AS1302-BWLT [AMSCO]

5V/30mA Adaptive Inductorless Boost Converter; 5V / 30毫安自适应无电感升压转换器
AS1302-BWLT
型号: AS1302-BWLT
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

5V/30mA Adaptive Inductorless Boost Converter
5V / 30毫安自适应无电感升压转换器

转换器 升压转换器
文件: 总18页 (文件大小:1168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
AS1302  
5V/30mA Adaptive Inductorless Boost Converter  
1 General Description  
2 Key Features  
Up to 90% Efficiency  
The AS1302 is a 30mA inductorless boost converter  
using a double H-bridge charge-pump topology with two  
external flying capacitors. The AS1302 charge pump  
features 1:2 and 2:3 operation modes as well as a 1:1  
operation mode where the input is directly connected to  
the output.  
2.9V to 5.15V Input Voltage  
Regulated 5V Output  
Automatic Mode Switching  
<1µA Shutdown Current  
Startup with Full Load (within 1ms)  
Up to 30mA Load Current  
Short Circuit Protection  
Output Disconnected During Shutdown  
Soft-Start  
The AS1302 runs on a 1.2MHz fixed frequency and is  
utilized with a low noise regulation scheme to allow  
usage together with sensitive RF circuitry from the same  
battery supply. Additionally to increase efficiency the  
AS1302 switches to 49kHz at light loads.  
Designed to reside in portable and space limited  
equipment the 1.2MHz charge pump converts a 2.9V to  
5.15V input to regulated 5V output with 3% accuracy.  
No Inductor Required  
Small External Components Required  
(COUT =2.2µF, CFLY =220nF)  
The shutdown function reduces the supply current to  
<1µA and disconnects the load from the output. The  
integrated soft-start circuitry prevents high inrush  
currents being drawn from the battery during start-up.  
Low Noise Fixed Frequency (1.2MHz, 49kHz)  
Charge Pump:  
- 1:1 Battery Feed Through Mode  
- 2:3 Single Phase Mode  
- 1:2 Single Phase Mode  
Package Options:  
The AS1302 includes built-in under-voltage lockout,  
short circuit-, and thermal protection circuitry.  
The AS1302 is available in TDFN (3x3x0.8mm) 10-pin  
and an extremely small 1.2x1.2mm WL-CSP 8-bumps  
package with 0.4mm pitch.  
- TDFN (3x3x0.8mm) 10-pin  
- WL-CSP 8-bumps with 0.4mm Pitch  
3 Applications  
The device is ideal for two or three AA cells or a single  
Li-Ion battery cell to 5V conversion, mobile phones,  
portable instruments, microprocessor based systems  
and remote data-acquisition systems.  
Figure 1. AS1302 - Typical Application Diagram  
CFLY1  
C1+  
220nF  
C1-  
VOUT = 5V  
VBATT  
2.9V to 5.15V  
VBATT  
EN  
VOUT  
GND  
CBAT  
2.2µF  
COUT  
2.2µF  
AS1302  
On  
Off  
C2+  
C2-  
220nF  
CFLY2  
www.austriamicrosystems.com  
Revision 1.02  
1 - 18  
AS1302  
Datasheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Through View)  
C1- GND  
EN  
A3  
GND 1  
C1- 2  
10 EN  
A1  
A2  
9 VBATT  
8 C2-  
B1  
B3  
C3  
C1+  
VBATT  
NC 3  
AS1302  
C1+  
NC  
4
5
7
6
C1  
C2  
GND  
VOUT  
C2+  
VOUT C2+ C2-  
WL-CSP 8-bumps  
TDFN (3x3x0.8mm) 10-pin  
Pin Descriptions  
Table 1. Pin Descriptions  
Pin Name  
C1-  
Pin Number  
Description  
A1  
A2  
Connector 1-. Negative terminal of flying cap 1.  
Ground.  
GND  
Enable. (operating if EN = 1). Set this digital input to logic high for normal  
operation. For shutdown, set to logic low.  
Connector 1+. Positive terminal of flying cap 1.  
A3  
B1  
B3  
EN  
C1+  
+2.9V to 5.15V Input Voltage. Bypass this pin to GND with a 2.2µF low  
ESR ceramic capacitor.  
VBATT  
+5V Output Voltage. This pin must be bypassed with a 2.2µF low ESR  
ceramic capacitor.  
C1  
VOUT  
Connector 2+. Positive terminal of flying cap 2.  
C2  
C3  
C2+  
C2-  
Connector 2-. Negative terminal of flying cap 2.  
www.austriamicrosystems.com  
Revision 1.02  
2 - 18  
AS1302  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical  
Characteristics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
All pins to GND  
Min  
-0.3  
-40  
-65  
Max  
+7.0  
+85  
Units  
V
Notes  
Operating Temperature Range  
Storage Temperature Range  
ºC  
ºC  
kV  
V
+125  
HBM MIL-Std. 883E 3015.7 methods  
CDM JESD22-C101C methods  
2
ESD  
500  
The reflow peak soldering temperature  
(body temperature) specified is in  
accordance with IPC/JEDEC J-STD-  
020D “Moisture/Reflow Sensitivity  
Classification for Non-Hermetic Solid  
State Surface Mount Devices”.  
Package Body Temperature  
+260  
ºC  
The lead finish for Pb-free leaded  
packages is matte tin (100% Sn).  
www.austriamicrosystems.com  
Revision 1.02  
3 - 18  
AS1302  
Datasheet - Electrical Characteristics  
6 Electrical Characteristics  
VBATT = 2.9V to 5.15V, VOUT = 5V, COUT = CBAT = 2.2µF, CFLY1 = CFLY2 =220nF, TAMB = -40 to +85ºC. Typical values  
are at TAMB = +25ºC and VIN = 3.3V, unless otherwise specified.  
Table 3. Electrical Characteristics  
Symbol  
VBATT(on)  
VBATT(off)  
VBATT  
Parameter  
Undervoltage Lockout  
Undervoltage Lockout  
Battery Supply Voltage  
Output Voltage Accurracy  
Conditions  
Min  
Typ  
2.8  
2.5  
Max  
2.9  
Units  
Rising VBATT  
Falling VBATT  
V
V
V
V
2.4  
2.9  
2.8  
5.15  
5.15  
VOUT  
IOUT = 0mA, 15mA  
4.85  
5.0  
2
ΔVO/ΔIO11 Load Regulation in 1:1 Mode  
ΔVO/ΔIO23 Load Regulation in 2:3 Mode  
VBATT = 5.4V, IOUT = 10~30mA  
VBATT = 4.3V, IOUT = 10~30mA  
VBATT = 3.3V, IOUT = 10~30mA  
1:1 / 2:3 mode, falling VBATT  
2:3 / 1:2 mode, falling VBATT  
Mode switching voltage hysteresis  
3
mV/mA  
Load Regulation in 1:2 Mode  
ΔVO/ΔIO12  
Vtgr11/23  
3
5.1  
3.6  
150  
V
Mode Switching Voltage  
Vtgr23/12  
mV  
mA  
Load Current1  
IOUT  
30  
VBATT = 3.6V, IOUT = 30mA  
VBATT = 3.6V, IOUT = 2mA  
mVPP  
mVPP  
22  
40  
Vripple  
Output Voltage Ripple  
Inrush Current2  
Iinr  
150  
150  
mA  
mA  
Ishort  
Short-Circuit Current  
1:2 mode, VBATT = 2.9V,  
IOUT = 30mA  
η12  
η23  
85  
85  
%
%
Efficiency in Switching Mode  
2:3 mode, VBATT = 3.8V,  
IOUT = 30mA  
IOP12  
IOP23  
IOP11  
IOFF  
VBATT = 3.4V (1:2 mode without load)  
VBATT = 4.5V (2:3 mode without load)  
VBATT = 5.3V (1:1 mode without load)  
EN = 0V  
240  
170  
100  
0.01  
300  
230  
150  
1
Operating Quiescent Current  
Shutdown Current  
µA  
µA  
Input Levels  
Input High Level  
VIH  
VIL  
1.1  
0.0  
5.5  
0.4  
V
V
pin EN  
Input Low Level  
Timing  
VBATT = 3.6V, IOUT = 30mA  
VBATT = 3.6V, IOUT = 2mA  
0.9  
40  
1.2  
49  
1.5  
65  
1
MHz  
kHz  
ms  
fOSC  
Oscillator Frequency  
tSTART Startup Time  
0.5  
Thermal Regulation  
TOFF  
Temperature rising  
Hysteresis  
145  
10  
Temperature Shutdown  
ºC  
1. The device is tested in a proprietary test mode.  
2. The inrush current is limited by the internal soft-start circuitry.  
www.austriamicrosystems.com  
Revision 1.02  
4 - 18  
AS1302  
Datasheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
VBATT = 3.3V, VOUT = 5V, COUT = CBAT = 2.2µF, CFLY1 = CFLY2 =220nF, TAMB = +25ºC, unless otherwise specified.  
Figure 3. Efficiency vs. Input Voltage; ILOAD = 1mA  
Figure 4. Efficiency vs. Input Voltage; ILOAD = 10mA  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
50  
50  
40  
30  
20  
10  
0
1:2  
mode  
2:3  
mode  
1:2  
2:3  
1:1  
1:1  
mode  
mode  
mode  
mode  
40  
30  
20  
10  
0
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
Input Voltage (V)  
Input Voltage (V)  
Figure 5. Efficiency vs. Input Voltage; ILOAD = 20mA  
Figure 6. Efficiency vs. Input Voltage; ILOAD = 30mA  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
1:2  
mode  
2:3  
mode  
1:2  
mode  
2:3  
mode  
1:1  
mode  
1:1  
mode  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
Input Voltage (V)  
Input Voltage (V)  
Figure 7. Quiescent Current vs. Input Voltage  
Figure 8. Quiescent Current vs. Temperature  
300  
300  
Vi n=3.4V (1:2 Mode)  
275  
250  
225  
200  
175  
150  
125  
100  
75  
275  
Vi n=4.5V (2:3 Mode)  
Vi n=5.3V (1:1 Mode)  
250  
225  
200  
175  
150  
125  
100  
75  
50  
50  
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
-45 -30 -15  
0
15 30 45 60 75 90  
Input Voltage (V)  
Temperature (°C)  
www.austriamicrosystems.com  
Revision 1.02  
5 - 18  
AS1302  
Datasheet - Typical Operating Characteristics  
Figure 9. Efficiency vs. Output Current; VBATT = 2.9V  
Figure 10. Efficiency vs. Output Current; VBATT = 3.3V  
100  
100  
90  
80  
70  
90  
80  
70  
60  
60  
49kHz 1.2MHz  
49kHz 1.2MHz  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
Figure 11. Efficiency vs. Output Current; VBATT = 3.6V  
Figure 12. Efficiency vs. Output Current; VBATT = 4V  
100  
100  
90  
80  
70  
90  
80  
70  
60  
60  
49kHz 1.2MHz  
49kHz 1.2MHz  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
Figure 13. Efficiency vs. Output Current; VBATT = 4.3V  
Figure 14. Efficiency vs. Output Current; VBATT = 5.4V  
100  
100  
90  
80  
70  
90  
80  
permanent 1:1 Mode  
70  
60  
60  
50  
40  
30  
20  
10  
0
49kHz 1.2MHz  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
www.austriamicrosystems.com  
Revision 1.02  
6 - 18  
AS1302  
Datasheet - Typical Operating Characteristics  
Figure 15. Output Voltage vs. Output Current  
Figure 16. Output Voltage vs. Output Current  
5.15  
5.15  
5.1  
5.1  
49kHz  
1.2MHz  
49kHz  
1.2MHz  
5.05  
5
5.05  
5
4.95  
4.9  
4.95  
4.9  
Vi n =2.9V  
Vi n =3.3V  
Vi n =4.3V  
Vi n =3.0V  
Vi n =3.6V  
Vi n =4.0V  
4.85  
4.85  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
Figure 17. Output Voltage vs. Input Voltage  
Figure 18. Output Voltage vs. Temperature  
5.15  
5.15  
1:2  
2:3  
mode  
mode  
5.1  
5.05  
5
5.1  
5.05  
5
1:1  
mode  
4.95  
4.9  
4.95  
Iout =4mA  
Iout =0.1mA  
4.9  
Iout =10mA  
Iout =20mA  
Iout =10mA  
Iout =30mA  
Iout =30mA  
4.85  
4.85  
2.9 3.2 3.5 3.8 4.1 4.4 4.7  
Input Voltage (V)  
5
5.3  
-45 -30 -15  
0
15 30 45 60 75 90  
Temperature (°C)  
Figure 19. Startup Time vs. Input Voltage; load=166Ω  
1
0.875  
0.75  
0.625  
0.5  
0.375  
0.25  
0.125  
0
2.9 3.15 3.4 3.65 3.9 4.15 4.4 4.65 4.9  
Input Voltage (V)  
www.austriamicrosystems.com  
Revision 1.02  
7 - 18  
AS1302  
Datasheet - Typical Operating Characteristics  
Figure 20. Turn-ON / Turn-OFF Time @ load = 166Ω  
Figure 21. Inrush Current; no load  
200µs/Div  
50µs/Div  
Figure 22. Switching Frequency vs. Input Voltage;  
IOUT = 2mA  
Figure 23. Switching Frequency vs. Input Voltage;  
IOUT = 20mA  
65  
60  
55  
50  
45  
40  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5
Input Voltage (V)  
Input Voltage (V)  
Figure 24. Switching Frequency vs. Temperature;  
IOUT = 2mA  
Figure 25. Switching Frequency vs. Temperature;  
IOUT = 20mA  
65  
60  
55  
50  
45  
40  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
-45 -30 -15  
0
15 30 45 60 75 90  
-45 -30 -15  
0
15 30 45 60 75 90  
Temperature (°C)  
Temperature (°C)  
www.austriamicrosystems.com  
Revision 1.02  
8 - 18  
AS1302  
Datasheet - Typical Operating Characteristics  
Figure 26. Load Transient; Mode = 1:1,  
IOUT = 30 to 10 to 30 mA  
Figure 27. Load Transient; Mode = 2:3,  
IOUT = 30 to 10 to 30 mA  
500µs/Div  
500µs/Div  
Figure 28. Load Transient; Mode = 1:2,  
IOUT = 30 to 10 to 30 mA  
Figure 29. Load Transient; Mode = 1:2,  
IOUT = 20 to 4 to 20 mA  
500µs/Div  
500µs/Div  
Figure 30. Line Transient  
Figure 31. Output Ripple  
5ms/Div  
10µs/Div  
www.austriamicrosystems.com  
Revision 1.02  
9 - 18  
AS1302  
Datasheet - Detailed Description  
8 Detailed Description  
Functional Description  
The AS1302 is a high efficiency and low noise switched capacitor DC-DC converter that is capable of boost operation.  
It is equipped with two built-in coupled H-bridge type switch configurations. Based on the value of the output voltage  
the system automatically initiates mode-switching to achieve the highest possible efficiency. The regulation of the  
output voltage is achieved by a regulation loop, which modulates the current drive capability of the power transistors so  
that the amount of charge transferred from the input to the output at each clock cycle is controlled and is equal to the  
charge needed by the load.  
Regulation Loop  
The AS1302 operates at a constant frequency. For the regulation loop power transistors, a resistor divider and an error  
amplifier are used to keep the output voltage within the allowed limits. The error amplifier takes the feedback and  
reference signals as inputs and generates the error voltage signal. The error voltage controls a driver that triggers the  
gate voltage of the power transistor which modulates the current drive capability of the power amplifier. The modulated  
transistor controls the charge transferred from the input to the output and therefore the regulation of the output is  
realized. This regulation concept which is based on adjusting the amount of charge transferred, delivers the smallest  
voltage ripple possible.  
Figure 32. AS1302 - Functional Block Diagram  
CFLY1  
C1-  
CFLY2  
C2-  
C1+  
C2+  
VOUT  
VBATT  
CBAT  
Double-H Bridge  
Topology  
+
COUT  
i(t)dt  
Vctrl  
Vmode  
Soft-  
start  
Mode  
Select  
Temp  
State Machine  
&
Ref  
Bias  
Control Logic  
POR  
CLK  
EN  
On  
Off  
AS1302  
GND  
Light/Heavy Load Monitor  
To detetect the output current in the 2:3 and in the 1:2 mode, a current sense is used. The device switches to a lower  
switching frequency (49kHz typ), due to a detected light-load condition. With this frequency an excellent light-load  
efficiency is achieved and no audible noise is generated. If the load is increasing (typically more than 3mA), the device  
operates at 1.2MHz.  
www.austriamicrosystems.com  
Revision 1.02  
10 - 18  
AS1302  
Datasheet - Detailed Description  
Switch Configuration  
The AS1302 has nine built-in power switches in the shape of two coupled H-bridge topologies. The system features  
1:2 and 2:3 operation modes as well as a 1:1 operation where the input is directly connected to the output.  
In 2:3 operation mode two flying capacitors are placed in series and each capacitor is charged to the half of the input  
voltage. In pumping phase the flying capacitors are placed in parallel. The bottom-plates of the parallel flying  
capacitors CFLY1 and CFLY2 are connected to the input voltage so that the voltage at the top-plates of the flying  
capacitors is boosted to a voltage equal to VBATT + VBATT/2. By connecting the top-plates of the capacitors to the  
output, the output voltage in the 2:3 mode can be up to one and a half of VBATT. If the top-plate voltage is higher than  
5V, the regulation loop adapts the power transistor’s on-resistance to drop some voltage.  
Figure 33. 2:3 Operating Mode  
Charging Phase  
Pumping Phase  
VOUT  
+5V  
VOUT  
+5V  
SW1  
SW2  
SW1  
SW2  
VBATT  
+2.9V to 5.15V  
VBATT  
+2.9V to 5.15V  
CFLY1  
CFLY1  
CFLY2  
SW3  
CFLY2  
SW3  
SW4  
SW4  
In 1:2 operation both flying capacitors are placed in parallel to the input voltage, and therefore charged to the input  
voltage. During pumping phase the input voltage is connected to the bottom of the charged flying capacitors. The  
voltage at the top-plates of the parallel capacitors is now boosted to 2VBATT. By connecting the top-plates of the  
capacitors to the output, the output can be charged to twice the voltage of VBATT. If the top-plate voltage is higher than  
5V the regulation loop limits the charge transfer to the output.  
Figure 34. 1:2 Operating Mode  
Charging Phase  
Pumping Phase  
VOUT  
+5V  
VOUT  
+5V  
SW1  
SW1  
SW2  
SW2  
VBATT  
VBATT  
+2.9V to 5.15V  
+2.9V to 5.15V  
CFLY1  
CFLY2  
SW3  
CFLY1  
CFLY2  
SW3  
SW4  
SW4  
www.austriamicrosystems.com  
Revision 1.02  
11 - 18  
AS1302  
Datasheet - Detailed Description  
Soft-start  
The soft-start circuit prevents the supply from high inrush currents caused by the converter’s power-up sequence.  
During the soft-start (0.5ms typ) the device limits the inrush current. The device is capable to power-up at the minimum  
specified battery voltage and with the maximum load (ohmic equivalent) applied to the output.  
Undervoltage Lockout, UVLO  
The AS1302 is equipped with an undervoltage lockout functionality. If the battery voltage drops below 2.5V (typ) the  
device enters the undervoltage lockout condition. The device remains in this condition until the battery voltage is high  
enough to enter the soft start sequence. An internal hysteresis of 300mV prevents ringing during startup. If the input  
voltage increases to 2.8V (typ) again after such a condition the device turns-on automatically.  
Shutdown Mode  
The AS1302 enters low-power shutdown mode when EN is set to logic low. In shutdown the charge-pump action is  
halted, the output is completely disconnected from the input and VOUT will drop to 0V.  
Short-Circuit Protection  
Short-circuit protection prevents damage to the device if the output is shorted to ground. Whenever the output voltage  
is pulled significantly below VBATT, short-circuit protection is triggered and limits the current. As soon as VOUT recovers  
the protection is released and the device enters soft-start mode.  
Thermal Shutdown  
The AS1302 offers thermal shutdown, which prevents damage due to an over-temperature condition. Thermal  
shutdown will be initiated if the junction temperature exceeds 145°C. If the temperature drops below this value, the  
thermal shutdown will be released automatically and the device resumes operation. A hysteresis prevents the thermal  
shutdown from oscillating.  
Efficiency Consideration  
In the 2:3 operation mode the input current of the charge pump is approximately 1.5x the load current. In an ideal  
charge pump the efficiency can be calculated by:  
POUT  
-------------  
PIN  
VOUT × IOUT  
-------------------------------------------  
VBATT × 1, 5IOUT  
VOUT  
------------------------  
1, 5VBATT  
η =  
=
=
(EQ 1)  
The same works for the 1:2 operation mode. The input current of the charge pump is approximately 2x the load  
current. The efficiency of a charge pump in 1:2 operation mode can be calculated by:  
POUT  
-------------  
PIN  
VOUT × IOUT  
-------------------------------------  
VBATT × 2IOUT  
VOUT  
------------------  
2VBATT  
η =  
=
=
(EQ 2)  
For typical and high output power conditions the quiescent current and the switching losses are negligible and (EQ 1)  
and (EQ 2) are valid. Hence, with the same input Voltage the 2:3 operation mode will result into a higher efficiency than  
the 1:2 operation mode.  
www.austriamicrosystems.com  
Revision 1.02  
12 - 18  
AS1302  
Datasheet - Application Information  
9 Application Information  
External Component Selection  
The high internal oscillator frequency of 1.2MHz permits the use of small capacitors for both, the flying capacitors and  
the output capacitors. For any given load the value of the flying- and output capacitors as well as their ESR are  
affecting the output voltage performance.  
In general, the capacitor’s ESR is inversely proportional to its physical size. Larger capacitances and higher voltage  
ratings tend to reduce ESR. The ESR is a function of the frequency too, so it must be rated at the devices operating  
frequency. Another factor affecting capacitor ESR is temperature.  
Note: Many capacitors have a huge capacity variation over temperature. This can be compensated by choosing a  
capacitor with a better thermal coefficient or by choosing a larger nominal value to ensure proper operation  
over temperature.  
It is not critical which type of input bypass capacitor CBAT and output filter capacitor COUT is used, but it will affect the  
performance of the charge pump. Low ESR capacitors should be used to minimize VOUT ripple. Multi-layer ceramic  
capacitors are recommended since they have extremely low ESR and are available in small footprints.  
Input Capacitor  
A 2.2µF input bypass low ESR capacitor such as tantalum or ceramic is recommended to reduce noise and supply  
transients. During startup and mode change it supplies a part of the peak input current drawn by the device.  
Output Capacitor  
The output capacitor is charged to VOUT during the pumping phase. The ESR of the output capacitor introduces spikes  
in the output voltage waveform whenever the charge pump charges COUT. These spikes contribute to the ripple volt-  
age of VOUT. Therefore, ceramic or tantalum low ESR capacitors are recommended for COUT to minimize the output  
voltage ripple.  
Table 4. Recommended Input and Output Capacitors  
Part Number  
C
TC Code  
X5R  
Rated Voltage  
Dimensions  
0603  
Manufacturer  
Murata  
www.murata.com  
GRM188R61C225KE15  
GRM21BR71E225KA73  
GRM188R60J475KE19  
GRM188R60J106ME47  
2.2µF  
2.2µF  
4.7µF  
10µF  
16V  
25V  
6.3V  
6.3V  
X7R  
0805  
X5R  
0603  
X5R  
0603  
Figure 35. Load Regulation Comparision with different  
Capacitors  
Figure 36. Output Ripple vs. Output Current  
Comparision with different Capacitors  
5.15  
5.1  
5.05  
5
100  
2.2µF16V 0603  
2.2µF25V 0805  
4.7µF6.3V 0603  
49kHz 1.2MHz  
80  
60  
40  
20  
0
10µF6.3V 0603  
4.95  
2.2µF16V 0603  
4.9  
2.2µF25V 0805  
4.7µF6.3V 0603  
10µF6.3V 0603  
4.85  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Load Current (mA)  
Load Current (mA)  
www.austriamicrosystems.com  
Revision 1.02  
13 - 18  
AS1302  
Datasheet - Application Information  
Flying Capacitor Selection  
To ensure the required output current and avoid high peak currents the values of the flying capacitors CFLY1 and CFLY2  
are very critical. A 220nF capacitor is sufficient for most applications. Dependent on the operation mode the AS1302  
alternately charges and discharges the CFLY1/2 . While the ESR of the output capacitor produces a part of the output  
voltage ripple, the ESR of the flying capacitors directly adds to the charge pump’s output source resistance. Therefore  
low ESR capacitors, e.g. tantalum or ceramic, are recommended for the flying capacitors as well.  
Due to different materials for ceramic capacitors the on the material depending temperature and voltage coefficients  
have to be considered. The capacitance of a X7R ceramic capacitor is more stable than a Z5U or Y5V ceramic  
capacitor over the whole temperature range from -40°C to +85°C. As an additional effect a Z5U or Y5V ceramic  
capacitor will loose about the half of his nominal capacitance when the rated voltage is applied.  
It is important to choose the ceramic capacitor according to the minimum available capacitance over the operating  
voltage and the bias voltage. This information is stated in the datasheets of the capacitor manufacturer.  
Table 5. Recommended Flying Capacitors  
Part Number  
C
TC Code Rated Voltage  
Dimensions  
0603  
Manufacturer  
Murata  
www.murata.com  
GRM188R71E224KA88  
GRM155R61A224KE19  
220nF  
220nF  
X7R  
X5R  
25V  
10V  
0402  
Layout Consideration  
To achieve the best performance of the AS1302 a careful board layout is necessary to reduce the impact of the high  
switching frequency and the high transient currents which are produced by the device. For a proper regulation under all  
conditions a true ground plane and short connections to all external capacitors are needed.  
www.austriamicrosystems.com  
Revision 1.02  
14 - 18  
AS1302  
Datasheet - Package Drawings and Markings  
10 Package Drawings and Markings  
The device is available in a TDFN (3x3x0.8mm) 10-pin and WL-CSP 8-bumps package.  
Figure 37. TDFN (3x3x0.8mm) 10-pin Package Diagram  
D2  
D
SEE  
D2/2  
DETAIL B  
B
L
PIN 1 INDEX AREA  
(D/2 xE/2)  
K
B
N N-1  
b
PIN 1 INDEX AREA  
(D/2 xE/2)  
aaa  
C
2x  
TOP VIEW  
e
bbb  
C A  
(ND-1) X e  
BTM VIEW  
ddd  
C
e
Terminal Tip  
DETAIL B  
ccc  
C
C
C
SEATING  
PLANE  
0.08  
SIDE VIEW  
DatumA or B  
ODD TERMINAL SIDE  
Table 6. TDFN (3x3x0.8mm) 10-pin Package Dimensions  
Symbol  
A
Min  
0.70  
0.00  
Typ  
0.75  
0.02  
Max  
0.80  
0.05  
Symbol  
D BSC  
E BSC  
Min  
Typ  
3.00  
3.00  
Max  
A1  
2.20  
1.40  
0.30  
0º  
0.20  
0.18  
A3  
L1  
L2  
aaa  
bbb  
ccc  
ddd  
eee  
ggg  
0.20 REF  
D2  
E2  
L
θ
k
b
e
N
ND  
2.70  
1.75  
0.50  
0.03  
0.15  
0.13  
0.40  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
0.25  
0.50  
10  
0.30  
5
Note:  
1. Figure 37 is shown for illustration only.  
2. N is the total number of terminals.  
3. All dimensions are in millimeters, angle is in degrees.  
4. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
www.austriamicrosystems.com  
Revision 1.02  
15 - 18  
AS1302  
Datasheet - Package Drawings and Markings  
Figure 38. WL-CSP 8-bumps Package Diagram  
Bottom view  
Ball side  
Top throu  
gh view  
200  
typ.  
.
40 typ  
20  
350 typ.  
205±20  
1210±20.0  
0
600±30  
s:  
Note  
ccc Coplanarity  
All dimensions in  
µm  
www.austriamicrosystems.com  
Revision 1.02  
16 - 18  
AS1302  
Datasheet - Ordering Information  
11 Ordering Information  
The device is available as the standard products shown in Table 7.  
Table 7. Ordering Information  
Ordering Code  
Marking  
Description  
Delivery Form  
Package  
5V/30mA Adaptive Inductorless Boost  
Converter  
AS1302-BWLT  
Tape and Reel  
WL-CSP 8-bumps  
ASQ7  
5V/30mA Adaptive Inductorless Boost  
Converter  
TDFN (3x3x0.8mm)  
10-pin  
AS1302-BTDT  
Tape and Reel  
ASQ7  
Note: All products are RoHS compliant and Pb-free.  
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect  
For further information and requests, please contact us mailto:sales@austriamicrosystems.com  
or find your local distributor at http://www.austriamicrosystems.com/distributor  
www.austriamicrosystems.com  
Revision 1.02  
17 - 18  
AS1302  
Datasheet  
Copyrights  
Copyright © 1997-2009, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding  
the information set forth herein or regarding the freedom of the described devices from patent infringement.  
austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice.  
Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for  
current information. This product is intended for use in normal commercial applications. Applications requiring  
extended temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional processing by  
austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show  
deviations from the standard production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to  
personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the tech-  
nical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com  
Revision 1.02  
18 - 18  

相关型号:

AS1302_07

5V/30mA Adaptive Inductorless Boost Converter
AMSCO

AS131-59

SPDT RF Absorptive Switch
ETC

AS1310

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-18

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-20

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-25

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-27

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-30

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-33

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-331

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310-BTDT-xx2

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

AS1310_12

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO