AAT1146 [ANALOGICTECH]

Fast Transient 400mA Step-Down Converter; 快速瞬态400毫安降压转换器
AAT1146
型号: AAT1146
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Fast Transient 400mA Step-Down Converter
快速瞬态400毫安降压转换器

转换器
文件: 总20页 (文件大小:768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT1146  
Fast Transient 400mA Step-Down Converter  
SwitchReg  
General Description  
Features  
The AAT1146 SwitchReg is a member of  
AnalogicTech's Total Power Management IC™  
(TPMIC™) product family. It is a 1.4MHz step-  
down converter with an input voltage range of 2.7V  
to 5.5V and output voltage as low as 0.6V. It is  
optimized to react quickly to a load variation.  
VIN Range: 2.7V to 5.5V  
VOUT Fixed or Adjustable from 0.6V to VIN  
27μA No Load Quiescent Current  
Up to 98% Efficiency  
400mA Max Output Current  
1.4MHz Switching Frequency  
120μs Soft Start  
Fast Load Transient  
Over-Temperature Protection  
Current Limit Protection  
The AAT1146 is available in fixed voltage versions  
with internal feedback and a programmable ver-  
sion with external feedback resistors. It can deliver  
400mA of load current while maintaining a low  
27μA no load quiescent current. The 1.4MHz  
switching frequency minimizes the size of external  
components while keeping switching losses low.  
100% Duty Cycle Low-Dropout Operation  
<1μA Shutdown Current  
SC70JW-8 Package  
Temperature Range: -40°C to +85°C  
The AAT1146 is designed to maintain high efficien-  
cy throughout the operating range, which is critical  
for portable applications.  
The AAT1146 is available in a Pb-free, space-saving  
2.0x2.1mm SC70JW-8 package and is rated over  
the -40°C to +85°C temperature range.  
Applications  
Cellular Phones  
Digital Cameras  
Handheld Instruments  
Microprocessor / DSP Core / IO Power  
PDAs and Handheld Computers  
USB Devices  
Typical Application (Fixed Output Voltage)  
VO  
VIN  
U1  
AAT1146  
L1  
3
4
VIN  
EN  
LX  
4.7μH  
1
5
8
2
OUT  
C2  
4.7μF  
C1  
4.7μF  
7
AGND PGND  
PGND PGND  
6
1146.2006.04.1.3  
1
AAT1146  
Fast Transient 400mA Step-Down Converter  
Pin Descriptions  
Pin #  
Symbol  
EN  
Function  
1
2
Enable pin.  
OUT  
Feedback input pin. This pin is connected either directly to the converter  
output or to an external resistive divider for an adjustable output.  
3
4
VIN  
LX  
Input supply voltage for the converter.  
Switching node. Connect the inductor to this pin. It is internally connected to  
the drain of both high- and low-side MOSFETs.  
5
AGND  
PGND  
Non-power signal ground pin.  
6, 7, 8  
Main power ground return pins. Connect to the output and input capacitor  
return.  
Pin Configuration  
SC70JW-8  
(Top View)  
8
7
6
5
1
2
3
4
PGND  
PGND  
PGND  
AGND  
EN  
OUT  
VIN  
LX  
2
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN  
VLX  
Input Voltage GND  
6.0  
V
V
LX to GND  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-40 to 150  
300  
VOUT  
VEN  
TJ  
OUT to GND  
V
EN to GND  
V
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
°C  
°C  
TLEAD  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
Maximum Power Dissipation2, 3  
Thermal Resistance2  
625  
160  
mW  
θJA  
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at condi-  
tions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
3. Derate 6.25mW/°C above 25°C.  
1146.2006.04.1.3  
3
AAT1146  
Fast Transient 400mA Step-Down Converter  
Electrical Characteristics1  
TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C, VIN = 3.6V.  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Units  
Step-Down Converter  
VIN  
Input Voltage  
2.7  
5.5  
2.7  
V
V
VIN Rising  
Hysteresis  
VIN Falling  
VUVLO  
UVLO Threshold  
100  
mV  
V
1.8  
-3.0  
0.6  
I
OUT = 0 to 400mA,  
VOUT  
VOUT  
IQ  
Output Voltage Tolerance  
Output Voltage Range  
Quiescent Current  
+3.0  
VIN  
70  
%
V
VIN = 2.7V to 5.5V  
No Load, 0.6V Adjustable  
Version  
27  
μA  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
Shutdown Current  
EN = AGND = PGND  
1.0  
μA  
mA  
Ω
P-Channel Current Limit  
600  
High Side Switch On Resistance  
Low Side Switch On Resistance  
0.45  
0.40  
Ω
V
IN = 5.5V, VLX = 0 to VIN,  
ILXLEAK  
ΔVLinereg  
VOUT  
LX Leakage Current  
1
μA  
%/V  
mV  
EN = GND  
Line Regulation  
VIN = 2.7V to 5.5V  
0.6V Output, No Load  
TA = 25°C  
0.1  
Out Threshold Voltage Accuracy  
591  
250  
600  
609  
0.2  
IOUT  
Out Leakage Current  
Out Impedance  
0.6V Output  
μA  
kΩ  
ROUT  
>0.6V Output  
From Enable to Output  
Regulation  
TS  
Start-Up Time  
150  
μs  
FOSC  
TSD  
Oscillator Frequency  
TA = 25°C  
1.0  
1.4  
140  
15  
2.0  
MHz  
°C  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
THYS  
°C  
EN  
VEN(L)  
VEN(H)  
IEN  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
0.6  
1.0  
V
V
1.4  
VIN = VOUT = 5.5V  
-1.0  
μA  
1. The AAT1146 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
4
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Typical Characteristics  
Efficiency vs. Load  
(VOUT = 1.8V; L = 4.7μH)  
DC Regulation  
(VOUT = 1.8V)  
100  
1.0  
VIN = 2.7V  
90  
0.5  
VIN = 4.2V  
VIN = 4.2V  
80  
VIN = 3.6V  
0.0  
70  
60  
50  
VIN = 3.6V  
-0.5  
VIN = 2.7V  
-1.0  
0.1  
1
10  
100  
1000  
1000  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 2.5V; L = 6.8μμH)  
DC Regulation  
(VOUT = 2.5V)  
100  
90  
80  
70  
60  
50  
1.0  
0.5  
VIN = 2.7V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 3.6V  
VIN = 3.6V  
-0.5  
-1.0  
VIN = 3.0V  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 3.3V; L = 6.8μH)  
DC Regulation  
(VOUT = 3.3V; L = 6.8µH)  
100  
1.0  
0.5  
VIN = 3.6V  
VIN = 5.0V  
VIN = 4.2V  
90  
80  
70  
60  
50  
VIN = 4.2V  
0.0  
VIN = 5.0V  
-0.5  
-1.0  
VIN = 3.6V  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
1146.2006.04.1.3  
5
AAT1146  
Fast Transient 400mA Step-Down Converter  
Typical Characteristics  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 400mA)  
Line Regulation  
(VOUT = 1.8V)  
0.40  
0.30  
5.0  
1.6  
1.4  
VEN  
VO  
4.0  
3.0  
IOUT = 10mA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
0.20  
0.10  
2.0  
1.0  
0.00  
0.0  
-0.10  
-0.20  
-0.30  
-0.40  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
IOUT = 1mA  
IOUT = 400mA  
IL  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Time (100μμs/div)  
Input Voltage (V)  
Output Voltage Error vs. Temperature  
(VIN = 3.6V; VO = 1.8V; IOUT = 400mA)  
Switching Frequency vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V)  
2.0  
1.0  
15.0  
12.0  
9.0  
6.0  
3.0  
0.0  
0.0  
-3.0  
-6.0  
-9.0  
-12.0  
-15.0  
-1.0  
-2.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
Frequency vs. Input Voltage  
No Load Quiescent Current vs. Input Voltage  
2.0  
1.0  
50  
45  
40  
35  
VOUT = 1.8V  
0.0  
25°C  
85°C  
-1.0  
-2.0  
-3.0  
-4.0  
30  
25  
20  
15  
10  
VOUT = 2.5V  
VOUT = 3.3V  
-40°C  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
6
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Typical Characteristics  
P-Channel RDS(ON) vs. Input Voltage  
N-Channel RDS(ON) vs. Input Voltage  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
750  
700  
650  
120°C  
100°C  
120°C  
100°C  
600  
550  
500  
450  
400  
350  
300  
85°C  
85°C  
25°C  
25°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Load Transient Response  
(1mA to 300mA; VIN = 3.6V; VOUT = 1.8V;  
C1 = 10μF; CFF = 100pF)  
Load Transient Response  
(300mA to 400mA; VIN = 3.6V;  
V
OUT = 1.8V; C1 = 4.7μμF)  
2.0  
1.90  
1.85  
1.80  
1.75  
1.9  
1.8  
1.7  
VO  
VO  
IO  
IO  
300mA  
400mA  
300mA  
1mA  
IL  
0.4  
0.3  
0.2  
0.1  
IL  
0
Time (50μs/div)  
Time (50μs/div)  
Load Transient Response  
(300mA to 400mA; VIN = 3.6V;  
Load Transient Response  
(300mA to 400mA; VIN = 3.6V; VOUT = 1.8V;  
V
OUT = 1.8V; C1 = 10μμF)  
C1 = 10μμF; C4 = 100pF)  
1.850  
1.90  
1.85  
1.80  
1.75  
1.825  
1.800  
1.775  
VO  
IO  
VO  
IO  
400mA  
400mA  
300mA  
300mA  
0.4  
0.4  
0.3  
0.2  
0.1  
0.3  
0.2  
0.1  
IL  
IL  
Time (50μs/div)  
Time (50μs/div)  
1146.2006.04.1.3  
7
AAT1146  
Fast Transient 400mA Step-Down Converter  
Typical Characteristics  
Line Response  
(VOUT = 1.8V @ 400mA)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
20  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
IL  
1.76  
Time (25μμs/div)  
Time (10µs/div)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 400mA)  
40  
0.9  
20  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
VO  
0
-20  
-40  
-60  
-80  
IL  
-100  
-120  
Time (500ns/div)  
8
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Functional Block Diagram  
OUT  
VIN  
See note  
Err  
Amp  
.
DH  
LX  
Voltage  
Logic  
Reference  
DL  
INPUT  
EN  
PGND  
AGND  
Note: For adjustable version, the internal feedback divider is omitted and the OUT pin is tied directly  
to the internal error amplifier.  
input voltage. An additional feed-forward capacitor  
can also be added to the external feedback to pro-  
vide improved transient response (see Figure 1).  
Functional Description  
The AAT1146 is a high performance 400mA  
1.4MHz monolithic step-down converter. It has  
been designed with the goal of minimizing external  
component size and optimizing efficiency over the  
complete load range. Apart from the small bypass  
input capacitor, only a small L-C filter is required at  
the output. Typically, a 4.7μH inductor and a 4.7μF  
ceramic capacitor are recommended (see table of  
values).  
At dropout, the converter duty cycle increases to  
100% and the output voltage tracks the input volt-  
age minus the RDSON drop of the P-channel high-  
side MOSFET.  
The input voltage range is 2.7V to 5.5V. The con-  
verter efficiency has been optimized for all load  
conditions, ranging from no load to 400mA.  
The internal error amplifier and compensation pro-  
vides excellent transient response, load, and line  
regulation. Soft start eliminates any output voltage  
overshoot when the enable or the input voltage is  
applied.  
The fixed output version requires only three external  
power components (CIN, COUT, and L). The  
adjustable version can be programmed with external  
feedback to any voltage, ranging from 0.6V to the  
1146.2006.04.1.3  
9
AAT1146  
Fast Transient 400mA Step-Down Converter  
1
2
3
Enable  
VIN  
C4  
100pF  
U1  
AAT1146  
1
2
3
4
8
7
6
5
EN  
PGND  
VOUT =1.8V  
R1  
118k  
4.7μH  
OUT PGND  
L1  
VIN  
LX  
PGND  
AGND  
C1  
10μF  
R2  
59k  
C2  
4.7μF  
C3  
n/a  
GND  
LX  
GND2  
U1 AAT1146 SC70JW-8  
L1 CDRH3D16-4R7  
C2 4.7μF 10V 0805 X5R  
C1 10μF 6.3V 0805 X5R  
Figure 1: Enhanced Transient Response Schematic.  
into a low-power, non-switching state. The total  
input current during shutdown is less than 1μA.  
Control Loop  
The AAT1146 is a peak current mode step-down  
converter. The current through the P-channel  
MOSFET (high side) is sensed for current loop  
control, as well as short circuit and overload pro-  
tection. A fixed slope compensation signal is added  
to the sensed current to maintain stability for duty  
cycles greater than 50%. The peak current mode  
loop appears as a voltage-programmed current  
source in parallel with the output capacitor.  
Current Limit and Over-Temperature  
Protection  
For overload conditions, the peak input current is  
limited. To minimize power dissipation and stresses  
under current limit and short-circuit conditions,  
switching is terminated after entering current limit  
for a series of pulses. Switching is terminated for  
seven consecutive clock cycles after a current limit  
has been sensed for a series of four consecutive  
clock cycles.  
The output of the voltage error amplifier programs  
the current mode loop for the necessary peak  
switch current to force a constant output voltage for  
all load and line conditions. Internal loop compen-  
sation terminates the transconductance voltage  
error amplifier output. For fixed voltage versions,  
the error amplifier reference voltage is internally set  
to program the converter output voltage. For the  
adjustable output, the error amplifier reference is  
fixed at 0.6V.  
Thermal protection completely disables switching  
when internal dissipation becomes excessive. The  
junction over-temperature threshold is 140°C with  
15°C of hysteresis. Once an over-temperature or  
over-current fault conditions is removed, the output  
voltage automatically recovers.  
Under-Voltage Lockout  
Soft Start / Enable  
Internal bias of all circuits is controlled via the VIN  
input. Under-voltage lockout (UVLO) guarantees  
sufficient VIN bias and proper operation of all inter-  
nal circuitry prior to activation.  
Soft start limits the current surge seen at the input  
and eliminates output voltage overshoot. When  
pulled low, the enable input forces the AAT1146  
10  
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive loss-  
es due to a high DCR. Always consider the losses  
associated with the DCR and its effect on the total  
converter efficiency when selecting an inductor.  
Applications Information  
Inductor Selection  
The step-down converter uses peak current mode  
control with slope compensation to maintain stability  
for duty cycles greater than 50%. The output induc-  
tor value must be selected so the inductor current  
down slope meets the internal slope compensation  
requirements. The internal slope compensation for  
the adjustable and low-voltage fixed versions of the  
AAT1146 is 0.24A/μsec. This equates to a slope  
compensation that is 75% of the inductor current  
down slope for a 1.5V output and 4.7μH inductor.  
The 4.7μH CDRH3D16 series inductor selected  
from Sumida has a 105mΩ DCR and a 900mA DC  
current rating. At full load, the inductor DC loss is  
17mW which gives a 2.8% loss in efficiency for a  
400mA, 1.5V output.  
Input Capacitor  
Select a 4.7μF to 10μF X7R or X5R ceramic capac-  
itor for the input. To estimate the required input  
capacitor size, determine the acceptable input rip-  
ple level (VPP) and solve for C. The calculated  
value varies with input voltage and is a maximum  
when VIN is double the output voltage.  
0.75 VO 0.75 1.5V  
= 0.24  
A
m =  
=
L
4.7μH  
μsec  
This is the internal slope compensation for the  
adjustable (0.6V) version or low-voltage fixed ver-  
sions. When externally programming the 0.6V ver-  
sion to 2.5V, the calculated inductance is 7.5μH.  
VO  
VIN  
· 1  
VO  
VIN  
-
CIN =  
VPP  
IO  
0.75 VO  
0.75  
VO  
A
μsec  
A
- ESR  
·
FS  
L =  
=
3
VO  
m
0.24A  
μsec  
VO  
VIN  
VO  
VIN  
1
4
· 1  
-
=
for VIN = 2 × VO  
μsec  
A
= 3  
2.5V = 7.5μH  
1
In this case, a standard 6.8μH value is selected.  
CIN(MIN)  
=
VPP  
IO  
- ESR  
·
4
·
FS  
For high-voltage fixed versions (2.5V), m = 0.48A/  
μsec. Table 1 displays inductor values for the  
AAT1146 fixed and adjustable options.  
Always examine the ceramic capacitor DC voltage  
coefficient characteristics when selecting the prop-  
er value. For example, the capacitance of a 10μF,  
6.3V, X5R ceramic capacitor with 5.0V DC applied  
is actually about 6μF.  
Manufacturer's specifications list both the inductor  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
Configuration  
Output Voltage  
Inductor  
2.2μH  
1V, 1.2V  
1.5V, 1.8V  
2.5V, 3.3V  
0.6V to 3.3V  
0.6V Adjustable With  
External Feedback  
4.7μH  
6.8μH  
Fixed Output  
4.7μH  
Table 1: Inductor Values.  
1146.2006.04.1.3  
11  
AAT1146  
Fast Transient 400mA Step-Down Converter  
The maximum input capacitor RMS current is:  
Since the inductance of a short PCB trace feeding  
the input voltage is significantly lower than the  
power leads from the bench power supply, most  
applications do not exhibit this problem.  
VO  
VIN  
· 1  
VO  
VIN  
IRMS = IO  
·
-
In applications where the input power source lead  
inductance cannot be reduced to a level that does  
not affect the converter performance, a high ESR  
tantalum or aluminum electrolytic should be placed  
in parallel with the low ESR, ESL bypass ceramic.  
This dampens the high Q network and stabilizes  
the system.  
The input capacitor RMS ripple current varies with  
the input and output voltage and will always be less  
than or equal to half of the total DC load current.  
VO  
VIN  
· 1  
VO  
VIN  
1
2
-
=
D
· (1 - D) = 0.52 =  
Output Capacitor  
The output capacitor limits the output ripple and  
provides holdup during large load transitions. A  
4.7μF to 10μF X5R or X7R ceramic capacitor typi-  
cally provides sufficient bulk capacitance to stabi-  
lize the output during large load transitions and has  
the ESR and ESL characteristics necessary for low  
output ripple.  
for VIN = 2 x VO  
IO  
IRMS(MAX)  
=
2
VO  
VIN  
1 -  
VO  
VIN  
·
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic out-  
put capacitor. During a step increase in load cur-  
rent, the ceramic output capacitor alone supplies  
the load current until the loop responds. Within two  
or three switching cycles, the loop responds and  
the inductor current increases to match the load  
current demand. The relationship of the output volt-  
age droop during the three switching cycles to the  
output capacitance can be estimated by:  
The term  
appears in both the input  
voltage ripple and input capacitor RMS current  
equations and is a maximum when VO is twice VIN.  
This is why the input voltage ripple and the input  
capacitor RMS current ripple are a maximum at  
50% duty cycle.  
The input capacitor provides a low impedance loop  
for the edges of pulsed current drawn by the  
AAT1146. Low ESR/ESL X7R and X5R ceramic  
capacitors are ideal for this function. To minimize  
stray inductance, the capacitor should be placed as  
closely as possible to the IC. This keeps the high  
frequency content of the input current localized,  
minimizing EMI and input voltage ripple.  
3
·
VDROOP FS  
ΔILOAD  
COUT  
=
·
The proper placement of the input capacitor (C2)  
can be seen in the evaluation board layout in  
Figure 2.  
Once the average inductor current increases to the  
DC load level, the output voltage recovers. The  
above equation establishes a limit on the minimum  
value for the output capacitor with respect to load  
transients.  
A laboratory test set-up typically consists of two  
long wires running from the bench power supply to  
the evaluation board input voltage pins. The induc-  
tance of these wires, along with the low-ESR  
ceramic input capacitor, can create a high Q net-  
work that may affect converter performance. This  
problem often becomes apparent in the form of  
excessive ringing in the output voltage during load  
transients. Errors in the loop phase and gain meas-  
urements can also result.  
The internal voltage loop compensation also limits  
the minimum output capacitor value to 4.7μF. This  
is due to its effect on the loop crossover frequency  
(bandwidth), phase margin, and gain margin.  
Increased output capacitance will reduce the  
crossover frequency with greater phase margin.  
12  
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Figure 2: AAT1146 Evaluation Board  
Top Side.  
Figure 3: Exploded View of Evaluation  
Board Top Side Layout.  
Figure 4: AAT1146 Evaluation Board  
Bottom Side.  
The maximum output capacitor RMS ripple current  
is given by:  
the output to regulate at a voltage higher than 0.6V.  
To limit the bias current required for the external  
feedback resistor string while maintaining good  
noise immunity, the minimum suggested value for  
R2 is 59kΩ. Although a larger value will further  
reduce quiescent current, it will also increase the  
impedance of the feedback node, making it more  
sensitive to external noise and interference. Table 2  
summarizes the resistor values for various output  
voltages with R2 set to either 59kΩ for good noise  
immunity or 221kΩ for reduced no load input current.  
1
VOUT · (VIN(MAX) - VOUT)  
IRMS(MAX)  
=
·
L · F · VIN(MAX)  
2 · 3  
Dissipation due to the RMS current in the ceramic  
output capacitor ESR is typically minimal, resulting in  
less than a few degrees rise in hot-spot temperature.  
Adjustable Output Resistor Selection  
V
V
1.5V  
0.6V  
- 1 ·  
R1 =  
OUT -1  
·
R2 =  
59kΩ = 88.5kΩ  
For applications requiring an adjustable output volt-  
age, the 0.6V version can be externally pro-  
grammed. Resistors R1 and R2 of Figure 5 program  
REF  
1146.2006.04.1.3  
13  
AAT1146  
Fast Transient 400mA Step-Down Converter  
The adjustable version of the AAT1146, combined  
Thermal Calculations  
with an external feedforward capacitor (C4 in  
Figure 1), delivers enhanced transient response for  
extreme pulsed load applications. The addition of  
the feedforward capacitor typically requires a larg-  
er output capacitor C1 for stability.  
There are three types of losses associated with the  
AAT1146 step-down converter: switching losses,  
conduction losses, and quiescent current losses.  
Conduction losses are associated with the RDS(ON)  
characteristics of the power output switching  
devices. Switching losses are dominated by the  
gate charge of the power output switching devices.  
At full load, assuming continuous conduction mode  
(CCM), a simplified form of the losses is given by:  
Ω
Ω
R2 = 59k  
R2 = 221k  
R1  
Ω
VOUT (V)  
R1 (k )  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
75K  
113K  
150K  
187K  
221K  
261K  
301K  
332K  
442K  
464K  
523K  
715K  
1.00M  
IO2 · (RDSON(HS) · VO + RDSON(LS) · [VIN - VO])  
PTOTAL  
=
VIN  
+ (tsw · F · IO + IQ) · VIN  
IQ is the step-down converter quiescent current.  
The term tsw is used to estimate the full load step-  
down converter switching losses.  
124  
137  
187  
267  
Table 2: Adjustable Resistor Values For Use  
With 0.6V Step-Down Converter.  
1
2
3
Enable  
VIN  
U1  
AAT1146  
1
2
3
4
8
7
6
5
EN  
PGND  
R1  
OUT PGND  
118k  
VIN  
LX  
PGND  
AGND  
VOUT  
L1  
4.7μH  
C1  
C2  
4.7μF  
R2  
59k  
10μF  
GND  
GND2  
LX  
U1 AAT1146 SC70JW-8  
L1 CDRH3D16-4R7  
C1 10μF 10V 0805 X5R  
C2 4.7μF 10V 0805 X5R  
Figure 5: AAT1146 Adjustable Evaluation Board Schematic.  
14  
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
For the condition where the step-down converter is  
in dropout at 100% duty cycle, the total device dis-  
sipation reduces to:  
3. The feedback trace or OUT pin (Pin 2) should  
be separate from any power trace and connect  
as closely as possible to the load point.  
Sensing along a high-current load trace will  
degrade DC load regulation. If external feed-  
back resistors are used, they should be placed  
as closely as possible to the OUT pin (Pin 2) to  
minimize the length of the high impedance  
feedback trace.  
4. The resistance of the trace from the load return  
to the PGND (Pins 6-8) should be kept to a  
minimum. This will help to minimize any error in  
DC regulation due to differences in the poten-  
tial of the internal signal ground and the power  
ground.  
PTOTAL = IO2 · RDSON(HS) + IQ · VIN  
Since RDS(ON), quiescent current, and switching  
losses all vary with input voltage, the total losses  
should be investigated over the complete input  
voltage range.  
Given the total losses, the maximum junction tem-  
perature can be derived from the θJA for the  
SC70JW-8 package which is 160°C/W.  
A high density, small footprint layout can be  
achieved using an inexpensive, miniature, non-  
shielded, high DCR inductor. An evaluation board  
is available with this inductor and is shown in  
Figure 6. The total solution footprint area is 40mm2.  
TJ(MAX)  
=
PTOTAL  
·
Θ
JA + TAMB  
Layout  
The suggested PCB layout for the AAT1146 is  
shown in Figures 2, 3, and 4. The following guide-  
lines should be used to help ensure a proper layout.  
1. The input capacitor (C2) should connect as  
closely as possible to VIN (Pin 3) and PGND  
(Pins 6-8).  
2. C1 and L1 should be connected as closely as  
possible. The connection of L1 to the LX pin  
should be as short as possible.  
Figure 6: Minimum Footprint Evaluation Board  
Using 2.0mm x 1.6mm x 0.95mm Inductor.  
1146.2006.04.1.3  
15  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Step-Down Converter Design Example  
Specifications  
VO  
VIN  
FS  
= 1.8V @ 400mA (adjustable using 0.6V version), Pulsed Load ΔILOAD = 300mA  
= 2.7V to 4.2V (3.6V nominal)  
= 1.4MHz  
TAMB = 85°C  
1.8V Output Inductor  
μsec  
A
μsec  
A
L1 = 3  
VO2 = 3  
1.8V = 5.4μH  
(use 4.7μH; see Table 1)  
For Sumida inductor CDRH3D16, 4.7μH, DCR = 105mΩ.  
VO  
L1 F  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
1 -  
ΔIL1 =  
=
1 -  
= 156mA  
4.7μH 1.4MHz  
ΔI  
IPKL1 = IO + L1 = 0.4A + 0.068A = 0.468A  
2
PL1 = IO2 DCR = 0.4A2 105mΩ = 17mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.3A  
COUT  
=
=
= 6.4μF; use 10µF  
0.1V · 1.4MHz  
(VO) · (VIN(MAX) - VO)  
L1 · F · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 45mArms  
IRMS  
=
·
=
4.7μH · 1.4MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (45mA)2 = 10μW  
16  
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 3.11μF; use 4.7μF  
VPP  
IO  
25mV  
0.4A  
- ESR  
·
4
·
FS  
- 5mΩ  
· 4 · 1.4MHz  
IO  
IRMS  
=
= 0.2Arms  
2
P = esr  
·
IRMS2 = 5mΩ  
·
(0.2A)2 = 0.2mW  
AAT1146 Losses  
IO2 · (RDSON(HS) · VO + RDSON(LS) · [VIN -VO  
])  
PTOTAL  
=
VIN  
+ (tsw · F · IO + IQ) · VIN  
0.42 · (0.725  
Ω
·
1.8V + 0.7Ω  
4.2V  
· [4.2V - 1.8V])  
=
+ (5ns · 1.4MHz · 0.4A + 70μA) · 4.2V = 126mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (160°C/W) · 126mW = 105.1°C  
1146.2006.04.1.3  
17  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Adjustable Version  
(0.6V device)  
1
Ω
Ω
R2 = 221k  
R2 = 59k  
Ω
Ω
VOUT (V)  
R1 (k )  
R1 (k )  
L1 (μH)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
75.0  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
4.7  
4.7  
4.7  
4.7  
6.8  
6.8  
6.8  
124  
137  
187  
267  
Fixed Version  
R2, R4 Not Used  
VOUT (V)  
R1 (kΩ)  
L1 (μH)  
0.6-3.3V  
0
4.7  
Table 3: Evaluation Board Component Values.  
Inductance  
Max DC  
Current (A)  
DCR  
(Ω)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
(μH)  
Type  
Sumida  
CDRH3D16-2R2  
CDRH3D16-4R7  
CDRH3D16-6R8  
LQH2MCN4R7M02  
LQH32CN4R7M23  
LPO3310-472  
2.2  
4.7  
6.8  
4.7  
4.7  
4.7  
4.7  
6.8  
4.7  
1.20  
0.90  
0.73  
0.40  
0.45  
0.80  
0.98  
0.82  
1.30  
0.072  
0.105  
0.170  
0.80  
3.8x3.8x1.8  
3.8x3.8x1.8  
3.8x3.8x1.8  
2.0x1.6x0.95  
2.5x3.2x2.0  
3.2x3.2x1.0  
3.1x3.1x1.85  
3.1x3.1x1.85  
5.7x4.4x1.0  
Shielded  
Shielded  
Sumida  
Sumida  
Shielded  
MuRata  
Non-Shielded  
Non-Shielded  
1mm  
MuRata  
0.20  
Coilcraft  
Coiltronics  
Coiltronics  
Coiltronics  
0.27  
SD3118-4R7  
0.122  
0.175  
0.122  
Shielded  
SD3118-6R8  
Shielded  
SDRC10-4R7  
1mm Shielded  
Table 4: Typical Surface Mount Inductors.  
1. For reduced quiescent current, R2 and R4 = 221kΩ.  
18  
1146.2006.04.1.3  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Manufacturer  
Part Number  
Value  
Voltage  
Temp. Co.  
Case  
MuRata  
MuRata  
MuRata  
GRM219R61A475KE19  
GRM21BR60J106KE19  
GRM21BR60J226ME39  
4.7μF  
10μF  
22μF  
10V  
6.3V  
6.3V  
X5R  
X5R  
X5R  
0805  
0805  
0805  
Table 5: Surface Mount Capacitors.  
1146.2006.04.1.3  
19  
AAT1146  
Fast Transient 400mA Step-Down Converter  
Ordering Information  
Output Voltage1  
Package  
Marking2  
Part Number (Tape and Reel)3  
1.875  
Adj 0.6  
SC70JW-8  
SC70JW-8  
QMXYY  
OXXYY  
AAT1146IJS-1.875-T1  
AAT1146IJS-0.6-T1  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Package Information  
SC70JW-8  
0.50 BSC 0.50 BSC 0.50 BSC  
0.225 0.075  
2.00 0.20  
0.048REF  
0.100  
0.45 0.10  
4° 4°  
7° 3°  
2.10 0.30  
All dimensions in millimeters.  
1. Contact Sales for other voltage options.  
2. XYY = assembly and date code.  
3. Sample stock is generally held on part numbers listed in BOLD.  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
20  
1146.2006.04.1.3  

相关型号:

AAT1146IGV-0.6-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-0.6-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-0.6-T1

Switching Regulator, Current-mode, 0.4A, 2000kHz Switching Freq-Max, PDSO8,
SKYWORKS

AAT1146IJS-1.0-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-1.2-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-1.3-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-1.8-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-1.875-T1

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1146IJS-1.875-T1

Switching Regulator, Current-mode, 0.4A, 2000kHz Switching Freq-Max, PDSO8,
SKYWORKS

AAT1146_08

Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1147

High Efficiency, Low Noise, Fast Transient 400mA Step-Down Converter
ANALOGICTECH

AAT1147IJS-0.6-T1

High Efficiency, Low Noise, Fast Transient 400mA Step-Down Converter
ANALOGICTECH