ACS37612LLUATR-015U5 [ALLEGRO]

Coreless, High Precision, Hall-Effect Current Sensor IC with Common-Mode Field Rejection and High Bandwidth (240 kHz);
ACS37612LLUATR-015U5
型号: ACS37612LLUATR-015U5
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Coreless, High Precision, Hall-Effect Current Sensor IC with Common-Mode Field Rejection and High Bandwidth (240 kHz)

文件: 总22页 (文件大小:2238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS37612  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
FEATURES AND BENEFITS  
DESCRIPTION  
• Eliminates need for concentrator core or shield  
• Suited for applications where current flows through  
busbar or PCB  
Very wide sensing range (2.5 to 20 mV/G)  
Ideal for sensing currents from <200 A to >1000 A  
• Factory-programmed segmented linear temperature  
compensation (TC) provides low thermal drift  
Sensitivity ±1% (typ)  
Offset ±3 mV (typ)  
• Differential Hall sensing rejects common-mode  
magnetic fields  
• High operating bandwidth: DC to 240 kHz  
• AEC-Q100 Grade 0, automotive qualified  
• Contactless, lossless, non-invasive current sensing  
Very fast response time (<2 μs typ)  
• 3.3 or 5.0 V single supply operation  
• Ratiometric output with unidirectional and  
bidirectional modes  
The Allegro ACS37612 current sensor IC enables low-cost  
solutions for AC and DC current sensing without the need for  
an external field concentrator core or shield. It is designed for  
applications where hundreds of amps flow through a busbar  
or PCB.  
Applied current through a busbar or PCB traces generates a  
magnetic field that is sensed by the monolithic, low-offset,  
linear Hall IC. The differential sensing topology virtually  
eliminates all types of errors due to common-mode stray  
magnetic fields. High isolation is achieved via the no-contact  
nature of this simple assembly.  
TheACS37612 is offered in 140 kHz and 240 kHz bandwidth  
options, making it ideal for inverter phase current sensing,  
load detection and management, power supplies, and DC/  
DC converters where fast switching is required. The high  
response time enables overcurrent fault detection in safety-  
critical applications. A –40°C to 150°C ambient operating  
temperature range and a stellar ESD rating make it ready for  
harsh automotive environments.  
• Immune to mechanical stress  
• Monolithic Hall IC for high reliability  
• Wide ambient temperature range: –40°C to 150°C  
• Surface mount, small footprint, low-profile  
TSSOP8 package  
TheACS37612 is suitable for space-constrained applications  
becauseofitslow-profile8-pinsurfacemountTSSOPpackage  
(thin-shrink small outline package, suffix LU) that is lead  
(Pb) free, with 100% matte tin leadframe plating.  
PACKAGE:  
TYPICAL APPLICATIONS  
• High voltage traction motor inverter  
• 48 V / 12 V auxiliary inverter  
• Battery monitoring  
8-pin TSSOP package (suffix LU)  
• Overcurrent detection  
• DC/DC converter  
Not to scale  
• Smart fuse  
• Power distribution unit (PDU)  
• Power supply  
Figure 1: Current Through PCB  
Figure 2: Current Through Busbar  
ACS37612-DS  
MCO-0000792  
March 9, 2020  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
SELECTION GUIDE  
Differential  
Magnetic  
Input Range, (G)  
Sensitivity  
Sens (Typ.)  
(mV/G)[1]  
Nominal Supply  
Voltage (V)  
Bandwidth  
(kHz)  
TA  
(°C)  
Part Number  
Packing[2]  
ACS37612LLUATR-005B5  
ACS37612LLUATR-010B3  
ACS37612LLUATR-010B5  
ACS37612LLUATR-015B5  
ACS37612LLUATR-015U5  
±400  
±135  
5
5
3.3  
5
10  
10  
15  
15  
±200  
140  
–40 to 150  
4000 pieces per 13-inch reel  
±130  
5
0 to 265  
5
[1] Measured at nominal supply voltage. Contact Allegro for other sensitivity options.  
[2] Contact Allegro for additional packing options.  
AꢀS 3ꢁꢂ1ꢃ  
ꢄUA ꢑR  
-
010  
3
ꢀlamꢇsꢉ  
blankꢗ ꢊ ꢍeꢘaꢆlt, ꢀlamꢇs disaꢕled  
ꢀ ꢊ ꢀlamꢇs enaꢕled  
ꢅandwidthꢉ  
blankꢗ ꢊ ꢍeꢘaꢆlt, ꢅꢙ ꢋ 1ꢚ0 ꢔHꢛ  
H ꢊ High, ꢅꢙ ꢋ ꢃꢚ0 ꢔHꢛ  
Sꢆꢇꢇly ꢈoltageꢉ  
5 ꢊ ꢈꢀꢀ ꢋ 5 ꢈ  
3 ꢊ ꢈꢀꢀ ꢋ 3.3 ꢈ  
ꢌꢆtꢇꢆt ꢍirectionalityꢉ  
ꢅ ꢊ ꢅidirectional ꢎꢇositiꢏe and negatiꢏe cꢆrrentꢐ  
U ꢊ Unidirectional ꢎonly ꢇositiꢏe cꢆrrentꢐ  
ꢑyꢇical Sensitiꢏity ꢎmꢈꢒꢓꢐ  
Pacꢔing ꢍesignator  
Pacꢔage ꢍesignator  
ꢌꢇerating emꢇeratꢆre Range  
5-ꢍigit Part Nꢆmꢕer  
Allegro ꢀꢆrrent Sensor  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
Notes  
Rating  
6.5  
Unit  
V
Supply Voltage  
VCC  
VRCC  
Reverse Supply Voltage  
Output Voltage  
–0.5  
6.5  
V
VIOUT  
V
Reverse Output Voltage  
Output Source Current  
Output Sink Current  
VRIOUT  
IOUT(Source)  
IOUT(Sink)  
–0.5  
3
V
VOUT to GND  
mA  
mA  
Minimum pull-up resistor of 500 Ω  
10  
Nominal Operating Ambient  
Temperature  
TA  
Range L  
–40 to 150  
°C  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
Tstg  
165  
°C  
°C  
–65 to 165  
ESD RATINGS  
Characteristic  
Symbol  
VHBM  
Test Conditions  
Value  
±12  
±1  
Unit  
Human Body Model  
Charged Device Model  
Per AEC-Q100  
Per AEC-Q100  
kV  
kV  
VCDM  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions*  
Value  
Unit  
Package Thermal Resistance  
RθJA  
LU package, on 4-layer PCB based on JEDEC standard  
145  
°C/W  
*Additional thermal information available on the Allegro website  
ꢂꢃꢃ  
ꢂꢃꢃ  
ꢀUꢁ  
ꢀUꢁ  
ꢇꢈPASS  
0.1 ꢉꢊ  
ꢆ  
ACS37612  
ꢄNꢅ  
Figure 3: Typical Application Circuit  
The ACS37612 outputs an analog signal, VOUT, that varies linearly with the bi-  
directional AC or DC field sensed within the range specified. CL is for optimal  
noise management, with values that depend on the application.  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Pinout List  
ꢀꢁUꢂ  
ꢃNꢄ  
Nꢅ  
5
Nꢅ  
1
3
Number  
Name  
VOUT  
GND  
NC  
Description  
Nꢅ  
Nꢅ  
Nꢅ  
1
Analog output signal, also used for programming  
Ground pin  
2
ꢀꢅꢅ  
3, 5, 6, 7, 8  
4
Not connect; tie to GND for optimal ESD performance  
Input power supply, also used for programming  
VCC  
Figure 4: Pinout Diagram  
ꢈꢃꢃ  
ACS37612  
ꢄo all sꢅꢆcircꢅits  
ꢐꢑPASS  
Underꢊoltage  
ꢀetection ꢋ1ꢌ  
Programming ꢃontrol  
Hall ꢃꢅrrent  
ꢀriꢊe  
emꢍeratꢅre Sensor  
ꢎꢎPRꢁM and ꢃontrol ꢏogic  
ꢁꢂꢂset  
ꢃontrol  
ꢁꢅtꢍꢅt  
ꢃlamꢍs  
Actiꢊe emꢍeratꢅre  
ꢃomꢍensation  
Sensitiꢊity ꢃontrol  
ꢈꢉꢁUꢄ  
Signal Recoꢊery  
ꢏ  
ꢇNꢀ  
ꢋ1ꢌ Underꢊoltage ꢀetection in disaꢆled when the sꢅꢍꢍly ꢊoltage is conꢂigꢅred to 3.3 .  
Figure 5: Functional Block Diagram  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
COMMON OPERATING CHARACTERISTICS: Valid at TOP = –40°C to 150°C and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
ELECTRICAL CHARACTERISTICS  
Hall Spacing  
HDIST  
Distance between Halls  
4.5  
3
1.87  
5
mm  
V
5 V nominal supply voltage variant  
3.3 V nominal supply voltage variant  
5.5  
3.6  
Supply Voltage  
VCC  
3.3  
V
VCC(min) ≤ VCC ≤ VCC(max), where VCC = 5 V or 3.3 V,  
no load on output  
Supply Current  
Power-On Delay  
ICC  
tPO  
tTC  
12  
70  
45  
16  
mA  
µs  
TA = 25°C  
Temperature Compensation  
Power-On Time  
TA = 25°C, CL (of test probe) = 10 pF, CBYPASS = open  
µs  
VCC rising; UVLO is disabled, enabling the device  
output  
VUVLOD  
VUVLOE  
3.8  
4.2  
V
Undervoltage Lockout (UVLO)  
Threshold[1]  
VCC falling; UVLO is enabled, disabling the device  
output  
3.45  
3.7  
100  
74  
V
UVLO Hysteresis  
VUVLO(HYS) TA = 25°C  
Time measured from falling VCC < VUVLOE to  
mV  
µs  
tUVLOE  
UVLO enabled  
UVLO Enable/Disable  
Delay Time  
Time measured from rising VCC > VUVLOD to  
UVLO disabled  
tUVLOD  
7
µs  
Power-On Release Delay  
Power-On Reset Voltage  
tPORD  
VPORH  
VPORL  
3.3 V part variant only  
VCC rising  
7
µs  
V
2.8  
2.5  
64  
VCC falling  
V
Power-On Reset Release Time  
Power-On Reset Hysteresis  
tPORR  
TA = 25°C, VCC rising  
µs  
mV  
VHys(POR)  
250  
CL = 1 nF, device programmed to lowest bandwidth  
mode (default)  
140  
240  
kHz  
kHz  
Internal Bandwidth  
BWi  
CL = 1 nF, device programmed to highest bandwidth  
mode  
BWi = 240 kHz  
BWi = 140 kHz  
BWi = 240 kHz  
BWi = 140 kHz  
BWi = 240 kHz  
BWi = 140 kHz  
1.7  
3.2  
1
µs  
µs  
µs  
µs  
µs  
µs  
Ω
TA = 25°C, CL = 1 nF, 1 V step on  
output, from 10% to 90% output  
Rise Time [2]  
tr  
TA = 25°C, CL = 1 nF, 1 V step on  
output  
Propagation Delay Time [2]  
Response Time [2]  
tPD  
1.5  
1.6  
3.2  
< 1  
TA = 25°C, CL = 1 nF, 1 V step on  
output, 90% input to 90% output  
tRESPONSE  
ROUT  
DC Output Impedance  
Output Load Resistance  
Output Load Capacitance  
RLOAD(MIN) VOUT to GND  
CLOAD(MAX) VOUT to GND  
4.7  
kΩ  
nF  
V
0.9 × VCC  
1
10  
VCLP(HIGH)  
VCLP(LOW)  
TA = 25°C, RL(PULLDWN) = 10 kΩ to GND  
TA = 25°C, RL(PULLUP) = 10 kΩ to VCC  
Output Voltage Clamp  
(Clamp Enable Option Only)  
0.1 × VCC  
V
Delay to Clamp  
(Clamp Enable Option Only)  
TA = 25°C; CL = 1nF; Step from 75% output range to  
150%  
tCLP  
5
µs  
Output Saturation Voltage  
(Clamp Disabled Option  
(Default) Only)  
VSAT(HIGH)  
VSAT(LOW)  
TA = 25°C, RL(PULLDWN) = 10 kΩ to GND  
TA = 25°C, RL(PULLUP) = 10 kΩ to VCC  
VCC – 0.2  
V
200  
mV  
Continued on the next page…  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
COMMON OPERATING CHARACTERISTICS (continued): Valid at TOP = –40°C to 150°C and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
QUIESCENT OUTPUT VOLTAGE (VOUT(Q)  
)
Bidirectional variant, no magnetic field,  
TA = 25°C; VOUT(QBI) ratiometric to VCC  
VOUT(QBI)  
VCC / 2  
V
V
Quiescent Output Voltage  
Unidirectional variant, no magnetic field,  
TA = 25°C; VOUT(QUNI) ratiometric to VCC  
VOUT(QUNI)  
0.1 × VCC  
ERROR COMPONENTS  
Clamp Ratiometry Error  
RatERRCLP VCC = ±5% variation of nominal supply voltage  
±1.0  
2
1
%
mGRMS  
/(Hz)  
Noise  
BN  
TA = 25°C, CL = 1 nF  
Up to full-scale output  
Measured at 100 G  
Nonlinearity  
ELIN  
–1  
±0.45  
40  
%
Common Mode Field  
Rejection Ratio  
CMFR  
dB  
[1] UVLO feature is only available on part numbers programmed with a 5 V nominal supply voltage.  
[2] Timing specified does not include potential effect of skin effect on conductor; value will depend on busbar/PCB design.  
-005B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Differential Magnetic Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
BDIFF  
Sens  
–400  
5
400  
G
VCC(min) ≤ VCC ≤ VCC(max)  
mV/G  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 140 kHz  
TA = 25°C, CL = 1 nF, BW = 240 kHz  
TA = 25°C  
4.5  
6.5  
±1  
2
2
2
mVRMS  
mVRMS  
%
Noise  
VN  
Sensitivity Error  
SensERR  
ΔSensTC  
–2  
–2  
–2  
TA = 25°C to 150°C  
±1  
%
Sensitivity Drift Over Temperature  
TA = –40°C to 25°C  
±1  
%
QUIESCENT VOLTAGE OUTPUT ERROR  
Factory Quiescent Voltage Output Error  
VQVOERR  
TA = 25°C  
–5  
–5  
±3  
±3  
5
5
mV  
mV  
mV  
mV  
%
TA = 25°C to 150°C  
TA = –40°C to 25°C  
Quiescent Voltage Output  
Temperature Error  
VOUT(Q)TC  
–5  
±3  
5
QVO Ratiometry Error  
Sens Ratiometry Error  
VRatERRQVO VCC = ±5% variation of nominal supply voltage  
RatERRSens VCC = ±5% variation of nominal supply voltage  
–7.5  
–1.25  
±2.5  
±0.5  
7.5  
1.25  
LIFETIME DRIFT CHARACTERISTICS [2]  
QVO Lifetime Drift  
VQVOLife  
TA = 25°C  
1.4  
0.6  
1.5  
0.6  
mV  
%
Sens Lifetime Drift  
QVO TC Lifetime Drift  
Sens TC Lifetime Drift  
SensERRLife TA = 25°C  
VQVOTCLife TA = 25°C to 150°C  
SensTCLife TA = 25°C to 150°C  
mV  
%
[1] All typical values are ±3 sigma.  
[2] Typical lifetime value corresponds to worse case average drift found during AEC-Q100 qualification.  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
-010B3 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 3.3 V, unless otherwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Differential Magnetic Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
BDIFF  
Sens  
–135  
135  
G
VCC(min) ≤ VCC ≤ VCC(max)  
10  
mV/G  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 140 kHz  
TA = 25°C, CL = 1 nF, BW = 240 kHz  
TA = 25°C  
9
12.5  
±1  
2
2
2
mVRMS  
mVRMS  
%
Noise  
VN  
Sensitivity Error  
SensERR  
ΔSensTC  
–2  
–2  
–2  
TA = 25°C to 150°C  
±1  
%
Sensitivity Drift Over Temperature  
TA = –40°C to 25°C  
±1  
%
QUIESCENT VOLTAGE OUTPUT ERROR  
Factory Quiescent Voltage Output Error  
VQVOERR  
TA = 25°C  
–5  
–5  
±3  
±3  
5
5
mV  
mV  
mV  
mV  
%
TA = 25°C to 150°C  
TA = –40°C to 25°C  
Quiescent Voltage Output  
Temperature Error  
VOUT(Q)TC  
–5  
±3  
5
QVO Ratiometry Error  
Sens Ratiometry Error  
VRatERRQVO VCC = ±3% variation of nominal supply voltage  
RatERRSens VCC = ±3% variation of nominal supply voltage  
–15  
–1.25  
±5  
15  
1.25  
±0.5  
LIFETIME DRIFT CHARACTERISTICS [2]  
QVO Lifetime Drift  
VQVOLife  
TA = 25°C  
1.4  
0.6  
1.5  
0.6  
mV  
%
Sens Lifetime Drift  
QVO TC Lifetime Drift  
Sens TC Lifetime Drift  
SensERRLife TA = 25°C  
VQVOTCLife TA = 25°C to 150°C  
SensTCLife TA = 25°C to 150°C  
mV  
%
[1] All typical values are ±3 sigma.  
[2] Typical lifetime value corresponds to worse case average drift found during AEC-Q100 qualification.  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
-010B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Differential Magnetic Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
BDIFF  
Sens  
–200  
200  
G
VCC(min) ≤ VCC ≤ VCC(max)  
10  
mV/G  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 140 kHz  
TA = 25°C, CL = 1 nF, BW = 240 kHz  
TA = 25°C  
9
12.5  
±1  
2
2
2
mVRMS  
mVRMS  
%
Noise  
VN  
Sensitivity Error  
SensERR  
ΔSensTC  
–2  
–2  
–2  
TA = 25°C to 150°C  
±1  
%
Sensitivity Drift Over Temperature  
TA = –40°C to 25°C  
±1  
%
QUIESCENT VOLTAGE OUTPUT ERROR  
Factory Quiescent Voltage Output Error  
VQVOERR  
TA = 25°C  
–5  
–5  
±3  
±3  
5
5
mV  
mV  
mV  
mV  
%
TA = 25°C to 150°C  
TA = –40°C to 25°C  
Quiescent Voltage Output  
Temperature Error  
VOUT(Q)TC  
–5  
±3  
5
QVO Ratiometry Error  
Sens Ratiometry Error  
VRatERRQVO VCC = ±5% variation of nominal supply voltage  
RatERRSens VCC = ±5% variation of nominal supply voltage  
–7.5  
–1.25  
±2.5  
±0.5  
7.5  
1.25  
LIFETIME DRIFT CHARACTERISTICS [2]  
QVO Lifetime Drift  
VQVOLife  
TA = 25°C  
1.4  
0.6  
1.5  
0.6  
mV  
%
Sens Lifetime Drift  
QVO TC Lifetime Drift  
Sens TC Lifetime Drift  
SensERRLife TA = 25°C  
VQVOTCLife  
SensTCLife  
TA = 25°C to 150°C  
TA = 25°C to 150°C  
mV  
%
[1] All typical values are ±3 sigma.  
[2] Typical lifetime value corresponds to worse case average drift found during AEC-Q100 qualification.  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
-015B5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Differential Magnetic Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
BDIFF  
Sens  
–130  
130  
G
VCC(min) ≤ VCC ≤ VCC(max)  
15  
mV/G  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 140 kHz  
TA = 25°C, CL = 1 nF, BW = 240 kHz  
TA = 25°C  
13  
19  
±1  
±1  
±1  
2
2
2
mVRMS  
mVRMS  
%
Noise  
VN  
Sensitivity Error  
SensERR  
ΔSensTC  
–2  
–2  
–2  
TA = 25°C to 150°C  
%
Sensitivity Drift Over Temperature  
TA = –40°C to 25°C  
%
QUIESCENT VOLTAGE OUTPUT ERROR  
Factory Quiescent Voltage Output Error  
VQVOERR  
TA = 25°C  
–10  
–10  
±6  
±6  
10  
10  
mV  
mV  
mV  
mV  
%
TA = 25°C to 150°C  
TA = –40°C to 25°C  
Quiescent Voltage Output  
Temperature Error  
VOUT(Q)TC  
–10  
±6  
10  
QVO Ratiometry Error  
Sens Ratiometry Error  
VRatERRQVO VCC = ±5% variation of nominal supply voltage  
RatERRSens VCC = ±5% variation of nominal supply voltage  
–7.5  
–1.25  
±2.5  
±0.5  
7.5  
1.25  
LIFETIME DRIFT CHARACTERISTICS [2]  
QVO Lifetime Drift  
VQVOLife  
TA = 25°C  
1.4  
0.6  
1.5  
0.6  
mV  
%
Sens Lifetime Drift  
QVO TC Lifetime Drift  
Sens TC Lifetime Drift  
SensERRLife TA = 25°C  
VQVOTCLife TA = 25°C to 150°C  
SensTCLife TA = 25°C to 150°C  
mV  
%
[1] All typical values are ±3 sigma.  
[2] Typical lifetime value corresponds to worse case average drift found during AEC-Q100 qualification.  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
-015U5 PERFORMANCE CHARACTERISTICS: TA = –40°C to 150°C, VCC= 5 V, unless otherwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Differential Magnetic Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
BDIFF  
Sens  
0
265  
G
VCC(min) ≤ VCC ≤ VCC(max)  
15  
mV/G  
ACCURACY PERFORMANCE  
TA = 25°C, CL = 1 nF, BW = 140 kHz  
TA = 25°C, CL = 1 nF, BW = 240 kHz  
TA = 25°C  
13  
19  
±1  
±1  
±1  
2
2
2
mVRMS  
mVRMS  
%
Noise  
VN  
Sensitivity Error  
SensERR  
ΔSensTC  
–2  
–2  
–2  
TA = 25°C to 150°C  
%
Sensitivity Drift Over Temperature  
TA = –40°C to 25°C  
%
QUIESCENT VOLTAGE OUTPUT ERROR  
Factory Quiescent Voltage Output Error  
VQVOERR  
TA = 25°C  
–10  
–10  
±6  
±6  
10  
10  
mV  
mV  
mV  
mV  
%
TA = 25°C to 150°C  
TA = –40°C to 25°C  
Quiescent Voltage Output  
Temperature Error  
VOUT(Q)TC  
–10  
±6  
10  
QVO Ratiometry Error  
Sens Ratiometry Error  
VRatERRQVO VCC = ±5% variation of nominal supply voltage  
RatERRSens VCC = ±5% variation of nominal supply voltage  
–7.5  
–1.25  
±2.5  
±0.5  
7.5  
1.25  
LIFETIME DRIFT CHARACTERISTICS [2]  
QVO Lifetime Drift  
VQVOLife  
TA = 25°C  
1.4  
0.6  
1.5  
0.6  
mV  
%
Sens Lifetime Drift  
QVO TC Lifetime Drift  
Sens TC Lifetime Drift  
SensERRLife TA = 25°C  
VQVOTCLife TA = 25°C to 150°C  
SensTCLife TA = 25°C to 150°C  
mV  
%
[1] All typical values are ±3 sigma.  
[2] Typical lifetime value corresponds to worse case average drift found during AEC-Q100 qualification.  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
FUNCTIONAL DESCRIPTION  
Principle of Operation  
When AC or DC current flows through a PCB copper trace or a  
busbar, as shown in Figure 6, the ACS37612 device will sense  
the field difference between its two Hall elements H1 and H2,  
represented by field components B- and B+. The device output  
will be proportional to the differential field sensed, which is  
proportional to the applied current. The relationship between  
applied current and generated field is described as:  
Bdiff = CF × I,  
where Bdiff is the differential field (H1-H2), CF is the differential  
coupling factor, and I is the current through the busbar/PCB trace.  
Figure 6: Current Sensing Principle  
Device Output Polarity  
Current flowing through the PCB/busbar in the direction of pin  
1 to pin 4, as shown in Figure 7, increases the output voltage  
from its quiescent value toward the supply voltage rail (from  
2.5 V to 4.5 V typical on bidirectional version, and 0.5 V to  
4.5 V typical on unidirectional version).  
The amount of the output voltage increase is proportional to the  
magnitude of the applied current. Conversely, current flowing  
in the opposite direction decreases the output voltage from its  
quiescent value.  
Figure 7: Polarity  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
CHARACTERISTIC PERFORMANCE  
Figure 8: Response time, rise time, and propagation delay on 3.5 mm Reference PCB.  
Sensitivity = 15 mV/G, TA = 25°C, CBYPASS = 100 nF, CLOAD = 1 nF, BW = 140 kHz  
Figure 9: Response time, rise time, and propagation delay on Reference Busbar.  
Sensitivity = 15 mV/G, TA = 25°C, CBYPASS = 100 nF, CLOAD = 1 nF, BW = 140 kHz  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
VCC is still below VUVLOE when counter reaches tUVLOE , the  
Power-On Reset (POR) and  
Undervoltage Lockout (UVLO) Operation –  
Nominal Supply Voltage = 5 V  
UVLO function will be enabled and the output will be pulled  
near GND [6]. If VCC exceeds VUVLOE before the UVLO  
Enable Counter reaches tUVLOE [5’], the output will continue  
to be VCC/2.  
The descriptions in this section assume: temperature = 25°C, no  
output load (RL, CL), and no significant magnetic field is present.  
Coming out of UVLO. While UVLO is enabled [6], if VCC  
exceeds VUVLOD [7], UVLO will be disabled after tUVLOD  
and the output will be VCC / 2 [8].  
,
Power-Up. At power-up, as VCC ramps up, the output is in  
a high-impedance state. When VCC crosses VPORH (location  
[1] in Figure 10 and [1’] in Figure 11), the POR Release  
counter starts counting for tPORR. At this point, if VCC exceeds  
VUVLOD [2’], the output will go to VCC / 2 after tUVLOD [3’].  
If VCC does not exceed VUVLOD [2], the output will stay in the  
high-impedance state until VCC reaches VUVLOD [3] and then  
will go to VCC / 2 after tUVLOD [4].  
Power-Down. As VCC ramps down below VUVLOE [6’, 9], the  
UVLO Enable Counter will start counting. If VCC is higher  
than VPORL when the counter reaches tUVLOE, the UVLO  
function will be enabled and the output will be pulled near  
GND [10]. The output will enter a high-impedance state as  
V
CC goes below VPORL [11]. If VCC falls below VPORL before  
VCC drops below VCC(min) = 4.5 V. If VCC drops below  
VUVLOE [4’, 5], the UVLO Enable Counter starts counting. If  
the UVLO Enable Counter reaches tUVLOE , the output will  
transition directly into a high-impedance state [7’].  
ꢎꢎ  
11  
10  
9
1
3
5
5.0  
Uꢀꢁꢂꢄ  
Uꢀꢁꢂꢃ  
PꢂRH  
PꢂRꢁ  
tUꢀꢁꢂꢃ  
tUꢀꢁꢂꢃ  
ꢐNꢄ  
ꢑime  
ꢑime  
Sloꢌe ꢍ  
ꢎꢎ ꢇ  
ꢂUꢑ  
ꢇ.5  
tPꢂRR  
tUꢀꢁꢂꢄ  
tUꢀꢁꢂꢄ  
ꢐNꢄ  
High ꢋmꢌedance  
High ꢋmꢌedance  
Figure 10: POR and UVLO Operation – Slow Rise Time Case – 5 V Mode  
ꢎꢎ  
1ꢆ ꢇꢆ  
3ꢆ  
ꢈꢆ 5ꢆ  
ꢊꢆ  
ꢉꢆ  
5.0  
Uꢀꢁꢂꢄ  
Uꢀꢁꢂꢃ  
PꢂRH  
PꢂRꢁ  
ꢅ tUꢀꢁꢂꢃ  
ꢐNꢄ  
ꢑime  
ꢑime  
tPꢂRR  
ꢂUꢑ  
Sloꢌe ꢍ  
ꢎꢎ ꢇ  
tUꢀꢁꢂꢃ  
Sloꢌe ꢍ  
ꢎꢎ ꢇ  
ꢇ.5  
tUꢀꢁꢂꢄ  
ꢐNꢄ  
High ꢋmꢌedance  
High ꢋmꢌedance  
Figure 11: POR and UVLO Operation – Fast Rise Time Case – 5 V Mode  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Power-On Reset (POR);  
Undervoltage Lockout (UVLO) Disabled –  
Nominal Supply Voltage = 3.3 V  
VCC drops below VCC(min) = 3 V  
Power-Up  
If VCC drops below VPORH [5’] but remains higher than VPORL  
[6’], the output will continue to be VCC /2.  
At power-up, as VCC ramps up, the output is in a high-impedance  
state. When VCC crosses VPORH (location [1] in Figure 12 and  
[1’] in Figure 13), the POR Release counter starts counting for  
tPORR [2], [2’] and the output will go to VCC / 2 after tPORD [3],  
[3’]. The temperature compensation engine will then adjust the  
device Sensitivity and QVO after time tTC [4], [4’].  
Power-Down  
As VCC ramps down below VPORL [5],[7’], the output will enter a  
high-impedance state.  
3
ꢃꢃ  
3.3  
1
5
PꢀRH  
PꢀRꢊ  
ꢏNꢁ  
ꢂime  
tꢂꢃ  
ꢀUꢂ  
tPꢀRꢁ  
tPꢀRR  
1.ꢆ5  
Sloꢌe ꢍ  
ꢃꢃ ꢈ  
ꢏNꢁ  
ꢂime  
High ꢋmꢌedance  
High ꢋmꢌedance  
Figure 12: POR and UVLO Operation – Slow Rise Time Case – 3.3 V Mode  
1ꢄ  
3ꢄ  
ꢈꢄ  
ꢃꢃ  
3.3  
ꢆꢄ  
ꢇꢄ  
5ꢄ  
ꢅꢄ  
PꢀRH  
PꢀRꢊ  
ꢏNꢁ  
ꢂime  
ꢂime  
tꢂꢃ  
ꢀUꢂ  
tPꢀRꢁ  
Sloꢌe ꢍ  
ꢃꢃ ꢈ  
Sloꢌe ꢍ  
ꢃꢃ ꢈ  
1.ꢆ5  
High ꢋmꢌedance  
tPꢀRR  
ꢏNꢁ  
High ꢋmꢌedance  
Figure 13: POR and UVLO Operation – Fast Rise Time Case – 3.3 V Mode  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
CHARACTERISTIC DEFINITIONS  
Definitions of Accuracy Characteristics  
SENSITIVITY (Sens)  
RATIOMETRY  
The amount of the output voltage increase is proportional to the  
magnitude of the magnetic field applied. This proportionality is  
specified as the magnetic sensitivity, Sens (mv/G), of the device,  
and it is defined as:  
The device features a ratiometric output. This means that the  
quiescent voltage output, VOUT(Q), and the magnetic sensitivity,  
Sens, are proportional to the supply voltage, VCC. The ratiometric  
change in the quiescent voltage output is defined as:  
ꢁ  
OUT(B2)  
OUT(B1)  
CC  
ꢀens  
=
RatERRQVO  
=
OUTQ(5V)  
×
ꢁ ꢀOUTQ(VCC) × 1000 (mV)  
B1 ꢂ B2  
(
)
5 V  
where B1 and B2 are two different magnetic field levels.  
and the ratiometric change (%) in sensitivity is defined as:  
SENSITIVITY DRIFT THROUGH TEMPERATURE  
RANGE (ΔSENSTC  
)
Sens(VCC)  
Sens(5V)  
VCC  
(
)
Second-order sensitivity temperature coefficient effects cause the  
magnetic sensitivity, Sens, to drift from its expected value over  
the operating ambient temperature range (TA). The Sensitivity  
Drift Through Temperature Range (ΔSensTC) is defined as:  
RatERRSens  
=
1 –  
× 100 (%)  
(
)
5 V  
ꢀens ꢀens  
TA  
EꢀPECTED(TA)  
Δꢀens  
× 100 (%)  
TC =  
and the ratiometric change (%) in clamp voltage is defined as:  
ꢀens  
EꢀPECTED(TA)  
NONLINEARITY (ELIN  
)
VCLP(VCC)  
VCLP(5V)  
VCC  
(
)
The nonlinearity is a measure of how linear the output of the  
sensor IC is over the full current measurement range. The  
nonlinearity is calculated as:  
RatERRCLP  
=
1 –  
× 100 (%)  
(
)
5 V  
SensBPRMax  
SensBPRHalf  
× 100 (%)  
1–  
ELIN  
=
{
[
[ {  
where SensBPRMax is the sensitivity measured at the full range  
output level and SensBPRHalf is the sensitivity measured at half of  
the full range output level.  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
disabled when VCC reaches VPORH and time tPORR has elapsed,  
allowing the output voltage to go from a high-impedance state  
into normal operation. During power-down, the Reset signal is  
enabled when VCC reaches VPORL, causing the output voltage to  
go into a high-impedance state. (Note that a detailed description  
of POR can be found in the Functional Description section).  
QUIESCENT OUTPUT VOLTAGE (VOUT(Q)  
)
The output of the sensor when no magnetic field is detected. For  
a unipolar supply voltage, it nominally remains at 0.5 × VCC for  
a bidirectional device and 0.1 × VCC for a unidirectional device.  
For example, in the case of a bidirectional output device, VCC  
=
5 V translates into VOUT(Q) = 2.5 V. Variation in VOUT(Q) can be  
attributed to the resolution of the Allegro linear IC quiescent volt-  
age trim and thermal drift.  
POWER-ON RESET RELEASE TIME (tPORR  
)
When VCC rises to VPORH, the Power-On Reset Counter starts.  
The device output voltage will transition from a high-impedance  
state to normal operation only when the Power-On Reset Counter  
OFFSET ERROR VOLTAGE (VOE  
)
The deviation of the device output from its ideal quiescent value  
of 0.5 × VCC (bidirectional) or 0.1 × VCC (unidirectional) due to  
nonmagnetic causes.  
has reached tPORR and VCC has been maintained above VPORH  
.
OUTPUT SATURATION VOLTAGE (VSAT  
)
POWER-ON RESET VOLTAGE (VPOR  
)
When output voltage clamps are disabled, the output voltage  
can swing to a maximum of VSAT(HIGH) and to a minimum of  
On power-up, to initialize to a known state and avoid current  
spikes, the device is held in Reset state. The Reset signal is  
VSAT(LOW)  
.
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Definitions of Dynamic Response Characteristics  
POWER-ON TIME (tPO  
)
When the supply is ramped to its operating voltage, the device  
requires a finite time to power its internal components before  
responding to an input magnetic field. Power-On Time, tPO, is  
defined as the time it takes for the output voltage to settle within  
±10% of its steady-state value under an applied magnetic field,  
after the power supply has reached its minimum specified operat-  
ing voltage, VCC(min), as shown in Figure 14.  
RISE TIME (tr)  
The time interval between a) when the sensor reaches 10% of its  
full-scale value, and b) when it reaches 90% of its full-scale value,  
as shown in Figure 15.  
PROPAGATION DELAY (tPD  
)
The time interval between a) when the sensed current reaches  
20% of its full-scale value, and b) when the sensor output reaches  
20% of its full-scale value, as shown in Figure 15.  
Figure 14: Power-On Time (tPO  
)
RESPONSE TIME (tRESPONSE  
)
ꢀꢁrrent on ꢂꢁsꢃarꢄPꢀꢂ  
ꢉꢊꢋ  
90  
The time interval between a) when the sensed current reaches  
90% of its final value, and b) when the sensor output reaches 90%  
of its full-scale value, as shown in Figure 16.  
ꢅꢆUꢇ  
Delay to Clamp (tCLP  
)
Rise ꢇime, tR  
A large magnetic input step may cause the clamp to overshoot its  
steady-state value. The Delay to Clamp, tCLP, is defined as: the  
time it takes for the output voltage to settle within ±1% of Clamp  
Voltage Dynamic Range, after initially passing through its steady-  
state voltage, as shown in Figure 17.  
ꢈ0  
10  
0
t
Proꢌagation ꢍelay, tPꢍ  
Figure 15: Propagation Delay (tPD) and Rise Time (tr)  
ꢁꢂrrent on ꢃꢂsꢄarꢅPꢁꢃ  
ꢁꢑPꢏHꢒꢓHꢐ  
ꢆUꢇ  
tꢁꢑP  
t1  
tꢋ  
ꢀꢁrrent on ꢂꢁsꢃarꢄPꢀꢂ  
ꢅꢆUꢇ  
ꢈꢉꢊ  
90  
t1ꢈ time at which oꢂtꢉꢂt ꢊoltage initially  
reaches steady state clamꢉ ꢊoltage  
tꢈ time at which oꢂtꢉꢂt ꢊoltage settles to  
within 1ꢌ oꢍ steady state clamꢉ ꢊoltage  
Resꢋonse ꢇime, t  
RꢌSPꢆNSꢌ  
Noteꢎ ꢇimes aꢉꢉly to ꢄoth high clamꢉ  
ꢏshownꢐ and low clamꢉ.  
0
0
t
t
Figure 17: Delay to Clamp  
Figure 16: Response Time (tRESPONSE)  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
APPLICATION INFORMATION  
Typical Application – Busbar Sensing  
Figure 18: Busbar current sensing application – reference busbar design  
The ACS37612 is ideal for busbar current sensing applications.  
evaluation board designed to measure ±1000 A.  
For a given current flowing through the busbar, the magnitude of  
the differential magnetic field sensed by the IC will depend on  
the air gap between the busbar and the IC.  
Note: Comparing the busbar described in Figure 18 to a bare bus-  
bar (without notch), the busbar with the 3 mm notch increased the  
overall impedance by less than 1 µΩ, increasing busbar tempera-  
ture by only few degrees during testing.  
Adding a notch (width reduction) to the busbar at the location  
where the sensor is placed significantly increases the magnitude  
of the magnetic field, improving SNR. Keeping the notch length  
short (2 to 3 mm) results in virtually no increase in the resistance  
of the busbar or degradation of its thermal performance.  
Skin Effect Consideration  
Skin effect in the conductor will tend to reduce the magnitude  
of the differential magnetic field measured by the IC at high  
frequencies (coupling factor) and therefore will influence the  
bandwith of the system and response time to transient current.  
Different busbar and notch dimensions can be used to optimize  
system performance and respond to application constraints.  
Skin effect will depend on busbar dimensions, sensor mounting  
orientation, and distance between the busbar and the IC.  
Figure 18 and Table 1 highlight the dimensions of an Allegro  
Table 1: Current range based on reference busbar design:  
Busbar Application  
Maximum Current (A) Coupling Factor at 2.5 mm Crystal Air Gap [1] Differential Field (G) IC Sensitivity (mV/G)  
18 × 3 mm Busbar  
+ 3 mm Notch  
±1000 0.19 ±190 10  
[1] Crystal air gap is defined as the distance from the busbar surface to the device sensing elements (considering active area depth).  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Multiple Busbar Design Options  
The ACS37612 device offers many different mounting possibili-  
ties, addressing different needs (bandwidth, mounting tolerances,  
crosstalk). The figures below show different mounting options.  
Refer to Allegro’s website for application notes explaining the  
tradeoffs between different topologies.  
Figure 19: Rift Busbar Design  
Figure 20: Slit Busbar Design  
Figure 21: Dual Vertical Slit Busbar Design  
Figure 22: Vertical Slit Busbar Design  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Typical Application – PCB Sensing  
Figure 23: PCB Current sensing application – 6-Layer reference PCB example  
The ACS37612 can be used in applications where hundreds of  
amps flow through a PCB.  
Care must be taken when routing the device signal to prevent  
noise coupling to the supply or output lines.  
Multiple copper layers can be used to carry the current. Reduc-  
ing the width of the copper traces under the sensor (neckdown)  
increases the magnitude of the differential magnetic field mea-  
sured by the IC.  
Power plane in the neckdown area should also be avoided to  
prevent disturbing the magnetic field measured.  
Skin Effect Consideration  
Different copper layer dimensions and stackups can be used to  
optimize performance and respond to application constraints. For  
example, in higher voltage applications, the top layer would only  
be used for signal routing in order to use the PCB insulation for  
isolation.  
Skin effect in the conductor will tend to reduce the magnitude  
of the differential magnetic field measured by the IC at high  
frequencies (coupling factor) and therefore will influence the  
bandwith of the system and response time to transient current.  
Skin effect will depend on PCB copper trace dimensions, number  
of layers, and layer thickness.  
Figure 23 and Table 2 highlight the dimensions of three Allegro  
evaluation boards designed to measure a wide current range.  
Table 2: Current range based on reference PCB design:  
PCB Application [1]  
Maximum Current (A) [2] Coupling Factor (G/A) Differential Field (G) IC Sensitivity (mV/G)  
5 Layers – Reference Design 3.5 mm – 015B5  
5 Layers – Reference Design 3.5 mm – 010B5  
5 Layers – Reference Design 4.5 mm – 015B5  
5 Layers – Reference Design 4.5 mm – 010B5  
5 Layers – Reference Design 7 mm – 015B5  
5 Layers – Reference Design 7 mm – 010B5  
±190  
±270  
±235  
±350  
±500  
±750  
0.74  
0.74  
±133  
±200  
±133  
±200  
±133  
±200  
15  
10  
15  
10  
15  
10  
0.57  
0.57  
0.265  
0.265  
[1] Maximum continuous current without proper cooling on these PCB designs should not exceed 200 A.  
[2] Full-scale current is required to cover the full-scale output range (bidirectional = ±2 V).  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference MO-153 AA)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
3.00 0.10  
D
0.45  
0.65  
8º  
8
0º  
8
0.20  
0.09  
1.70  
E
E
E2  
E1  
4.40 0.10  
1.87  
E
6.40 BSC  
6.10  
3.15  
E
+0.15  
–0.10  
0.60  
A
1
1.27  
1.00 REF  
2
1.70  
1
2
0.25 BSC  
E
B
PCB Layout Reference View  
SEATING PLANE  
GAUGE PLANE  
Branded Face  
C
8×  
1.10 MAX  
0.10  
C
SEATING  
PLANE  
XXX  
0.30  
0.19  
0.15  
0.05  
Date Code  
0.65 BSC  
A
Terminal #1 mark area  
B
Reference land pattern layout (reference IPC7351 SOP65P640X110-8M); all pads a minimum of 0.20 mm from all adjacent pads;  
adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB,  
thermal vias can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5)  
C Standard Branding Reference View  
Line 1: Maximum 3 characters  
Line 2: Maximum 5 characters  
C
Branding scale and appearance at supplier discretion  
Line 1: Part Number  
Line 2: Logo A, 4-digit Date Code  
D
E
Active Area Depth 0.36 mm REF  
Hall elements (E1, E2); not to scale.  
Figure 24: Package LU, 8-Pin TSSOP Package  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Coreless, High Precision, Hall-Effect Current Sensor IC  
with Common-Mode Field Rejection and High Bandwidth (240 kHz)  
ACS37612  
Revision History  
Number  
Date  
Description  
March 9, 2020  
Initial release  
Copyright 2020, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

ACS37800

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0153B-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0153BI2C

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0155B-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0155BI2C

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-015B5-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0303B-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0303BI2C

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0305B-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-0305BI2C

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-030B3-I2C

Isolated, Digital Output, Power Monitoring IC
ALLEGRO

ACS37800KMACTR-030B3-SPI

Isolated, Digital Output, Power Monitoring IC
ALLEGRO