CDRH3D16-4R7 [ANALOGICTECH]

1MHz Step-Down Converter/LDO Regulator; 1MHz的降压转换器/ LDO稳压器
CDRH3D16-4R7
型号: CDRH3D16-4R7
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

1MHz Step-Down Converter/LDO Regulator
1MHz的降压转换器/ LDO稳压器

转换器 稳压器
文件: 总26页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
SysPwr  
General Description  
Features  
The AAT2506 is a member of AnalogicTech's Total  
Power Management IC™ (TPMIC™) product fam-  
ily. It is a low dropout (LDO) linear regulator and a  
step-down converter with an input voltage range of  
2.7V to 5.5V, making it ideal for applications with  
single lithium-ion/polymer batteries.  
VIN Range: 2.7V to 5.5V  
VOUT Range: 0.6V to VIN  
300mA LDO Current Output  
400mV LDO Dropout Voltage at 300mA  
High Output Accuracy: ±1.5%  
Fast LDO Line / Load Transient Response  
600mA, 97% Efficiency Step-Down Converter  
Fast Turn-On Time (100µs Typical)  
25µA No Load Quiescent Current for Step-  
Down Converter  
The LDO has an independent input and is capable  
of delivering up to 300mA. The linear regulator has  
been designed for high-speed turn-on and turn-off  
performance, fast transient response, and good  
power supply rejection ratio (PSRR). Other fea-  
tures include low quiescent current and a low  
dropout voltage.  
Shutdown Current <1µA  
Low RDS(ON) 0.4Integrated Power Switches  
100% Duty Cycle Low Dropout Operation  
1MHz Switching Frequency  
100µs Typical Soft Start  
Over-Temperature Protection  
Current Limit Protection  
Available in TDFN33-12 Package  
-40°C to +85°C Temperature Range  
The AAT2506 is available in either a fixed version  
with internal feedback or a programmable version  
with external feedback resistors. It can deliver  
600mA of load current while maintaining a low  
25µA no load quiescent current. The 1MHz switch-  
ing frequency minimizes the size of external com-  
ponents while keeping switching losses low. The  
AAT2506 feedback and control delivers excellent  
load regulation and transient response with a small  
output inductor and capacitor.  
Applications  
Cellular Phones  
Digital Cameras  
Handheld Instruments  
Microprocessor/DSP Core/IO Power  
PDAs and Handheld Computers  
Portable Media Players  
The AAT2506 is designed to maintain high efficien-  
cy throughout the operating range, which is critical  
for portable applications.  
The AAT2506 is available in a 12-pin TDFN33  
package, and is rated over a temperature range of  
-40°C to +85°C.  
Typical Application  
VIN = 2.7V to 5.5V  
AAT2506 Step-Down Converter Efficiency  
(VOUT = 2.5V; L = 10µH)  
C3  
10µF  
3
5
9
6
7
8
4
100  
VP  
VCC  
EN  
10  
2
VLDO  
ENLDO  
OUT  
BYP  
GND  
U1  
L1  
3.3V at 300mA  
90  
80  
70  
60  
LX  
4.7µH  
11  
12  
1
VIN = 3.3V  
FB  
SGND  
PGND  
C1  
22µF  
C4  
2.2µF  
C5  
AAT2506  
10nF  
0.1  
1
10  
100  
1000  
L1 Sumida CDRH3D16-4R7 C1 Murata GRM219R61A475KE19  
C3 Murata GRM21BR60J106KE19  
Output Current (mA)  
2506.2005.12.1.0  
1
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Pin Descriptions  
Pin #  
Symbol  
Function  
1
PGND  
Step-down converter power ground return pin. Connect to the output and input capaci-  
tor return. See section on PCB layout guidelines and evaluation board layout diagram.  
Power switching node. Output switching node that connects to the output inductor.  
Step-down converter power stage supply voltage. Must be closely decoupled to PGND.  
Step-down converter bias supply. Connect to VP.  
2
3
4
5
6
LX  
VP  
VCC  
VLDO  
OUT  
LDO input voltage; should be decoupled with 1µF or greater capacitor.  
300mA LDO output pin. A 2.2µF or greater output low-ESR ceramic capacitor is  
required for stability.  
7
BYP  
Bypass capacitor for the LDO. To improve AC ripple rejection, connect a 10nF capaci-  
tor to GND. This will also provide a soft-start function.  
8
9
GND  
LDO ground connection pin.  
ENLDO  
Enable pin for LDO. When connected low, LDO is disabled and consumes less than  
1µA of current.  
10  
11  
EN  
FB  
Step-down converter enable. When connected low, LDO is disabled and consumes  
less than 1µA.  
Step-down converter feedback input pin. For fixed output voltage versions, this pin is  
connected to the converter output, forcing the converter to regulate to the specific volt-  
age. For adjustable output versions, an external resistive divider ties to this point and  
programs the output voltage to the desired value.  
12  
SGND  
Step-down converter signal ground. For external feedback, return the feedback resis-  
tive divider to this ground. For internal fixed version, tie to the point of load return. See  
section on PCB layout guidelines and evaluation board layout diagram.  
Exposed paddle (bottom). Use properly sized vias for thermal coupling to the ground  
plane. See section on PCB layout guidelines.  
EP  
Pin Configuration  
TDFN33-12  
(TopView)  
1
2
3
4
5
6
12  
11  
10  
9
PGND  
LX  
VP  
VCC  
VLDO  
OUT  
SGND  
FB  
EN  
ENLDO  
GND  
BYP  
8
7
2
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VP, VLDO  
VLX  
Input Voltages to GND  
LX to GND  
6.0  
V
V
-0.3 to VP + 0.3  
-0.3 to VP + 0.3  
-0.3 to 6.0  
-40 to 150  
300  
VFB  
FB to GND  
V
VEN  
EN to GND  
V
TJ  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
°C  
°C  
TLEAD  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
Maximum Power Dissipation  
Thermal Resistance2  
2
W
θJA  
50  
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at  
conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any  
one time.  
2. Mounted on an FR4 board with exposed paddle connected to ground plane.  
2506.2005.12.1.0  
3
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Electrical Characteristics1  
Symbol Description  
Conditions  
Min  
Typ Max  
Units  
V
IN = VLDO = VOUT(NOM) + 1V for VOUT options greater than 1.5V. VIN = VLDO = 2.5V for VOUT 1.5V. IOUT  
=
LDO  
1mA, COUT = 2.2µF, CIN = 1µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
TA = 25°C  
IOUT = 1mA to 300mA TA = -40°C  
to 85°C  
-1.5  
-2.5  
1.5  
2.5  
VOUT  
Output Voltage Tolerance  
%
2
VIN  
VDO  
Input Voltage  
Dropout Voltage3, 4  
VOUT+VDO  
5.5  
V
IOUT = 300mA  
400 600  
mV  
VOUT  
VOUT*VIN  
/
Line Regulation  
VIN = VOUT + 1V to 5V  
0.09  
%/V  
mV  
IOUT = 300mA, VIN = VOUT + 1V to  
VOUT(Line) Dynamic Line Regulation  
2.5  
60  
VOUT + 2V, TR/TF = 2µS  
IOUT = 1mA to 300mA, TR <5µS  
VOUT > 1.3V  
VOUT(Load) Dynamic Load Regulation  
mV  
mA  
mA  
µA  
IOUT  
ISC  
Output Current  
300  
Short-Circuit Current  
LDO Quiescent Current  
VOUT < 0.4V  
600  
IQLDO  
VIN = 5V, No Load, ENLDO = VIN  
70  
125  
1.0  
VIN = 5V; ENLDO = GND,  
ISHDN  
PSRR  
TSD  
Shutdown Current  
µA  
dB  
°C  
EN = SGND = PGND  
1kHz  
67  
47  
45  
Power Supply Rejection Ratio IOUT = 10mA, CBYP = 10nF 10kHz  
1MHz  
Over-Temperature Shutdown  
Threshold  
145  
Over-Temperature Shutdown  
Hysteresis  
THYS  
eN  
12  
50  
22  
°C  
Output Noise  
eNBW = 300Hz to 50kHz  
µVRMS  
ppm/°C  
Output Voltage Temperature  
Coefficient  
TC  
1. The AAT2506 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
2. To calculate the minimum LDO input voltage, use the following equation: VIN(MIN) = VOUT(MAX) + VDO(MAX), as long as VIN 2.5V.  
3. For VOUT <2.1V, VDO = 2.5 - VOUT  
.
4. VDO is defined as VIN - VOUT when VOUT is 98% of nominal.  
4
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Electrical Characteristics1  
Symbol  
Description  
Conditions  
Min Typ Max Units  
Buck Converter Typical values are TA = 25°C, VIN = VCC = Vp = 3.6V.  
VIN  
Input Voltage  
2.7  
5.5  
2.6  
V
V
VIN Rising  
Hysteresis  
VIN Falling  
VUVLO  
UVLO Threshold  
100  
25  
mV  
V
1.8  
-3.5  
0.6  
I
OUT = 0 to 400mA,  
VOUT  
VOUT  
Output Voltage Tolerance  
+3.5  
4.0  
50  
%
V
VIN = 2.7V to 5.5V  
Output Voltage Range  
Step-Down Converter  
Quiescent Current  
Shutdown Current  
P-Channel Current Limit  
High Side Switch On  
Resistance  
Fixed Output Version  
ENLDO = GND, No Load,  
0.6V Adjustable Model  
IQBUCK  
µA  
ISHDN  
ILIM  
EN = SGND = PGND, ENLDO = GND  
1.0  
µA  
600  
mA  
RDS(ON)H  
RDS(ON)L  
0.45  
0.40  
Low Side Switch On  
Resistance  
V
IN = 5.5V, VLX = 0 - VIN  
ILXLK  
LX Leakage Current  
1.0  
µA  
EN = SGND = PGND  
ILXLK, R  
LX Reverse Leakage Current VIN = Open, VLX = 5.5V,  
1.0  
0.5  
µA  
%/V  
mV  
(fixed)  
EN = SGND = PGND  
VIN = 2.7V to 5.5V  
VLinereg  
VFB  
Line Regulation  
FB Threshold Voltage  
Accuracy  
0.6V Output, No Load, TA = 25°C  
591  
0.7  
600 609  
0.2  
IFB  
FOSC  
TS  
FB Leakage Current  
Oscillator Frequency  
Start-Up Time  
0.6V Output  
µA  
MHz  
µs  
TA = 25°C  
1.0  
1.5  
From Enable to Output Regulation  
100  
Over-Temperature Shutdown  
Threshold  
TSD  
140  
15  
°C  
°C  
Over-Temperature Shutdown  
Hysteresis  
THYS  
Logic Signals  
VEN(L)  
Enable Threshold Low  
Enable Threshold High  
Leakage Current  
0.6  
1.0  
V
V
VEN(H)  
1.5  
1.0  
IEN(H)  
µA  
1. The AAT2506 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
2506.2005.12.1.0  
5
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C.  
LDO Dropout Voltage vs. Temperature  
(EN = GND; ENLDO = VIN)  
LDO Dropout Characteristics  
(EN = GND; ENLDO = VIN)  
540  
480  
420  
360  
300  
240  
180  
120  
60  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
IL = 300mA  
IOUT = 0mA  
IL = 100mA  
IL = 150mA  
IOUT = 300mA  
IOUT = 150mA  
IOUT = 100mA  
IOUT = 50mA  
IOUT = 10mA  
2.80  
IL = 50mA  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
2.70  
2.90  
3.00  
3.10  
3.20  
3.30  
Temperature (°C)  
Input Voltage (V)  
LDO Dropout Voltage vs. Output Current  
(EN = GND; ENLDO = VIN)  
LDO Ground Current vs. Input Voltage  
(EN = GND; ENLDO = VIN)  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT=300mA  
IOUT=150mA  
85°C  
25°C  
IOUT=50mA  
IOUT=0mA  
-40°C  
IOUT=10mA  
0
0
50  
100  
150  
200  
250  
300  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Output Current (mA)  
LDO Initial Power-Up Response Time  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
LDO Dropout Voltage vs. Temperature  
(EN = GND; ENLDO = VIN)  
540  
480  
420  
360  
300  
240  
180  
120  
60  
IL = 300mA  
VENLDO (5V/div)  
IL = 100mA  
IL = 150mA  
IL = 50mA  
0
VOUT (1V/div)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Temperature (°C)  
400µµs/div  
6
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C, VIN = VLDO = VCC = VP.  
LDO Turn-On Time From Enable (VIN present)  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
LDO Turn-Off Response Time  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
VENLDO = 5V/div  
VENLDO (5V/div)  
VIN = 4V  
VOUT (1V/div)  
VOUT = 1V/div  
50µs/div  
5µs/div  
LDO Line Transient Response  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
LDO Load Transient Response  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
500  
400  
300  
200  
100  
0
6
5
4
3
2
1
0
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
VOUT  
VIN  
VOUT  
IOUT  
-100  
100µS/div  
100µs/div  
LDO Load Transient Response 300mA  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
LDO Self Noise  
(EN = GND; ENLDO = VIN)  
3.00  
800  
10  
1
2.90  
2.80  
2.70  
2.60  
2.50  
2.40  
2.30  
2.20  
2.10  
700  
600  
500  
400  
300  
200  
100  
0
VOUT  
0.1  
Band Power:  
300Hz to 50kHz = 44.6µVrms  
100Hz to 100kHz = 56.3µVrms  
0.01  
IOUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
-100  
10µµs/div  
Frequency (kHz)  
2506.2005.12.1.0  
7
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C.  
Over-Current Protection  
(EN = GND; ENLDO = VIN)  
LDO ENLDO vs. VIN  
1200  
1000  
800  
600  
400  
200  
0
1.250  
1.225  
1.200  
1.175  
VIH  
1.150  
1.125  
1.100  
1.075  
1.050  
VIL  
-200  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Time (50ms/div)  
Input Voltage (V)  
Step-Down Converter Efficiency vs. Load  
(VOUT = 3.3V; L = 10µH; ENLDO = GND)  
Step-Down Converter DC Regulation  
(VOUT = 3.3V; L = 10µH; ENLDO = GND)  
3.0  
2.0  
100  
VIN = 4.2V  
90  
VIN = 3.9V  
1.0  
VIN = 4.2V  
0.0  
80  
-1.0  
-2.0  
-3.0  
VIN = 3.9V  
70  
60  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Step-Down Converter Efficiency vs. Load  
(VOUT = 2.5V; L = 10µH; ENLDO = GND)  
Step-Down Converter DC Regulation  
(VOUT = 2.5V; L = 10µH; ENLDO = GND)  
3.0  
2.0  
100  
VIN = 3.3V  
VIN = 3.3V  
VIN = 3.6V  
90  
80  
70  
60  
1.0  
VIN = 3.0V  
VIN = 3.6V  
0.0  
VIN = 3.0V  
-1.0  
-2.0  
-3.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
8
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C.  
Step-Down Converter Efficiency vs. Load  
(VOUT = 1.5V; L = 4.7µH; ENLDO = GND)  
Step-Down Converter DC Regulation  
(VOUT = 1.5V; L = 4.7µH; ENLDO = GND)  
3.0  
2.0  
100  
VIN = 2.7V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 3.6V  
90  
80  
70  
60  
50  
1.0  
VIN = 4.2V  
0.0  
VIN = 2.7V  
-1.0  
-2.0  
-3.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Step-Down Converter  
Frequency vs. Input Voltage  
(VOUT = 1.8V; EN = VIN; ENLDO = GND)  
Step-Down Converter  
Output Voltage Error vs. Temperature  
(VIN = 3.6V; VO = 1.5V; EN = VIN; ENLDO = GND)  
2.0  
1.0  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0.0  
-1.0  
-2.0  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Temperature (°C)  
Step-Down Converter  
Switching Frequency vs. Temperature  
(VIN = 3.6V; VO = 1.5V; EN = VIN; ENLDO = GND)  
Step-Down Converter  
Input Current vs. Input Voltage  
(VO = 1.8V; EN = VIN; ENLDO = GND)  
35  
30  
25  
20  
15  
0.20  
0.10  
85°C  
25°C  
0.00  
-0.10  
-40°C  
-0.20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-40  
-20  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Temperature (°°C)  
2506.2005.12.1.0  
9
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C.  
Step-Down Converter  
P-Channel RDS(ON) vs. Input Voltage  
(EN = VIN; ENLDO = GND)  
Step-Down Converter  
N-Channel RDS(ON) vs. Input Voltage  
(EN = VIN; ENLDO = GND)  
750  
700  
750  
700  
650  
650  
120°C  
100°C  
120°C  
100°C  
600  
550  
500  
600  
550  
500  
450  
400  
350  
300  
85°C  
85°C  
450  
25°C  
400  
25°C  
350  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Step-Down Converter Load Transient Response  
(30mA - 300mA; VIN = 3.6V; VOUT = 1.5V;  
Step-Down Converter Load Transient Response  
(30mA - 300mA; VIN = 3.6V; VOUT = 2.5V;  
C1 = 22µF; ENLDO = GND)  
C1 = 22µF; ENLDO = GND)  
1.65  
2.65  
1.5  
1.5  
1.3  
1.60  
1.55  
2.55  
1.3  
1.50  
1.1  
1.1  
1.45  
300mA  
2.45  
300mA  
1.40  
0.9  
0.9  
30mA  
30mA  
1.35  
2.35  
0.7  
0.7  
1.30  
1.25  
0.5  
0.5  
2.25  
1.20  
0.3  
0.1  
-0.1  
1.15  
1.10  
1.05  
1.00  
0.3  
2.15  
2.05  
0.1  
-0.1  
Time (25µs/div)  
Time (25µs/div)  
Step-Down Converter Line Regulation  
(VOUT = 1.5V; ENLDO = GND)  
Step-Down Converter Line Transient  
(VOUT = 1.8V @ 400mA; EN = VIN; ENLDO = GND)  
2
1.5  
1
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
IOUT = 600mA  
0.5  
0
IOUT = 100mA  
IOUT = 10mA  
-0.5  
-1  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Time (25µs/div)  
Input Voltage (V)  
10  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Typical Characteristics  
Unless otherwise noted, VIN = 5V, TA = 25°C.  
Step-Down Converter Soft Start  
(VIN = 3.6V; VOUT = 1.5V; L = 4.7µH; ENLDO = GND)  
Step-Down Converter Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; 400mA;  
EN = VIN; ENLDO = GND)  
4.0  
3.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
40  
20  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
2.0  
0
1.0  
-20  
-40  
-60  
-80  
-100  
-120  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
Time (50µs/div)  
Time (250ns/div)  
2506.2005.12.1.0  
11  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Functional Block Diagram  
VCC  
VP  
FB  
Error  
Amp.  
DH  
See  
Note  
LX  
Logic  
Voltage  
Reference  
Control  
Logic  
DL  
EN  
PGND  
OUT  
SGND  
VLDO  
Over-Current  
Protection  
Error  
Amp.  
Voltage  
Reference  
BYP  
Fast Start  
Control  
ENLDO  
GND  
Note: Internal resistor divider included for 1.2V versions. For low voltage versions, the feedback pin is tied directly to the error  
amplifier input.  
12  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
plete short-circuit and thermal protection. The com-  
bination of these two internal protection circuits  
gives a comprehensive safety system to guard  
Functional Description  
The AAT2506 is a high performance power man-  
agement IC comprised of a buck converter and a  
linear regulator. The buck converter is a high effi-  
ciency converter capable of delivering up to  
600mA. Designed to operate at 1.0MHz, the con-  
verter requires only three external components  
(CIN, COUT, and LX) and is stable with a ceramic  
output capacitor. The linear regulator delivers  
300mA and is also stable with ceramic capacitors.  
against extreme adverse operating conditions.  
The regulator features an enable/disable function.  
This pin (ENLDO) is active high and is compatible  
with CMOS logic. To assure the LDO regulator will  
switch on, the ENLDO turn-on control level must be  
greater than 1.5V. The LDO regulator will go into  
the disable shutdown mode when the voltage on  
the EN pin falls below 0.6V. If the enable function is  
not needed in a specific application, it may be tied  
to VIN to keep the LDO regulator in a continuously  
on state.  
Linear Regulator  
When the regulator is in shutdown mode, an inter-  
nal 1.5kresistor is connected between OUT and  
GND. This is intended to discharge COUT when the  
LDO regulator is disabled. The internal 1.5KΩ  
resistor has no adverse impact on device turn-on  
time.  
The advanced circuit design of the linear regulator  
has been specifically optimized for very fast start-  
up and shutdown timing. This proprietary CMOS  
LDO has also been tailored for superior transient  
response characteristics. These traits are particu-  
larly important for applications that require fast  
power supply timing.  
The high-speed turn-on capability is enabled  
through implementation of a fast-start control cir-  
cuit, which accelerates the power-up behavior of  
fundamental control and feedback circuits within  
the LDO regulator. Fast turn-off time response is  
achieved by an active output pull-down circuit,  
which is enabled when the LDO regulator is  
placed in shutdown mode. This active fast shut-  
down circuit has no adverse effect on normal  
device operation. The LDO regulator output has  
been specifically optimized to function with low-  
cost, low-ESR ceramic capacitors; however, the  
design will allow for operation over a wide range  
of capacitor types.  
Step-Down Converter  
The AAT2506 buck is a constant frequency peak  
current mode PWM converter with internal com-  
pensation. It is designed to operate with an input  
voltage range of 2.7V to 5.5V. The output voltage  
ranges from 0.6V to the input voltage. The 0.6V  
fixed model shown in Figure 1 is also the  
adjustable version and is externally programmable  
with a resistive divider, as shown in Figure 2. The  
converter MOSFET power stage is sized for  
600mA load capability with up to 97% efficiency.  
Light load efficiency exceeds 80% at a 500µA load.  
A bypass pin has been provided to allow the addi-  
tion of an optional voltage reference bypass capac-  
itor to reduce output self noise and increase power  
supply ripple rejection. Device self noise and  
PSRR will be improved by the addition of a small  
ceramic capacitor in this pin. However, increased  
values of CBYPASS may slow down the LDO regula-  
tor turn-on time. The regulator comes with com-  
Soft Start  
The AAT2506 soft-start control prevents output  
voltage overshoot and limits inrush current when  
either the input power or the enable input is  
applied. When pulled low, the enable input forces  
the converter into a low-power, non-switching state  
with a bias current of less than 1µA.  
2506.2005.12.1.0  
13  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
VIN  
VIN  
C3  
C3  
3
5
9
6
7
8
4
VP  
VCC  
EN  
10µF  
3
5
9
6
7
8
4
VP  
VCC  
EN  
10µF  
10  
2
VLDO  
ENLDO  
OUT  
BYP  
10  
2
VOUTBUCK  
VLDO  
ENLDO  
OUT  
BYP  
L1  
VOUTBUCK  
L1  
LX  
LX  
VOUTLDO  
11  
12  
1
VOUTLDO  
R1  
11  
12  
1
FB  
FB  
SGND  
PGND  
SGND  
PGND  
C1  
22µF  
C8  
GND  
GND  
C4  
4.7µF  
C4  
4.7µF  
100pF  
C1  
22µF  
C5  
C5  
U1  
AAT2506  
R2  
59k  
U1  
AAT2506  
10nF  
10nF  
Figure 1: AAT2506 Fixed Output.  
Figure 2: AAT2506 with Adjustable Step-Down  
Output and Enhanced Transient Response.  
Low Dropout Operation  
Applications Information  
For conditions where the input voltage drops to the  
output voltage level, the converter duty cycle  
increases to 100%. As 100% duty cycle is  
approached, the minimum off-time initially forces  
the high side on-time to exceed the 1MHz clock  
cycle and reduce the effective switching frequency.  
Once the input drops below the level where the out-  
put can be regulated, the high side P-channel  
MOSFET is turned on continuously for 100% duty  
cycle. At 100% duty cycle, the output voltage tracks  
the input voltage minus the IR drop of the high side  
Linear Regulator  
Input and Output Capacitors: An input capacitor  
is not required for basic operation of the linear reg-  
ulator. However, if the AAT2506 is physically locat-  
ed more than three centimeters from an input  
power source, a CIN capacitor will be needed for  
stable operation. Typically, a 1µF or larger capaci-  
tor is recommended for CIN in most applications.  
CIN should be located as closely to the device VIN  
pin as practically possible.  
P-channel MOSFET RDS(ON)  
.
An input capacitor greater than 1µF will offer supe-  
rior input line transient response and maximize  
power supply ripple rejection. Ceramic, tantalum,  
or aluminum electrolytic capacitors may be select-  
ed for CIN. There is no specific capacitor ESR  
requirement for CIN. However, for 300mA LDO reg-  
ulator output operation, ceramic capacitors are rec-  
ommended for CIN due to their inherent capability  
over tantalum capacitors to withstand input current  
surges from low impedance sources such as bat-  
teries in portable devices.  
Low Supply  
The under-voltage lockout (UVLO) guarantees suf-  
ficient VIN bias and proper operation of all internal  
circuitry prior to activation.  
Fault Protection  
For overload conditions, the peak inductor current is  
limited. Thermal protection disables switching when  
the internal dissipation or ambient temperature  
becomes excessive. The junction over-temperature  
threshold is 140°C with 15°C of hysteresis.  
For proper load voltage regulation and operational  
stability, a capacitor is required between OUT and  
GND. The COUT capacitor connection to the LDO  
regulator ground pin should be made as directly as  
practically possible for maximum device perform-  
ance. Since the regulator has been designed to  
function with very low ESR capacitors, ceramic  
capacitors in the 1.0µF to 10µF range are recom-  
mended for best performance. Applications utilizing  
14  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
the exceptionally low output noise and optimum  
Step-Down Converter  
power supply ripple rejection should use 2.2µF or  
greater for COUT. In low output current applications,  
where output load is less than 10mA, the minimum  
value for COUT can be as low as 0.47µF.  
Inductor Selection: The step-down converter  
uses peak current mode control with slope com-  
pensation to maintain stability for duty cycles  
greater than 50%. The output inductor value must  
be selected so the inductor current down slope  
meets the internal slope compensation require-  
ments. The internal slope compensation for the  
adjustable and low-voltage fixed versions of the  
AAT2506 is 0.24A/µsec. This equates to a slope  
compensation that is 75% of the inductor current  
down slope for a 1.5V output and 4.7µH inductor.  
Equivalent Series Resistance: ESR is a very  
important characteristic to consider when selecting a  
capacitor. ESR is the internal series resistance asso-  
ciated with a capacitor that includes lead resistance,  
internal connections, size and area, material compo-  
sition, and ambient temperature. Typically, capacitor  
ESR is measured in milliohms for ceramic capaci-  
tors and can range to more than several ohms for  
tantalum or aluminum electrolytic capacitors.  
0.75 VO 0.75 1.5V  
= 0.24  
A
m =  
=
L
4.7µH  
µsec  
Bypass Capacitor and Low Noise  
Applications  
This is the internal slope compensation for the  
adjustable (0.6V) version or low-voltage fixed ver-  
sions. When externally programming the 0.6V ver-  
sion to 2.5V, the calculated inductance is 7.5µH.  
A bypass capacitor pin is provided to enhance the  
low noise characteristics of the LDO. The bypass  
capacitor is not necessary for operation; however,  
for best device performance, a small ceramic  
capacitor in the range of 470pF to 10nF should be  
placed between the bypass pin (BYP) and the  
device ground pin (GND). To practically realize the  
highest power supply ripple rejection and lowest  
output noise performance, it is critical that the  
capacitor connection between the BYP pin and  
GND pin be direct and PCB traces should be as  
short as possible.  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
3
VO  
m
0.24A  
µsec  
µsec  
A
= 3  
2.5V = 7.5µH  
In this case, a standard 10µH value is selected.  
DC leakage on this pin can affect the LDO regula-  
tor output noise and voltage regulation perform-  
ance. For this reason, the use of a low leakage,  
high quality ceramic (NPO or C0G type) or film  
capacitor is highly recommended.  
For high-voltage fixed versions (2.5V and above),  
m = 0.48A/µsec. Table 1 displays inductor values  
for the AAT2506 fixed and adjustable options.  
Configuration  
Output Voltage  
0.6V to 2.0V  
2.5V to VIN  
Inductor  
4.7µH  
Slope Compensation  
0.24A/µsec  
0.6V Adjustable With  
External Resistive Divider  
10µH  
0.24A/µsec  
0.6V to 2.0V  
2.5V to VIN  
4.7µH  
0.24A/µsec  
Fixed Output  
4.7µH  
0.48A/µsec  
Table 1: Inductor Values.  
2506.2005.12.1.0  
15  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Manufacturer's specifications list both the inductor  
The input capacitor RMS ripple current varies with  
the input and output voltage and will always be less  
than or equal to half of the total DC load current.  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive loss-  
es due to a high DCR. Always consider the losses  
associated with the DCR and its effect on the total  
converter efficiency when selecting an inductor.  
VOBUCK  
VIN  
· 1  
VOBUCK  
VIN  
1
2
-
=
D
· (1 - D) = 0.52 =  
for VIN = 2 x VOBUCK  
The 4.7µH CDRH3D16 series inductor selected  
from Sumida has a 105mDCR and a 900mA DC  
current rating. At full load, the inductor DC loss is  
17mW which gives a 2.8% loss in efficiency for a  
400mA, 1.5V output.  
IOBUCK  
IRMS(MAX)  
=
2
VOBUCK  
VIN  
VOBUCK  
·
1 -  
The term  
appears in both the  
VIN  
input voltage ripple and input capacitor RMS cur-  
rent equations and is a maximum when VOBUCK is  
twice VIN. This is why the input voltage ripple and  
the input capacitor RMS current ripple are a maxi-  
mum at 50% duty cycle.  
Input Capacitor  
Select a 4.7µF to 10µF X7R or X5R ceramic capac-  
itor for the input. To estimate the required input  
capacitor size, determine the acceptable input rip-  
ple level (VPP) and solve for C. The calculated  
value varies with input voltage and is a maximum  
when VIN is double the output voltage.  
The input capacitor provides a low impedance loop  
for the edges of pulsed current drawn by the  
AAT2500. Low ESR/ESL X7R and X5R ceramic  
capacitors are ideal for this function. To minimize  
stray inductance, the capacitor should be placed as  
closely as possible to the IC. This keeps the high  
frequency content of the input current localized,  
minimizing EMI and input voltage ripple.  
V
VOBUCK  
VIN  
OBUCK · 1 -  
VIN  
CIN =  
VPP  
IOBUCK  
- ESR ·FS  
The proper placement of the input capacitor (C2)  
can be seen in the evaluation board layout in  
Figure 3.  
VOBUCK  
VIN  
VOBUCK  
VIN  
1
4
· 1 -  
=
for VIN = 2 × VOBUCK  
A laboratory test set-up typically consists of two  
long wires running from the bench power supply to  
the evaluation board input voltage pins. The induc-  
tance of these wires, along with the low-ESR  
ceramic input capacitor, can create a high Q net-  
work that may affect converter performance. This  
problem often becomes apparent in the form of  
excessive ringing in the output voltage during load  
transients. Errors in the loop phase and gain meas-  
urements can also result.  
1
CIN(MIN)  
=
VPP  
IOBUCK  
- ESR · 4 · FS  
Always examine the ceramic capacitor DC voltage  
coefficient characteristics when selecting the prop-  
er value. For example, the capacitance of a 10µF,  
6.3V, X5R ceramic capacitor with 5.0V DC applied  
is actually about 6µF.  
Since the inductance of a short PCB trace feeding  
the input voltage is significantly lower than the  
power leads from the bench power supply, most  
applications do not exhibit this problem.  
The maximum input capacitor RMS current is:  
VOBUCK  
VIN  
VOBUCK  
VIN  
IRMS = IOBUCK  
·
· 1 -  
16  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Figure 3: AAT2506 Evaluation Board Top Side.  
Figure 4: AAT2506 Evaluation Board  
Bottom Side.  
In applications where the input power source lead  
inductance cannot be reduced to a level that does  
not affect the converter performance, a high ESR  
tantalum or aluminum electrolytic should be placed  
in parallel with the low ESR, ESL bypass ceramic.  
This dampens the high Q network and stabilizes  
the system.  
Once the average inductor current increases to the  
DC load level, the output voltage recovers. The  
above equation establishes a limit on the minimum  
value for the output capacitor with respect to load  
transients.  
The internal voltage loop compensation also limits  
the minimum output capacitor value to 22µF. This is  
due to its effect on the loop crossover frequency  
(bandwidth), phase margin, and gain margin.  
Increased output capacitance will reduce the  
crossover frequency with greater phase margin.  
Output Capacitor  
The output capacitor limits the output ripple and  
provides holdup during large load transitions. A  
22µF X5R or X7R ceramic capacitor typically pro-  
vides sufficient bulk capacitance to stabilize the  
output during large load transitions and has the  
ESR and ESL characteristics necessary for low  
output ripple.  
The maximum output capacitor RMS ripple current  
is given by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · F · VIN(MAX)  
2 · 3  
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic out-  
put capacitor. During a step increase in load cur-  
rent, the ceramic output capacitor alone supplies  
the load current until the loop responds. Within two  
or three switching cycles, the loop responds and  
the inductor current increases to match the load  
current demand. The relationship of the output volt-  
age droop during the three switching cycles to the  
output capacitance can be estimated by:  
Dissipation due to the RMS current in the ceramic  
output capacitor ESR is typically minimal, resulting in  
less than a few degrees rise in hot-spot temperature.  
Adjustable Output Resistor Selection  
For applications requiring an adjustable output volt-  
age, the 0.6V version can be externally pro-  
grammed. Resistors R1 and R2 of Figure 5 program  
the output to regulate at a voltage higher than 0.6V.  
To limit the bias current required for the external  
feedback resistor string while maintaining good  
noise immunity, the minimum suggested value for  
3 · ILOAD  
=
COUT  
VDROOP · FS  
2506.2005.12.1.0  
17  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
R2 is 59k. Although a larger value will further  
reduce quiescent current, it will also increase the  
impedance of the feedback node, making it more  
sensitive to external noise and interference. Table 2  
summarizes the resistor values for various output  
voltages with R2 set to either 59kfor good noise  
immunity or 221kfor reduced no load input current.  
R2 = 221k  
R2 = 59k  
VOUT (V)  
R1 (k )  
R1 (k )  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
V
V
1.5V  
0.6V  
R1 =  
OUT -1 · R2 =  
- 1 · 59k= 88.5kΩ  
REF  
The AAT2506, combined with an external feedfor-  
ward capacitor (C8 in Figures 2 and 5), delivers  
enhanced transient response for extreme pulsed  
load applications. The addition of the feedforward  
capacitor typically requires a larger output capaci-  
tor C1 for stability.  
124  
137  
187  
267  
Table 2: Adjustable Resistor Values For Use  
With 0.6V Step-Down Converter.  
LX1  
VOUTBUCK  
R1  
Table 3  
C7  
0.01µF  
C9  
n/a  
U1  
C81  
AAT2506  
PGND SGND  
1
2
3
4
5
6
12  
11  
10  
9
C1  
22µF1  
R2  
59k  
C2  
10µF  
LX  
VP  
FB  
EN  
L1  
Table 3  
3
2
1
VIN1  
VCC ENLDO  
3
2
1
Buck Enable  
8
IN  
GND  
BYP  
7
3
2
1
OUT  
LDO Input  
C3  
10µF  
C4  
4.7µF  
C5  
10nF  
LDO Enable  
GND  
GND  
VOUTLDO  
Figure 5: AAT2506 Evaluation Board Schematic.  
1. For step-down converter, enhanced transient configuration C8 = 100pF and C1 = 10uF.  
18  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Given the total losses, the maximum junction tem-  
perature can be derived from the θJA for the  
TDFN33-12 package which is 50°C/W.  
Thermal Calculations  
There are three types of losses associated with the  
AAT2506 step-down converter: switching losses,  
conduction losses, and quiescent current losses.  
Conduction losses are associated with the RDS(ON)  
characteristics of the power output switching  
devices. Switching losses are dominated by the  
gate charge of the power output switching devices.  
At full load, assuming continuous conduction mode  
(CCM), a simplified form of the step-down convert-  
er and LDO losses is given by:  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
PCB Layout  
The following guidelines should be used to ensure  
a proper layout.  
1. The input capacitor C2 should connect as  
closely as possible to VP and PGND, as shown  
in Figure 4.  
IOBUCK2 · (RDSON(HS) · VOBUCK + RDSON(LS) · [VIN - VOBUCK])  
PTOTAL  
=
VIN  
2. The output capacitor and inductor should be  
connected as closely as possible. The connec-  
tion of the inductor to the LX pin should also be  
as short as possible.  
3. The feedback trace should be separate from  
any power trace and connect as closely as  
possible to the load point. Sensing along a  
high-current load trace will degrade DC load  
regulation. If external feedback resistors are  
used, they should be placed as closely as pos-  
sible to the FB pin. This prevents noise from  
being coupled into the high impedance feed-  
back node.  
4. The resistance of the trace from the load return  
to GND should be kept to a minimum. This will  
help to minimize any error in DC regulation due  
to differences in the potential of the internal sig-  
nal ground and the power ground.  
5. For good thermal coupling, PCB vias are  
required from the pad for the TDFN paddle to the  
ground plane. The via diameter should be 0.3mm  
to 0.33mm and positioned on a 1.2mm grid.  
6. LDO bypass capacitor (C5) should be connected  
directly between pins 7 (BYP) and 8 (GND)  
+ (tsw · F · IOBUCK + IQBUCK + IQLDO) · VIN + IOLDO · (VIN - VOLDO  
)
IQBUCK is the step-down converter quiescent cur-  
rent and IQLDO is the LDO quiescent current. The  
term tsw is used to estimate the full load step-down  
converter switching losses.  
For the condition where the buck converter is in  
dropout at 100% duty cycle, the total device dissi-  
pation reduces to:  
PTOTAL = IOBUCK2 · RDSON(HS) + IOLDO · (VIN - VOLDO  
+ (IQBUCK + IQLDO) · VIN  
)
Since RDS(ON), quiescent current, and switching  
losses all vary with input voltage, the total losses  
should be investigated over the complete input  
voltage range.  
2506.2005.12.1.0  
19  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Step-Down Converter Design Example  
Specifications  
VOBUCK = 1.8V @ 400mA (adjustable using 0.6V version), Pulsed Load ILOAD = 300mA  
VOLDO = 3.3V @ 300mA  
VIN  
FS  
= 2.7V to 4.2V (3.6V nominal)  
= 1.0MHz  
TAMB = 85°C  
1.8V Buck Output Inductor  
µsec  
A
µsec  
A
(see Table 1)  
L1 = 3  
VO2 = 3  
1.8V = 5.4µH  
For Sumida inductor CDRH3D16, 4.7µH, DCR = 105m.  
1.8V  
4.2V  
V
L1 F  
VOBUCK  
1.8  
V
IL1 = OBUCK 1 -  
=
1 -  
= 218mA  
VIN  
4.7µH 1.0MHz  
I  
2
IPKL1 = IOBUCK  
+
L1 = 0.4A + 0.11A = 0.51A  
PL1 = IOBUCK2 DCR = 0.4A2 105m= 17mW  
1.8V Output Capacitor  
VDROOP = 0.05V  
3 · ILOAD  
VDROOP · FS  
3 · 0.3A  
COUT  
=
=
= 18µF  
0.05V · 1MHz  
(VOBUCK) · (VIN(MAX) - VOBUCK  
L1 · F · VIN(MAX)  
)
1
1.8V · (4.2V - 1.8V)  
1
·
= 63mArms  
IRMS  
=
·
=
4.7µH · 1.0MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5m· (63mA)2 = 20µW  
20  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 4.75µF  
VPP  
25mV  
0.4A  
- ESR · 4 · FS  
- 5m· 4 · 1MHz  
IOBUCK  
IOBUCK  
IRMS  
=
= 0.2Arms  
2
P = esr · IRMS2 = 5m· (0.2A)2 = 0.2mW  
AAT2506 Losses  
IOBUCK2 · (RDSON(HS) · VOBUCK + RDSON(LS) · [VIN - VOBUCK])  
PTOTAL  
=
VIN  
+ (tsw · F · IOBUCK + IQBUCK + IQLDO) · VIN + (VIN - VLDO) · ILDO  
0.42 · (0.725· 1.8V + 0.7· [4.2V - 1.8V])  
4.2V  
=
+ (5ns · 1.0MHz · 0.4A + 50µA +125µA) · 4.2V + (4.2V - 3.3V) · 0.3A = 392mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 392mW = 105°C  
2506.2005.12.1.0  
21  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
VOUT (V)  
R1 (k )  
R1 (k )  
L1 (µH)  
Adjustable Version  
1
R2 = 59kΩ  
R2 = 221kΩ  
(0.6V device)  
0.8  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
75.0  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
4.7  
4.7  
0.9  
1.0  
4.7  
1.1  
4.7  
1.2  
4.7  
1.3  
4.7  
1.4  
4.7  
1.5  
4.7  
1.8  
4.7  
1.85  
2.0  
124  
137  
187  
267  
4.7  
4.7 or 6.8  
10  
2.5  
3.3  
10  
VOUT (V)  
R1 (k)  
L1 (µH)  
Fixed Version  
R2 Not Used  
0.6-3.3V  
0
4.7  
Table 3: Evaluation Board Component Values.  
Inductance  
(µH)  
Max DC  
Current (A)  
DCR  
()  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
Type  
Sumida  
CDRH3D16-4R7  
CDRH3D16-100  
LQH32CN4R7M23  
LQH32CN4R7M33  
LQH32CN4R7M53  
LPO6610-472  
LPO3310-472  
SDRC10-4R7  
4.7  
10  
0.90  
0.55  
0.45  
0.65  
0.65  
1.10  
0.80  
1.53  
1.30  
0.98  
1.77  
0.11  
0.21  
4.0x4.0x1.8  
4.0x4.0x1.8  
2.5x3.2x2.0  
2.5x3.2x2.0  
2.5x3.2x1.55  
5.5x6.6x1.0  
3.3x3.3x1.0  
4.5x3.6x1.0  
5.7x4.4x1.0  
3.1x3.1x1.85  
5.2x5.2x1.8  
Shielded  
Shielded  
Sumida  
MuRata  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.20  
Non-Shielded  
Non-Shielded  
Non-Shielded  
1mm  
MuRata  
0.15  
MuRata  
0.15  
Coilcraft  
Coilcraft  
Coiltronics  
Coiltronics  
Coiltronics  
Coiltronics  
0.20  
0.27  
1mm  
0.117  
0.122  
0.122  
0.082  
1mm Shielded  
1mm Shielded  
Shielded  
SDR10-4R7  
SD3118-4R7  
SD18-4R7  
Shielded  
Table 4: Typical Surface Mount Inductors.  
1. For reduced quiescent current R2 = 221k.  
22  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Manufacturer  
Part Number  
Value  
Voltage  
Temp. Co.  
Case  
MuRata  
TDK  
GRM21BR60J226ME39  
C2012X5R0J226K  
JMK212BJ226KL  
22µF  
22µF  
22µF  
6.3V  
6.3V  
6.3V  
X5R  
X5R  
X5R  
0805  
0805  
0805  
Taiyo-Yuden  
Table 5: Surface Mount Capacitors.  
2506.2005.12.1.0  
23  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Ordering Information  
Voltage  
Package  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
TDFN33-12  
Buck Converter  
LDO  
3.3V  
3.0V  
2.8V  
2.7V  
2.5V  
1.8V  
1.5V  
3.0V  
2.7V  
Marking1  
Part Number (Tape and Reel)2  
AAT2506IWP-AQ-T1  
Adj - 0.6V  
Adj - 0.6V  
Adj - 0.6V  
Adj - 0.6V  
Adj - 0.6V  
Adj - 0.6V  
Adj - 0.6V  
1.2V  
QQXYY  
1.8V  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Legend  
Voltage  
Code  
Adjustable  
(0.6V)  
A
1.2  
1.5  
1.8  
1.9  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
E
G
I
Y
N
O
P
Q
R
S
T
W
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
24  
2506.2005.12.1.0  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
Package Information  
TDFN33-12  
Index Area  
(D/2 x E/2)  
Detail "B"  
0.3 0.10 0.16 0.375 0.125  
0.075 0.075  
0.1 REF  
3.00 0.05  
Detail "A"  
1.70 0.05  
Top View  
Bottom View  
Pin 1 Indicator  
(optional)  
7.5° 7.5°  
Detail "B"  
Option A:  
Option B:  
C0.30 (4x) max  
Chamfered corner  
R0.30 (4x) max  
Round corner  
0.05 0.05  
Detail "A"  
Side View  
2506.2005.12.1.0  
25  
AAT2506  
1MHz Step-Down Converter/LDO Regulator  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
26  
2506.2005.12.1.0  

相关型号:

CDRH3D16-4R7NB

General Purpose Inductor, 4.7uH, 30%, 1 Element, Ferrite-Core, SMD, 1616,
SUMIDA

CDRH3D16-4R7NC

General Purpose Inductor, 4.7uH, 30%, 1 Element, Ferrite-Core, SMD, 1616,
SUMIDA

CDRH3D16-6R8

CDRH3D16 SMD POWER INDUCTOR
AITSEMI

CDRH3D16-6R8NC

General Purpose Inductor, 6.8uH, 30%, 1 Element, Ferrite-Core, SMD, 1616,
SUMIDA

CDRH3D16/HP-220MB

General Purpose Inductor, 22uH, 20%, Ferrite-Core, 1616,
SUMIDA

CDRH3D16/HP-2R2

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

CDRH3D16/HP-2R2NB

General Purpose Inductor, 2.2uH, 30%, Ferrite-Core, 1616,
SUMIDA

CDRH3D16/HP-3R3

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

CDRH3D16/HP-3R3NB

General Purpose Inductor, 3.3uH, 30%, Ferrite-Core, 1616,
SUMIDA

CDRH3D16/HP-3R3NC

General Purpose Inductor, 3.3uH, 30%, Ferrite-Core, 1616,
SUMIDA

CDRH3D16/HP-6R8NC

General Purpose Inductor, 6.8uH, 30%, Ferrite-Core, 1616,
SUMIDA

CDRH3D16/HPNP-100MC

FIXED IND 10UH 1A 230 MOHM SMD
AMERICASEMI