A43L0632G-6UF [AMICC]

512K X 32 Bit X 2 Banks Synchronous DRAM; 512K ×32位×2组同步DRAM
A43L0632G-6UF
型号: A43L0632G-6UF
厂家: AMIC TECHNOLOGY    AMIC TECHNOLOGY
描述:

512K X 32 Bit X 2 Banks Synchronous DRAM
512K ×32位×2组同步DRAM

动态存储器
文件: 总44页 (文件大小:1305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A43L0632  
Preliminary  
512K X 32 Bit X 2 Banks Synchronous DRAM  
Document Title  
512K X 32 Bit X 2 Banks Synchronous DRAM  
Revision History  
Rev. No. History  
Issue Date  
Remark  
0.0  
Initial issue  
August 1, 2005  
Preliminary  
PRELIMINARY (August, 2005, Version 0.0)  
AMIC Technology, Corp.  
A43L0632  
Preliminary  
512K X 32 Bit X 2 Banks Synchronous DRAM  
Features  
Power supply  
- VDD: 3.3V VDDQ : 3.3V  
LVTTL compatible with multiplexed address  
All inputs are sampled at the positive going edge of the  
system clock  
DQM for masking  
Auto & self refresh  
Two banks / Pulse RAS  
64ms refresh period (4K cycle)  
Industrial operating temperature range: -40ºC to +85ºC  
for -U series.  
Available in 90 Balls CSP (8mm X 13mm)  
Package is available to lead free (-F series)  
MRS cycle with address key programs  
- CAS Latency (2 & 3)  
- Burst Length (1,2,4,8 & full page)  
- Burst Type (Sequential & Interleave)  
Clock Frequency (max) : 167MHz @ CL=3 (-6)  
143MHz @ CL=3 (-7)  
General Description  
The A43L0632 is 33,554,432 bits synchronous high data  
rate Dynamic RAM organized as 2 X 524,288 words by 32  
bits, fabricated with AMIC’s high performance CMOS  
technology. Synchronous design allows precise cycle  
control with the use of system clock. I/O transactions are  
possible on every clock cycle. Range of operating  
frequencies, programmable latencies allows the same  
device to be useful for a variety of high bandwidth, high  
performance memory system applications.  
Pin Configuration  
90 Balls CSP (8 mm x 13 mm)  
Top View  
90 Ball (8X13) CSP  
1
2
3
7
8
9
A
B
C
D
E
F
DQ26  
DQ28  
VSSQ  
VSSQ  
VDDQ  
VSS  
A4  
DQ24  
VDDQ  
DQ27  
DQ29  
DQ31  
DQM3  
A5  
VSS  
VSSQ  
DQ25  
DQ30  
NC  
VDD  
VDDQ  
DQ22  
DQ17  
NC  
DQ23  
VSSQ  
DQ20  
DQ18  
DQ16  
DQM2  
A0  
DQ21  
DQ19  
VDDQ  
VDDQ  
VSSQ  
VDD  
A2  
A3  
A1  
G
H
J
A6  
A10  
NC  
BA  
A7  
A8  
NC  
NC  
NC  
CLK  
CKE  
A9  
CS  
RAS  
K
DQM1  
NC  
NC  
DQM0  
CAS  
VDD  
DQ6  
WE  
DQ7  
DQ5  
DQ3  
VSSQ  
DQ0  
L
VDDQ  
VSSQ  
VSSQ  
DQ11  
DQ8  
DQ10  
DQ12  
VDDQ  
DQ15  
VSS  
DQ9  
VSSQ  
VDDQ  
VDDQ  
DQ4  
M
N
P
R
DQ14  
VSSQ  
VSS  
DQ1  
VDDQ  
VDD  
DQ13  
DQ2  
PRELIMINARY  
(August, 2005, Version 0.0)  
1
AMIC Technology, Corp.  
A43L0632  
Block Diagram  
LWE  
DQM  
Data Input Register  
Bank Select  
512K X 32  
512K X 32  
CLK  
DQi  
Column Decoder  
ADD  
Latency & Burst Length  
LRAS  
Programming Register  
LWCBR  
LCAS  
DQM  
LRAS  
LCBR  
LWE  
Timing Register  
RAS  
DQM  
CLK  
CKE  
CS  
CAS  
WE  
PRELIMINARY (August, 2005, Version 0.0)  
2
AMIC Technology, Corp.  
A43L0632  
Pin Descriptions  
Symbol  
Name  
Description  
CLK  
CS  
System Clock  
Chip Select  
Active on the positive going edge to sample all inputs.  
Disables or Enables device operation by masking or enabling all inputs except  
CLK, CKE and DQM  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one clock + tss prior to new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Row / Column addresses are multiplexed on the same pins.  
Row address : RA0~RA10, Column address: CA0~CA7  
Selects bank to be activated during row address latch time.  
Selects band for read/write during column address latch time.  
A0~A10  
BA  
Address  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with RAS low.  
Enables row access & precharge.  
RAS  
CAS  
Latches column addresses on the positive going edge of the CLK with CAS low.  
Enables column access.  
Column Address  
Strobe  
Write Enable  
Enables write operation and Row precharge.  
WE  
Makes data output Hi-Z, t SHZ after the clock and masks the output.  
Blocks data input when DQM active.  
Data Input/Output  
Mask  
DQMi  
DQ0-31  
Data Input/Output  
Data inputs/outputs are multiplexed on the same pins.  
Power  
Supply/Ground  
Power Supply: +3.3V ± 0.3V/Ground  
VDD/VSS  
Data Output  
Power/Ground  
VDDQ/VSSQ  
NC/RFU  
Provide isolated Power/Ground to DQs for improved noise immunity.  
No Connection  
PRELIMINARY (August, 2005, Version 0.0)  
3
AMIC Technology, Corp.  
A43L0632  
Absolute Maximum Ratings*  
*Comments  
Voltage on any pin relative to VSS (Vin, Vout ) . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +4.6V  
Voltage on VDD supply relative to VSS (VDD, VDDQ )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to + 4.6V  
Storage Temperature (TSTG) . . . . . . . . . . -55°C to +150°C  
Soldering Temperature X Time (TSLODER) . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C X 10sec  
Power Dissipation (PD) . . . . . . . . . . . . . . . . . . . . . . . . 0.8W  
Short Circuit Current (Ios) . . . . . . . . . . . . . . . . . . . . 50mA  
Permanent device damage may occur if “Absolute  
Maximum Ratings” are exceeded.  
Functional operation should be restricted to recommended  
operating condition.  
Exposure to higher than recommended voltage for  
extended periods of time could affect device reliability.  
Capacitance (TA=25°C, f=1MHz)  
Parameter  
Input Capacitance  
Symbol  
CI1  
Condition  
Min  
2.5  
2.5  
4.0  
Max  
3.8  
3.8  
6.5  
Unit  
pF  
A0 to A10, BA  
CI2  
CLK, CKE,  
,
,
, WE , DQM  
pF  
CS RAS CAS  
Data Input/Output Capacitance  
CI/O  
DQ0 to DQ31  
pF  
DC Electrical Characteristics  
Recommend operating conditions  
(Voltage referenced to VSS=0V, TA = 0ºC to +70ºC for commercial or TA =-40ºC to +85ºC for extended)  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min  
3
Typ  
Max  
Unit  
V
Note  
3.3  
3.6  
DQ Supply Voltage  
Input High Voltage  
3
3.3  
3.6  
V
2
3
-
VDD+0.3  
V
Input Low Voltage  
VIL  
-0.3  
2.4  
-
0.8  
-
V
Note 1  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
Output Loading Condition  
VOH  
VOL  
-
V
IOH = -0.1mA  
IOL = 0.1mA  
Note 2  
-
0.4  
5
V
IIL  
-5  
-5  
-
µA  
µA  
IOL  
-
5
Note 3  
See Fig. 1 (Page 6)  
Note: 1. VIL (min) = -1.5V AC (pulse width 5ns).  
2. Any input 0V VIN VDD + 0.3V, all other pins are not under test = 0V  
3. Dout is disabled, 0V Vout VDD  
PRELIMINARY  
(August, 2005, Version 0.0)  
4
AMIC Technology, Corp.  
A43L0632  
Decoupling Capacitance Guide Line  
Recommended decoupling capacitance added to power line at board  
Parameter  
Symbol  
CDC1  
Value  
Unit  
µF  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
0.1 + 0.01  
0.1 + 0.01  
CDC2  
µF  
Note: 1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
DC Electrical Characteristics  
(Recommended operating condition unless otherwise noted, TA = 0ºC to +70ºC for commercial or TA = -40ºC to +85ºC for extended)  
Speed  
Units Note  
Symbol  
Parameter  
Test Conditions  
-6  
-7  
Operating Current  
(One Bank Active)  
Burst Length = 1  
50  
Icc1  
mA  
mA  
1
tRC tRC(min), tCC tCC(min), IOL = 0mA  
CKE VIL(max), tCC = 15ns  
Icc2 P  
0.3  
0.5  
Precharge Standby Current  
in power-down mode  
Icc2 PS  
CKE VIL(max), tCC = ∞  
CKE VIH(min), CS VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC2N  
12  
Precharge Standby Current  
in non power-down mode  
mA  
mA  
CKE VIH(min), CLK VIL(max), tCC = ∞  
Input signals are stable.  
ICC2NS  
2
ICC3P  
ICC3N  
Active Standby current in  
non power-down mode  
(One Bank Active)  
1.5  
CKE VIL(max), tCC = 15ns  
CKE VIH(min), CS VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
12  
Operating Current  
(Burst Mode)  
IOL = 0mA, Page Burst  
All bank Activated, tCCD = tCCD (min)  
50  
70  
ICC4  
mA  
1
2
ICC5  
ICC6  
Refresh Current  
mA  
uA  
tRC tRC (min)  
Self Refresh Current  
200  
CKE 0.2V  
Note: 1. Measured with outputs open. Addresses are changed only one time during tCC(min).  
2. Refresh period is 64ms. Addresses are changed only one time during tCC(min).  
PRELIMINARY (August, 2005, Version 0.0)  
5
AMIC Technology, Corp.  
A43L0632  
AC Operating Test Conditions  
(VDD = 3.3V ±0.3V, TA = 0°C to +70°C or -40ºC to +85ºC)  
Parameter  
Value  
AC input levels  
VIH/VIL = 2.4V/0.4V  
1.4V  
Input timing measurement reference level  
Input rise and all time (See note3)  
Output timing measurement reference level  
Output load condition  
tr/tf = 1ns/1ns  
1.4V  
See Fig.2  
3.3V  
VOH(DC) = 2.4V, IOH = -2mA  
VOL(DC) = 0.4V, IOL = 2mA  
VTT =1.4V  
1200  
50Ω  
Output  
ZO=50Ω  
OUTPUT  
30pF  
870Ω  
30pF  
(Fig. 2) AC Output Load Circuit  
(Fig. 1) DC Output Load Circuit  
AC Characteristics  
(AC operating conditions unless otherwise noted)  
-6  
-7  
Symbol  
Parameter  
Unit  
Note  
Min  
6
Max  
Min  
Max  
CL=3  
CL=2  
CL=3  
CL=2  
7
10  
-
tCC  
CLK cycle time  
1000  
1000  
ns  
1
10  
-
5
6
-
6
6
-
CLK to valid  
Output delay  
tSAC  
tOH  
tCH  
ns  
ns  
ns  
1,2  
2
-
-
Output data hold time  
2.5  
2.5  
2.5  
2.5  
2.5  
1.5  
1.5  
1
3
3
3
3
3
2
2
1
1
-
CL=3  
CL=2  
CL=3  
CL=2  
CL=3  
CL=2  
-
-
CLK high pulse width  
3
-
-
-
-
tCL  
tSS  
CLK low pulse width  
Input setup time  
ns  
ns  
3
3
-
-
-
-
-
-
tSH  
Input hold time  
-
-
ns  
ns  
3
2
tSLZ  
CLK to output in Low-Z  
1
-
-
CL=3  
CL=2  
-
5
6
6
6
tSHZ  
CLK to output in Hi-Z  
ns  
-
-
CL=CAS Latency.  
*All AC parameters are measured from half to half.  
Note : 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf) = 1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]ns should be added to the parameter.  
PRELIMINARY (August, 2005, Version 0.0)  
6
AMIC Technology, Corp.  
A43L0632  
Operating AC Parameter  
(AC operating conditions unless otherwise noted)  
Version  
Symbol  
Parameter  
Unit  
Note  
-6  
12  
18  
-7  
14  
20  
tRRD(min)  
tRCD(min)  
Row active to row active delay  
ns  
ns  
1
1
RAS to  
delay  
CAS  
tRP(min)  
tRAS(min)  
tRAS(max)  
tRC(min)  
Row precharge time  
Row active time  
18  
42  
20  
49  
ns  
ns  
µs  
ns  
1
1
100  
60  
100  
68  
Row cycle time  
1
tCDL(min)  
tRDL(min)  
tBDL(min)  
tCCD(min)  
Last data in new col. Address delay  
Last data in row precharge  
1
2
1
1
CLK  
CLK  
CLK  
CLK  
2
2
2
Last data in to burst stop  
Col. Address to col. Address delay  
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and  
then rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
PRELIMINARY (August, 2005, Version 0.0)  
7
AMIC Technology, Corp.  
A43L0632  
Simplified Truth Table  
Command  
CKEn-1 CKEn CS RAS  
DQM BA A10/ A9~A0  
Notes  
CAS  
L
WE  
L
AP  
Register  
Mode Register Set  
Auto Refresh  
1,2  
H
H
X
L
L
X
X
OP CODE  
3
3
3
Refresh  
H
L
L
L
L
L
H
H
X
X
Entry  
Self  
H
H
Refresh  
Exit  
L
H
X
X
X
H
L
X
L
X
H
X
H
3
4
Bank Active & Row Addr.  
H
V
V
Row Addr.  
Read &  
Column Addr.  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
H
L
Column  
Addr.  
4
4,5  
4
H
X
L
H
L
H
X
Write &  
Column  
Addr.  
H
H
X
X
L
L
H
H
L
L
L
X
X
V
Column Addr.  
H
4,5  
6
Burst Stop  
Precharge  
H
X
Bank Selection  
Both Banks  
V
X
L
H
X
L
L
H
L
X
X
H
L
H
X
L
H
X
X
H
X
V
X
X
H
X
H
X
X
H
X
V
X
H
X
X
H
X
V
X
Entry  
H
L
L
H
L
X
X
X
Clock Suspend or  
Active Power Down  
X
X
Exit  
Entry  
H
H
L
Precharge Power Down Mode  
Exit  
L
H
H
H
X
X
V
X
H
DQM  
X
X
7
L
H
X
H
X
No Operation Command  
H
(V = Valid, X = Don’t Care, H = Logic High, L = Logic Low)  
Note : 1. OP Code : Operand Code  
A0~A10/AP,BA : Program keys. (@MRS)  
2. MRS can be issued only at both banks precharge state.  
A new command can be issued after 2 clock cycle of MRS.  
3. Auto refresh functions as same as CBR refresh of DRAM.  
The automatical precharge without Row precharge command is meant by “Auto”.  
Auto/Self refresh can be issued only at both precharge state.  
4. BA : Bank select address.  
If “Low” at read, write, Row active and precharge, bank A is selected.  
If “High” at read, write, Row active and precharge, bank B is selected.  
If A10/AP is “High” at Row precharge, BA is ignored and both banks are selected.  
5. During burst read or write with auto precharge, new read write command cannot be issued.  
Another bank read write command can be issued at every burst length.  
6. Burst stop command is valid at every burst length.  
7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0), but makes  
the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2)  
PRELIMINARY (August, 2005, Version 0.0)  
8
AMIC Technology, Corp.  
A43L0632  
Mode Register Filed Table to Program Modes  
Register Programmed with MRS  
Address  
BA  
A10/AP  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Function  
RFU  
RFU  
W.B.L  
TM  
CAS Latency  
BT  
Burst Length  
(Note 1)  
(Note 2)  
Test Mode  
Type  
CAS Latency  
A6 A5 A4 Latency  
Reserved  
Burst Type  
Burst Length  
A8 A7  
A3  
Type  
A2 A1 A0  
BT=0  
BT=1  
Reserved  
Reserved  
4
0
0
1
1
0
1
0
1
Mode Register Set  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
Vendor  
Use  
-
2
4
Only  
3
8
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
256(Full)  
Reserved  
Reserved  
Reserved  
Reserved  
Write Burst Length  
Length  
A9  
0
Burst  
1
Single Bit  
(Note 3)  
Power Up Sequence  
1. Apply power and start clock, Attempt to maintain CKE = “H”, DQM = “H” and the other pins are NOP condition at inputs.  
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200µs.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode register.  
cf.) Sequence of 4 & 5 may be changed.  
The device is now ready for normal operation.  
Note : 1. RFU(Reserved for Future Use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “Burst Read Single Bit Write” function will be enabled.  
3. The full column burst (256bit) is available only at Sequential mode of burst type.  
PRELIMINARY (August, 2005, Version 0.0)  
9
AMIC Technology, Corp.  
A43L0632  
Burst Sequence (Burst Length = 4)  
Initial address  
Sequential  
Interleave  
A1  
0
A0  
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
2
1
0
0
1
3
0
1
1
0
1
1
Burst Sequence (Burst Length = 8)  
Initial address  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
1
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
6
7
0
1
2
3
4
0
1
2
3
4
5
6
0
3
2
5
4
7
6
PRELIMINARY (August, 2005, Version 0.0)  
10  
AMIC Technology, Corp.  
A43L0632  
The clock signal must also be asserted at the same time.  
2. After VDD reaches the desired voltage, a minimum pause  
of 200 microseconds is required with inputs in NOP  
condition.  
3. All banks must be precharged now.  
4. Perform a minimum of 2 Auto refresh cycles to stabilize  
the internal circuitry.  
5. Perform a MODE REGISTER SET cycle to program the  
CAS latency, burst length and burst type as the default  
value of mode register is undefined.  
Device Operations  
Clock (CLK)  
The clock input is used as the reference for all SDRAM  
operations. All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high)  
for the duration of set up and hold time around positive edge  
of the clock for proper functionality and ICC specifications.  
At the end of one clock cycle from the mode register set  
cycle, the device is ready for operation.  
Clock Enable (CKE)  
When the above sequence is used for Power-up, all the  
out-puts will be in high impedance state. The high  
impedance of outputs is not guaranteed in any other  
power-up sequence.  
The clock enable (CKE) gates the clock onto SDRAM. If  
CKE goes low synchronously with clock (set-up and hold  
time same as other inputs), the internal clock is suspended  
from the next clock cycle and the state of output and burst  
address is frozen as long as the CKE remains low. All other  
inputs are ignored from the next clock cycle after CKE goes  
low. When all banks are in the idle state and CKE goes low  
synchronously with clock, the SDRAM enters the power  
down mode from the next clock cycle. The SDRAM remains  
in the power down mode ignoring the other inputs as long as  
CKE remains low. The power down exit is synchronous as  
the internal clock is suspended. When CKE goes high at  
least “tSS + 1 CLOCK” before the high going edge of the  
clock, then the SDRAM becomes active from the same clock  
edge accepting all the input commands.  
cf.) Sequence of 4 & 5 may be changed.  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various  
operation modes of SDRAM. It programs the CAS latency,  
addressing mode, burst length, test mode and various  
vendor specific options to make SDRAM useful for variety of  
different applications. The default value of the mode register  
is not defined, therefore the mode register must be written  
after power up to operate the SDRAM. The mode register is  
written by asserting low on  
,
,
,
(The  
WE  
CS RAS CAS  
SDRAM should be in active mode with CKE already high  
prior to writing the mode register). The state of address pins  
Bank Select (BA)  
A0~A10/AP,  
BA  
in  
the  
same  
cycle  
as  
This SDRAM is organized as 2 independent banks of  
524,288 words X 32 bits memory arrays. The BA inputs is  
,
,
,
WE  
CS RAS CAS  
going low is the data written in the  
latched at the time of assertion of  
and  
to select  
CAS  
RAS  
mode register. One clock cycle is required to complete the  
write in the mode register. The mode register contents can  
be changed using the same command and clock cycle  
requirements during operation as long as all banks are in the  
idle state. The mode register is divided into various fields  
depending on functionality. The burst length field uses  
A0~A2, burst type uses A3, addressing mode uses A4~A6,  
A7~A8, A10/AP, BA are used for vendor specific options or  
test mode. And the write burst length is programmed using  
A7~A9, A10/AP, BA must be set to low for normal SDRAM  
operation.  
the bank to be used for the operation. The bank select BA is  
latched at bank activate, read, write mode register set and  
precharge operations.  
Address Input (A0 ~ A10/AP)  
The 19 address bits required to decode the 524,288 word  
locations are multiplexed into 11 address input pins  
(A0~A10/AP). The 11 bit row address is latched along with  
, BA during bank activate command. The 8 bit column  
RAS  
Refer to table for specific codes for various burst length,  
addressing modes and CAS latencies. BA have to be set to  
“0” to enter the Mode Register.  
address is latched along with  
or write command.  
,
, BA during read  
WE  
CAS  
NOP and Device Deselect  
Bank Activate  
The bank activate command is used to select a random row  
When  
,
and  
are high, the SDRAM  
WE  
RAS  
CAS  
in an idle bank. By asserting low on  
and  
with  
CS  
RAS  
performs no operation (NOP). NOP does not initiate any new  
operation, but is needed to complete operations which  
require more than single clock like bank activate, burst read,  
auto refresh, etc. The device deselect is also a NOP and is  
desired row and bank addresses, a row access is initiated.  
The read or write operation can occur after a time delay of  
tRCD(min) from the time of bank activation. tRCD(min) is an  
internal timing parameter of SDRAM, therefore it is  
dependent on operating clock frequency. The minimum  
number of clock cycles required between bank activate and  
read or write command should be calculated by dividing  
tRCD(min) with cycle time of the clock and then rounding off  
the result to the next higher integer. The SDRAM has 2  
internal banks on the same chip and shares part of the  
internal circuitry to reduce chip area, therefore it restricts the  
activation of both banks simultaneously. Also the noise  
generated during sensing of each bank of SDRAM is high  
entered by asserting  
high.  
high disables the  
CS  
CS  
command decoder so that  
the address inputs are ignored.  
,
and , and all  
WE  
RAS CAS  
Power-Up  
The following sequence is recommended for POWER UP  
1. Power must be applied to either CKE and DQM inputs to  
pull them high and other pins are NOP condition at the  
inputs before or along with VDD (and VDDQ) supply.  
PRELIMINARY  
(August, 2005, Version 0.0)  
11  
AMIC Technology, Corp.  
A43L0632  
requiring some time for power supplies to recover before the  
other bank can be sensed reliably. tRRD(min) specifies the  
minimum time required between activating different banks.  
The number of clock cycles required between different bank  
activation must be calculated similar to tRCD specification.  
The minimum time required for the bank to be active to  
initiate sensing and restoring the complete row of dynamic  
cells is determined by tRAS(min) specification before a  
precharge command to that active bank can be asserted.  
The maximum time any bank can be in the active state is  
determined by tRAS(max). The number of cycles for both  
tRAS(min) and tRAS(max) can be calculated similar to tRCD  
specification.  
in the same cycle during write cycle. DQM operation is  
synchronous with the clock, therefore the masking occurs for  
a complete cycle. The DQM signal is important during burst  
interrupts of write with read or precharge in the SDRAM. Due  
to asynchronous nature of the internal write, the DQM  
operation is critical to avoid unwanted or incomplete writes  
when the complete burst write is not required.  
Precharge  
The precharge operation is performed on an active bank by  
asserting low on  
,
,
and A10/AP with valid BA  
WE  
CS RAS  
of the bank to be precharged. The precharge command can  
be asserted anytime after tRAS(min) is satisfied from the bank  
activate command in the desired bank. “tRP” is defined as the  
minimum time required to precharge a bank.  
Burst Read  
The burst read command is used to access burst of data on  
consecutive clock cycles from an active row in an active  
bank. The burst read command is issued by asserting low on  
The minimum number of clock cycles required to complete  
row precharge is calculated by dividing “tRP” with clock cycle  
time and rounding up to the next higher integer. Care should  
be taken to make sure that burst write is completed or DQM  
is used to inhibit writing before precharge command is  
asserted. The maximum time any bank can be active is  
specified by tRAS(max). Therefore, each bank has to be  
precharged within tRAS(max) from the bank activate  
command. At the end of precharge, the bank enters the idle  
state and is ready to be activated again.  
and  
with  
being high on the positive edge of  
WE  
CS  
CAS  
the clock. The bank must be active for at least tRCD(min)  
before the burst read command is issued. The first output  
appears CAS latency number of clock cycles after the issue  
of burst read command. The burst length, burst sequence  
and latency from the burst read command is determined by  
the mode register which is already programmed. The burst  
read can be initiated on any column address of the active  
row. The address wraps around if the initial address does not  
start from a boundary such that number of outputs from each  
I/O are equal to the burst length programmed in the mode  
register. The output goes into high-impedance at the end of  
the burst, unless a new burst read was initiated to keep the  
data output gapless. The burst read can be terminated by  
issuing another burst read or burst write in the same bank or  
the other active bank or a precharge command to the same  
bank. The burst stop command is valid at every page burst  
length.  
Entry to Power Down, Auto refresh, Self refresh and Mode  
register Set etc, is possible only when all banks are in idle  
state.  
Auto Precharge  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the timing  
to satisfy tRAS(min) and “tRP” for the programmed burst length  
and CAS latency. The auto precharge command is issued at  
the same time as burst read or burst write by asserting high  
on A10/AP. If burst read or burst write command is issued  
with low on A10/AP, the bank is left active until a new  
command is asserted. Once auto precharge command is  
given, no new commands are possible to that particular bank  
until the bank achieves idle state.  
Burst Write  
The burst write command is similar to burst read command,  
and is used to write data into the SDRAM consecutive clock  
cycles in adjacent addresses depending on burst length and  
All Banks Precharge  
burst sequence. By asserting low on  
,
and  
WE  
CS CAS  
with valid column address, a write burst is initiated. The data  
inputs are provided for the initial address in the same clock  
cycle as the burst write command. The input buffer is  
deselected at the end of the burst length, even though the  
internal writing may not have been completed yet. The burst  
write can be terminated by issuing a burst read and DQM for  
blocking data inputs or burst write in the same or the other  
active bank. The burst stop command is valid only at full  
page burst length where the writing continues at the end of  
burst and the burst is wrap around. The write burst can also  
be terminated by using DQM for blocking data and  
precharging the bank “tRDL” after the last data input to be  
written into the active row. See DQM OPERATION also.  
All banks can be precharged at the same time by using  
Precharge all command. Asserting low on  
,
and  
CS RAS  
with high on A10/AP after both banks have satisfied  
WE  
tRAS(min) requirement, performs precharge on all banks. At  
the end of tRP after performing precharge all, all banks are  
in idle state.  
Auto Refresh  
The storage cells of SDRAM need to be refreshed every  
64ms to maintain data. An auto refresh cycle accomplishes  
refresh of a single row of storage cells. The internal counter  
increments automatically on every auto refresh cycle to  
refresh all the rows. An auto refresh command is issued by  
DQM Operation  
asserting low on  
,
and  
with high on CKE  
CAS  
CS RAS  
The DQM is used to mask input and output operation. It  
and  
. The auto refresh command can only be asserted  
WE  
works similar to  
during read operation and inhibits  
OE  
with all banks being in idle state and the device is not in  
power down mode (CKE is high in the previous cycle). The  
time required to complete the auto refresh operation is  
specified by “tRC(min)”. The minimum number of clock cycles  
writing during write operation. The read latency is two cycles  
from DQM and zero cycle for write, which means DQM  
masking occurs two cycles later in the read cycle and occurs  
PRELIMINARY (August, 2005, Version 0.0)  
12  
AMIC Technology, Corp.  
A43L0632  
required can be calculated by dividing “tRC” with clock cycle  
time and then rounding up to the next higher integer. The  
auto refresh command must be followed by NOP’s until the  
auto refresh operation is completed. All banks will be in the  
idle state at the end of auto refresh operation. The auto  
refresh is the preferred refresh mode when the SDRAM is  
being used for normal data transactions. The auto refresh  
cycle can be performed once in 15.6us or a burst of 4096  
auto refresh cycles once in 64ms.  
the input buffers except CKE. The refresh addressing and  
timing is internally generated to reduce power consumption.  
The self refresh mode is entered from all banks idle state by  
asserting low on  
,
,
and CKE with high on  
CS RAS CAS  
. Once the self refresh mode is entered, only CKE state  
WE  
being low matters, all the other inputs including clock are  
ignored to remain in the self refresh.  
The self refresh is exited by restarting the external clock and  
then asserting high on CKE. This must be followed by NOP’s  
for a minimum time of “tRC” before the SDRAM reaches idle  
state to begin normal operation. Upon exiting the self refresh  
mode, AUTO REFRESH commands must be issued every  
15.6 μ s or less as both SELF REFRESH and AUTO  
REFRESH utilize the row refresh counter.  
Self Refresh  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for  
data retention and low power operation of SDRAM. In self  
refresh mode, the SDRAM disables the internal clock and all  
PRELIMINARY (August, 2005, Version 0.0)  
13  
AMIC Technology, Corp.  
A43L0632  
Basic feature And Function Descriptions  
1. CLOCK Suspend  
1) Click Suspended During Write (BL=4)  
2) Clock Suspended During Read (BL=4)  
CLK  
CMD  
CKE  
WR  
RD  
Masked by CKE  
Masked by CKE  
Internal  
CLK  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Not Written  
Suspended Dout  
Note: CLK to CLK disable/enable=1 clock  
2. DQM Operation  
2) Read Mask (BL=4)  
1) Write Mask (BL=4)  
CLK  
CMD  
WR  
RD  
DQM  
Masked by CKE  
D3  
Masked by CKE  
Q1  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
Q0  
Q3  
Q2  
D3  
Q1  
Q3  
DQM to Data-in Mask = 0CLK  
DQM to Data-out Mask = 2  
2) Read Mask (BL=4)  
CLK  
CMD  
CKE  
RD  
DQM  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Q0  
Q2  
Q1  
Q4  
Q3  
Q6  
Q5  
Q7  
Q6  
Q8  
Q7  
DQ(CL2)  
DQ(CL3)  
Hi-Z  
Hi-Z  
* Note : 1. DQM makes data out Hi-Z after 2 clocks which should masked by CKE “L”.  
2. DQM masks both data-in and data-out.  
PRELIMINARY (August, 2005, Version 0.0)  
14  
AMIC Technology, Corp.  
A43L0632  
3. CAS Interrupt (I)  
1) Read interrupted by Read (BL=4)Note 1  
CLK  
CMD  
RD  
A
RD  
B
ADD  
DQ(CL2)  
DQ(CL3)  
QA0 QB0 QB1 QB2 QB3  
QA0 QB0 QB1 QB2 QB3  
t
CCD  
Note2  
2) Write interrupted by Write (BL =2)  
3) Write interrupted by Read (BL =2)  
CLK  
WR WR  
WR  
RD  
CMD  
t
CCD  
tCCD  
Note2  
Note2  
ADD  
DQ  
A
B
A
B
DA0 DB0 DB1  
DQ(CL2)  
DQ(CL3)  
DA0  
QB0 QB1  
t
CDL  
Note3  
DA0  
QB0 QB1  
t
CDL  
Note3  
Note : 1. By “Interrupt”, It is possible to stop burst read/write by external command before the end of burst.  
By “ Interrupt”, to stop burst read/write by access; read, write and block write.  
CAS  
2. tCCD :  
CAS  
to  
delay. (=1CLK)  
CAS  
CAS  
3. tCDL : Last data in to new column address delay. (= 1CLK).  
PRELIMINARY (August, 2005, Version 0.0)  
15  
AMIC Technology, Corp.  
A43L0632  
4. CAS Interrupt (II) : Read Interrupted Write & DQM  
(1) CL=2, BL=4  
CLK  
i) CMD  
RD  
RD  
WR  
D0  
DQM  
DQ  
ii) CMD  
D1  
D2  
D3  
D2  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
D1  
RD  
RD  
WR  
iii) CMD  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
Note 1  
Q0  
D0  
D3  
(2) CL=3, BL=4  
CLK  
i) CMD  
DQM  
RD  
RD  
RD  
RD  
WR  
D0  
DQ  
D1  
D2  
D3  
D2  
ii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
iii) CMD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
D1  
iv) CMD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
v) CMD  
RD  
WR  
DQM  
DQ  
Hi-Z  
Q0  
D0  
D3  
Note 2  
* Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
2. To prevent bus contention, DQM should be issued which makes a least one gap between data in and data out.  
PRELIMINARY (August, 2005, Version 0.0)  
16  
AMIC Technology, Corp.  
A43L0632  
5. Write Interrupted by Precharge & DQM  
CLK  
Note 2  
Note 1  
CMD  
WR  
D0  
PRE  
D3  
DQM  
DQ  
D1  
D2  
Masked by DQM  
Note : 1. To inhibit invalid write, DQM should be issued.  
2. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only another bank precharge of dual banks operation.  
6. Precharge  
1) Normal Write (BL=4)  
CLK  
CMD  
DQ  
WR  
D0  
PRE  
D1  
D2  
D3  
t
RDL  
2) Read (BL=4)  
CLK  
CMD  
RD  
PRE  
Q2  
DQ(CL2)  
Q0  
Q1  
Q0  
Q3  
Q2  
DQ(CL3)  
Q1  
Q3  
7. Auto Precharge  
1) Normal Write (BL=4)  
CLK  
CMD  
DQ  
WR  
D0  
D1  
D2  
D3  
Note 1  
Auto Precharge Starts  
2) Read (BL=4)  
CLK  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Note 1  
Auto Precharge Starts  
* Note : 1. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other active bank can be issued from this point.  
At burst read/write with auto precharge,  
interrupt of the same/another bank is illegal.  
CAS  
PRELIMINARY (August, 2005, Version 0.0)  
17  
AMIC Technology, Corp.  
A43L0632  
8. Burst Stop & Precharge Interrupt  
1) Write Interrupted by Precharge (BL=4)  
CLK  
2) Write Burst Stop (BL=8)  
CLK  
CMD  
CMD  
WR  
PRE  
WR  
STOP  
DQM  
DQ  
D0  
D1  
D2  
D3  
DQ  
D1  
D0  
D2  
Note 1  
t
RDL  
t
BDL (note 2)  
3) Read Interrupted by Precharge (BL=4)  
CLK  
4) Read Burst Stop (BL=4)  
CLK  
CMD  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
RD  
PRE  
Q0  
STOP  
Q0  
Note 3  
1
Note 3  
1
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
Q1  
Q0  
2
2
Q1  
Q1  
9. MRS  
Mode Register Set  
CLK  
Note 4  
PRE  
MRS ACT  
1CLK  
CMD  
t
RP  
Note : 1. tRDL : 2CLK, Last Data in to Row Precharge.  
2. tBDL : 1CLK, Last Data in to Burst Stop Delay.  
3. Number of valid output data after Row precharge or burst stop : 1,2 for CAS latency=2,3 respectively.  
4. PRE : Both banks precharge if necessary.  
MRS can be issued only at all bank precharge state.  
PRELIMINARY (August, 2005, Version 0.0)  
18  
AMIC Technology, Corp.  
A43L0632  
10. Clock Suspend Exit & Power Down Exit  
1) Clock Suspend (=Active Power Down) Exit  
CLK  
2) Power Down (=Precharge Power Down) Exit  
CLK  
CKE  
CKE  
t
SS  
t
SS  
Note 2  
Note 1  
Internal  
CLK  
Internal  
CLK  
NOP  
ACT  
RD  
CMD  
CMD  
11. Auto Refresh & Self Refresh  
Note 3  
1) Auto Refresh  
CLK  
Note 4  
Note 5  
CKE  
PRE  
Internal  
CLK  
AR  
CMD  
CMD  
t
RP  
tRC  
Note 6  
2) Self Refresh  
CLK  
Note 4  
CMD  
CKE  
PRE  
SR  
CMD  
t
RP  
tRC  
* Note : 1. Active power down : one or more bank active state.  
2. Precharge power down : both bank precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after Auto Refresh command.  
During tRC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, both banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh mode, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is LOW.  
During self refresh mode, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
During tRC from self refresh exit command, any other command can not be accepted.  
Before/After self refresh mode, AUTO REFRESH commands must be issued every 15.6μs or less as both SELF  
REFRESH and AUTO REFRESH utilize the row refresh counter.  
PRELIMINARY (August, 2005, Version 0.0)  
19  
AMIC Technology, Corp.  
A43L0632  
12. About Burst Type Control  
At MRS A3=”0”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=1,2,4,8 and full page wrap around.  
At MRS A3=” 1”. See the BURST SEQUENCE TABE.(BL=4,8)  
BL=4,8 At BL=1,2 Interleave Counting = Sequential Counting  
Sequential counting  
Basic  
MODE  
Interleave counting  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
That is similar to Extended Data Out (EDO) Operation of convention DRAM.  
Random  
MODE  
Random column Access  
tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A2,1,0 = “000”.  
At auto precharge, tRAS should not be violated.  
1
Basic  
MODE  
At MRS A2,1,0 = “001”.  
At auto precharge, tRAS should not be violated.  
At MRS A2,1,0 = “010”  
2
4
8
At MRS A2,1,0 = “011”.  
At MRS A9=”1”.  
Read burst = 1,2,4,8, full page/write Burst =1  
At auto precharge of write, tRAS should not be violated.  
Before the end of burst, Row precharge command of the same bank  
Stops read/write burst with Row precharge.  
Special  
BRSW  
MODE  
Interrupt  
RAS  
(Interrupted by Precharge)  
tRDL= 2 with DQM, valid DQ after burst stop is 1,2 for CL=2,3 respectively  
Interrupt  
MODE  
During read/write burst with auto precharge,  
Before the end of burst, new read/write stops read/write burst and starts new  
read/write burst or block write.  
interrupt cannot be issued.  
RAS  
Interrupt  
CAS  
During read/write burst with auto precharge,  
interrupt can not be issued.  
CAS  
PRELIMINARY (August, 2005, Version 0.0)  
20  
AMIC Technology, Corp.  
A43L0632  
Power On Sequence & Auto Refresh  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
High level is necessary  
tRP  
tRC  
RAS  
CAS  
ADDR  
BA  
KEY  
Ra  
KEY  
KEY  
BS  
Ra  
A10/AP  
WE  
DQM  
DQ  
High level is necessary  
High-Z  
Precharge  
(All Banks)  
Auto Refresh  
Auto Refresh  
Mode Regiser Set  
Row Active  
(A-Bank)  
: Don't care  
PRELIMINARY (August, 2005, Version 0.0)  
21  
AMIC Technology, Corp.  
A43L0632  
Single Bit Read-Write-Read Cycles (Same Page) @CAS Latency=3, Burst Length=1  
tCH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
tCL  
tCC  
High  
tRAS  
tRC  
tSH  
*Note 1  
CS  
tSS  
tRCD  
tRP  
tSH  
RAS  
tSS  
tCCD  
tSH  
CAS  
ADDR  
BA  
tSS  
tSH  
tSS  
Ra  
Ca  
Cb  
Cc  
Rb  
tSS  
tSH  
*Note 2,3  
*Note 2,3  
*Note 2,3 *Note 4  
*Note 2  
*Note 2  
BS  
BS  
BS  
BS  
BS  
BS  
*Note 3  
*Note 3  
*Note 3 *Note 4  
A10/AP  
Ra  
Rb  
tSH  
WE  
tSS  
tSS  
tSH  
tSH  
DQM  
DQ  
tRAC  
tSAC  
tSLZ  
Qa  
Db  
Qc  
tSS  
tOH  
tSHZ  
Read  
Write  
Row Active  
Read  
Row Active  
Precharge  
: Don't care  
PRELIMINARY (August, 2005, Version 0.0)  
22  
AMIC Technology, Corp.  
A43L0632  
* Note : 1. All inputs can be don’t care when  
is high at the CLK high going edge.  
CS  
2. Bank active & read/write are controlled by BA.  
BA  
0
Active & Read/Write  
Bank A  
1
Bank B  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command.  
A10/AP  
BA  
0
Operation  
Disable auto precharge, leave bank A active at end of burst.  
Disable auto precharge, leave bank B active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
0
1
0
1
1
4. A10/AP and BA control bank precharge when precharge command is asserted.  
A10/AP  
BA  
0
Precharge  
Bank A  
0
0
1
1
Bank B  
X
Both Bank  
PRELIMINARY (August, 2005, Version 0.0)  
23  
AMIC Technology, Corp.  
A43L0632  
Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
RC  
t
CS  
tRCD  
RAS  
CAS  
*Note 2  
ADDR  
BA  
Ra  
Ca0  
Rb  
Cb0  
A10/AP  
Ra  
Rb  
WE  
DQM  
tOH  
DQ  
(CL = 2)  
Qa0  
Qa1  
Qa2  
Qa3  
Qa2  
Db0  
Db0  
Db1  
Db2  
Db3  
t
RAC  
*Note 4  
t
RDL  
t
SAC  
tSHZ  
*Note 3  
t
OH  
DQ  
(CL = 3)  
Qa0  
Qa1  
Qa3  
Db1  
Db2  
Db3  
t
RAC  
*Note 4  
t
RDL  
t
SHZ  
t
SAC  
*Note 3  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS latency-1] valid output data available after Row  
enters precharge. Last valid output will be Hi-Z after tSHZ from the clock.  
3. Access time from Row address. tCC*(tRCD + CAS latency-1) + tSAC  
4. Output will be Hi-Z after the end of burst. (1,2,4 & 8)  
At Full page bit burst, burst is wrap-around.  
PRELIMINARY (August, 2005, Version 0.0)  
24  
AMIC Technology, Corp.  
A43L0632  
Page Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
t
RCD  
RAS  
CAS  
*Note 2  
ADDR  
BA  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
A10/AP  
Ra  
t
RDL  
t
CDL  
WE  
*Note 2  
*Note1  
*Note3  
DQM  
DQ  
(CL=2)  
Qa0  
Qa1  
Qb0  
Qa1  
Qb1  
Qb0  
Dc0  
Dc1  
Dc1  
Dd0  
Dd0  
Dd1  
Dd1  
DQ  
(CL=3)  
Qa0  
Dc0  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. To write data before burst read ends, DQM should be asserted three cycle prior to write command to avoid bus  
contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
PRELIMINARY (August, 2005, Version 0.0)  
25  
AMIC Technology, Corp.  
A43L0632  
Page Read Cycle at Different Bank @Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
*Note 1  
CS  
RAS  
CAS  
*Note 2  
RAa  
RAa  
CAa  
RBb  
RBb  
CBb  
CAc  
CBd  
CAe  
ADDR  
BA  
A10/AP  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
DQ  
(CL=3)  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(B-Bank)  
Read  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
: Don't care  
* Note : 1.  
can be don’t care when  
, and  
RAS CAS  
are high at the clock high going edge.  
WE  
CS  
2. To interrupt a burst read by row precharge, both the read ad the precharge banks must be the same.  
PRELIMINARY (August, 2005, Version 0.0)  
26  
AMIC Technology, Corp.  
A43L0632  
Page Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
*Note 2  
RAa  
RAa  
CAa  
RBb  
RBb  
CBb  
CAc  
CBd  
ADDR  
BA  
A10/AP  
DQ  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 DBd1  
tRDL  
t
CDL  
WE  
*Note 1  
DQM  
Row Active  
(B-Bank)  
Write  
(B-Bank)  
Precharge  
(Both Banks)  
Write  
(A-Bank)  
Row Active with  
(A-Bank)  
Write  
(A-Bank)  
Write  
(B-Bank)  
: Don't care  
* Note:  
1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge, both the write and precharge banks must be the same.  
PRELIMINARY (August, 2005, Version 0.0)  
27  
AMIC Technology, Corp.  
A43L0632  
Read & Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
ADDR  
BA  
A10/AP  
RAa  
RBb  
RAc  
tCDL  
*Note 1  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DBb0 DBb1 DBb2 DBb3  
DBb0 DBb1 DBb2 DBb3  
QAc0 QAc1 QAc2  
QAc0 QAc1  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
: Don't care  
* Note : tCDL should be met to complete write.  
PRELIMINARY (August, 2005, Version 0.0)  
28  
AMIC Technology, Corp.  
A43L0632  
Read & Write Cycle with Auto Precharge I @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
RAa  
RAa  
RBb  
RBb  
CAa  
CBb  
ADDR  
BA  
A10/AP  
WE  
DQM  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3  
DBb0 DBb1 DBb2 DBb3  
DBb0 DBb1 DBb2 DBb3  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Row Active  
(A-Bank)  
Auto Precharge  
Start Point  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
(B-Bank)  
Row Active  
(B-Bank)  
: Don't care  
*Note : tRCD should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length=1 & 2, BRSW mode)  
PRELIMINARY (August, 2005, Version 0.0)  
29  
AMIC Technology, Corp.  
A43L0632  
Read & Write Cycle with Auto Precharge II @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
Ra  
Rb  
Ca  
Cb  
Ra  
Ca  
ADDR  
BA  
Ra  
Rb  
Ra  
A10/AP  
WE  
DQM  
Qa0  
Qa1  
Qa0  
Qb0 Qb1  
Qa1 Qb0  
Qb2  
Qb3  
Da0  
Da0  
Da1  
Da1  
DQ  
(CL=2)  
Qb1  
Qb2  
Qb3  
DQ  
(CL=3)  
Read without  
Auto Precharge  
(B-Bank)  
Auto Precharge  
Strart Point  
Row Active  
(A-Bank)  
Read with  
Auto Pre  
Charge  
Precharge  
(B-Bank)  
Row Active  
(A-Bank)  
Write with  
Auto Precharge  
(A-Bank)  
(A-Bank)  
(A-Bank) *Note 1  
Row Active  
(B-Bank)  
: Don't care  
* Note : When Read(Write) command with auto precharge is issued at A-Bank after A and B Bank activation.  
- if read(Write) command without auto precharge is issued at B-Bank before A Bank auto precharge starts, A Bank auto  
precharge will start at B Bank read command input point.  
- Any command can not be issued at A Bank during tRP after A Bank auto precharge starts.  
PRELIMINARY (August, 2005, Version 0.0)  
30  
AMIC Technology, Corp.  
A43L0632  
Read & Write Cycle with Auto Precharge III @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
Ra  
Ca  
Rb  
Cb  
ADDR  
BA  
A10/AP  
Ra  
Rb  
WE  
DQM  
DQ  
(CL=2)  
Qa0  
Qa1  
Qa2 Qa3  
Qa1 Qa2  
Qb0  
Qb1  
Qb2  
Qb3  
DQ  
(CL=3)  
Qa0  
Qa3  
Qb0  
Qb1  
Db2  
Db3  
* Note 1  
Row Active  
(A-Bank)  
Read with  
Auto Preharge  
(A-Bank)  
Read with  
Auto Precharge  
(B-Bank)  
Auto Precharge  
Start Point  
Auto Precharge  
Start Point  
(A-Bank)  
(B-Bank)  
Row Active  
(B-Bank)  
: Don't care  
* Note : Any command to A-bank is not allowed in this period.  
tRP is determined from at auto precharge start point  
PRELIMINARY (August, 2005, Version 0.0)  
31  
AMIC Technology, Corp.  
A43L0632  
Read Interrupted by Precharge Command & Read Burst Stop Cycle (@Burst Length = Full Page)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
BA  
RAa  
RAa  
CAa  
CAb  
* Note 1  
* Note 1  
A10/AP  
WE  
DQM  
* Note 2  
1
1
DQ  
(CL=2)  
QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
QAa0  
2
2
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
Read  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. About the valid DQ’s after burst stop, it is same as the case of  
interrupt.  
RAS  
Both cases are illustrated above timing diagram. See the label 1,2 on them.  
But at burst write, burst stop and interrupt should be compared carefully.  
RAS  
Refer the timing diagram of “Full page write burst stop cycle”.  
3. Burst stop is valid at every burst length.  
PRELIMINARY (August, 2005, Version 0.0)  
32  
AMIC Technology, Corp.  
A43L0632  
Write Interrupted by Precharge Command & Write Burst Stop Cycle (@ Burst Length = Full Page)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
BA  
RAa  
RAa  
CAa  
CAb  
* Note 1  
* Note 1  
A10/AP  
t
RDL  
t
BDL  
WE  
* Note 3  
DQM  
DQ  
* Note 2  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
: Don't care  
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. Data-in at the cycle of burst stop command cannot be written into corresponding memory cell.  
It is defined by AC parameter of tBDL(=1CLK).  
3. Data-in at the cycle of interrupted by precharge cannot be written into the corresponding memory cell.  
It is defined by AC parameter of tRDL(=2CLK).  
DQM at write interrupted by precharge command is needed to ensure tRDL of 2CLK.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
4. Burst stop is valid only at every burst length.  
PRELIMINARY (August, 2005, Version 0.0)  
33  
AMIC Technology, Corp.  
A43L0632  
Burst Read Single Bit Write Cycle @Burst Length=2, BRSW  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
High  
CS  
RAS  
CAS  
* Note 2  
RAa  
RAa  
CAa  
CBc  
CAd  
RBb  
RBb  
CAb  
RAc  
ADDR  
BA  
A10/AP  
RAc  
WE  
DQM  
DQ  
(CL=2)  
QAb0 QAb1  
DBc0  
DBc0  
QAd0 QAd1  
DAa0  
DAa0  
DQ  
(CL=3)  
QAb0 QAb1  
QAd0 QAd1  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Write  
(A-Bank)  
: Don't care  
* Note : 1. BRSW mode is enabled by setting A9 “High” at MRS (Mode Register Set).  
At the BRSW Mode, the burst length at write is fixed to “1” regardless of programed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated.  
Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command,  
The next cycle starts the precharge.  
PRELIMINARY (August, 2005, Version 0.0)  
34  
AMIC Technology, Corp.  
A43L0632  
Clock Suspension & DQM Operation Cycle @CAS Latency = 2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
Ra  
Ca  
Cb  
Cc  
ADDR  
BA  
A10/AP  
Ra  
WE  
* Note 1  
DQM  
DQ  
Qa0  
Qa1  
Qb0  
Qb1  
Dc0  
Dc2  
Qa2  
Qa3  
t
SHZ  
tSHZ  
Clock  
Suspension  
Write  
DQM  
Row Active  
Read  
Read  
Read DQM  
Clock  
Suspension  
Write  
: Don't care  
* Note : DQM needed to prevent bus contention.  
PRELIMINARY (August, 2005, Version 0.0)  
35  
AMIC Technology, Corp.  
A43L0632  
Active/Precharge Power Down Mode @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
* Note 2  
SS  
t
SS  
t
t
SS  
tSS  
* Note 1  
*Note 3  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
BA  
Ra  
A10/AP  
WE  
DQM  
DQ  
Qa0  
Qa1  
Qa2  
Precharge  
Power-down  
Exit  
Precharge  
Power-down  
Entry  
Read  
Precharge  
Row Active  
Active  
Power-down  
Exit  
Active  
Power-down  
Entry  
: Don't care  
* Note : 1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least “1CLK + tSS” prior to Row active command.  
3. Cannot violate minimum refresh specification. (32ms)  
PRELIMINARY (August, 2005, Version 0.0)  
36  
AMIC Technology, Corp.  
A43L0632  
Self Refresh Entry & Exit Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
* Note 4  
* Note 2  
t
RC min.  
t
SS  
* Note 6  
* Note 1  
* Note 3  
t
SS  
* Note 5  
CS  
RAS  
CAS  
* Note 7  
* Note 7  
ADDR  
BA  
A10/AP  
WE  
DQM  
DQ  
Hi-Z  
Hi-Z  
Self Refresh Exit  
Auto Refresh  
Self Refresh Entry  
: Don't care  
* Note : TO ENTER SELF REFRESH MODE  
1. with CKE should be low at the same clock cycle.  
CS RAS CAS  
,
&
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
(cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5.  
starts from high.  
CS  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. Before/After self refresh mode, AUTO REFRESH commands must be issued every 15.6μs or less as both SELF  
REFRESH and AUTO REFRESH utilize the row refresh counter.  
PRELIMINARY (August, 2005, Version 0.0)  
37  
AMIC Technology, Corp.  
A43L0632  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
CLOCK  
CKE  
High  
High  
*Note 2  
CS  
t
RC  
RAS  
CAS  
* Note 1  
* Note 3  
Key  
Ra  
ADDR  
WE  
DQM  
DQ  
Hi-Z  
Hi-Z  
MRS  
Auto Refresh  
New Command  
: Don't care  
New  
Command  
* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
* Note : 1.  
,
,
&
activation at the same clock cycle with address key will set internal mode register.  
WE  
CS RAS CAS  
2. Minimum 2 clock cycles should be met before new  
3. Please refer to Mode Register Set table.  
activation.  
RAS  
PRELIMINARY (August, 2005, Version 0.0)  
38  
AMIC Technology, Corp.  
A43L0632  
Function Truth Table (Table 1)  
Current  
CS RAS  
BA  
Address  
Action  
Note  
CAS  
WE  
State  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
X
ILLEGAL  
2
2
X
H
L
BA  
BA  
BA  
X
CA, A10/AP ILLEGAL  
IDLE  
H
H
L
RA  
Row Active; Latch Row Address  
L
PA  
NOP  
4
5
5
L
H
L
X
Auto Refresh or Self Refresh  
L
L
OP Code  
Mode Register Access  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
Row  
X
ILLEGAL  
2
2
Active  
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Begin Read; Latch CA; Determine AP  
CA,A10/AP Begin Write; Latch CA; Determine AP  
L
H
H
L
H
L
RA  
PA  
X
ILLEGAL  
L
Precharge  
L
X
X
H
L
ILLEGAL  
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to End Row Active)  
NOP(Continue Burst to End Row Active)  
Term burst Row Active  
X
X
X
X
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
3
3
2
3
Read  
L
CA,AP  
Term burst; Begin Write; Latch CA; Determine AP  
ILLEGAL  
H
H
L
H
L
RA  
PA  
X
L
Term Burst; Precharge timing for Reads  
ILLEGAL  
L
X
X
H
L
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to EndRow Active)  
NOP(Continue Burst to EndRow Active)  
ILLEGAL  
X
X
X
X
H
L
BA  
BA  
BA  
BA  
X
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
CA,A10/AP Term burst; Begin Read; Latch CA; Determine AP  
3
3
2
3
Write  
L
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term Burst; Precharge timing for Writes  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
X
Read with  
Auto  
Precharge  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
L
H
L
X
X
RA, PA  
X
ILLEGAL  
ILLEGAL  
L
2
PRELIMINARY (August, 2005, Version 0.0)  
39  
AMIC Technology, Corp.  
A43L0632  
Function Truth Table (Table 1, Continued)  
Current  
CS RAS  
BA  
Address  
Action  
Note  
CAS  
WE  
State  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP(Continue Burst to EndPrecharge)  
NOP(Continue Burst to EndPrecharge)  
ILLEGAL  
Write with  
Auto  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
CA,A10/AP ILLEGAL  
2
2
Precharge  
L
H
L
X
X
X
H
L
RA, PA  
ILLEGAL  
L
X
X
X
X
ILLEGAL  
2
X
H
H
H
L
X
H
H
L
X
NOPIdle after tRP  
NOPIdle after tRP  
ILLEGAL  
X
X
Precharge  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
2
2
2
4
H
H
L
RA  
PA  
X
ILLEGAL  
L
NOPIdle after tRP  
ILLEGAL  
L
X
X
H
L
X
H
H
H
L
X
H
H
L
X
X
NOPRow Active after tRCD  
NOPRow Active after tRCD  
ILLEGAL  
X
X
X
X
Row  
Activating  
X
H
L
BA  
BA  
BA  
X
CA,A10/AP ILLEGAL  
2
2
2
2
H
H
L
RA  
PA  
X
ILLEGAL  
L
ILLEGAL  
L
X
X
X
X
X
X
ILLEGAL  
X
H
H
L
X
H
L
X
X
NOPIdle after tRC  
NOPIdle after tRC  
ILLEGAL  
X
X
Refreshing  
X
X
H
L
X
X
ILLEGAL  
L
X
X
ILLEGAL  
Abbreviations  
RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
AP = Auto Precharge  
PA = Precharge All  
CA = Column Address  
Note: 1. All entries assume that CKE was active (High) during the preceding clock cycle and the current clock cycle.  
2. Illegal to bank in specified state : Function may be legal in the bank indicated by BA, depending on the state of that  
bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA (and PA).  
5. Illegal if any banks is not idle.  
PRELIMINARY (August, 2005, Version 0.0)  
40  
AMIC Technology, Corp.  
A43L0632  
Function Truth Table for CKE (Table 2)  
Current  
State  
CKE CKE  
CS  
RAS  
Address  
Action  
Note  
CAS  
WE  
n-1  
n
H
X
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
L
L
H
H
H
H
H
L
6
6
Exit Self RefreshABI after tRC  
Exit Self RefreshABI after tRC  
ILLEGAL  
Self  
L
L
Refresh  
L
L
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
7
7
Exit Power DownABI  
Exit Power DownABI  
ILLEGAL  
Both  
Bank  
Precharge  
Power  
L
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
Down  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP(Maintain Power Down Mode)  
Refer to Table 1  
H
H
H
H
H
H
H
H
L
H
L
Enter Power Down  
Enter Power Down  
ILLEGAL  
8
8
L
All  
Banks  
Idle  
L
L
L
L
X
X
H
L
ILLEGAL  
L
L
H
L
ILLEGAL  
L
L
L
Enter Self Refresh  
ILLEGAL  
8
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain clock Suspend  
Any State  
Other than  
Listed  
9
9
H
L
Above  
L
Abbreviations : ABI = All Banks Idle  
Note: 6. After CKE’s low to high transition to exit self refresh mode. And a time of tRC(min) has to be elapse after CKE’s low to  
high transition to issue a new command.  
7. CKE low to high transition is asynchronous as if restarts internal clock.  
A minimum setup time “tSS + one clock” must be satisfied before any command other than exit.  
8. Power-down and self refresh can be entered only from the all banks idle state.  
9. Must be a legal command.  
PRELIMINARY (August, 2005, Version 0.0)  
41  
AMIC Technology, Corp.  
A43L0632  
Ordering Information  
Part No.  
Min. Cycle Time  
(ns)  
Max. Clock Frequency  
(MHz)  
Access Time  
Package  
A43L0632G-6F  
A43L0632G-6UF  
A43L0632G-7F  
A43L0632G-7UF  
6
6
7
7
167  
167  
143  
143  
5 ns  
5 ns  
6 ns  
6 ns  
90 ball Pb-Free CSP  
90 ball Pb-Free CSP  
90 ball Pb-Free CSP  
90 ball Pb-Free CSP  
Note: -U is for industrial operating temperature range -40ºC to +85ºC.  
PRELIMINARY (August, 2005, Version 0.0)  
42  
AMIC Technology, Corp.  
A43L0632  
Package Information  
90LD STF BGA (8 x 13mm) Outline Dimensions  
unit: mm  
-A-  
aaa  
D
D
1
Pin #1  
e
-B-  
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
aaa  
1 2 3 4 5 6 7 8 9  
See Detail B  
See Detail A  
CAVITY  
M
C
eee C A B  
M
fff  
// bbb C  
B
A
b
-C-  
ddd C  
SOLDER BALL  
1
2
SEATING PLANE  
Detail A  
Detail B  
Dimensions in mm  
Dimensions in inches  
Symbol  
Min  
-
Nom  
-
Max  
1.40  
0.40  
0.94  
0.40  
8.10  
13.10  
-
Min  
-
Nom  
-
Max  
0.055  
0.016  
0.037  
0.016  
0.319  
0.516  
-
A
A1  
0.30  
0.84  
0.32  
7.90  
12.90  
-
0.35  
0.89  
0.36  
8.00  
13.00  
6.40  
11.20  
0.80  
0.45  
0.10  
0.10  
0.12  
0.15  
0.08  
9/15  
0.012  
0.033  
0.013  
0.311  
0.508  
-
0.014  
0.035  
0.014  
0.315  
0.512  
0.252  
0.441  
0.031  
0.018  
0.004  
0.004  
0.005  
0.006  
0.003  
9/15  
A2  
c
D
E
D1  
E1  
-
-
-
-
e
-
-
-
-
b
0.40  
0.50  
0.016  
0.020  
aaa  
bbb  
ccc  
ddd  
eee  
MD/ME  
Notes:  
1. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE  
SPHERICAL CROWNS OF THE SOLDER BALLS.  
2. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL  
DIAMETER, PARALLEL TO PRIMARY DATUM C.  
3. THERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN  
THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.  
4. REFERENCE DOCUMENT : JEDEC MO-205.  
5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.  
PRELIMINARY (August, 2005, Version 0.0)  
43  
AMIC Technology, Corp.  

相关型号:

A43L0632G-75I

1M X 16 Bit X 4 Banks Synchronous DRAM
AMICC

A43L0632G-7F

512K X 32 Bit X 2 Banks Synchronous DRAM
AMICC

A43L0632G-7UF

512K X 32 Bit X 2 Banks Synchronous DRAM
AMICC

A43L0632G-95I

1M X 16 Bit X 4 Banks Synchronous DRAM
AMICC

A43L0632V-75I

1M X 16 Bit X 4 Banks Synchronous DRAM
AMICC

A43L0632V-95I

1M X 16 Bit X 4 Banks Synchronous DRAM
AMICC

A43L1616

1M X 16 Bit X 2 Banks Synchronous DRAM
AMICC
AMICC

A43L1616G-75I

1M X 16 Bit X 4 Banks Synchronous DRAM
AMICC
AMICC