5M80ZM64I5 [ALTERA]

Flash PLD, 14ns, 64-Cell, CMOS, PBGA64, 4.50 X 4.50 MM, 0.50 MM PITCH, MBGA-64;
5M80ZM64I5
型号: 5M80ZM64I5
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

Flash PLD, 14ns, 64-Cell, CMOS, PBGA64, 4.50 X 4.50 MM, 0.50 MM PITCH, MBGA-64

时钟 可编程逻辑
文件: 总30页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3. DC and Switching Characteristics for  
MAX V Devices  
May 2011  
MV51003-1.2  
MV51003-1.2  
This chapter covers the electrical and switching characteristics for MAX® V devices.  
Electrical characteristics include operating conditions and power consumptions. This  
chapter also describes the timing model and specifications.  
You must consider the recommended DC and switching conditions described in this  
chapter to maintain the highest possible performance and reliability of the MAX V  
devices.  
This chapter contains the following sections:  
“Operating Conditions” on page 3–1  
“Power Consumption” on page 3–10  
“Timing Model and Specifications” on page 3–10  
Operating Conditions  
Table 3–1 through Table 3–15 on page 3–9 list information about absolute maximum  
ratings, recommended operating conditions, DC electrical characteristics, and other  
specifications for MAX V devices.  
Absolute Maximum Ratings  
Table 3–1 lists the absolute maximum ratings for the MAX V device family.  
Table 3–1. Absolute Maximum Ratings for MAX V Devices (Note 1), (2)  
Symbol  
VCCINT  
Parameter  
Internal supply voltage  
I/O supply voltage  
Conditions  
Minimum  
–0.5  
Maximum  
2.4  
Unit  
V
With respect to ground  
VCCIO  
VI  
–0.5  
4.6  
V
DC input voltage  
–0.5  
4.6  
V
IOUT  
TSTG  
TAMB  
DC output current, per pin  
Storage temperature  
Ambient temperature  
–25  
25  
mA  
°C  
°C  
No bias  
–65  
150  
Under bias (3)  
–65  
135  
TQFP and BGA packages  
under bias  
TJ  
Junction temperature  
135  
°C  
Notes to Table 3–1:  
(1) For more information, refer to the Operating Requirements for Altera Devices Data Sheet.  
(2) Conditions beyond those listed in Table 3–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum  
ratings for extended periods of time may have adverse affects on the device.  
(3) For more information about “under bias” conditions, refer to Table 3–2.  
© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.  
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at  
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but  
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any  
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device  
specifications before relying on any published information and before placing orders for products or services.  
MAX V Device Handbook  
May 2011  
Subscribe  
 
 
 
 
 
3–2  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Recommended Operating Conditions  
Table 3–2 lists recommended operating conditions for the MAX V device family.  
Table 3–2. Recommended Operating Conditions for MAX V Devices  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
Unit  
1.8-V supply voltage for internal logic and  
in-system programming (ISP)  
VCCINT (1)  
MAX V devices  
1.71  
1.89  
V
Supply voltage for I/O buffers, 3.3-V  
operation  
3.00  
2.375  
1.71  
3.60  
2.625  
1.89  
V
V
V
V
V
Supply voltage for I/O buffers, 2.5-V  
operation  
Supply voltage for I/O buffers, 1.8-V  
operation  
VCCIO (1)  
Supply voltage for I/O buffers, 1.5-V  
operation  
1.425  
1.14  
1.575  
1.26  
Supply voltage for I/O buffers, 1.2-V  
operation  
VI  
Input voltage  
(2), (3), (4)  
–0.5  
0
4.0  
VCCIO  
85  
V
VO  
Output voltage  
V
Commercial range  
Industrial range  
Extended range (5)  
0
°C  
°C  
°C  
TJ  
Operating junction temperature  
–40  
–40  
100  
125  
Notes to Table 3–2:  
(1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended  
operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends  
that you read back the UFM contents and verify it against the intended write data).  
(2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods  
shorter than 20 ns.  
(3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100%  
duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.  
VIN  
Max. Duty Cycle  
4.0 V 100% (DC)  
4.1 V 90%  
4.2 V 50%  
4.3 V 30%  
4.4 V 17%  
4.5 V 10%  
(4) All pins, including the clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are powered.  
(5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM  
programming using the logic array interface is not guaranteed in this range.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–3  
Operating Conditions  
Programming/Erasure Specifications  
Table 3–3 lists the programming/erasure specifications for the MAX V device family.  
Table 3–3. Programming/Erasure Specifications for MAX V Devices  
Parameter  
Erase and reprogram cycles  
Note to Table 3–3:  
Block  
Minimum  
Typical  
Maximum  
1000 (1)  
100  
Unit  
UFM  
Configuration flash memory (CFM)  
Cycles  
Cycles  
(1) This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles.  
DC Electrical Characteristics  
Table 3–4 lists DC electrical characteristics for the MAX V device family.  
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
II  
Input pin leakage current VI = VCCIO max to 0 V (2)  
–10  
10  
µA  
Tri-stated I/O pin leakage  
VO = VCCIO max to 0 V (2)  
current  
IOZ  
–10  
25  
27  
25  
10  
µA  
µA  
µA  
µA  
5M40Z, 5M80Z, 5M160Z, and  
5M240Z (Commercial grade)  
(4), (5)  
90  
5M240Z (Commercial grade)  
(6)  
96  
5M40Z, 5M80Z, 5M160Z, and  
5M240Z (Industrial grade)  
(5), (7)  
VCCINT supply current  
(standby) (3)  
139  
ICCSTANDBY  
5M240Z (Industrial grade) (6)  
27  
27  
152  
96  
µA  
µA  
5M570Z (Commercial grade)  
(4)  
5M570Z (Industrial grade) (7)  
5M1270Z and 5M2210Z  
VCCIO = 3.3 V  
27  
2
152  
µA  
mA  
mV  
mV  
400  
190  
Hysteresis for Schmitt  
trigger input (9)  
VSCHMITT (8)  
VCCIO = 2.5 V  
VCCINT supply current  
during power-up (10)  
ICCPOWERUP  
MAX V devices  
40  
mA  
VCCIO = 3.3 V (11)  
VCCIO = 2.5 V (11)  
5
25  
40  
k  
k  
k  
k  
k  
10  
25  
45  
80  
Value of I/O pin pull-up  
resistor during user  
mode and ISP  
RPULLUP  
V
CCIO = 1.8 V (11)  
VCCIO = 1.5 V (11)  
CCIO = 1.2 V (11)  
60  
95  
V
130  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
3–4  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
I/O pin pull-up resistor  
current when I/O is  
unprogrammed  
IPULLUP  
300  
µA  
Input capacitance for  
user I/O pin  
CIO  
8
8
pF  
pF  
Input capacitance for  
dual-purpose GCLK/user  
I/O pin  
CGCLK  
Notes to Table 3–4:  
(1) Typical values are for TA = 25°C, VCCINT = 1.8 V and VCCIO = 1.2, 1.5, 1.8, 2.5, or 3.3 V.  
(2) This value is specified for normal device operation. The value may vary during power-up. This applies to all VCCIO settings (3.3, 2.5, 1.8, 1.5,  
and 1.2 V).  
(3) VI = ground, no load, and no toggling inputs.  
(4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.  
(5) Not applicable to the T144 package of the 5M240Z device.  
(6) Only applicable to the T144 package of the 5M240Z device.  
(7) Industrial temperature ranges from –40°C to 100°C with the maximum current at 100°C.  
(8) This value applies to commercial and industrial range devices. For extended temperature range devices, the VSCHMITT typical value is 300 mV  
for VCCIO = 3.3 V and 120 mV for VCCIO = 2.5 V.  
(9) The TCKinput is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.  
(10) This is a peak current value with a maximum duration of tCONFIG time.  
(11) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO  
.
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–5  
Operating Conditions  
Output Drive Characteristics  
Figure 3–1 shows the typical drive strength characteristics of MAX V devices.  
Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1)  
MAX V Output Drive IOH Characteristics  
(Maximum Drive Strength)  
MAX V Output Drive IOL Characteristics  
(Maximum Drive Strength)  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
3.3-V VCCIO  
3.3-V VCCIO  
2.5-V VCCIO  
2.5-V VCCIO  
1.8-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
1.2-V VCCIO (2)  
1.5-V VCCIO  
1.2-V VCCIO (2)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Voltage (V)  
Voltage (V)  
MAX V Output Drive IOL Characteristics  
(Minimum Drive Strength)  
MAX V Output Drive IOH Characteristics  
(Minimum Drive Strength)  
30  
25  
20  
15  
10  
5
35  
3.3-V VCCIO  
3.3-V VCCIO  
30  
25  
20  
15  
10  
5
2.5-V VCCIO  
2.5-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
1.8-V VCCIO  
1.5-V VCCIO  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Voltage (V)  
Voltage (V)  
Notes to Figure 3–1:  
(1) The DC output current per pin is subject to the absolute maximum rating of Table 3–1 on page 3–1.  
(2) 1.2-V VCCIO is only applicable to the maximum drive strength.  
I/O Standard Specifications  
Table 3–5 through Table 3–13 on page 3–8 list the I/O standard specifications for the  
MAX V device family.  
Table 3–5. 3.3-V LVTTL Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Maximum  
3.6  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
1.7  
4.0  
V
VIL  
–0.5  
2.4  
0.8  
V
VOH  
IOH = –4 mA (1)  
IOL = 4 mA (1)  
V
VOL  
0.45  
V
Note to Table 3–5:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
3–6  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Maximum  
3.6  
Unit  
V
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.7  
4.0  
V
–0.5  
0.8  
V
V
CCIO = 3.0,  
IOH = –0.1 mA (1)  
CCIO = 3.0,  
IOL = 0.1 mA (1)  
VOH  
High-level output voltage  
Low-level output voltage  
VCCIO – 0.2  
V
V
V
VOL  
0.2  
Note to Table 3–6:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–7. 2.5-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
1.7  
Maximum  
2.625  
4.0  
Unit  
V
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
–0.5  
2.1  
0.7  
V
IOH = –0.1 mA (1)  
IOH = –1 mA (1)  
IOH = –2 mA (1)  
IOL = 0.1 mA (1)  
IOL = 1 mA (1)  
IOL = 2 mA (1)  
V
VOH  
High-level output voltage  
Low-level output voltage  
2.0  
V
1.7  
V
0.2  
V
VOL  
0.4  
V
0.7  
V
Note to Table 3–7:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–8. 1.8-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.71  
Maximum  
1.89  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.65 × VCCIO  
–0.3  
2.25 (2)  
0.35 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
VCCIO – 0.45  
V
VOL  
0.45  
V
Notes to Table 3–8:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter  
in Table 3–2 on page 3–2.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
 
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–7  
Operating Conditions  
Table 3–9. 1.5-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.425  
Maximum  
1.575  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.65 × VCCIO  
–0.3  
VCCIO + 0.3 (2)  
0.35 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
0.75 × VCCIO  
V
VOL  
0.25 × VCCIO  
V
Notes to Table 3–9:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter  
in Table 3–2 on page 3–2.  
Table 3–10. 1.2-V I/O Specifications for MAX V Devices  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
1.14  
Maximum  
1.26  
Unit  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.8 × VCCIO  
–0.3  
VCCIO + 0.3  
0.25 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (1)  
IOL = 2 mA (1)  
0.75 × VCCIO  
V
VOL  
0.25 × VCCIO  
V
Note to Table 3–10:  
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the  
MAX V Device Architecture chapter.  
Table 3–11. 3.3-V PCI Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
3.0  
Typical  
3.3  
Maximum  
3.6  
Unit  
V
V
V
V
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.5 × VCCIO  
–0.5  
VCCIO + 0.5  
0.3 × VCCIO  
VIL  
VOH  
IOH = –500 µA  
IOL = 1.5 mA  
0.9 × VCCIO  
VOL  
0.1 × VCCIO  
Note to Table 3–11:  
(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.  
Table 3–12. LVDS Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
247  
Typical  
2.5  
Maximum  
2.625  
Unit  
V
VOD  
VOS  
Differential output voltage swing  
Output offset voltage  
600  
mV  
V
1.125  
1.25  
1.375  
Note to Table 3–12:  
(1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
 
 
 
 
 
3–8  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Operating Conditions  
Table 3–13. RSDS Specifications for MAX V Devices (Note 1)  
Symbol  
VCCIO  
Parameter  
I/O supply voltage  
Conditions  
Minimum  
2.375  
247  
Typical  
2.5  
Maximum  
2.625  
Unit  
V
VOD  
VOS  
Differential output voltage swing  
Output offset voltage  
600  
mV  
V
1.125  
1.25  
1.375  
Note to Table 3–13:  
(1) Supports emulated RSDS output using a three-resistor network (RSDS_E_3R).  
Bus Hold Specifications  
Table 3–14 lists the bus hold specifications for the MAX V device family.  
Table 3–14. Bus Hold Specifications for MAX V Devices  
VCCIO Level  
1.8 V  
Parameter  
Conditions  
1.2 V  
1.5 V  
2.5 V  
3.3 V  
Unit  
Min Max Min Max Min Max Min Max Min Max  
Low sustaining  
current  
V
IN > VIL (maximum) 10  
20  
–20  
30  
–30  
50  
–50  
70  
–70  
µA  
µA  
µA  
High sustaining  
current  
VIN < VIH (minimum) –10  
Low overdrive  
current  
0 V < VIN < VCCIO  
0 V < VIN < VCCIO  
130  
–130  
160  
–160  
200  
–200  
300  
–300  
500  
High overdrive  
current  
–500 µA  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–9  
Operating Conditions  
Power-Up Timing  
Table 3–15 lists the power-up timing characteristics for the MAX V device family.  
Table 3–15. Power-Up Timing for MAX V Devices  
Symbol  
Parameter  
Device  
Temperature Range  
Commercial and industrial  
Extended  
Min  
Typ  
Max  
200  
300  
200  
300  
200  
300  
200  
300  
300  
400  
300  
400  
300  
400  
450  
500  
450  
500  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
5M40Z  
Commercial and industrial  
Extended  
5M80Z  
5M160Z  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
5M240Z (2)  
5M240Z (3)  
5M570Z  
The amount of time from  
when minimum VCCINT is  
reached until the device  
enters user mode (1)  
Commercial and industrial  
Extended  
tCONFIG  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
5M1270Z (4)  
5M1270Z (5)  
5M2210Z  
Commercial and industrial  
Extended  
Commercial and industrial  
Extended  
Notes to Table 3–15:  
(1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.  
(2) Not applicable to the T144 package of the 5M240Z device.  
(3) Only applicable to the T144 package of the 5M240Z device.  
(4) Not applicable to the F324 package of the 5M1270Z device.  
(5) Only applicable to the F324 package of the 5M1270Z device.  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
 
 
3–10  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Power Consumption  
Power Consumption  
You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power  
Analyzer to estimate the device power.  
f For more information about these power analysis tools, refer to the PowerPlay Early  
Power Estimator for Altera CPLDs User Guide and the PowerPlay Power Analysis chapter  
in volume 3 of the Quartus II Handbook.  
Timing Model and Specifications  
MAX V devices timing can be analyzed with the Altera Quartus® II software, a variety  
of industry-standard EDA simulators and timing analyzers, or with the timing model  
shown in Figure 3–2.  
MAX V devices have predictable internal delays that allow you to determine the  
worst-case timing of any design. The software provides timing simulation,  
point-to-point delay prediction, and detailed timing analysis for device-wide  
performance evaluation.  
Figure 3–2. Timing Model for MAX V Devices  
Output and Output Enable  
Data Delay  
tR4  
tIODR  
tIOE  
Data-In/LUT Chain  
Output Routing  
Delay  
User  
Flash  
Memory  
Logic Element  
LUT Delay  
Output  
Delay  
tOD  
tXZ  
tZX  
tC4  
tLUT  
tCOMB  
tFASTIO  
tCO  
tSU  
tH  
tPRE  
tCLR  
Input Routing  
Delay  
I/O Input Delay  
tIN  
Register Control  
Delay  
I/O Pin  
tDL  
tC  
From Adjacent LE  
tGLOB  
INPUT  
Combinational Path Delay  
I/O Pin  
Global Input Delay  
To Adjacent LE  
Register Delays  
Data-Out  
You can derive the timing characteristics of any signal path from the timing model  
and parameters of a particular device. You can calculate external timing parameters,  
which represent pin-to-pin timing delays, as the sum of the internal parameters.  
f For more information, refer to AN629: Understanding Timing in Altera CPLDs.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–11  
Timing Model and Specifications  
Preliminary and Final Timing  
This section describes the performance, internal, external, and UFM timing  
specifications. All specifications are representative of the worst-case supply voltage  
and junction temperature conditions.  
Timing models can have either preliminary or final status. The Quartus II software  
issues an informational message during the design compilation if the timing models  
are preliminary. Table 3–16 lists the status of the MAX V device timing models.  
Preliminary status means the timing model is subject to change. Initially, timing  
numbers are created using simulation results, process data, and other known  
parameters. These tests are used to make the preliminary numbers as close to the  
actual timing parameters as possible.  
Final timing numbers are based on actual device operation and testing. These  
numbers reflect the actual performance of the device under the worst-case voltage  
and junction temperature conditions.  
Table 3–16. Timing Model Status for MAX V Devices  
Device  
5M40Z  
Final  
v
5M80Z  
v
5M160Z  
5M240Z  
5M570Z  
5M1270Z  
5M2210Z  
v
v
v
v
v
Performance  
Table 3–17 lists the MAX V device performance for some common designs. All  
performance values were obtained with the Quartus II software compilation of  
megafunctions.  
Table 3–17. Device Performance for MAX V Devices (Part 1 of 2)  
Performance  
Resources Used  
5M40Z/ 5M80Z/ 5M160Z/  
Resource  
Used  
Design Size and  
Function  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Unit  
UFM  
Blocks  
Mode  
LEs  
C4  
C5, I5  
C4  
C5, I5  
16-bit counter (1)  
64-bit counter (1)  
16-to-1 multiplexer  
32-to-1 multiplexer  
16-bit XORfunction  
16  
64  
11  
24  
5
0
0
0
0
0
184.1  
83.2  
17.4  
12.5  
9.0  
118.3  
80.5  
20.4  
25.3  
16.1  
247.5  
154.8  
8.0  
201.1  
125.8  
9.3  
MHz  
MHz  
ns  
LE  
9.0  
11.4  
8.2  
ns  
6.6  
ns  
16-bit decoder with  
single address line  
5
0
9.2  
16.1  
6.6  
8.2  
ns  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
3–12  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–17. Device Performance for MAX V Devices (Part 2 of 2)  
Resources Used  
Performance  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
Resource  
Used  
Design Size and  
Function  
5M240Z/ 5M570Z  
Unit  
UFM  
Blocks  
Mode  
LEs  
C4  
C5, I5  
C4  
C5, I5  
512 × 16  
512 × 16  
None  
3
1
1
10.0  
9.7  
10.0  
9.7  
10.0  
8.0  
10.0  
8.0  
MHz  
MHz  
SPI (2)  
37  
UFM  
Parallel  
(3)  
I2C (3)  
512 × 8  
73  
1
1
(4)  
(4)  
(4)  
(4)  
MHz  
kHz  
512 × 16  
142  
100 (5)  
100 (5)  
100 (5)  
100 (5)  
Notes to Table 3–17:  
(1) This design is a binary loadable up counter.  
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used.  
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.  
(4) This design is asynchronous.  
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line rate.  
Internal Timing Parameters  
Internal timing parameters are specified on a speed grade basis independent of device  
density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal  
timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and  
MultiTrack interconnects.  
f For more information about each internal timing microparameters symbol, refer to  
AN629: Understanding Timing in Altera CPLDs.  
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Max  
C4  
C5, I5  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
LE combinational look-up  
table (LUT) delay  
tLUT  
1,215  
2,247  
742  
914  
ps  
tCOMB  
tCLR  
Combinational path delay  
LE register clear delay  
LE register preset delay  
401  
401  
243  
545  
545  
309  
309  
309  
192  
381  
381  
236  
ps  
ps  
ps  
tPRE  
LE register setup time  
before clock  
tSU  
tH  
260  
0
321  
0
271  
0
333  
0
ps  
ps  
ps  
LE register hold time  
after clock  
LE register  
clock-to-output delay  
tCO  
380  
494  
305  
376  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–13  
Timing Model and Specifications  
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Min  
253  
Max  
Min  
339  
Max  
Min  
216  
Max  
Min  
266  
Max  
Minimum clock high or  
low time  
tCLKHL  
tC  
ps  
ps  
Register control delay  
1,356  
1,741  
1,114  
1,372  
Table 3–19. IOE Internal Timing Microparameters for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Data output delay from  
adjacent LE to I/O block  
tFASTIO  
tIN  
170  
428  
207  
254  
ps  
ps  
I/O input pad and buffer  
delay  
907  
986  
920  
1,132  
2,430  
I/O input pad and buffer  
tGLOB (1) delay used as global  
2,261  
3,322  
1,974  
ps  
signal pin  
Internally generated  
tIOE  
530  
318  
1,410  
509  
374  
291  
460  
358  
ps  
ps  
ps  
output enable delay  
tDL  
Input routing delay  
Output delay buffer and  
pad delay  
tOD (2)  
1,319  
1,543  
1,383  
1,702  
Output buffer disable  
delay  
tXZ (3)  
tZX (4)  
1,045  
1,160  
1,276  
1,353  
982  
1,209  
1,604  
ps  
ps  
Output buffer enable  
delay  
1,303  
Notes to Table 3–19:  
(1) Delay numbers for tGLOB differ for each device density and speed grade. The delay numbers for tGLOB, shown in Table 3–19, are based on a 5M240Z  
device target.  
(2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24  
and Table 3–35 on page 3–25.  
(3) For more information about tXZ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on  
page 3–15 and Table 3–23 on page 3–15.  
(4) For more information about tZX delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on  
page 3–14 and Table 3–21 on page 3–14.  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
 
3–14  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–20 through Table 3–23 list the adder delays for tZX and tXZ microparameters  
when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.  
Table 3–20. tZX IOE Microparameter Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
72  
74  
101  
0
125  
0
0
0
3.3-V LVCMOS  
72  
74  
101  
155  
545  
721  
2012  
1590  
3269  
2860  
–18  
155  
155  
125  
191  
671  
888  
126  
196  
608  
681  
1162  
1245  
1889  
72  
127  
197  
610  
685  
2.5-V LVTTL /  
LVCMOS  
1.8-V LVTTL /  
LVCMOS  
2477  
1957  
4024  
3520  
–22  
1157  
1244  
1856  
74  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
126  
126  
127  
191  
RSDS  
127  
191  
Table 3–21. tZX IOE Microparameter Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
C5, I5  
Max  
Standard  
Unit  
C4  
Min  
Max  
5,951  
6,534  
5,951  
6,534  
9,110  
9,830  
21,800  
23,020  
39,120  
40,670  
69,505  
6,534  
Min  
Min  
Max  
6,012  
8,785  
6,012  
8,785  
10,072  
12,945  
21,185  
24,597  
34,517  
39,717  
55,800  
35  
Min  
Max  
5,743  
8,516  
5,743  
8,516  
9,803  
12,676  
20,916  
24,328  
34,248  
39,448  
55,531  
44  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
6,063  
6,662  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
6,063  
3.3-V LVCMOS  
6,662  
9,237  
2.5-V LVTTL /  
LVCMOS  
9,977  
21,787  
23,037  
39,067  
40,617  
70,461  
6,662  
1.8-V LVTTL /  
LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–15  
Timing Model and Specifications  
Table 3–22. tXZ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
–69  
0
–69  
0
–74  
0
–91  
0
3.3-V LVCMOS  
–69  
–7  
–69  
–10  
–69  
37  
–74  
–46  
–82  
–7  
–91  
–56  
2.5-V LVTTL /  
LVCMOS  
–66  
45  
–101  
–8  
1.8-V LVTTL /  
LVCMOS  
34  
25  
119  
339  
464  
817  
80  
147  
418  
571  
1,006  
99  
166  
190  
300  
–69  
–7  
155  
179  
283  
–69  
–10  
–10  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
–46  
–46  
–56  
–56  
RSDS  
–7  
Table 3–23. tXZ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Standard  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
171  
112  
171  
112  
213  
166  
441  
496  
765  
903  
1,159  
112  
Min  
Max  
174  
116  
174  
116  
213  
166  
438  
494  
755  
897  
Min  
Max  
73  
Min  
Max  
–132  
553  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
758  
73  
–132  
553  
3.3-V LVCMOS  
758  
32  
–173  
509  
2.5-V LVTTL /  
LVCMOS  
714  
96  
–109  
758  
1.8-V LVTTL /  
LVCMOS  
963  
238  
1,319  
400  
303  
33  
1.5-V LVCMOS  
1,114  
195  
1.2-V LVCMOS  
3.3-V PCI  
1,130  
116  
373  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–16  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
1
The default slew rate setting for MAX V devices in the Quartus II design software is  
“fast”.  
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Address register clock  
period  
tACLK  
100  
100  
100  
100  
ns  
ns  
Address register shift  
signal setup to address  
register clock  
tASU  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
Address register shift  
signal hold to address  
register clock  
tAH  
ns  
ns  
Address register data in  
setup to address register  
clock  
tADS  
Address register data in  
hold from address  
register clock  
tADH  
tDCLK  
tDSS  
20  
100  
60  
20  
100  
60  
20  
100  
60  
20  
100  
60  
ns  
ns  
ns  
Data register clock period  
Data register shift signal  
setup to data register  
clock  
Data register shift signal  
hold from data register  
clock  
tDSH  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
Data register data in  
setup to data register  
clock  
tDDS  
Data register data in hold  
from data register clock  
tDDH  
tDP  
20  
0
20  
0
20  
0
20  
0
ns  
ns  
Program signal to data  
clock hold time  
Maximum delay between  
program rising edge to  
UFM busysignal rising  
edge  
tPB  
960  
960  
960  
960  
ns  
Minimum delay allowed  
from UFM busysignal  
going low to program  
signal going low  
tBP  
20  
20  
20  
20  
ns  
µs  
Maximum length of busy  
pulse during a program  
tPPMX  
100  
100  
100  
100  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–17  
Timing Model and Specifications  
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
Symbol  
Parameter  
Unit  
C4  
C5, I5  
C4 C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Minimum erasesignal  
to address clock hold  
time  
tAE  
0
0
0
0
ns  
ns  
Maximum delay between  
the eraserising edge to  
the UFM busysignal  
rising edge  
tEB  
20  
960  
20  
960  
20  
960  
20  
960  
Minimum delay allowed  
from the UFM busy  
signal going low to  
tBE  
ns  
erasesignal going low  
Maximum length of busy  
pulse during an erase  
tEPMX  
500  
5
500  
5
500  
5
500  
5
ms  
ns  
Delay from data register  
clock to data register  
output  
tDCO  
Delay from OSC_ENA  
signal reaching UFM to  
rising clock of OSC  
leaving the UFM  
tOE  
180  
65  
180  
65  
180  
65  
180  
65  
ns  
ns  
ns  
Maximum read access  
time  
tRA  
Maximum delay between  
the OSC_ENArising edge  
to the erase/program  
signal rising edge  
tOSCS  
250  
250  
250  
250  
Minimum delay allowed  
from the  
erase/programsignal  
going low to OSC_ENA  
signal going low  
tOSCH  
250  
250  
250  
250  
ns  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–18  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for  
UFM block timing parameters listed in Table 3–24.  
Figure 3–3. UFM Read Waveform  
ARShft  
tAH  
9 Address Bits  
tACLK  
tASU  
ARClk  
ARDin  
DRShft  
DRClk  
tADH  
tADS  
16 Data Bits  
tDSH  
tDCLK  
tDSS  
tDCO  
DRDin  
DRDout  
OSC_ENA  
Program  
Erase  
Busy  
Figure 3–4. UFM Program Waveform  
9 Address Bits  
tACLK  
ARShft  
ARClk  
tAH  
tADH  
tASU  
ARDin  
DRShft  
DRClk  
DRDin  
DRDout  
tADS  
16 Data Bits  
tDCLK  
tDSH  
tDSS  
tDDH  
tDDS  
tOSCH  
tOSCS  
OSC_ENA  
Program  
tPB  
Erase  
tBP  
Busy  
tPPMX  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–19  
Timing Model and Specifications  
Figure 3–5. UFM Erase Waveform  
9 Address Bits  
ARShft  
ARClk  
tACLK  
tAH  
tASU  
tADH  
ARDin  
DRShft  
DRClk  
DRDin  
DRDout  
tADS  
OSC_ENA  
tOSCS  
tOSCH  
Program  
Erase  
tEB  
tBE  
Busy  
tEPMX  
Table 3–25. Routing Delay Internal Timing Microparameters for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
Routing  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
860  
Min  
Max  
Min  
Max  
561  
445  
731  
Min  
Max  
690  
548  
899  
tC4  
1,973  
1,479  
2,947  
ps  
ps  
ps  
tR4  
655  
tLOCAL  
1,143  
External Timing Parameters  
External timing parameters are specified by device density and speed grade. All  
external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the  
maximum drive strength and fast slew rate. For external I/O timing using standards  
other than LVTTL or for different drive strengths, use the I/O standard input and  
output delay adders in Table 3–32 on page 3–23 through Table 3–36 on page 3–25.  
f For more information about each external timing parameters symbol, refer to  
AN629: Understanding Timing in Altera CPLDs.  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–20  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z,  
and 5M240Z devices.  
Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices  
(Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
7.9  
5.8  
Min  
Max  
14.0  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.4  
0
4.6  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.6  
2.0  
339  
339  
8.6  
Global clock low time  
Minimum global clock period for  
16-bit counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Notes to Table 3–26:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Not applicable to the T144 package of the 5M240Z device.  
Table 3–27 lists the external I/O timing parameters for the T144 package of the  
5M240Z device.  
Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.5  
5.7  
Min  
Max  
17.7  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.2  
0
4.4  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.7  
2.0  
339  
339  
8.7  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Notes to Table 3–27:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Only applicable to the T144 package of the 5M240Z device.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–21  
Timing Model and Specifications  
Table 3–28 lists the external I/O timing parameters for the 5M570Z device.  
Table 3–28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.5  
5.7  
Min  
Max  
17.7  
8.5  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
2.2  
0
4.4  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
253  
253  
6.7  
2.0  
339  
339  
8.7  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
5.4  
8.4  
ns  
Maximum global clock frequency for 16-bit  
counter  
184.1  
118.3  
MHz  
Note to Table 3–28:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
Table 3–29 lists the external I/O timing parameters for the 5M1270Z device.  
Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
8.1  
4.8  
Min  
Max  
10.0  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
5.9  
2.0  
266  
266  
7.3  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Notes to Table 3–29:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Not applicable to the F324 package of the 5M1270Z device.  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
 
3–22  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–30 lists the external I/O timing parameters for the F324 package of the  
5M1270Z device.  
Table 3–30. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.1  
4.8  
Min  
Max  
11.2  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
6.0  
2.0  
266  
266  
7.4  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Notes to Table 3–30:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
(2) Only applicable to the F324 package of the 5M1270Z device.  
Table 3–31 lists the external I/O timing parameters for the 5M2210Z device.  
Table 3–31. Global Clock External I/O Timing Parameters for the 5M2210Z Device (Note 1)  
C4  
C5, I5  
Symbol  
tPD1  
Parameter  
Condition  
Unit  
Min  
Max  
9.1  
4.8  
Min  
Max  
11.2  
5.9  
Worst case pin-to-pin delay through one LUT  
Best case pin-to-pin delay through one LUT  
Global clock setup time  
10 pF  
10 pF  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
tPD2  
tSU  
tH  
1.5  
0
1.9  
0
Global clock hold time  
tCO  
tCH  
tCL  
Global clock to output delay  
Global clock high time  
10 pF  
2.0  
216  
216  
6.0  
2.0  
266  
266  
7.4  
Global clock low time  
Minimum global clock period for 16-bit  
counter  
tCNT  
fCNT  
4.0  
5.0  
ns  
Maximum global clock frequency for 16-bit  
counter  
247.5  
201.1  
MHz  
Note to Table 3–31:  
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global  
clock input pin maximum frequency.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–23  
Timing Model and Specifications  
External Timing I/O Delay Adders  
The I/O delay timing parameters for the I/O standard input and output adders and  
the input delays are specified by speed grade, independent of device density.  
Table 3–32 through Table 3–36 on page 3–25 list the adder delays associated with I/O  
pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the  
input delay adder to the external tSU timing parameters listed in Table 3–26 on  
page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL  
with 16 mA drive strength and fast slew rate, add the output delay adder to the  
external tCO and tPD listed in Table 3–26 on page 3–20 through Table 3–31.  
Table 3–32. External Timing Input Delay Adders for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z  
5M1270Z/ 5M2210Z  
C4 C5, I5  
I/O Standard  
Unit  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
With Schmitt  
Trigger  
387  
0
442  
0
480  
0
591  
0
Without Schmitt  
Trigger  
3.3-V LVCMOS  
With Schmitt  
Trigger  
387  
42  
442  
42  
480  
246  
787  
695  
1,334  
2,324  
0
591  
303  
968  
855  
Without Schmitt  
Trigger  
2.5-V LVTTL /  
LVCMOS  
With Schmitt  
Trigger  
429  
378  
681  
1,055  
0
483  
368  
658  
1.8-V LVTTL / Without Schmitt  
LVCMOS  
Trigger  
Without Schmitt  
Trigger  
1.5-V LVCMOS  
1,642  
2,860  
0
Without Schmitt  
Trigger  
1.2-V LVCMOS  
3.3-V PCI  
1,010  
0
Without Schmitt  
Trigger  
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 1 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
3.3-V LVTTL  
With Schmitt  
Trigger  
387  
442  
400  
493  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
3–24  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 2 of 2)  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
C4  
C5, I5  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Without Schmitt  
Trigger  
0
0
0
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVCMOS  
With Schmitt  
Trigger  
387  
242  
429  
378  
681  
1,055  
0
442  
242  
483  
368  
658  
400  
287  
550  
459  
1,111  
2,067  
7
493  
353  
677  
565  
Without Schmitt  
Trigger  
2.5-V LVTTL /  
LVCMOS  
With Schmitt  
Trigger  
1.8-V LVTTL / Without Schmitt  
LVCMOS  
Trigger  
Without Schmitt  
Trigger  
1.5-V LVCMOS  
1,368  
2,544  
9
Without Schmitt  
Trigger  
1.2-V LVCMOS  
3.3-V PCI  
1,010  
0
Without Schmitt  
Trigger  
Table 3–34. External Timing Output Delay and tOD Adders for Fast Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
I/O Standard  
Unit  
C4  
C5, I5  
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
Min  
Max  
0
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
39  
58  
84  
104  
0
0
0
0
3.3-V LVCMOS  
39  
58  
84  
104  
195  
309  
909  
122  
196  
624  
686  
1,188  
1,279  
1,911  
39  
129  
188  
624  
694  
158  
251  
738  
850  
1,376  
1,517  
2,206  
4
2.5-V LVTTL / LVCMOS  
1.8-V LVTTL / LVCMOS  
1.5-V LVCMOS  
1,046  
1,694  
1,867  
2,715  
5
1,184  
1,280  
1,883  
58  
1.2-V LVCMOS  
3.3-V PCI  
LVDS  
122  
122  
129  
158  
158  
195  
RSDS  
129  
195  
MAX V Device Handbook  
May 2011 Altera Corporation  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–25  
Timing Model and Specifications  
Table 3–35. External Timing Output Delay and tOD Adders for Slow Slew Rate for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
5M240Z/ 5M570Z  
C5, I5  
Max  
I/O Standard  
Unit  
C4  
C4  
C5, I5  
Max  
Min  
Max  
5,913  
6,488  
5,913  
6,488  
9,088  
9,808  
21,758  
23,028  
39,068  
40,578  
69,332  
6,488  
Min  
Min  
Max  
6,612  
7,313  
6,612  
7,313  
10,021  
10,881  
21,134  
22,399  
34,499  
36,281  
55,796  
339  
Min  
16 mA  
8 mA  
8 mA  
4 mA  
14 mA  
7 mA  
6 mA  
3 mA  
4 mA  
2 mA  
3 mA  
20 mA  
6,043  
6,645  
6,043  
6,645  
9,222  
9,962  
21,782  
23,032  
39,032  
40,542  
70,257  
6,645  
6,293  
6,994  
6,293  
6,994  
9,702  
10,562  
20,815  
22,080  
34,180  
35,962  
55,477  
418  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5-V LVTTL / LVCMOS  
1.8-V LVTTL / LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
Table 3–36. IOE Programmable Delays for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M1270Z/ 5M2210Z  
C4 C5, I5  
5M240Z/ 5M570Z  
C5, I5  
Max  
Parameter  
Unit  
C4  
Min  
Max  
Min  
Min  
Max  
Min  
Max  
Input Delay from Pin to Internal  
Cells = 1  
1,858  
2,214  
616  
1,592  
1,960  
ps  
ps  
Input Delay from Pin to Internal  
Cells = 0  
569  
115  
142  
May 2011 Altera Corporation  
MAX V Device Handbook  
3–26  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Maximum Input and Output Clock Rates  
Table 3–37 and Table 3–38 list the maximum input and output clock rates for standard  
I/O pins in MAX V devices.  
Table 3–37. Maximum Input Clock Rate for I/Os for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
I/O Standard  
Unit  
5M2210Z  
C4, C5, I5  
304  
Without Schmitt Trigger  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
3.3-V LVTTL  
With Schmitt Trigger  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
3.3-V LVCMOS  
2.5-V LVTTL  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
304  
Without Schmitt Trigger  
With Schmitt Trigger  
304  
2.5-V LVCMOS  
304  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
Without Schmitt Trigger  
200  
200  
150  
120  
304  
Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
I/O Standard  
Unit  
C4, C5, I5  
304  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5-V LVTTL  
2.5-V LVCMOS  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVCMOS  
1.2-V LVCMOS  
3.3-V PCI  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
304  
304  
304  
200  
200  
150  
120  
304  
LVDS  
304  
RSDS  
200  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–27  
Timing Model and Specifications  
LVDS and RSDS Output Timing Specifications  
Table 3–39 lists the emulated LVDS output timing specifications for MAX V devices.  
Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
Parameter  
Mode  
Unit  
C4, C5, I5  
Min  
Max  
304  
304  
304  
304  
304  
304  
304  
304  
304  
304  
55  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
45  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
Data rate (1), (2)  
tDUTY  
Total jitter (3)  
tRISE  
0.2  
UI  
450  
450  
ps  
tFALL  
ps  
Notes to Table 3–39:  
(1) The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R  
I/O buffer or 2x (FMAX of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through  
the Quartus II timing analysis of the complete design.  
(2) For the input clock pin to achieve 304 Mbps, use I/O standard with VCCIO of 2.5 V and above.  
(3) This specification is based on external clean clock source.  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
 
 
3–28  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Timing Model and Specifications  
Table 3–40 lists the emulated RSDS output timing specifications for MAX V devices.  
Table 3–40. Emulated RSDS Output Timing Specifications for MAX V Devices  
5M40Z/ 5M80Z/ 5M160Z/  
5M240Z/ 5M570Z/5M1270Z/  
5M2210Z  
Parameter  
Mode  
Unit  
C4, C5, I5  
Min  
Max  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
55  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
45  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
Data rate (1)  
tDUTY  
Total jitter (2)  
tRISE  
0.2  
UI  
450  
450  
ps  
tFALL  
ps  
Notes to Table 3–40:  
(1) For the input clock pin to achieve 200 Mbps, use I/O standard with VCCIO of 1.8 V and above.  
(2) This specification is based on external clean clock source.  
MAX V Device Handbook  
May 2011 Altera Corporation  
 
 
 
Chapter 3: DC and Switching Characteristics for MAX V Devices  
3–29  
Timing Model and Specifications  
JTAG Timing Specifications  
Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device  
family.  
Figure 3–6. JTAG Timing Waveform for MAX V Devices  
TMS  
TDI  
t
JCP  
t
t
JPH  
JPSU  
t
t
JCL  
JCH  
TCK  
TDO  
t
t
t
JPXZ  
JPZX  
JPCO  
t
t
JSSU  
JSH  
Signal  
to be  
Captured  
t
t
t
JSXZ  
JSZX  
JSCO  
Signal  
to be  
Driven  
Table 3–41 lists the JTAG timing parameters and values for the MAX V device family.  
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2)  
Symbol  
Parameter  
TCKclock period for VCCIO1 = 3.3 V  
TCKclock period for VCCIO1 = 2.5 V  
TCKclock period for VCCIO1 = 1.8 V  
TCKclock period for VCCIO1 = 1.5 V  
TCKclock high time  
Min  
55.5  
62.5  
100  
143  
20  
Max  
15  
15  
15  
25  
25  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCP (1)  
tJCH  
tJCL  
TCK clock low time  
20  
tJPSU  
tJPH  
JTAG port setup time (2)  
8
JTAG port hold time  
10  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output (2)  
JTAG port high impedance to valid output (2)  
JTAG port valid output to high impedance (2)  
Capture register setup time  
8
Capture register hold time  
10  
tJSCO  
tJSZX  
Update register clock to output  
Update register high impedance to valid output  
May 2011 Altera Corporation  
MAX V Device Handbook  
 
 
3–30  
Chapter 3: DC and Switching Characteristics for MAX V Devices  
Document Revision History  
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Unit  
tJSXZ  
Notes to Table 3–41:  
(1) Minimum clock period specified for 10 pF load on the TDOpin. Larger loads on TDOdegrades the maximum TCKfrequency.  
Update register valid output to high impedance  
25  
ns  
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and  
1.5-V LVCMOS operation, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns.  
Document Revision History  
Table 3–42 lists the revision history for this chapter.  
Table 3–42. Document Revision History  
Date  
May 2011  
Version  
1.2  
Changes  
Updated Table 3–2, Table 3–15, Table 3–16, and Table 3–33.  
Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40.  
Initial release.  
January 2011  
1.1  
December 2010  
1.0  
MAX V Device Handbook  
May 2011 Altera Corporation  
 

相关型号:

5M80ZM64I5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA64, 4.50 X 4.50 MM, 0.50 MM PITCH, LEAD FREE, MBGA-64
INTEL

5M80ZM64I5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA64, 4.50 X 4.50 MM, 0.50 MM PITCH, LEAD FREE, MBGA-64
ALTERA

5M80ZM6815N

DC and Switching Characteristics for MAX V Devices
ALTERA

5M80ZM68A5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68,
INTEL

5M80ZM68C4N

Flash PLD, 7.9ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
INTEL

5M80ZM68C4N

Flash PLD, 7.9ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
ALTERA

5M80ZM68C5

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, MBGA-68
INTEL

5M80ZM68C5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
INTEL

5M80ZM68C5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
ALTERA

5M80ZM68I5

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, MBGA-68
ALTERA

5M80ZM68I5

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, MBGA-68
INTEL

5M80ZM68I5N

Flash PLD, 14ns, 64-Cell, CMOS, PBGA68, 5 X 5 MM, 0.50 MM PITCH, LEAD FREE, MBGA-68
INTEL