AM79D2251JC [AMD]

Dual Intelligent Subscriber Line Audio-Processing Circuit (ISLAC); 双智能用户线音频处理电路( ISLAC )
AM79D2251JC
型号: AM79D2251JC
厂家: AMD    AMD
描述:

Dual Intelligent Subscriber Line Audio-Processing Circuit (ISLAC)
双智能用户线音频处理电路( ISLAC )

文件: 总35页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent AccessVoice Solutions  
Am79D2251  
Dual Intelligent Subscriber Line Audio-Processing Circuit (ISLAC )  
DISTINCTIVE CHARACTERISTICS  
High performance digital signal processor  
provides programmable control of all major  
linecard functions  
Tone generation  
Metering generation at 12 kHz and 16 kHz  
Envelope shaping and level control  
Selectable PCM/MPI or GCI digital interfaces  
32 and 24 kb/s ADPCM to G726, as well as  
A-law/µ-law and linear codec  
Supports most available master clock  
Transmit and receive gain  
Two-wire AC impedance  
Transhybrid balance  
frequencies from 512 kHz to 8.196 MHz  
0 to 70°C commercial operation  
— –40°C to 85°C extended temperature range  
Equalization  
available  
DC loop feeding  
+3.3 V DC operation  
Smooth or abrupt polarity reversal  
Loop supervision  
Exceeds LSSGR and ITU requirements  
Supports external ringing with on-chip ring-trip  
Off-hook debounce circuit  
Ground-key and ring-trip filters  
Ringing generation and control  
Adaptive hybrid balance  
Line and circuit testing  
circuit  
Automatic or manual ring-trip modes  
DTMF detection according to Q.24  
2100 Hz modem tone detection according to V.25  
BLOCK DIAGRAM  
7
A1  
4
VCCA  
LD1  
ISLIC  
VCCD  
VREF  
B1  
DGND1  
RC  
AGND1  
Networks  
and  
Protection  
DGND2  
AGND2  
TSCA/G  
A2  
3
P1-P3  
7
DRA/DD  
ISLIC  
LD2  
DXA/DU  
B2  
Dual  
ISLAC  
RREF  
DCLK/S0  
PCLK/FS  
Ring-Trip  
Sense  
Resistors  
5
5
MCLK  
RSHB  
FS/DCL  
CS/RST  
DIO/S1  
INT  
BATH  
RSLB  
RSPB  
BATL  
BATP  
Pub. # 22829 Rev: C Amendment: /0  
Issue Date: December 1999  
TABLE OF CONTENTS  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Distinctive Characteristics of The Intelligent AccessVoice chipset . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Connection Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Linecard Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Intelligent AccessVoice Chipsets Environmental Ranges . . . . . . . . . . . . . . . . . . . . 14  
Electrical Maximum Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Intelligent AccessVoice Chipsets System Target Specifications . . . . . . . . . . . . . . . . . . . 15  
DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Transmission and Signaling Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Transmit and Receive Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Group Delay Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Single Frequency Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Gain Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Total Distortion Including Quantizing Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Discrimination against Out-of-Band Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Spurious Out-of-Band Signals at the Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCM Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PCM Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
GCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
GCI Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
44-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
44-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision A to Revision B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision B to Revision C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2
Am79D2251  
The dual ISLAC device, in combination with an ISLICdevice, implements a two channel  
universal telephone line interface. This enables the design of a single, low cost, high performance,  
fully software programmable line interface for multiple country applications worldwide. All AC, DC,  
and signaling parameters are fully programmable via microprocessor or GCI interfaces. Additionally,  
the dual ISLAC device has integrated self-test and line-test capabilities to resolve faults to the line  
or line circuit. The integrated test capability is crucial for remote applications where dedicated test  
hardware is not cost effective.  
DISTINCTIVE CHARACTERISTICS OF THE INTELLIGENT ACCESSVOICE CHIPSET  
Performs all battery feed, ringing, signaling,  
Exceeds LSSGR and CCITT central office  
hybrid and test (BORSCHT) functions  
requirements  
Two chip solution supports high density, multi-  
Selectable PCM or GCI interface  
channel architecture  
Supports most available master clock  
Single hardware design meets multiple country  
frequencies from 512 kHz to 8.192 MHz  
requirements through software programming  
of:  
On-hook transmission  
Power/service denial mode  
Ringing waveform and frequency  
DC loop-feed characteristics and current-limit  
Loop-supervision detection thresholds  
Off-hook debounce circuit  
Ground-key and ring-trip filters  
Off-hook detect de-bounce interval  
Two-wire AC impedance  
Line-feed characteristics independentof battery  
voltage  
Only 5 V, 3.3 V and battery supplies needed  
Low idle-power per line  
Linear power-feed with intelligent power-  
management feature  
Compatible with inexpensive protection  
networks; Accommodates low-tolerance fuse  
resistors while maintaining longitudinal balance  
Transhybrid balance  
Transmit and receive gains  
Equalization  
Monitors two-wire interface voltages and  
currents for subscriber line diagnostics  
Digital I/O pins  
Built-in voice-path test modes  
A-law/µ-law and linear selection  
Power-cross, fault, and foreign voltage  
Supports internal and external battery-backed  
detection  
ringing  
Integrated line-test features  
Leakage  
Self-contained ringing generation and control  
Supports external ringing generator and ring  
relay  
Line and ringer capacitance  
Loop resistance  
Ring relay operation synchronized to zero  
crossings of ringing voltage and current  
Integrated self-test features  
Echo gain, distortion, and noise  
0 to 70°C commercial operation  
Integrated ring-trip filter and software enabled  
manual or automatic ring-trip mode  
Supports metering generation with envelope  
— –40°C to 85°C extended temperature range  
shaping  
available  
Smooth or abrupt polarity reversal  
Adaptive transhybrid balance  
Continuous or adapt and freeze  
Small physical size  
Up to three relay drivers per ISLICdevice  
Configurable as test load switches  
Supports both loop-start and ground-start  
signaling  
Am79D2251  
3
Figure 1. Dual ISLAC Block Diagram  
IREF  
VREF  
MCLK  
VHL1  
VLB1  
Clock and  
Reference  
Circuits  
FS/DCL  
VOUT1  
PCLK/FS  
VINI1  
VSAB1  
VIMT1  
VILG1  
XSB1  
Ch 1  
Converter  
Block  
PCM  
and  
GCI  
Interface  
and  
DXA/DU  
DRA/DD  
TSCA/G  
Time Slot  
Assigner  
VHL2  
VLB2  
DCLK/S0  
DIO/S1  
GCI Control  
Logic and  
Microprocessor  
Interface  
VOUT2  
VINI2  
Digital  
Signal  
Processor  
CS/RST  
Ch 2  
Converter  
Block  
INT  
VSAB2  
VIMT2  
VILG2  
XSB2  
LD1  
LD2  
P1  
ISLIC  
Control  
Logic  
P2  
P3  
XSC  
SHB  
Common  
External  
Sense  
SLB  
SPB  
Inputs  
4
Am79D2251  
ORDERING INFORMATION  
AMD standard products are available in several packages and operating ranges. The ordering  
number (valid combination) is formed by a combination of the elements below. Two ISLIC devices  
need to be used with this part.  
Am79D2251  
C
J
TEMPERATURE RANGE  
C= Commercial (0°C to +70°C)  
PACKAGE TYPE  
J = 44-pin plastic leaded chip carrier (PL044)  
V = 44-pin thin plastic quad flat pack (PQT044)  
DEVICE NAME/DESCRIPTION  
Am79D2251  
Advanced Dual Intelligent Subscriber Line Audio-  
Processing Circuit  
Valid Combinations  
Valid combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability  
of specific valid combinations, and to check on  
newly released valid combinations.  
Valid Combinations  
Am79D2251  
Am79D2251  
JC  
VC  
Am79D2251  
5
CONNECTION DIAGRAMS  
Figure 2. 44-Pin PLCC Connection Diagram  
6
5
4
3
2
1
44 43 42 41 40  
39  
38  
37  
36  
AGND2  
VILG1  
VSAB1  
VCCA1  
VHL1  
7
AGND1  
VILG2  
8
9
VSAB2  
10  
11  
12  
VCCA2  
VHL2  
VIN2  
35  
Dual ISLAC  
44-Pin PLCC  
34  
33  
32  
VIN1  
13  
14  
15  
16  
17  
VOUT1  
DGND2  
VOUT2  
SPB  
DGND1  
LD2  
31  
30  
29  
LD1  
CS/RST  
DCLK/S0  
P3  
18 19 20 21 22 23 24 25 26 27 28  
Figure 3. 44-Pin TQFP Connection Diagram  
44  
43  
42 41 40 39 38 37 36 35 34  
33  
32  
31  
1
AGND2  
AGND1  
2
3
VILG1  
VILG2  
VSAB1  
VSAB2  
4
30  
VCCA2  
VCCA1  
5
29  
28  
27  
26  
25  
VHL2  
VIN2  
VHL1  
VIN1  
Dual ISLAC  
44-Pin TQFP  
6
7
VOUT2  
VOUT1  
DGND2  
LD1  
8
SPB  
9
DGND1  
10  
11  
LD2  
P3  
24  
23  
CS/RST  
DCLK/S0  
12 13  
14  
15 16 17 18 19  
20  
21 22  
6
Am79D2251  
PIN DESCRIPTIONS  
Pin  
Pin Name  
I/O  
Description  
AGND1,  
AGND2  
Analog Ground  
Analog circuitry ground returns  
O
DCLK/S0  
Data Clock/GCI  
Address Strap 0  
Provides data control for MPIinterface control. For GCI operation, this pin is device address  
bit 0. 5 V tolerant.  
I
DGND1–  
Digital Ground  
Digital ground returns  
DGND2  
DIO/S1  
Data I/O/GCI Address  
Strap 1  
For PCM backplane operation, control data is serially written into and read out of the ISLAC  
device via the DIO pin with the MSB first. The data clock (DCLK) determines the data rate.  
DIO is high impedance except when data is being transmitted from the ISLAC device under  
control of CS/RST. For GCI operation, this pin is device address bit 1. 5 V tolerant.  
I/O  
I
DRA/DD  
RX Path A Backplane  
Data/ GCI data  
Downstream, Receive  
Path B backplane data  
For the PCM highway, the receive PCM data is input serially through the DRA ports. The  
data input is received every 125 µs and is shifted in, MSB first, in 8-bit PCM or 16-bit linear  
bursts at the PCLK rate. The receive port can receive information for direct control of the  
ISLIC device. This mode is selected in Device Configuration Register 2 (RTSEN = 1,  
RTSMD = 1). When selected, this data is received in an independently programmable  
timeslot from the PCM data. For the GCI mode, downstream receive and control data is  
accepted on this pin. 5 V tolerant.  
DXA/DU  
FS/DCL  
INT/S2  
TX Path A Backplane  
Data/GCI Data  
Upstream, TX Path B  
Backplane Data  
For the PCM highway, the transmit PCM data is transmitted serially through the DXA port.  
The transmission data output is available every 125 µs and is shifted out, MSB first, in 8-bit  
PCM or 16-bit linear bursts at the PCLK rate. DXA is high impedance between bursts and  
while the device is in the inactive mode. Can also select a mode (RTSEN = 1, RTSMD = 1  
or 0 in Device Configuration Register 2) that transmits the Signaling Register MSB contents  
first, in an independently programmable timeslotfrom the PCM data. This data is transmitted  
in all modes except disconnect. For the GCI mode, upstream transmit and signaling data is  
transferred on this pin. 5 V tolerant.  
O
Frame sync/GCI  
Downstream Clock  
For PCM operation, pin is Frame Sync. PCM operation is selected by the presence of an  
8 kHz Frame Sync signal on this pin in conjunction with the PCLK on the PCLK/FS pin  
(see below). This 8 kHz pulse identifies the beginning of a frame. The ISLAC device  
references individual timeslots with respect to this input, which must be synchronized to  
PCLK. GCI operation is selected by the presence of the downstream clock DCL, on this  
pin in conjunction with the presence of a FS on the PCLK/FS pin. In GCI mode, the rate  
at which data is shifted into or out of the PCM ports is a derivative of this DCL clock as  
selected in Device Configuration Register 1. 5 V tolerant.  
I
Interrupt/GCI Address  
Strap 2  
For PCM operation, when a subscriber line requires service, this pin goes to a logic 0 to  
interrupt a higher level processor. Several registers work together to control operation of  
the interrupt: Signaling and Global Interrupt Registers with their associated Mask  
Registers, and the Interrupt Register. See the description at configuration register 6 (Mask)  
for operation. Logic drive is selectable between open drain and TTL-compatible outputs.  
The S2 function is only available on the dual ISLAC device. For GCI operation, it is the  
device address bit 2.  
O
IREF  
Current Reference  
Register Load  
External resistor (RREF) connected between this pin and analog ground generates an  
accurate, on-chip reference current for the A/D's and D/A's on the ISLAC chip.  
I
LD1LD2  
The LD pins output 3-level voltages. When LDn is a logic 0, the destination of the code on  
P1P3 is the relay control latches in the ISLIC control register. When LDn is a logic 1, the  
destination of P1P3 is the mode control latches. LDn is driven to VREF when the contents  
of the ISLIC control register must not change.  
O
MCLK  
Master Clock  
For PCM backplane operation, a DSP master clock connects here. A signal is required  
only for PCM backplane operation when PCLK is not used as the master clock. MCLK can  
bea widevarietyoffrequencies. Upon initializationtheMCLK inputisdisabled, andrelevant  
circuitry is driven by a connection to PCLK. The MCLK connection may be re-established  
under user control. 5 V tolerant.  
I
I
PCLK/FS  
PCM Clock/Frame  
Sync  
For PCM operation, this is PCM Clock. PCM operation is selected by the presence of a  
PCLK signal on this pin in conjunction with the FS on the FS/DCL pin (see below). For  
PCM backplane operation, connect a data clock, which determines the rate at which PCM  
data is serially shifted into or out of the PCM ports. PCLK can be any multiple of the FS  
frequency. The minimum clock frequency for linear/ companded data plus signaling data  
is 256 kHz. For GCI operation, this pin is Frame Sync. The FS signal is an 8 kHz pulse  
that identifies the beginning of a frame. The ISLAC device references individual timeslots  
with respect to this input, which must be synchronized to DCL. 5 V tolerant.  
P1P3  
ISLIC Control  
Control the operating modes of the two ISLIC devices connected to the dual ISLAC device.  
O
Am79D2251  
7
Pin  
Pin Name  
I/O  
Description  
CS/RST  
Chip Select/Reset  
For PCM backplane operation, a logic low on this pin for 15 or more DCLK cycles resets  
the sequential logic in the ISLAC device into a known mode. A logic low placed on this pin  
for less than 15 DCLK cycles is a chip select and enables serial data transmission into or  
out of the DIO port. For GCI operation, a logic low on this pinfor 1 ms or longerresets  
the sequential logic into a known mode. See Table 2-4 in the Technical Reference for  
details. 5 V tolerant.  
I
SHB, SLB,  
SPB  
Battery Sense  
Resistors that sense the high, low and positive battery voltages connect here. If only one  
negative battery is used, connect both resistors at the supply. If the positive battery is not  
used, leave the pin unconnected. These pins are current inputs whose voltage is held at  
VREF.  
I
TimeslotControlA/GCI  
Mode, Time Slot  
Control B  
For PCM backplane operation, TSCA is active low when PCM data is output on the DXA  
pin. The outputs are open-drain and are normally inactive (high impedance). Pull-up loads  
should be connected to VCCD. When GCI mode is selected, one of two GCI modes may  
be selected by connecting TSCA/G to DGND or VCCD.  
TSCA/G,  
O
(PCM)  
I
(GCI)  
VSAB1–  
VSAB2  
Loop voltage sense  
Power Supply  
Connect to the VSAB pins of two ISLIC devices.  
+3.3 VDC supplies to the analog sections in each of the two channels.  
+3.3 VDC supply to all digital sections.  
I
VCCA1–  
VCCA2  
VCCD  
VREF  
Power Supply  
Analog Reference  
This pin provides a 1.4 V, single-ended reference to the two ISLIC devices to which the  
ISLAC device is connected.  
O
O
I
VHL1–  
VHL2  
High Level D/A  
TX Analog  
High-level loop control voltages on these pins are used to control DC-feed, internal ringing,  
metering and polarity reversal for each ISLIC device.  
VIN1–  
VIN2  
Analog transmit signals (VTX) from each ISLIC device connect to these pins. The ISLAC  
device converts these signals to digital words and processes them. After processing, they  
are multiplexed into serial time slots and sent out of the DXA/DU pin.  
VLB1–  
VLB2  
Longitudinal  
Reference  
Normally connected to VCCA internally. They supply longitudinal reference voltages to the  
ISLIC devices during certain test procedures. These outputs are connected internally to  
VCCA during ISLIC Active, Standby, Ringing, and Disconnect modes. During test modes,  
it can be connected to the receive D/A.  
O
I
VIMT1–  
VIMT2,  
VILG1–  
VILG2  
Sense  
The IMT and ILG pins of two ISLIC devices connect to the VIMT1VIMT4 and VILG1–  
VILG4 pins of the ISLAC chip. These pins are voltage inputs referenced to VREF. They  
require external resistors connected between each pin and VREF to convert IMTn and  
ILGn into voltages.  
VOUT1–  
VOUT2  
RX Analog  
The ISLAC device extracts and processes voice data from time slots on DRA/DD serial  
data port. After processing, the ISLAC device converts the voice data to analog signals  
that are sent out of these pins to each respective ISLIC device.  
O
I
XSB1–  
XSB2  
External Sense  
External resistors connect here that sense an external voltage. In a linecard with external  
ringing, they are used to sense the voltage at the line side of the ring-feed resistor. These  
pins are currentinputs whose voltage is held atVREF. An internal resistor convertscurrents  
flowing in these pins into voltages to be sampled by the A/D.  
XSC  
Common External  
Sense  
An external resistor connects here that senses a common reference for external voltages  
sensed by resistors connected to XSB1XSB4. This pin is a current input whose voltage  
is held at VREF. An internal resistor converts current flowing in this pin into a voltage to  
be sampled by the A/D. This pin is intended for sensing external ringer supply voltages.  
However, it can also be used to sense other test points when internal ringing is used.  
I
8
Am79D2251  
GENERAL DESCRIPTION  
The Intelligent Access voice chipsets integrate all functions of the subscriber line for two subscriber  
lines. One or more of two chip types are used to implement the linecard; an ISLIC device and a dual  
ISLAC device. These provide the following basic functions:  
1. The ISLIC device: A high voltage, bipolar IC that drives the subscriber line, maintains  
longitudinal balance and senses line conditions.  
2. The dual ISLAC device: A low voltage CMOS IC that provides conversion and DSP functions  
for 2 channels.  
Completeschematicsoflinecardsusing theIntelligentAccessvoicechipsetsforinternalandexternal  
ringing are shown in Figure 4 and Figure 5.  
The ISLIC device uses reliable, bipolar technology to provide the power necessary to drive a wide  
variety of subscriber lines. It can be programmed by the ISLAC device to operate in eight different  
modes that control power consumption and signaling modes. This enables it to have full control over  
the subscriber loop. The ISLIC device is customized to be used exclusively with the ISLAC device  
as part of a multiple-line chipset. The ISLIC device requires only +5 V power and the battery supplies  
for its operation.  
The ISLIC device implements a linear loop-current feeding method with the enhancement of  
intelligent thermal management in a controlled manner. This limits the amount of power dissipated  
on the ISLIC chip by dissipating excess power in external resistors.  
Each ISLAC device contains high-performance codec circuits that provide A/D and D/A conversion  
for voice (codec), DC-feed and supervision signals for two subscriber channels. The ISLAC device  
contains a DSP core that handles signaling, DC-feed, supervision and line diagnostics for both  
channels.  
The DSP core selectively interfaces with three types of backplanes:  
Standard PCM/MPI  
Standard GCI  
Modified GCI with a single analog line per GCI channel  
The Intelligent Access voice chipset provides a complete software configurable solution to the  
BORSCHT functions as well as complete programmable control over subscriber line DC-feed  
characteristics, such as current limit and feed resistance. In addition, these chipsets provide system  
level solutions for the loop supervisory functions and metering. In total, they provide a programmable  
solution that can satisfy worldwide linecard requirements by software configuration.  
Software programmed filter coefficients, DC-feed data and supervision data are easily calculated  
with the WinSLAC software. This PC software is provided free of charge. It allows the designer to  
enter a description of system requirements. WinSLAC then computes the necessary coefficients  
and plots the predicted system results.  
The ISLIC interface unit inside the ISLAC device processes information regarding the line voltages,  
loop currents and battery voltage levels. These inputs allow the ISLAC device to place several key  
ISLIC performance parameters under software control.  
Am79D2251  
9
The main functions that can be observed and/or controlled through the ISLAC backplane interface are:  
DC-feed characteristics  
Ground-key detection  
Off-hook detection  
DTMF detection  
Modem tone (2100 Hz) detection  
Metering signal  
Longitudinal operating point  
Subscriber line voltage and currents  
Ring-trip detection  
Abrupt and smooth battery reversal  
Subscriber line matching  
Ringing generation  
Sophisticated line and circuit tests  
To accomplish these functions, the ISLIC device collects the following information and feeds it, in  
analog form, to the ISLAC device:  
The metallic (IMT) and longitudinal (ILG) loop currents  
The AC (VTX) and DC (VSAB) loop voltage  
The outputs supplied by the ISLAC device to the ISLIC device are then:  
A voltage (VHLi) that provides control for the following high-level ISLIC device outputs:  
DC loop current  
Internal ringing signal  
12 or 16 kHz metering signal  
A low-level voltage proportional to the voice signal (VOUTi)  
A voltage that controls longitudinal offset for test purposes (VLBi)  
The ISLAC device performs the codec and filter functions associated with the four-wire section of  
the subscriber line circuitry in a digital switch. These functions involve converting an analog voice  
signal into digital PCM samples and converting digital PCM samples back into an analog signal.  
During conversion, digital filters are used to band-limit the voice signals.  
The user-programmable filters set the receive and transmit gain, perform the transhybrid balancing  
function, permit adjustment of the two-wire termination impedance and provide frequency  
attenuation adjustment (equalization) of the receive and transmit paths. Adaptive transhybrid  
balancing is also included. All programmable digital filter coefficients can be calculated using  
WinSLAC software. The PCM codes can be either 16-bit linear twos-complement or 8-bit  
companded A-law or µ-law, with the further option of 32 or 24 kb/s ADPCM compression.  
Besides the codec functions, the Intelligent Access voice chipset provides all the sensing, feedback,  
andclockingnecessarytocompletelycontrolISLICdevicefunctionswithprogrammableparameters.  
System-level parameters under programmable control include active loop current limits, feed  
resistance, and feed mode voltages.  
The ISLAC device supplies complete mode control to the ISLIC device using the control bus (P1-P3)  
and tri-level load signal (LDi).  
The Intelligent Access voice chipset provides extensive loop supervision capability including off-hook,  
DTMF, ring-trip and ground-key detection. Detection thresholds for these functions are programmable.  
A programmable debounce timer is available that eliminates false detection due to contact bounce.  
For subscriber line diagnostics, AC and DC line conditions can be monitored using built in test tools.  
Measured parameters can be compared to programmed threshold levels to set a pass/fail bit. The  
user can choose to send the actual PCM measurement data directly to a higher level processor by  
way of the voice channel. Both longitudinal and metallic resistance and capacitance can be  
measured, which allows leakage resistance, line capacitance, and telephones to be identified.  
10  
Am79D2251  
Figure 4. Internal Ringing Linecard Schematic  
+5 V  
3.3 V  
VCC  
CREF  
RSAi  
RRXi  
RHLai  
CHLbi  
SA  
VOUTi  
VHLi  
RSN  
DGND  
RFAi  
A
RHLbi  
AD  
RHLci  
RTi  
RHLdi  
CHLdi  
AGND  
VCCA  
U3  
RTESTMi  
D1  
VREF  
CADi  
CHPi  
VCC  
+3.3VDC  
VSAB  
VTX  
VSABi VCCD  
HPA  
HPB  
BD  
CS  
U4  
BATH  
DT1i  
VINi  
D2  
CSSi  
RFBi  
B
VLB  
IMT  
VLBi  
RSBi  
VIMTi  
SB  
CBDi  
TMS  
RMTi  
U1  
Am79R241  
U2  
ISLAC  
VREF  
RMGPi  
DT2i***  
VILGi  
ILG  
BACK  
TMP  
TMN  
PLANE  
RLGi  
VREF  
RMGLi  
DHi  
DLi  
VREF  
VREF  
BATH  
BATL  
VBH  
VBL  
LD  
LDi  
P1  
SPB  
GND  
CBATHi  
CBATLi  
P1  
P2  
P3  
SLB  
SHB  
BATL  
BATH  
RSLB  
RSHB  
P2  
P3  
RSVD  
RYE  
IREF  
R2  
R3  
RREF  
RTESTLi  
R1  
* CSS required for > 2.2 Vrms metering  
** Connections shown for one channel  
*** DT2i diode is optional - should be  
BGND  
RSVD  
connected if there is a chance that this chip  
may be replaced by Am79R251.  
Am79D2251  
11  
Figure 5. External Ringing Linecard Schematic  
+5 V  
3.3 V  
VCC  
CREF  
RSAi  
RFAi  
RRXi  
SA  
RSN  
VOUTi  
VHLi  
DGND  
AGND  
RHLai  
A
1
8
CHLbi  
RHLbi  
AD  
KRi(A)  
CADi  
RHLci  
RHLdi  
CHLdi  
VREF  
RTi  
6
7
RTESTMi  
U5  
VCCA  
VCCD  
VCC  
+3.3 VDC  
VSAB  
VTX  
VSABi  
VINi  
2
CHPi  
HPA  
HPB  
BD  
DT1i  
BATH  
CS  
CSSi  
VLB  
IMT  
VLBi  
RFBi  
CBDi  
B
4
5
VIMTi  
RSBi  
KRi (B)  
RMTi  
SB  
TMS  
U1  
Am79231  
VREF  
VILGi  
ILG  
U2  
ISLAC  
RMGPi  
DT2i***  
RLGi  
BACK  
PLANE  
TMP  
TMN  
VREF  
VREF  
VREF  
RMGLi  
DHi  
DLi  
LD  
GND  
P1  
LDi  
P1  
BATH  
VBH  
VBL  
BATL  
P2  
P3  
P2  
P3  
SPB  
SLB  
CBATHi  
CBATLi  
BATL  
BATH  
RSLB  
RSHB  
RSVD2  
RYE  
SHB  
IREF  
R2H  
R3H  
RREF  
RTESTLi  
R1  
RGFDLi  
KRi  
+5 V  
BGND  
RSVD  
XSBi  
XSC  
* CSS required for > 2.2 Vrms metering  
** Connections shown for one channel  
*** DT2i is optional - Should be put if there is a chance that  
this chip may be replaced by Am79R251.  
Ring Bus  
RSRBi  
RSRC  
12  
Am79D2251  
LINECARD PARTS LIST  
The following list defines the parts and part values required to meet target specification limits for  
channel i of the linecard (i = 1, 2)  
Item  
Type  
Value  
Tol.  
Rating  
Comments  
U1  
Am79R241  
Am79X22xx  
P1001SC  
ISLIC device  
U2  
ISLAC device  
U3, U4  
U5  
100 V  
80 V  
TECCOR Battrax protector  
TISP61089  
Transient Voltage Suppresser, Power  
Innovations  
D1, D2  
Diode  
Diode  
1 A  
100 V  
100 V  
DHi, DLi, DT1i, DT2i4  
RFAi, RFBi  
RSAi, RSBi  
RTi  
100 mA  
50 ns  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Capacitor  
Capacitor  
Resistor  
Resistor  
Resistor  
Resistor  
Capacitor  
50 Ω  
200 kΩ  
80.6 kΩ  
100 kΩ  
69.8 kΩ  
1 kΩ  
2%  
2%  
2 W  
1/4 W  
1/8 W  
1/8 W  
1/8 W  
1 W  
Fusible PTC protection resistors  
Sense resistors  
1%  
RRXi  
1%  
RREF  
1%  
Current reference  
RMGLi, RMGPi  
RSHB, RSLB  
RHLai  
5%  
Thermal management resistors  
750 kΩ  
40.2 kΩ  
4.32 kΩ  
2.87 kΩ  
2.87 kΩ  
3.3 nF  
0.82 µF  
3.01 kΩ  
6.04 kΩ  
2 kΩ  
1%  
1/8 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
10 V  
1%  
RHLbi  
1%  
RHLci  
1%  
RHLdi  
1%  
CHLbi  
10 %  
10 %  
1%  
Not Polarized  
Ceramic  
CHLdi  
10 V  
RMTi  
1/8 W  
1/8 W  
1 W  
RLGi  
1%  
RTESTMi  
RTESTLi  
1%  
Metallic test  
2 kΩ  
1%  
1 W  
Longitudinal test  
CADi, CBDi 1  
CBATHi, CBATLi  
CHPi  
22 nF  
10%  
100 V  
Ceramic, not voltage sensitive  
Capacitor  
Capacitor  
Capacitor  
100 nF  
22 nF  
20%  
20%  
20%  
100 V  
100 V  
100 V  
Ceramic  
Ceramic  
CSi1  
100 nF  
Protector speed up capacitor  
CSSi3  
Capacitor  
56 pF  
5%  
100 V  
Ceramic  
Components for External Ringing  
RGFDi  
Resistor  
Resistor  
510 Ω  
2%  
2%  
2 W  
1.2 W typ  
RSRBi, RSRc  
750 kΩ  
1/4 W  
Matched to within 0.2% for initial tolerance  
and 0 to 70° C ambient temperature range.2  
17 mW typ  
KRi  
Relay  
5 V Coil  
DPDT  
Notes:  
1. Value can be adjusted to suit application.  
2. Can be looser for relaxed ring-trip requirements. 1% match (each resistor ±1%) gives 1.275 mA uncertainty in ringing current  
sensing.  
3. Required for metering > 2.5 Vrms, otherwise may be omitted.  
4. DT2i is optional - Should be put if there is a chance that this chip may be replaced by Am79R251.  
Am79D2251  
13  
ELECTRICAL CHARACTERISTICS  
Power Dissipation  
Description  
Test Conditions  
One channel activated  
All channels active  
All channels inactive  
Min  
Typ  
TBD  
TBD  
Max  
TBD  
TBD  
TBD  
Unit  
Dual ISLAC Power  
Dissipation  
mW  
Absolute Maximum Ratings  
Stresses greater than those listed under Absolute Maximum Ratings can cause permanent device  
failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings  
for extended periods can affect device reliability.  
Storage Temperature  
60°C TA +125°C  
40°C TA +85°C  
Ambient Temperature, under Bias  
Ambient relative humidity (non condensing)  
5 to 100%  
V
CCA with respect to DGND  
CCD with respect to DGND  
0.4 V to + 3.47 V  
V
0.4 V to + 3.47 V  
VIN with respect to DGND  
5 V tolerant pins  
0.4 V to VCCA + 0.4 V  
0.4 to Vcc + 2.25 or 5.25 V,  
whichever is less  
AGND  
DGND ±0.4 V  
±100 mA  
Latch up immunity (any pin)  
Any other pin with respect to DGND  
0.4 V to VCC  
Operating Ranges  
Operating ranges define those limits over which the functionality of the device is guaranteed by 100  
percent production testing. Specifications outside of the 0 to 70°C range (40 to 85°C) are  
guaranteed through characterization and sample-lot testing production devices at the temperature  
extremes.  
Intelligent AccessVoice Chipsets Environmental Ranges  
Ambient Temperature  
Ambient Relative Humidity  
Electrical Maximum Ranges  
40 to +85°C Commercial  
15 to 85%  
Analog Supply VCCA  
Digital Supply VCCD  
+3.3 V ± 5%  
+3.3 V ± 5%  
DGND  
AGND  
0 V  
DGND ±50 mV  
14  
Am79D2251  
PERFORMANCE SPECIFICATIONS  
The performance targets defined in this section are for the entire linecard comprised of both chips  
in the Intelligent Access voice chipsets unless otherwise noted. Specifications for the individual chips  
in the set will be published separately (see note 1). TA = 0 to 70°C unless otherwise noted.  
Intelligent AccessVoice Chipsets System Target Specifications  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
Peak Ringing Voltage  
Active Ringing mode,  
RLOAD = 1500 ,  
VBH = 80 V  
70  
V
Output Impedance during  
internal ringing  
Active Ringing mode, Dual  
ISLAC generating internal  
ringing  
200  
2
Sinusoidal Ringing THD  
Active Ringing mode,  
RLOAD = 1500 ,  
VBH = 80 V, ISLAC  
generating internal  
sinusoidal ringing  
%
PSRR (VBH, VBL)  
Loop open, in anti-sat  
f = 50 Hz  
2
dB  
1, 2  
f = 200 to 3400 Hz  
12  
Notes:  
1. Not tested or partially-tested in production.  
2. These numbers are only valid when an ISLIC device operates with an ISLAC device, because the ISLAC  
generates the anti-sat feed characteristic. When the Intelligent Access voice chipsets operate in the normal  
feed region, the performance is controlled by the ISLIC device. See appropriate ISLIC data sheet for  
specific PSRR.  
Am79D2251  
15  
DC Specifications  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit Note  
1
Input Low Voltage,  
All other digital inputs  
0.05  
0.50  
1.36 V  
0.80 V  
V
2
4
Input High Voltage,  
All other digital inputs  
2.36  
2.0  
Vcc+0.4  
5.25  
Input Leakage Current  
All digital inputs except MCLK  
MCLK  
10  
+10  
µA  
120  
+180  
0.3  
5
6
Input hysteresis (PCLK/FS, FS/DCL,  
MCLK, DIO, DRA)  
0.15  
0.225  
V
2
Ternary output voltages, LD12  
High voltage  
Low voltage  
Iout = ±200 µA  
Iout = 2 mA  
Mid level  
VCC0.45  
0.4  
+10  
V
V
µA  
Output current  
10  
7
8
9
Output Low Voltage (DXA/DU, DIO,  
INT, TSCA)  
Iol = 2 mA  
0.4  
Output Low Voltage  
(INT, TSCA)  
Iol = 10 mA  
Ioh = 400 µA  
1.0  
V
Output High Voltage (All digital  
outputs except INT in open drain  
mode and TSCA)  
VCC0.4  
10  
Input Leakage Current (VIN12,  
VSAB12, VILG12, VIMT12)  
TBD  
TBD  
µA  
µA  
11  
12  
Input Leakage Current ( VSAB12)  
Input voltage (VIN12)  
µ-law  
3.205 dBm0  
A-law  
3.14 dBm0 to insertion  
loss in ADC  
VREF  
1.02  
VREF  
+1.02  
V
13  
Input Voltage (VSAB 12 or VIMT12  
or VILG12)  
|VovVREF| where Vov is  
input overload voltage  
0.99  
1.02  
1.05  
14  
15  
16  
Offset voltage allowed on VIN12  
VHL output offset voltage  
VOUT12 offset Voltage  
50  
+50  
mV  
9
DISN off  
DISN on  
40  
80  
+40  
+80  
17  
18  
19  
20  
21  
22  
23  
Output voltage, VREF  
Load current = 0 to 10 mA  
Source or Sink  
1.4  
V
Capacitance load on VREF or  
VOUT12  
200  
+1  
pF  
2
2
Output drive current, VOUT12 or  
VLB12  
Source or Sink  
1  
mA  
mA  
Output leakage current  
VOUT12 or VLB12  
TBD  
1.02  
Maximum output voltage on VOUT  
|VOUTVREF| with peak  
digital input  
0.99  
1.05  
9
9
V
V
VLB12 operating voltage  
Source current < 250 µA  
or sink current < 25 µA.  
VREF  
1.02  
VREF  
+1.02  
Maximum output voltage on VHL  
(KRFB)  
|VHLVREF| with peak  
digital input  
0.97  
1.00  
1.03  
24  
25  
26  
Gain from VSAB to VHL  
Gain from VSAB to VHL  
VFD = 1  
VFD = 0  
4.9  
0.0255  
5  
5
5.1  
0.0245  
+5  
V/V  
V/V  
%
0.025  
% error of VLB voltage (For VLB  
equation, see Am79R2xx/  
Am79D2251 Technical Reference)  
27  
Capacitance load on VLB12  
120  
pF  
5
16  
Am79D2251  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit Note  
28  
Capacitance load on XSB12, XSC  
400  
pF  
5
Transmission and Signaling Specifications  
Table 1. 0 dBm0 Voltage Definitions with Unity Gain in X, R, GX, GR, AX, and AR  
Signal at Digital Interface  
A-law digital mW or equivalent (0 dBm0)  
µ-law digital mW or equivalent (0 dBm0)  
±5,800 peak linear coded sine wave  
Transmit  
0.5026  
0.4987  
0.5026  
Receive  
0.5026  
0.4987  
0.5025  
Unit  
Vrms  
No.  
Item  
Insertion Loss  
Condition  
Min  
Typ  
Max  
Unit  
Note  
1
Input: 1014Hz, 10dBm0  
RG = AR = AX = GR = GX = 0 dB,  
AISN, R, X, B and Z filters disabled  
A-D  
D-A  
A-D + D-A  
A-D + D-A  
0.25  
0.25  
0.15  
0.1  
0
0
0
0
+0.25  
+0.25  
+0.015  
+0.1  
6
Temperature = 70°C  
Variation over temperature  
dB  
2
3
Level set error (Error between  
setting and actual value)  
A-D AX + GX  
D-A AR + GR  
0.1  
0.1  
DR to DX gain in full digital  
loopback mode  
DR Input: 1014 Hz, 10 dBm0  
RG=AR=AX=GR=GX=0 dB,  
DISN, R, X, BandZ filters disabled  
0.3  
+0.3  
4
Idle Channel Noise,  
Off-hook and On-hook  
Psophometric Weighted (A-law) AX = 0dB  
AR = 0dB  
dBm0p  
11  
11  
A-D (PCM output)  
D-A (VOUT)  
69  
78  
5
Idle Channel Noise,  
C Message weighted (µ-law)  
Off-hook and On-hook  
AX = 0dB  
AR = 0dB  
A-D (PCM output)  
D-A (VOUT)  
dBrnC0  
Bits  
+19  
+12  
+7  
6
7
8
9
Coder Offset decision value, Xn A-D, Input signal = 0V  
7  
5
5
5
5
GX step size  
GR step size  
0.1  
0.1  
0 GX < 12 dB  
12 GR 0 dB  
PSRR (VCC)  
Input: 4.8 to 7.8 kHz, 200 mV p-p  
dB  
Image frequency  
Measure 8000 Hz-Input frequency  
A-D  
D-A  
37  
37  
10  
11  
DISN gain accuracy  
Gdisn = ±0.9375 Vin = 0 dBm0  
Gdisn = 0.9375 to 0.9375  
0.25  
+0.25  
525  
dB  
2
End-to-end group delay  
1014 Hz; 10 dBmO  
B = Z = 0; X = R = 1  
µS  
13,  
12,  
5
12  
Crosstalk  
same channel  
TX to RX  
RX to TX  
0 dBm0  
0 dBm0  
300 Hz to 3400 Hz  
300 Hz to 3400 Hz  
75  
75  
dBm0  
Am79D2251  
17  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
13  
Crosstalk between channels  
TX or RX to TX  
0 dBm0  
1014 Hz  
1014 Hz  
76  
78  
dBm0  
TX or RX to RX  
Notes:  
1.  
These tests are performed with the following load impedances:  
Frequency < 12 kHz – Longitudinal impedance = 500 ; metallic impedance = 300 Ω  
Frequency > 12 kHz – Longitudinal impedance = 90 ; metallic impedance = 135 Ω  
2.  
3.  
4.  
Not tested or partially tested in production. This parameter is guaranteed by characterization or  
correlation to other tests.  
This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by  
characterization.  
When the Intelligent Access voice chipset is in the anti-sat operating region, this parameter will be  
degraded. The exact degradation will depend on system design.  
5.  
6.  
Guaranteed by design.  
Overall 1.014 kHz insertion loss error of the Intelligent Access voice chipset is guaranteed to be ≤  
0.34 dB  
7.  
These SBAT, PSRR specifications are valid only when the ISLIC is used with the ISLAC, which  
generatestheanti-satreference.Sincetheanti-satreferencedependsuponthebatteryvoltagesensed  
by the VHB, VLB, and VPB pins of the ISLAC, the PSRR of the kit depends upon the amount of battery  
filtering provided by CB.  
8.  
Must meet at least one of these specifications.  
9.  
These voltages are referred to VREF  
10.  
11.  
These limits refer to the 2-wire output of an ideal ISLIC but reflect only the capabilities the ISLAC.  
When relative levels (dBm0) are used, the specification holds for any setting of (AX + GX) gain from  
0 to 12 dB or (AR + GR + RG) from 0 to –12 dB.  
12.  
13.  
Group delay spec valid only when Channels 1–2 occupy consecutive slots in the frame. Programming  
channels in non-consecutive timeslots adds 1 frame delay in the Group delay measurements.  
The Group delay specification is defined as the sum of the minimum values of the group delays for  
transmit and the receive paths when the B, X, R, and Z filters are disabled with null coefficients. See  
Figure 15-3 for Group Delay Distortion.  
14.  
These limits reflect only the capabilities of the dual ISLAC device.  
18  
Am79D2251  
Transmit and Receive Paths  
In this section, the transmit path is defined as the analog input to the ISLAC device (VINn) to the  
PCM voice output of the ISLAC A-law/µ law speech compressor (See Figure 7-1 in the Am79R2xx/  
Am79D2251x Technical Reference). The receive path is defined as the PCM voice input to the  
ISLAC speech expander to the analog output of the ISLAC device (VOUTn). All limits defined in this  
section are tested with B = 0, Z = 0 and X = R = RG = 1.  
When RG is enabled, a gain of 6.02 dB is added to the digital section of the receive path.  
When AR is enabled, a nominal gain of 6.02 dB is added to the analog section of the receive path.  
When AX is enabled, a nominal gain of +6.02 dB is added to the analog section of the transmit path.  
When relative levels (dBm0) are used in any of the following transmission characteristics, the  
specification holds for any setting of (AX + GX) gain from 0 to 12 dB or (AR + GR) from 0 to 12 dB.  
These transmission characteristics are valid for 0 to 70°C.  
Am79D2251  
19  
Attenuation Distortion  
The attenuation of the signal in either path is nominally independent of the frequency. The deviations  
from nominal attenuation will stay within the limits shown in Figure 6. The reference frequency is  
1014 Hz and the signal level is 10 dBm0.  
Figure 6. Transmit and Receive Path Attenuation vs. Frequency  
2
Dual ISLAC Specification  
1
0.80  
0.65  
0.6  
0.2  
0.125  
0
Receive path  
-0.125  
0
Frequency (Hz)  
Minimum transmit attenuation at 60 Hz is 24 dB  
Group Delay Distortion  
For either transmission path, the group delay distortion is within the limits shown in  
Figure 7. The minimum value of the group delay is taken as the reference. The signal level should  
be 10 dBm0.  
Figure 7. Group Delay Distortion  
420  
Dual ISLAC Specification  
(Either Path)  
Delay (µS)  
150  
90  
0
Frequency (Hz)  
20  
Am79D2251  
Single Frequency Distortion  
The output signal level, at any single frequency in the range of 300 to 3400 Hz, other than that due  
to an applied 0 dBm0 sine wave signal with frequency f in the same frequency range, is less than  
46 dBm0. With f swept between 0 to 300 Hz and 3.4 to 12 kHz, any generated output signals other  
than f are less than 28 dBm0. This specification is valid for either transmission path.  
Intermodulation Distortion  
Two sine wave signals of different frequencies, f1 and f2 (not harmonically related) in the range 300  
to 3400 Hz and of equal levels in the range 4 to 21 dBm0, do not produce 2 f1 f2 products  
having a level greater than 42 dB, relative to the level of the two input signals.  
A sine wave signal in the frequency band 300 to 3400 Hz with input level 9 dBm0 and a 50 Hz  
signal with input level 23 dBm0 does not produce intermodulation products exceeding a level of  
56 dBm0. These specifications are valid for either transmission path.  
Am79D2251  
21  
Gain Linearity  
The gain deviation relative to the gain at 10 dBm0 is within the limits shown in Figure 8 (A-law) and  
Figure 9 (µ-law) for either transmission path when the input is a sine wave signal of 1014 Hz.  
Figure 8. A-law Gain Linearity with Tone Input (Both Paths)  
Dual ISLAC Specification  
1.5  
0.55  
0.25  
Input  
Level  
(dBm0)  
Gain (dB)  
-0.25  
0
-55 -50  
-40  
-10  
0 +3  
-0.55  
-1.5  
Figure 9. µ-law Gain Linearity with Tone Input (Both Paths)  
Dual ISLAC Specification  
1.4  
0.45  
0.25  
Input  
Level  
(dBm0)  
Gain (dB)  
0
-55 -50  
-37  
-10  
0
+3  
-0.25  
-0.45  
-1.4  
22  
Am79D2251  
Total Distortion Including Quantizing Distortion  
The signal to total distortion ratio will exceed the limits shown in Figure 10 for either path when the  
input signal is a sine wave signal of frequency 1014 Hz.  
Figure 10. Total Distortion with Tone Input, Both Paths  
Dual ISLAC Specification  
B
A
A-Law  
µ-Law  
A
B
C
D
35.5dB 35.5dB  
35.5dB 35.5dB  
C
D
30dB  
25dB  
31dB  
27dB  
Signal-to-Total  
Distortion (dB)  
-45  
-40  
-30  
0
Input Level (dBm0)  
Overload Compression  
Figure 11 shows the acceptable region of operation for input signal levels above the reference input  
power (0 dBm0). The conditions for this figure are:  
(1) 1 dB < GX +12 dB; (2) 12 dB GR < 1 dB; (3) Digital voice output connected to digital voice  
input; and (4) measurement analog to analog.  
Figure 11. A/A Overload Compression  
9
8
7
6
Fundamental  
Output Power  
(dBm0)  
5
Acceptable  
Region  
4
3
2.6  
2
1
7
8
9
1
2
3
4
5
6
Fundamental Input Power (dBm0)  
Am79D2251  
23  
Discrimination against Out-of-Band Input Signals  
When an out-of-band sine wave signal with frequency and level A is applied to the analog input, there may be  
frequency components below 4 kHz at the digital output which are caused by the out-of-band signal. These  
components are at least the specified dB level below the level of a signal at the same output originating from a  
1014 Hz sine wave signal with a level of A dBm0 also applied to the analog input. The minimum specifications are  
shown in the following table.  
Frequency of Out-of-Band Signal  
16.6 Hz < f < 45 Hz  
Amplitude of Out-of-Band Signal  
25 dBm0 < A 0 dBm0  
25 dBm0 < A 0 dBm0  
25 dBm0 < A 0 dBm0  
25 dBm0 < A 0 dBm0  
25 dBm0 < A 0 dBm0  
Level below A  
18 dB  
45 Hz < f < 65 Hz  
25 dB  
65 Hz < f < 100 Hz  
10 dB  
3400 Hz < f < 4600 Hz  
4600 Hz < f < 100 kHz  
see Figure 12  
32 dB  
0
ISLAC Device Specification  
10  
20  
Level (dB)  
28 dBm  
32 dB, 25 dBm0 < input < 0 dBm0  
30  
40  
50  
3.4  
4.0  
4.6  
19256A-012  
Frequency (kHz)  
Note:  
The attenuation of the waveform below amplitude A between  
3400 Hz and 4600 Hz is given by the formula:  
π(4000 – f)  
Attenuation (db) = 14 14sin-------------------------  
1200  
Figure 12. Discrimination Against Out-of-Band Signals  
24  
Am79D2251  
Spurious Out-of-Band Signals at the Analog Output  
With PCM code words representing a sine wave signal in the range of 300 Hz to 3400 Hz at a level of 0 dBm0 applied  
to the digital input, the level of the spurious out-of-band signals at the analog output is less than the limits shown below.  
Frequency  
Level  
4.6 kHz to 40 kHz  
40 kHz to 240 kHz  
240 kHz to 1 MHz  
32 dBm0  
46 dBm0  
36 dBm0  
With code words representing any sine wave signal in the range 3.4 kHz to 4.0 kHz at a level of 0 dBm0 applied to  
the digital input, the level of the signals at the analog output are below the limits in Figure 13. The amplitude of the  
spurious out-of-band signals between 3400 Hz and 4600 Hz is given by the formula:  
π(f 4000)  
---------------------------  
1200  
A = 14 14sin  
dBm0  
0
ISLAC Device Specification  
10  
20  
30  
40  
50  
Level (dBm0)  
28 dB  
32 dB  
3.4  
4.0  
4.6  
Frequency (kHz)  
19256A-013  
Figure 13. Spurious Out-of-Band Signals  
Am79D2251  
25  
SWITCHING CHARACTERISTICS  
PCM Switching Characteristics  
Figure 14. PCM Switching Characteristics  
VCC = 3.3 V +5%, AGND = DGND = 0 V  
TBD  
TBD  
TBD  
TBD  
TBD  
TEST  
POINTS  
TBD  
Microprocessor Interface  
Min and max values are valid for all digital outputs with a 100 pF load, except DIO,DXA, INTL, and  
TSCA which are valid with 150 pF loads.  
No.  
Symbol  
Parameter  
Data clock period  
Min  
Typ  
Max  
Unit  
Note  
1
tDCY  
122  
2
3
4
5
6
tDCH  
tDCL  
tDCR  
tDCF  
tICSS  
Data clock HIGH pulse width  
Data clock LOW pulse width  
Rise time of clock  
48  
48  
1
1
15  
15  
Fall time of clock  
Chip select setup time, Input  
mode  
30  
0
t
DCY10  
ns  
7
8
tICSH  
tICSL  
Chip select hold time, Input mode  
tDCH20  
Chip select pulse width, Input  
mode  
8tDCY  
9
tICSO  
tIDS  
Chip select off time, Input mode  
Input data setup time  
1, 6  
5
10  
11  
25  
30  
tIDH  
Input data hold time  
12  
13  
tOCSS  
tOCSH  
tOCSL  
Chip select setup time, Output  
mode  
30  
tDCY10  
14  
15  
Chip select hold time, Output  
mode  
tDCH20  
Chip select pulse width, Output  
mode  
8tDCY  
ns  
µs  
16  
17  
18  
19  
20  
21  
tOCSO  
tODD  
tODH  
tODOF  
tODC  
tRST  
Chip select off time, output Mode  
Output data turn on delay  
Output data hold time  
Output data turn off delay  
Output data valid  
1, 6  
50  
3
50  
50  
0
Reset pulse width  
50  
26  
Am79D2251  
PCM Interface  
No.  
Symbol  
Parameter  
PCM clock period  
Min.  
Typ  
Max  
Unit  
Note  
22  
tPCY  
0.122  
7.8125  
µs  
2
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
tPCH  
tPCL  
tPCF  
tPCR  
tFSS  
tFSH  
tTSD  
tTSO  
tDXD  
tDXH  
tDXZ  
tDRS  
tDRH  
tFST  
PCM clock HIGH pulse width  
PCM clock LOW pulse width  
Fall time of clock  
48  
48  
ns  
15  
15  
Rise time of clock  
FS setup time  
30  
50  
5
tPCY30  
FS hold time  
Delay to TSCA valid  
80  
3
4
Delay to TSCA off  
5
PCM data output delay  
PCM data output hold time  
PCM data output delay to high-Z  
PCM data input setup time  
PCM data input hold time  
PCM or frame sync jitter time  
5
70  
70  
70  
5
10  
25  
5
97  
97  
Master Clock  
For 2.048 MHz ±100 PPM, 4.096 MHz ±100 PPM, or 8.192 MHz ±100 PPM operation:  
No.  
Symbol  
Parameter  
Period: 2.048 MHz  
Period: 4.096 MHz  
Period: 8.192 MHz  
Min  
Typ  
Max  
Unit  
No  
37  
tMCY  
488.23  
244.11  
122.05  
488.28  
244.14  
122.07  
488.33  
244.17  
122.09  
2
38  
39  
40  
41  
tMCR  
tMCF  
tMCH  
tMCL  
Rise time of clock  
15  
15  
ns  
Fall time of clock  
MCLK HIGH pulse width  
MCLK LOW pulse width  
48  
48  
Notes:  
1.  
DCLK may be stopped in the HIGH or LOW state indefinitely without loss of information. When CS  
makes a transition to the High state, the last byte received will be interpreted by the Microprocessor  
Interface logic.  
2.  
The PCM clock (PCLK or MCLK) frequency must be an integer multiple of the frame sync (FS)  
frequency with an accuracy of 100 PPM. This allowance includes any jitter that may occur between  
thePCMsignals(FS, PCLK)andMCLK. TheactualPCLKrateisdependentonthenumberofchannels  
allocated within a frame. The minimum clock frequency is 128 kHz. A PCLK of 1.544 MHz may be  
used for standard U.S. transmission systems.  
3.  
4.  
TSCA is delayed from FS by a typical value of N tPCY, where N is the value stored in the time/clock  
slot register.  
t
TSO is defined as the time at which the output driver turns off. The actual delay time is dependent on  
the load circuitry. The maximum load capacitance on TSCA is 150 pF and the minimum pull-up  
resistance is 360 .  
5.  
6.  
The first data bit is enabled on the falling edge of CS or on the falling edge of DCLK, whichever occurs  
last.  
The ISLAC device requires 2.0 µs between SIO operations. If the MPI is being accessed while the  
MCLK (or PCLK if combined with MCLK) input is not active, a Chip Select Off time of 20 µs is required  
when accessing coefficient RAM.  
Am79D2251  
27  
PCM Switching Waveforms  
Figure 15. Master Clock Timing  
37  
41  
V
IH  
V
IL  
40  
38  
39  
Figure 16. Microprocessor Interface (Input Mode)  
1
2
5
VIH  
VIH  
DCLK  
VIL  
VIL  
3
7
9
4
CS  
6
8
10  
11  
Data  
Valid  
Data  
Valid  
Data  
Valid  
DIO  
28  
Am79D2251  
Figure 17. Microprocessor Interface (Output Mode)  
VIH  
VIL  
DCLK  
13  
14  
16  
15  
CS  
20  
18  
17  
19  
VOH  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Three-State  
Three-State  
DIO  
VOL  
Figure 18. PCM Highway Timing for XE = 0 (Transmit on Negative PCLK Edge))  
Time Slot Zero, Clock Slot Zero  
27  
22  
25  
26  
VIH  
VIL  
PCLK  
23  
24  
28  
FS  
30  
29  
TSCA  
See Note 4  
31  
32  
33  
VOH  
First  
DXA  
DRA  
Bit  
VOL  
35  
34  
VIH  
First  
Bit  
Second  
Bit  
VIL  
Am79D2251  
29  
Figure 19. PCM Highway Timing for XE = 1 (Transmit on Positive PCLK Edge)  
Time Slot Zero, Clock Slot Zero  
27  
22  
26  
25  
VIH  
VIL  
PCLK  
23  
24  
FS  
28  
30  
29  
TSCA  
DXA  
See Note 4  
31  
32  
33  
VOH  
First  
Bit  
VOL  
35  
34  
VIH  
First  
Bit  
Second  
Bit  
DRA  
VIL  
GCI Timing Specifications  
Symbol  
Signal  
Parameter  
Min  
Typ  
Max  
Unit  
tR, tF  
DCL  
Rise/fall time  
60  
tDCL  
DCL  
Period, FDCL = 2048 kHz  
FDCL = 4096 kHz  
478  
239  
498  
249  
t
WH, tWL  
tR, tF  
tSF  
DCL  
FS  
Pulse width  
90  
Rise/fall time  
Setup time  
60  
FS  
70  
50  
tDCL50  
ns  
tHF  
FS  
Hold time  
tWFH  
tDDC  
tDDF  
tSD  
FS  
High pulse width  
Delay from DCL edge  
Delay from FS edge  
Data setup  
130  
DU  
DU  
DD  
DD  
100  
150  
twH+20  
50  
tHD  
Data hold  
Notes:  
1. The Data Clock (DCL) can be stopped in the high or low state without loss of information.  
2. A temporary stoppage of DCL must not put the ISLAC into a state in which it does not respond to a software  
reset command.  
3. All frequency-dependent specifications are guaranteed for clock frequencies within ±100 PPM from  
nominal.  
30  
Am79D2251  
GCI Waveforms  
DCL  
FS  
BIT  
7
BIT  
6
DD,  
DU  
DETAIL A  
tr  
tf  
DCL**  
tWH  
tDCL  
tWL  
FS  
tSF  
tHF  
tWFH  
tDDF  
DU  
tDDC  
tSD  
tHD  
DD  
** Timing diagram valid for  
FDCL = 2048 or 4096 KHz  
Am79D2251  
31  
PHYSICAL DIMENSIONS  
44-Pin PLCC  
.062  
.083  
.685  
.695  
.042  
.056  
.650  
.656  
Pin 1 I.D.  
.685  
.695  
.500 .590  
REF .630  
.650  
.656  
.013  
.021  
.009  
.015  
.026  
.032  
.090  
.120  
.165  
.180  
.050 REF  
SEATING PLANE  
16-038-SQ  
PL 044  
DA78  
6-28-94 ae  
TOP VIEW  
SIDE VIEW  
44-Pin TQFP  
44  
1
11.80  
12.20  
9.80  
10.20  
9.80  
10.20  
11.80  
12.20  
11° 13°  
0.95  
1.05  
1.20 MAX  
16-038-PQT-2  
PQT 44  
7-11-95 ae  
11° 13°  
0.80 BSC  
0.30  
0.45  
1.00 REF.  
32  
Am79D2251  
REVISION SUMMARY  
Revision A to Revision B  
Revision A was a condensed version of the datasheet while Revision B contains the full version.  
Revision B to Revision C  
Page 13, Linecard Parts List, Rows CHLbi and CHLdi: switched the numbers in the Valuescolumn.  
The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations  
or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to speci-  
fications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any in-  
tellectual property rights is granted by this publication. Except as set forth in AMDs Standard Terms and Conditions of Sale, AMD assumes no  
liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of  
merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
AMDs products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the  
body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMDs product could create a  
situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make  
changes to its products at any time without notice.  
© 1999 Advanced Micro Devices, Inc.  
All rights reserved.  
Trademarks  
AMD, the AMD logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.  
Intelligent Access and WinSLAC are trademarks of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Am79D2251  
33  
Am79D2251  
34  

相关型号:

AM79D2251VC

Dual Intelligent Subscriber Line Audio-Processing Circuit (ISLAC)
AMD

AM79H1000R

Fiber-Optic Receiver
ETC

AM79H1000T

Fiber-Optic Transmitter
ETC

AM79H1068-125

Fiber-Optic Transmitter
ETC

AM79H1069-125

Fiber-Optic Receiver
ETC

AM79H2000X

Fiber-Optic Transceiver
ETC

AM79HM53-1DC

Subscriber Line Interface Circuit
ETC