by the component that connected to ROSC (pin)  
and COSC (pin). The frequency can be calculated by the  
following equation:  
The optimum decoupling is achieved by using two dif-  
ferent types of capacitors that target on different types of  
noise on the power supply leads. For higher frequency  
transients, spikes, or digital hash on the line, a good low  
equivalent-series-resistance (ESR) ceramic capacitor,  
typically is 0.1mF which is placed as close as possible  
to the device VDD lead to achieve the best performance.  
For filtering lower frequency noise signals, a large alu-  
minum electrolytic capacitor of 10mF or greater placed near  
the audio power amplifier is recommended.  
6.6  
fosc  
=
(3)  
RoscCosc  
BS+ &BS- Capacitor (CBS)  
Since the Full-bridge output stages are only using the N-  
channel power MOSFET, the high-side MOSFET’s driver  
needs bootstrap circuit to turn on the high side power  
MOSFET correctly. A 10nF/35V ceramic capacitor is  
recommended.  
The bootstrap capacitors are like floating power supply  
for high side N-channel power MOSFET gate driver. The  
bootstrap capacitors hold the gate-to-source voltage high  
enough to keep the high-side N-channel power MOSFET  
turn-on at high side switching cycle. At the high-side turn-  
on cycle, the voltage of bootstrap capacitors will decrease  
through the leakage path. The bootstrap voltage can de-  
crease below the minimum Vgs that required to keep the  
high-side N-channel power MOSFET turn-on, if driving  
into heavy clipping with a less than 50Hz sine wave. When  
this occurs, the output power MOSFET becomes source-  
follower and the output drops from VDD to approximately  
Vclamp.  
Ferrite Bead Selection  
If the traces from the APA3002 to speaker are short, the  
ferrite bead filters can reduce the high frequency radiated  
to meet the FCC & CE’s requirements.  
A ferrite that has very low impedance at low frequencies  
and high impedance at high frequencies (above 1 MHz)  
is recommended.  
Output LC Filter  
If the traces from the APA3002 to speaker are short, it  
doesn’t require output filter for FCC & CE standard. Fig-  
ure 2 is an example for adding the LC filter, it’s recom-  
mended for the situation that the trace from amplifier to  
speaker is too long, and needed to eliminate the radiated  
emission or EMI.  
Driving a square wave at low frequencies is not a design  
consideration for majority application, so the 10nf boot-  
strap capacitor is recommended. If the low frequency is a  
concern, please increase the bootstrap capacitor value to  
hold the gate voltage for a longer period and the voltage  
drop will not occur.  
Copyright ã ANPEC Electronics Corp.  
20  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Application Information (Cont.)  
If a DAC controls the Class-D gain is used, VREF and  
REFGND should be connected to the reference voltage  
for the DAC and the GND terminal of the DAC respectively.  
For the DAC application, LDOREF would be left  
unconnected. The reference voltage of the DAC provides  
the reference to the internal gain circuitry through the  
VREF input and any fluctuations in the DAC output voltage  
will not affect the Class-D gain.  
Output LC Filter (Cont.)  
33mH  
OUT+  
0.1mF  
0.47mF  
33mH  
8 W  
The percentages in the “Increasing VVOLUME” of table should  
be used for setting the voltages of the DAC when the  
voltage on the VOLUME pin is increased. The percent-  
ages in the “ decreasing VVOLUME” of the table should be  
used for the DAC voltages when decreasing the voltage  
on the VOLUME pin. Two lookup tables should be used  
in software to control the gain based on an increase or  
decrease in the desired system volume.  
0.1mF  
OUT-  
Figure 2. LC Output Filter  
DC Volume  
Decreasing VVOLUME  
If using an analog potentiometer to control the gain, it  
should be connected between VREF and REFGND.  
VREF can be connected to LDODREF or an external  
3.1  
voltage source, if desired. The table of “Increasing VVOLUME  
0.5  
and “Decreasing VVOLUME” in “Class-D DC Volume Control  
Table” should be used to determine the point at which  
gain changes depending on the direction that the poten-  
tiometer is turned. If the voltage on the center tap of the  
Increasing VVOLUME  
-2.0  
(39.7% x VVREF  
)
potentiometer is increasing, the table “Increasing VVOLUME  
1.90  
1.99 2.01  
2.12  
(41.9% x VVREF)  
(37.9% x VVREF  
)
(40.1% x VVREF  
)
at “Class-D DC Volume Control Table” should be refer-  
enced to determine the trip points. If the voltage is  
Volume’s Voltage (V)  
decreasing, the trip points in the ”Decreasing VVOLUME  
should be referenced.  
Figure 3. DC Volume Control Operation (VVREF=5V)  
The Class-D’s gain is determined by the voltage of VOL-  
UME control pin. “Class-DDC Volume Control Table” lists  
the gain in Class-D that is determined by the VOLUME  
pin’s voltage (VVOLUME) in reference to the VREF’s voltage  
(VVREF). The maximum voltage of VOLUME should not  
exceed the VREF’s voltage.  
The trip point, where the gain actually changes, is various  
depending on whether the voltage on the VOLUME pin is  
increasing or decreasing as a result of hysteresis about  
each trip point. The hysteresis ensures that the gain con-  
trol is monotonic and does not oscillate from one gain  
step to another. A pictorial representation of the volume  
control can be found in Figure 3. The graph focuses on  
three gain steps with the trip points defined in the table  
“Increasing VVOLUME” and ”Decreasing VVOLUME” of “Class-  
D DC Volume Control Table” for Class-D gain. The dotted  
lines represent the hysteresis about each gain step.  
If the resistor divider fixed the Class-D’s gain is used,  
and then the resistor divider values to center the volt-  
age between the two percentage points of the table’s  
column “Increasing VVOLUME” need to be calculated, see  
figure 3. The resistor can be connected between VREF  
and REFGND, and then VREF and LDOREF are con-  
nected together.  
Copyright ã ANPEC Electronics Corp.  
21  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Application Information (Cont.)  
DC Volume  
LDO Operation  
The 5VLOD terminal is the output of an internal-gener-  
ated 5V power supply that is used for oscillator, pream-  
plifier and DC volume control circuitry. The regulator can  
be powered the external headphone amplifier like the  
APA4801, or other circuitry, up to the current limit of 5VLDO  
pin (on specification table). With 10mF & 0.1mF capacitors  
connected to the terminal are recommended if powered  
by theAPA4801; however, if there is no other larger loading,  
1mF and 0.1mF are sufficient enough.  
VVARDIFF(V)  
VVARMAX(V)  
-
-
VVOLUME  
VVARDIFF  
-
YES  
+
Is VVARMAX>(VVOLUME  
-
VAROUT s VOLUME(V) =  
VVOLUME(V)-VVARDIFF(V)  
VVARDIFF  
)
VVOLUME(V)  
NO  
VAROUT s VOLUME(V) = VVARMAX(V)  
Figure 4. VAROUT Volume Control Flow  
ShutdownFunction  
In order to reduce power consumption when not in use,  
the APA3002 contains a shutdown function to externally  
turn off the amplifier bias circuitry. This shutdown feature  
turns the amplifier off when logic low is placed on the SD  
pin for the APA3002. The trigger point between a logic  
high and logic low level is typically 1.2V. It will be the best  
to switch between ground and the supply voltage VDD to  
provide maximum device performance. By switching the  
SD pin to low level, the amplifier enters a low-consump-  
tion-current state, IDD for the APA3002 is in shutdown  
mode. Under normal operating, APA3002’s SD pin should  
pull to a high level to keep the IC out of the shutdown  
mode. The SD pin should be tied to a definite voltage to  
avoid unwanted state change.  
Three pins, VOLUME, VARMAX, and VARDIFF, determine  
the VAROUT’s gain. The figure 4 shows the VAROUT vol-  
ume control flow. All the values are DC voltage, and the  
VAROUT channel gain can be determined by consulting the  
table “VAROUT VOLUME Control Table”.  
VARMAX  
The VARMAX limits the maximum gain of VAROUT chan-  
nels to avoid the un-comfortable listening of headphone.  
VARDIFF  
To avoid the uncomfortable listening when headphone is  
plugging, the VARDIFF sets the different gain between  
the Class-D and VAROUT channels. At initial (VVARDIFF=0V),  
the difference gain between the Class-D and VAROUT is  
16dB. When voltage of VARDIFF is increasing, the  
VAROUT’s gain decreases.  
Thermal Pad Consideration  
The thermal pad must be connected to the ground. The  
package with thermal pad of the APA3002 requires spe-  
cial attention on thermal design. If the thermal design  
issues are not properly addressed, the APA3002 will go  
into thermal shutdown. The thermal pad on the bottom of  
the APA3002 should be soldered down to a copper pad  
on the circuit board. Heat can be conducted away from  
the thermal pad through the copper plane to ambient. If  
the copper plane is not on the top surface of the circuit  
board, 10 to 16 vias of 15 mil or smaller in diameter should  
be used to thermally couple the thermal pad to the bot-  
tom plane. For good thermal conduction, the vias must  
be plated through and solder filled. The copper plane  
used to conduct heat away from the thermal pad should  
MODE Operation  
The mode controls the output mode of the APA3002, a  
logic “HIGH” will disable the Class-D outputs; a logic  
“LOW” will enable the Class-D outputs. This pin can con-  
nect to the switch on the headphone jack to disable the  
Class-D outputs when headphone plug is inserted. The  
“Typical Application Circuit “ shows an example for this  
application.  
MODE_OUTOperation  
The MODE_OUT is the inverting output of MODE, and it  
controls the external headphone amplifier’s SD pin (like  
the APA4801) for switching the Speaker mode or  
headphone.  
Copyright ã ANPEC Electronics Corp.  
22  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Application Information (Cont.)  
Thermal Pad Consideration (Cont.)  
be as large as practical. If the ambient temperature is  
higher than 25°C, a larger copper plane or forced-air cool-  
ing will be required to keep the APA3002 junction tem-  
perature below the thermal shutdown temperature  
(150°C). In higher ambient temperature, higher airflow  
rate and/or larger copper area will be required to keep the  
IC out of thermal shutdown. See TQFP7x7-48 thermal  
pad layout recommendation.  
5.5mm  
Via diameter  
=0.3mm X16  
1.7mm  
4.5mm  
Exposed  
for thermal  
PAD  
Ground  
plane for  
Thermal  
PAD  
connected  
Figure 5. TQFP7x7-48 thermal pad layout recommenda-  
tion  
Copyright ã ANPEC Electronics Corp.  
23  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Package Information  
TQFN7x7-48  
D
A
Pin 1  
A1  
A3  
D2  
Pin 1 Corner  
e
TQFN7x7-48  
S
Y
M
B
O
MILLIMETERS  
INCHES  
MIN.  
MAX.  
MIN.  
0.028  
0.000  
MAX.  
0.031  
0.002  
L
A
0.70  
0.00  
0.80  
0.05  
A1  
A3  
b
0.20 REF  
0.008 REF  
0.007  
0.272  
0.217  
0.272  
0.217  
0.012  
0.280  
0.228  
0.280  
0.228  
0.18  
0.30  
7.10  
5.80  
7.10  
5.80  
D
6.90  
5.50  
6.90  
5.50  
D2  
E
E2  
e
0.50 BSC  
0.020 BSC  
0.014  
0.008  
0.018  
L
0.35  
0.20  
0.45  
K
Note : 1. Followed from JEDEC MO-220 WKKD-4.  
Copyright ã ANPEC Electronics Corp.  
24  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Package Information  
D
TQ  
TQFP7x7-48P  
D1  
D2  
EXPOSED  
PAD  
b
e
GAUGE PLANE  
SEATING PLANE  
L
TQFP7x7-48P  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.20  
0.15  
1.05  
0.27  
0.20  
9.20  
7.10  
4.50  
9.20  
7.10  
4.50  
MIN.  
MAX.  
0.047  
0.006  
0.041  
0.011  
0.008  
0.362  
0.280  
0.177  
0.362  
0.280  
0.177  
A
0.002  
0.037  
0.007  
0.004  
0.346  
0.272  
0.118  
0.346  
0.272  
0.118  
A1  
A2  
0.05  
0.95  
0.17  
0.09  
8.80  
6.90  
3.00  
8.80  
6.90  
3.00  
b
c
D
D1  
D2  
E
E1  
E2  
e
0.50 BSC  
0.020 BSC  
0.45  
0o  
0.75  
7o  
0.018  
0o  
0.030  
7o  
L
0
Note : 1. Followed from JEDEC MS-026 ABC.  
2. Dimension "D1" and "E1" do not include mold protrusions.  
Allowable protrusions is 0.25 mm per side. "D1" and "E1" are  
maximun plasticbody size dimensions including mold mismatch.  
Copyright ã ANPEC Electronics Corp.  
25  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
TQFP7x7-48P  
Application  
TQFN7x7-48  
A
H
T1  
16.4+2.00 13.0+0.50  
-0.00 -0.20  
P2 D0  
C
d
D
W
E1  
F
7.5±0.10  
K0  
330.0±2.00 50 MIN.  
P0 P1  
1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10  
D1  
1.5 MIN.  
d
T
A0  
9.4±0.20  
W
B0  
9.4±0.20  
E1  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10 12.0±0.10 2.0±0.10  
T1  
1.8±0.20  
F
A
H
C
D
16.4+2.00 13.0+0.50  
-0.00 -0.20  
330.0±2.00 50 MIN.  
P0 P1  
1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10  
5.5±0.10  
K0  
P2 D0  
D1  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10 12.0±0.10 2.0±0.10  
1.5 MIN.  
7.30±0.20 7.30±0.20 1.3±0.20  
(mm)  
Devices Per Unit  
Package Type  
TQFP7x7-48P  
TQFN7x7-48  
Unit  
Quantity  
Tape & Reel  
Tape & Reel  
2500  
2500  
Copyright ã ANPEC Electronics Corp.  
26  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Taping Direction Information  
TQFN7x7-48  
USER DIRECTION OF FEED  
TQFP7x7-48P  
USER DIRECTION OF FEED  
Copyright ã ANPEC Electronics Corp.  
27  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Classification Profile  
Classification Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Preheat & Soak  
100 °C  
150 °C  
60-120 seconds  
150 °C  
200 °C  
60-120 seconds  
Temperature min (Tsmin  
)
Temperature max (Tsmax  
)
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate  
(Tsmax to TP)  
3 °C/second max.  
3°C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
183 °C  
60-150 seconds  
217 °C  
60-150 seconds  
Peak package body Temperature  
(Tp)*  
See Classification Temp in table 1  
20** seconds  
See Classification Temp in table 2  
30** seconds  
Time (tP)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax  
)
6 °C/second max.  
6 °C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to peak temperature  
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.  
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.  
Copyright ã ANPEC Electronics Corp.  
28  
www.anpec.com.tw  
Rev. A.6 - Sep., 2009  
APA3002  
Classification Reflow Profiles  
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)  
Volume mm3  
350  
Package  
Thickness  
<2.5 mm  
Volume mm3  
<350  
235 °C  
220 °C  
³ 2.5 mm  
220 °C  
220 °C  
Table 2. Pb-free Process – Classification Temperatures (Tc)  
Package  
Thickness  
<1.6 mm  
Volume mm3  
Volume mm3  
350-2000  
260 °C  
Volume mm3  
<350  
260 °C  
260 °C  
250 °C  
>2000  
260 °C  
245 °C  
245 °C  
1.6 mm – 2.5 mm  
³ 2.5 mm  
250 °C  
245 °C  
Reliability Test Program  
Test item  
SOLDERABILITY  
HOLT  
Method  
JESD-22, B102  
JESD-22, A108  
JESD-22, A102  
JESD-22, A104  
MIL-STD-883-3015.7  
JESD-22, A115  
JESD 78  
Description  
5 Sec, 245°C  
1000 Hrs, Bias @ 125°C  
168 Hrs, 100%RH, 2atm, 121°C  
500 Cycles, -65°C~150°C  
VHBM2KV  
PCT  
TCT  
HBM  
MM  
VMM200V  
10ms, 1tr100mA  
Latch-Up  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
Rev. A.6 - Sep., 2009  
29  
www.anpec.com.tw  

相关型号:

APA3002QBI-TRG

12W Stereo Class-D Audio Power Amplifier
ANPEC

APA3002QCAI-TRG

12W Stereo Class-D Audio Power Amplifier
ANPEC

APA3010

3.0 X 1.0 MM SMD CHIP LED LAMPS
KINGBRIGHT

APA3010CGCK

3.0mmx1.0 mm RIGHT ANGLE SMD CHIP LED LAMP
KINGBRIGHT

APA3010CGCK-GX

Single Color LED, Green, Water Clear, 2mm, ROHS COMPLIANT, SMD, 3 PIN
KINGBRIGHT

APA3010EC

3.0 X 1.0 MM SMD CHIP LED LAMPS
KINGBRIGHT

APA3010EC-GX

暂无描述
KINGBRIGHT

APA3010ECT

Single Color LED, High Efficiency Red, 2mm,
KINGBRIGHT

APA3010F3C

3.0x1.0 mm RIGHT ANGLE INFRARED EMITING DIODE
KINGBRIGHT

APA3010F3C-GX

Infrared LED, 2mm, 1-Element, 940nm, ROHS COMPLIANT, SMT, 3 PIN
KINGBRIGHT

APA3010F3CT

2mm, 1 ELEMENT, INFRARED LED, 940nm
KINGBRIGHT

APA3010HC

3.0 X 1.0 MM SMD CHIP LED LAMPS
KINGBRIGHT