AAT1141_0810 [ANALOGICTECH]

Fast Transient 600mA Step-Down Converter; 快速瞬态600mA降压转换器
AAT1141_0810
型号: AAT1141_0810
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Fast Transient 600mA Step-Down Converter
快速瞬态600mA降压转换器

转换器
文件: 总20页 (文件大小:1457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
General Description  
Features  
The AAT1141 SwitchReg is a 2MHz step-down converter  
with an input voltage range of 2.7V to 5.5V and output  
voltage as low as 0.6V. It is optimized to react quickly to  
a load variation.  
• VIN Range: 2.7V to 5.5V  
• VOUT Fixed or Adjustable from 0.6V to VIN  
• 35μA No Load Quiescent Current  
• Up to 98% Efficiency  
• 600mA Max Output Current  
• 2MHz Switching Frequency  
• 150μs Soft Start  
• Fast Load Transient  
• Over-Temperature Protection  
• Current Limit Protection  
The AAT1141 is available in fixed voltage versions with  
internal feedback and a programmable version with  
external feedback resistors. It can deliver 600mA of load  
current while maintaining a low 35μA no load quiescent  
current. The 2MHz switching frequency minimizes the  
size of external components while keeping switching  
losses low.  
• 100% Duty Cycle Low-Dropout Operation  
• <1μA Shutdown Current  
The AAT1141 is designed to maintain high efficiency  
throughout the operating range, which is critical for por-  
table applications.  
• SOT23-5 Package  
Temperature Range: -40°C to +85°C  
The AAT1141 is available in a Pb-free SOT23-5 package  
and is rated over the -40°C to +85°C temperature  
range.  
Applications  
• Cellular Phones  
• Digital Cameras  
• Handheld Instruments  
• Microprocessor / DSP Core / IO Power  
• PDAs and Handheld Computers  
• USB Devices  
Typical Application (Fixed Output Voltage)  
U1  
AAT1141  
L1  
VIN  
VOUT  
LX  
IN  
4.7µH  
C2  
4.7µF  
EN  
OUT  
C1  
4.7µF  
GND  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
1
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Pin Descriptions  
Pin #  
Symbol  
Function  
1
2
3
IN  
GND  
EN  
Input supply voltage for the converter.  
Ground pin. Connect to the output and input capacitor return.  
Enable pin.  
Feedback input pin. This pin is connected either directly to the converter output or to an external  
resistive divider for an adjustable output.  
Switching node. Connect the inductor to this pin. It is internally connected to the drains of both  
high- and low-side MOSFETs.  
4
5
OUT  
LX  
Pin Configuration  
SOT23-5  
(Top View)  
5
1
LX  
IN  
2
3
GND  
EN  
4
OUT  
w w w . a n a l o g i c t e c h . c o m  
2
1141.2008.10.1.6  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN  
VLX  
VOUT  
VEN  
TJ  
Input Voltage to GND  
LX to GND  
OUT to GND  
EN to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
6.0  
V
V
V
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-40 to 150  
-65 to 150  
300  
V
°C  
°C  
°C  
TS  
TLEAD  
Thermal Information  
Symbol  
Description  
Maximum Power Dissipation2, 3  
Thermal Resistance2  
Value  
Units  
PD  
θJA  
667  
150  
mW  
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
3. Derate 6.67mW/°C above 25°C.  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
3
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Electrical Characteristics1  
TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C, VIN = 3.6V.  
Symbol Description  
Step-Down Converter  
Conditions  
Min  
Typ Max Units  
VIN  
Input Voltage  
2.7  
5.5  
2.7  
V
V
VIN Rising  
VUVLO  
UVLO Threshold  
Hysteresis  
VIN Falling  
IOUT = 0 to 600mA, VIN = 2.7V to 5.5V  
100  
35  
mV  
V
%
1.8  
-3.5  
0.6  
VOUT  
VOUT  
IQ  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
ΔVLinereg  
VOUT  
IOUT  
ROUT  
TS  
FOSC  
TSD  
THYS  
Output Voltage Tolerance  
Output Voltage Range  
Quiescent Current  
+3.5  
VIN  
70  
V
No Load, 0.6V Adjustable Version  
EN = AGND = PGND  
μA  
μA  
mA  
Ω
Shutdown Current  
1.0  
P-Channel Current Limit  
High Side Switch On Resistance  
Low Side Switch On Resistance  
LX Leakage Current  
Line Regulation  
Out Threshold Voltage Accuracy  
Out Leakage Current  
Out Impedance  
Start-Up Time  
Oscillator Frequency  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
800  
0.35  
0.30  
Ω
VIN = 5.5V, VLX = 0 to VIN, EN = GND  
VIN = 2.7V to 5.5V  
0.6V Output, No Load, TA = 25°C  
0.6V Output  
>0.6V Output  
From Enable to Output Regulation  
TA = 25°C  
1
μA  
%/V  
mV  
μA  
kΩ  
μs  
MHz  
°C  
°C  
0.1  
600  
588  
250  
1.2  
612  
0.2  
150  
2.0  
140  
15  
2.6  
EN  
VEN(L)  
VEN(H)  
IEN  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
0.6  
1.0  
V
V
μA  
1.4  
-1.0  
VIN = VOUT = 5.5V  
1. The AAT1141 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
4
1141.2008.10.1.6  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Typical Characteristics  
Efficiency vs. Load  
(VOUT = 3.3V; L = 6.8µH)  
DC Regulation  
(VOUT = 3.3V; L = 6.8µH)  
100  
3.0  
2.0  
1.0  
VIN = 3.6V  
90  
VIN = 4.2V  
VIN = 4.2V  
VIN = 5.0V  
80  
0.0  
-1.0  
-2.0  
-3.0  
VIN = 5.0V  
70  
60  
VIN = 5.5V  
50  
0.1  
1
10  
100  
1000  
0
100  
200  
300  
400  
500  
600  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 2.5V; L = 6.8µH)  
DC Regulation  
(VOUT = 2.5V; L = 6.8µH)  
100  
90  
80  
70  
60  
50  
3.0  
2.0  
VIN = 2.7V  
VIN = 5.0V  
1.0  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 3.6V  
-1.0  
-2.0  
-3.0  
VIN = 3.6V  
VIN = 3.0V  
VIN = 4.2V  
0
100  
200  
300  
400  
500  
600  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.8V; L = 4.7µH)  
DC Regulation  
(VOUT = 1.8V; L = 4.7μH)  
100  
3.0  
2.0  
VIN = 2.7V  
90  
80  
70  
60  
50  
1.0  
VIN = 4.2V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 3.6V  
0.0  
-1.0  
-2.0  
-3.0  
VIN = 4.2V  
0.1  
1
10  
100  
1000  
0
100  
200  
300  
400  
500  
600  
Output Current (mA)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
5
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Typical Characteristics  
Soft Start  
Line Regulation  
(VIN = 3.6V; VOUT = 1.8V; Load = 3Ω; CFF = 100pF)  
(VOUT = 1.8V)  
0.5  
0.4  
0.3  
IOUT = 10mA  
IOUT = 600mA  
EN  
(2V/div)  
0.2  
0.1  
0V  
VOUT  
0.0  
(2V/div)  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0V  
IIN  
(200mA/div)  
0mA  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Time (100μs/div)  
Switching Frequency vs. Temperature  
Output Voltage Error vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V)  
(VIN = 3.6V; VO = 1.8V; IOUT = 400mA)  
10.00  
8.00  
2.0  
1.0  
6.00  
4.00  
2.00  
0.00  
0.0  
-2.00  
-4.00  
-6.00  
-8.00  
-10.00  
-1.0  
-2.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
Frequency vs. Input Voltage  
No Load Quiescent Current vs. Input Voltage  
(VOUT = 3.0V, L = 6.8µH)  
2.0  
1.0  
60  
55  
TA = 85°C  
VOUT = 1.8V  
50  
TA = 25°C  
0.0  
45  
40  
35  
30  
-1.0  
-2.0  
-3.0  
-4.0  
VOUT = 2.5V  
VOUT = 3.3V  
TA = -40°C  
25  
20  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
3.3  
3.8  
4.3  
4.8  
5.3  
Input Voltage (V)  
Input Voltage (V)  
w w w . a n a l o g i c t e c h . c o m  
6
1141.2008.10.1.6  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Typical Characteristics  
No Load Quiescent Current vs. Input Voltage  
No Load Quiescent Current vs. Input Voltage  
(VOUT = 1.8V, L = 4.7µH)  
(VOUT = 1.2V, L = 2.2µH)  
0.060  
0.060  
TA = 85°C  
0.055  
0.055  
TA = 85°C  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
TA = 25°C  
TA = 25°C  
TA = -40°C  
TA = -40°C  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
P-Channel RDS(ON) vs. Input Voltage  
N-Channel RDS(ON) vs. Input Voltage  
700  
600  
500  
400  
300  
200  
100  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
85°C  
85°C  
25°C  
25°C  
-40°C  
-40°C  
100  
2.7  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Step-Down Converter Load Transient Response  
(1mA to 300mA; VIN = 3.6V; VOUT = 1.8V;  
COUT = 4.7µF; CFF = 100pF)  
Step-Down Converter Load Transient Response  
(300mA to 400mA; VIN = 3.6V;  
VOUT = 1.8V; COUT = 4.7µF; CFF = 100pF)  
VOUT  
(100mV/div)  
VOUT  
(50mV/div)  
1.8V  
1.8V  
300mA  
400mA  
IOUT  
(100mA/div)  
IOUT  
(100mA/div)  
300mA  
1mA  
Time (40µs/div)  
Time (40µs/div)  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
7
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Typical Characteristics  
Step-Down Converter Load Transient Response  
(1mA to 300mA; VIN = 3.6V; VOUT = 1.0V;  
COUT = 10µF; CFF = 0pF)  
Step-Down Converter Load Transient Response  
(300mA to 400mA; VIN = 3.6V;  
VOUT = 1.0V; COUT = 10µF; CFF = 0pF)  
VOUT  
(100mV/div)  
VOUT  
(50mV/div)  
1.0V  
1.0V  
400mA  
300mA  
IOUT  
(100mA/div)  
300mA  
IOUT  
(100mA/div)  
1mA  
Time (40µs/div)  
Time (40µs/div)  
Step-Down Converter Output Ripple  
(VOUT = 1.8V; VIN = 3.6V; IOUT = 1mA; L = 4.7µH;  
CFF = 100pF; COUT = 4.7µF)  
Line Response  
(VOUT = 1.8V @ 400mA)  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
Output  
Ripple  
1.8V  
(20mV/div)  
LX  
(2V/div)  
1.8V  
0mA  
Inductor  
Current  
(100mA/div)  
Time (25μs/div)  
Time (10µs/div)  
Step-Down Converter Output Ripple  
(VOUT = 1.8V; VIN = 3.6V; IOUT = 600mA;  
L = 4.7µH; CFF = 100pF; COUT = 4.7µF)  
Output  
Ripple  
(20mV/div)  
1.8V  
LX  
(2V/div)  
0V  
Inductor  
Current  
(100mA/div)  
600mA  
Time (0.5µs/div)  
w w w . a n a l o g i c t e c h . c o m  
8
1141.2008.10.1.6  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Functional Block Diagram  
IN  
OUT  
See note  
Err  
Amp  
.
DH  
LX  
Voltage  
Logic  
Reference  
DL  
INPUT  
EN  
GND  
Note: For adjustable version, the internal feedback divider is omitted and the OUT pin is tied directly  
to the internal error amplifier.  
tional feed-forward capacitor can also be added to the  
external feedback to provide improved transient response  
(see Figure 1).  
Functional Description  
The AAT1141 is a high performance 600mA 2MHz mono-  
lithic step-down converter. It has been designed with the  
goal of minimizing external component size and optimiz-  
ing efficiency over the complete load range. Apart from  
the small bypass input capacitor, only a small L-C filter  
is required at the output. Typically, a 4.7μH inductor and  
a 4.7μF ceramic capacitor are recommended (see table  
of values).  
At dropout, the converter duty cycle increases to 100%  
and the output voltage tracks the input voltage minus  
the RDS(ON) drop of the P-channel high-side MOSFET.  
The input voltage range is 2.7V to 5.5V. The converter  
efficiency has been optimized for all load conditions,  
ranging from no load to 600mA.  
The fixed output version requires only three external  
power components (CIN, COUT, and L). The adjustable ver-  
sion can be programmed with external feedback to any  
voltage, ranging from 0.6V to the input voltage. An addi-  
The internal error amplifier and compensation provides  
excellent transient response, load, and line regulation.  
Soft start eliminates any output voltage overshoot when  
the enable or the input voltage is applied.  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
9
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
SW  
U1  
AAT1141  
L1  
4.7μH  
1
2
3
5
IN  
LX  
VIN  
VOUT  
C1  
4.7μF  
C3  
100pF  
C2  
4.7μF  
R1  
GND  
EN  
118k  
1
2
3
Enable  
4
OUT  
R2  
59k  
Figure 1: Enhanced Transient Response Schematic.  
Control Loop  
Current Limit and  
Over-Temperature Protection  
The AAT1141 is a peak current mode step-down con-  
verter. The current through the P-channel MOSFET (high  
side) is sensed for current loop control, as well as short  
circuit and overload protection. A fixed slope compensa-  
tion signal is added to the sensed current to maintain  
stability for duty cycles greater than 50%. The peak cur-  
rent mode loop appears as a voltage-programmed cur-  
rent source in parallel with the output capacitor.  
For overload conditions, the peak input current is limit-  
ed. To minimize power dissipation and stresses under  
current limit and short-circuit conditions, switching is  
terminated after entering current limit for a series of  
pulses. Switching is terminated for seven consecutive  
clock cycles after a current limit has been sensed for a  
series of four consecutive clock cycles.  
The output of the voltage error amplifier programs the  
current mode loop for the necessary peak switch current  
to force a constant output voltage for all load and line  
conditions. Internal loop compensation terminates the  
transconductance voltage error amplifier output. For  
fixed voltage versions, the error amplifier reference volt-  
age is internally set to program the converter output  
voltage. For the adjustable output, the error amplifier  
reference is fixed at 0.6V.  
Thermal protection completely disables switching when  
internal dissipation becomes excessive. The junction  
over-temperature threshold is 140°C with 15°C of hys-  
teresis. Once an over-temperature or over-current fault  
condition is removed, the output voltage automatically  
recovers.  
Under-Voltage Lockout  
Internal bias of all circuits is controlled via the IN input.  
Under-voltage lockout (UVLO) guarantees sufficient VIN  
bias and proper operation of all internal circuitry prior to  
activation.  
Soft Start / Enable  
Soft start limits the current surge seen at the input and  
eliminates output voltage overshoot. When pulled low,  
the enable input forces the AAT1141 into a low-power,  
non-switching state. The total input current during shut-  
down is less than 1μA.  
w w w . a n a l o g i c t e c h . c o m  
10  
1141.2008.10.1.6  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
The 4.7μH CDRH2D14 series inductor selected from  
Sumida has a 135mΩ typical DCR and a 1A DC current  
rating. At full load, the inductor DC loss is 48mW which  
gives a 4.5% loss in efficiency for a 600mA, 1.8V out-  
put.  
Applications Information  
Inductor Selection  
The step-down converter uses peak current mode con-  
trol with slope compensation to maintain stability for  
duty cycles greater than 50%. The output inductor  
value must be selected so the inductor current down  
slope meets the internal slope compensation require-  
ments. The internal slope compensation for the adjust-  
able and low-voltage fixed versions of the AAT1141 is  
0.24A/μsec. This equates to a slope compensation that  
is 75% of the inductor current down slope for a 1.5V  
output and 4.7μH inductor.  
Input Capacitor  
Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for  
the input. To estimate the required input capacitor size,  
determine the acceptable input ripple level (VPP) and  
solve for C. The calculated value varies with input volt-  
age and is a maximum when VIN is double the output  
voltage.  
VO  
VO ⎞  
· 1 -  
VIN  
VIN  
0.75 · VO 0.75 · 1.5V  
A
m =  
=
= 0.24  
CIN =  
L
4.7μH  
μs  
VPP  
IO  
- ESR ·FS  
This is the internal slope compensation for the adjust-  
able (0.6V) version or low-voltage fixed versions. When  
externally programming the 0.6V version to 2.5V, the  
calculated inductance is 7.5μH.  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
VIN  
4
1
CIN(MIN)  
=
0.75 · VO  
m
0.75 · VO  
A
μs  
A
VPP  
IO  
L =  
=
3
· VO  
- ESR · 4 · FS  
0.24  
μs  
μs  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10μF, 6.3V, X5R  
ceramic capacitor with 5.0V DC applied is actually about  
6μF.  
= 3  
· 2.5V = 7.5μH  
A
In this case, a standard 6.8μH value is selected.  
For high-voltage fixed versions (2.5V), m = 0.48A/  
μsec. Table 1 displays inductor values for the AAT1141  
fixed and adjustable options.  
The maximum input capacitor RMS current is:  
VO  
VO ⎞  
Manufacturer's specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor.  
IRMS = IO ·  
· 1 -  
VIN  
VIN  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current.  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
D · (1 - D) = 0.52 =  
VIN  
2
for VIN = 2 · VO  
IO  
IRMS(MAX)  
=
Output  
Output  
2
Voltage (V)  
Inductor (μH)  
Capacitor (μF)  
VO  
VO  
·
1 -  
VIN  
VIN  
The term  
appears in both the input voltage  
1, 1.2  
1.5, 1.8  
2.5, 3.3  
2.2  
4.7  
6.8  
10  
4.7  
4.7  
ripple and input capacitor RMS current equations and is  
a maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle.  
Table 1: Inductor and Output Capacitor Values.  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
11  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
The input capacitor provides a low impedance loop for  
the edges of pulsed current drawn by the AAT1141. Low  
ESR/ESL X7R and X5R ceramic capacitors are ideal for  
this function. To minimize stray inductance, the capacitor  
should be placed as closely as possible to the IC. This  
keeps the high frequency content of the input current  
localized, minimizing EMI and input voltage ripple.  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the evalu-  
ation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result.  
The proper placement of the input capacitor (C2) can be  
seen in the evaluation board layout in Figure 2.  
Figure 2: AAT1141 Sample Layout  
Top Side.  
Figure 3: Exploded View of Sample Layout.  
Figure 4: AAT1141 Sample Layout  
Bottom Side.  
w w w . a n a l o g i c t e c h . c o m  
12  
1141.2008.10.1.6  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Since the inductance of a short PCB trace feeding the  
input voltage is significantly lower than the power leads  
from the bench power supply, most applications do not  
exhibit this problem.  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
Adjustable Output Resistor Selection  
In applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic should be placed in parallel with the  
low ESR, ESL bypass ceramic. This dampens the high Q  
network and stabilizes the system.  
For applications requiring an adjustable output voltage,  
the 0.6V version can be externally programmed. Resistors  
R1 and R2 of Figure 5 program the output to regulate at  
a voltage higher than 0.6V. To limit the bias current  
required for the external feedback resistor string while  
maintaining good noise immunity, the minimum sug-  
gested value for R2 is 59kΩ. Although a larger value will  
further reduce quiescent current, it will also increase the  
impedance of the feedback node, making it more sensi-  
tive to external noise and interference. Table 2 summa-  
rizes the resistor values for various output voltages with  
R2 set to either 59kΩ for good noise immunity or 316kΩ  
for reduced no load input current.  
Output Capacitor  
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 4.7μF to  
10μF X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple.  
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic output  
capacitor. During a step increase in load current, the  
ceramic output capacitor alone supplies the load current  
until the loop responds. Within two or three switching  
cycles, the loop responds and the inductor current  
increases to match the load current demand. The rela-  
tionship of the output voltage droop during the three  
switching cycles to the output capacitance can be esti-  
mated by:  
V
V
1.5V  
0.6V  
OUT  
R1 =  
-1 · R2 =  
- 1 · 59kΩ = 88.5kΩ  
REF  
The adjustable version of the AAT1141, combined with  
an external feedforward capacitor (C3 in Figure 1),  
delivers enhanced transient response for extreme pulsed  
load applications. The addition of the feedforward capac-  
itor typically requires a larger output capacitor C1 for  
stability.  
Low Input  
Current  
(Without Load)  
3 · ΔILOAD  
=
High Noise  
Immunity  
COUT  
V
DROOP · FS  
R2 = 59kΩ  
R1 (kΩ)  
R2 = 316kΩ  
R1 (kΩ)  
VOUT (V)  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients.  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
2.0  
2.5  
3.0  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
88.7  
137  
105  
158  
210  
267  
316  
365  
422  
475  
634  
732  
1000  
1270  
1430  
The internal voltage loop compensation also limits the  
minimum output capacitor value to 4.7μF. This is due to  
its effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
187  
237  
267  
The maximum output capacitor RMS ripple current is  
given by:  
Table 2: Adjustable Resistor Values For Use With  
0.6V Step-Down Converter.  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · F · VIN(MAX)  
2 · 3  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
13  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Since RDS(ON), quiescent current, and switching losses all  
vary with input voltage, the total losses should be inves-  
tigated over the complete input voltage range.  
Thermal Calculations  
There are three types of losses associated with the  
AAT1141 step-down converter: switching losses, con-  
duction losses, and quiescent current losses. Conduction  
losses are associated with the RDS(ON) characteristics of  
the power output switching devices. Switching losses are  
dominated by the gate charge of the power output  
switching devices. At full load, assuming continuous con-  
duction mode (CCM), a simplified form of the LDO losses  
is given by:  
Given the total losses, the maximum junction tempera-  
ture can be derived from the θJA for the SOT23-5 pack-  
age which is 150°C/W.  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
Output Dropout  
IO2 · (RDSON(HS) · VO + RDSON(LS) · [VIN - VO])  
At dropout, the duty cycle of AAT1141 switching is  
100%. The minimum dropout voltage is determined by  
RDS(ON)H and the inductor copper loss resistor. AAT1141  
has 0.35Ω RDS(ON)H. The inductor copper loss resistor var-  
ies with different inductor values and manufacturer. The  
safe dropout voltage is 0.5V for a 600mA load.  
PTOTAL  
=
VIN  
+ (tsw · F · IO + IQ) · VIN  
IQ is the step-down converter quiescent current. The  
term tsw is used to estimate the full load step-down con-  
verter switching losses.  
For example, when load current is 600mA, the voltage  
dropped across RDS(ON)H is 0.21V; if the inductor copper  
loss resistor is 135mΩ, the voltage drop across the  
inductor is 0.08V. So the total voltage drop is 0.29V.  
Considering manufacturer’s tolerances, the inductor cop-  
per loss resistor and RDS(ON)H will vary from part to part,  
a 0.4V dropout window is safe.  
For the condition where the step-down converter is in  
dropout at 100% duty cycle, the total device dissipation  
reduces to:  
PTOTAL = IO2 · RDSON(HS) + IQ · VIN  
SW  
U1  
AAT1141  
L1  
4.7μH  
1
5
IN  
LX  
VIN  
VOUT = 1.8V  
C1  
4.7μF  
C3  
100pF  
C2  
4.7μF  
R1  
2
3
GND  
EN  
634k  
1
2
3
Enable  
4
R2  
316k  
OUT  
Figure 5: AAT1141 Adjustable Evaluation Board Schematic.  
w w w . a n a l o g i c t e c h . c o m  
14  
1141.2008.10.1.6  
PRODUCT DATASHEET  
AAT1141  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Efficiency  
Layout  
Besides the AAT1141 device losses including switching  
losses, conduction losses, and quiescent current losses,  
the inductor copper loss also affects the efficiency of the  
buck converter. To the buck converter, the average cur-  
rent of the inductor is equal to output current IO. So the  
loss in the inductor is:  
The suggested 2-layer PCB layout for the AAT1141 is  
shown in Figures 2, 3 and 4. The following guide lines  
should be used to help ensure a proper layout.  
1. The power traces (GND, LX, VIN) should be kept  
short, direct, and wide to allow large current flow.  
Place sufficient multiple-layer pads when needed to  
change the trace layer.  
2. The input capacitor (C1) should connect as closely  
as possible to IN and GND.  
PLOSS_L = IO2 · RL  
3. The output capacitor C2 and L1 should be connected  
as closely as possible. The connection of L1 to the LX  
pin should be as short as possible and there should  
not be any signal lines under the inductor.  
4. The feedback trace or OUT pin should be separate  
from any power trace and connect as closely as pos-  
sible to the load point. Sensing along a high-current  
load trace will degrade DC load regulation. If exter-  
nal feedback resistors are used, they should be  
placed as closely as possible to the OUT pin to min-  
imize the length of the high impedance feedback  
trace.  
Table 4 shows some recommended inductors. A larger  
size inductor usually has lower DCR. For example, if  
selecting CDRH2D14 4.7μH for 1.8V output, the PLoss_L is  
48.6mW when the output current is 600mA, so the  
inductor loses 4.5% power; if selecting CDRH3D23  
4.7μH, the PLoss_L should be 19.8mW, and the inductor  
power loss ratio is only 1.8%. The inductor size and the  
buck converter efficiency is always a trade-off in the real  
application.  
5. The resistance of the trace from the load return to  
GND should be kept to a minimum. This will help to  
minimize any error in DC regulation due to differ-  
ences in the potential of the internal signal ground  
and the power ground.  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
15  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Step-Down Converter Design Example  
Specifications  
VO  
VIN  
FS  
=
=
=
=
1.8V @ 600mA (adjustable using 0.6V version), Pulsed Load ΔILOAD = 300mA  
2.7V to 4.2V (3.6V nominal)  
2MHz  
85°C  
TAMB  
1.8V Output Inductor  
µs  
A
µs  
A
(use 4.7μH; see Table 1)  
L1 = 3  
· VO2 = 3  
· 1.8V = 5.4µH  
For Sumida inductor CDRH3D16, 4.7μH, DCR = 105mΩ.  
VO  
L1 · F  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
· 1 -  
=
· 1 -  
= 109.2mA  
4.7µH · 2MHz  
ΔI  
IPKL1 = IO + L1 = 0.6A + 0.055A = 0.655A  
2
PL1 = IO2 · DCR = 0.6A2 · 105mΩ = 38mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.3A  
0.1V · 2MHz  
COUT  
=
=
= 4.48µF; use 10µF  
(VO) · (VIN(MAX) - VO)  
L1 · F · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
4.7µH · 2MHz · 4.2V  
1
·
= 31.5mArms  
IRMS  
=
·
=
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (31.5mA)2 = 5µW  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 3.4µF; use 4.7µF  
VPP  
IO  
25mV  
0.6A  
- ESR · 4 · FS  
- 5mW · 4 · 2MHz  
IO  
2
IRMS  
=
= 0.3Arms  
P = esr · IRMS2 = 5mΩ · (0.3A)2 = 0.45mW  
w w w . a n a l o g i c t e c h . c o m  
16  
1141.2008.10.1.6  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
AAT1141 Losses  
IO2 · (RDSON(HS) · VO + RDSON(LS) · [VIN -VO])  
PTOTAL  
=
VIN  
+ (tsw · F · IO + IQ) · VIN  
0.62 · (0.35Ω · 1.8V + 0.3Ω · [4.2V - 1.8V])  
=
4.2V  
+ (5ns · 2MHz · 0.6A + 70μA) · 4.2V = 141mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (150°C/W) · 141mW = 106.2°C  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
17  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Adjustable Version  
(0.6V device)  
VOUT (V)  
R2 = 59kΩ  
R1 (kΩ)  
R2 = 316kΩ1  
R1 (kΩ)  
L1 (μH)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
105  
158  
210  
267  
316  
365  
422  
475  
634  
732  
1000  
1270  
1430  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
4.7  
4.7  
4.7  
4.7  
6.8  
6.8  
6.8  
Fixed Version  
VOUT (V)  
R2 Not Used  
R1 (kΩ)  
L1 (μH)  
0.6-3.3V  
0
4.7  
Table 3: Evaluation Board Component Values.  
Max DC  
Current (A)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
Inductance (μH)  
DCR (Ω)  
Type  
Sumida  
Sumida  
Sumida  
CDRH3D16-2R2  
CDRH3D16-4R7  
CDRH3D16-6R8  
2.2  
4.7  
6.8  
2.2  
4.7  
6.8  
4.7  
4.7  
4.7  
4.7  
6.8  
4.7  
1.20  
0.90  
0.73  
1.5  
0.072  
0.105  
0.170  
75  
135  
170  
0.80  
0.20  
0.27  
0.122  
0.175  
0.122  
3.8x3.8x1.8  
3.8x3.8x1.8  
3.8x3.8x1.8  
Shielded  
Shielded  
Shielded  
Sumida  
CDRH2D14  
1.0  
3.2x3.2x1.55  
Shielded  
0.85  
0.40  
0.45  
0.80  
0.98  
0.82  
1.30  
Murata  
Murata  
Coilcraft  
Coiltronics  
Coiltronics  
Coiltronics  
LQH2MCN4R7M02  
LQH32CN4R7M23  
LPO3310-472  
SD3118-4R7  
2.0x1.6x0.95  
2.5x3.2x2.0  
3.2x3.2x1.0  
3.1x3.1x1.85  
3.1x3.1x1.85  
5.7x4.4x1.0  
Non-Shielded  
Non-Shielded  
1mm  
Shielded  
Shielded  
SD3118-6R8  
SDRC10-4R7  
1mm Shielded  
Table 4: Typical Surface Mount Inductors.  
Manufacturer  
Part Number  
Value  
Voltage  
Temp. Co.  
Case  
Murata  
Murata  
Murata  
GRM219R61A475KE19  
GRM21BR60J106KE19  
GRM21BR60J226ME39  
4.7μF  
10μF  
22μF  
10V  
6.3V  
6.3V  
X5R  
X5R  
X5R  
0805  
0805  
0805  
Table 5: Surface Mount Capacitors.  
1. For reduced quiescent current, R2 = 316kΩ.  
w w w . a n a l o g i c t e c h . c o m  
18  
1141.2008.10.1.6  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
Ordering Information  
Output Voltage1  
Package  
Marking2  
Part Number (Tape and Reel)3  
Adj 0.6 to VIN  
Adj 0.6 to VIN  
TSOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
SOT23-5  
YJXYY  
1AXYY  
5AXYY  
4VXYY  
5BXYY  
ZEXYY  
5CXYY  
5DXYY  
AAT1141ICB-0.6-T1  
AAT1141IGV-0.6-T1  
AAT1141IGV-1.0-T1  
AAT1141IGV-1.2-T1  
AAT1141IGV-1.5-T1  
AAT1141IGV-1.8-T1  
AAT1141IGV-3.0-T1  
AAT1141IGV-3.3-T1  
1.0  
1.2  
1.5  
1.8  
3.0  
3.3  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means semiconductor  
products that are in compliance with current RoHS standards, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. For more information, please visit our website at  
http://www.analogictech.com/about/quality.aspx.  
Package Information  
SOT23-5  
2.85 0.15  
1.90 BSC  
0.95  
BSC  
0.60 REF  
0.15 0.07  
GAUGE PLANE  
0.075 0.075  
0.45 0.15  
0.10 BSC  
0.60 REF  
10° 5°  
0.40 0.10  
All dimensions in millimeters.  
1. Contact Sales for other voltage options.  
2. XYY = assembly and date code.  
3. Sample stock is generally held on part numbers listed in BOLD.  
w w w . a n a l o g i c t e c h . c o m  
1141.2008.10.1.6  
19  
PRODUCT DATASHEET  
SwitchRegTM  
FastTransient 600mA Step-Down Converter  
TSOT23-5  
1.900 BSC  
Detail "A"  
End View  
0.450 0.150  
0.950 BSC  
Top View  
2.900 BSC  
+10°  
-0°  
0°  
0.450 0.150  
0.050 0.050  
Side View  
Detail "A"  
All dimensions in millimeters.  
Advanced Analogic Technologies, Inc.  
3230 Scott Boulevard, Santa Clara, CA 95054  
Phone (408) 737-4600  
Fax (408) 737-4611  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual  
property rights are implied. AnalogicTech reserves the right to make changes to their products or specications or to discontinue any product or service without notice. Except as provided in AnalogicTech’s terms and  
conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties  
relating to tness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer’s applications, adequate  
design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to  
support this warranty. Specic testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other  
brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
w w w . a n a l o g i c t e c h . c o m  
20  
1141.2008.10.1.6  

相关型号:

AAT1142

800mA Voltage-Scaling Step-Down Converter
ANALOGICTECH

AAT1142ITP-1.8-T1

800mA Voltage-Scaling Step-Down Converter
ANALOGICTECH

AAT1142IWP-1.8-T1

800mA Voltage-Scaling Step-Down Converter
ANALOGICTECH

AAT1143

1MHz 400mA Step-Down Converter
ANALOGICTECH

AAT1143

1MHz 400mA Step-Down Converter
SKYWORKS

AAT1143IJS-0.6-T1

1MHz 400mA Step-Down Converter
ANALOGICTECH

AAT1143IJS-0.6-T1

1MHz 400mA Step-Down Converter
SKYWORKS

AAT1143IJS-1.2-T1

1MHz 400mA Step-Down Converter
ANALOGICTECH

AAT1143IJS-1.2-T1

1MHz 400mA Step-Down Converter
SKYWORKS

AAT1143IJS-1.5-T1

1MHz 400mA Step-Down Converter
ANALOGICTECH

AAT1143IJS-1.6-T1

1MHz 400mA Step-Down Converter
ANALOGICTECH

AAT1143IJS-1.6-T1

1MHz 400mA Step-Down Converter
SKYWORKS