A8902SLBTR [ALLEGRO]

暂无描述;
A8902SLBTR
型号: A8902SLBTR
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

暂无描述

驱动器 电动机控制 电机 控制器
文件: 总12页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8902–A  
3-PHASE BRUSHLESS DC MOTOR  
CONTROLLER/DRIVER WITH BACK-EMF SENSING  
The A8902CLBA is a three-phase brushless dc motor controller/  
driver for use in 5 V or 12 V hard-disk drives. The three half-bridge  
LOAD  
SUPPLY  
COMMUTATION  
DELAY  
1
24  
23  
C
V
D1  
outputs are low on-resistance n-channel DMOS devices capable of  
driving up to 1.25 A. The A8902CLBA provides complete, reliable,  
self-contained back-EMF sensing motor startup and running algorithms.  
A programmable digital frequency-locked loop speed control circuit  
together with the linear current control circuitry provides precise motor  
speed regulation.  
BB  
DATA IN  
C
2
3
4
D2  
22 CLOCK  
21  
C
WD  
C
CHIP SELECT  
ST  
20 RESET  
OUT  
5
6
A
A serial port allows the user to program various features and  
modes of operation, such as the speed control parameters, startup  
current limit, sleep mode, diagnostic modes, and others.  
19  
18  
GROUND  
GROUND  
GROUND  
GROUND  
7
8
OUT  
B
DATA OUT  
OSCILLATOR  
MUX  
17  
16  
15  
The A8902CLBA is fabricated in Allegro’s BCD (Bipolar CMOS  
DMOS) process, an advanced mixed-signal technology that combines  
bipolar, analog and digital CMOS, and DMOS power devices. The  
A8902CLBA is provided in a 24-lead wide-body SOIC batwing package.  
It provides for the smallest possible construction in surface-mount  
applications.  
9
OUT  
C
FLL  
V
LOGIC  
SUPPLY  
CENTERTAP 10  
DD  
BOOST  
CHARGE  
PUMP  
SECTOR  
DATA  
14  
BRAKE  
11  
12  
C
13 FILTER  
RES  
Dwg. PP-040B  
FEATURES  
DMOS Outputs  
ABSOLUTE MAXIMUM RATINGS  
at TA = +25°C  
Low rDS(on)  
Startup Commutation Circuitry  
Back-EMF Commutation Circuitry  
Serial Port Interface  
Load Supply Voltage, VBB . . . . . . . . . . 14 V  
Output Current, IOUT . . . . . . . . . . . . ±1.25 A  
Logic Supply Voltage, VDD . . . . . . . . . 6.0 V  
Logic Input Voltage Range,  
VIN . . . . . . . . . . . -0.3 V to VDD + 0.3 V  
Package Power Dissipation, PD See Graph  
Operating Temperature Range,  
TA . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Junction Temperature, TJ . . . . . . . +150°C†  
Storage Temperature Range,  
Frequency-Locked Loop Speed Control  
Sector Data Tachometer Signal Input  
Programmable Start-Up Current  
Diagnostics Mode  
Sleep Mode  
Linear Current Control  
TS . . . . . . . . . . . . . . . -55°C to +150°C  
Internal Current Sensing  
Dynamic Braking Through Serial Port  
Power-Down Dynamic Braking  
System Diagnostics Data Out  
Data Out Ported in Real Time  
Internal Thermal Shutdown Circuitry  
† Fault conditions that produce excessive junction  
temperature will activate device thermal shutdown  
circuitry. These conditions can be tolerated, but  
should be avoided.  
Output current rating may be restricted to a value  
determined by system concerns and factors.  
These include: system duty cycle and timing,  
ambient temperature, and use of any heatsinking  
and/or forced cooling. For reliable operation, the  
specified maximum junction temperature should  
not be exceeded.  
Always order by complete part number, e.g., A8902CLBA .  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
FUNCTIONAL BLOCK DIAGRAM  
LOGIC  
SUPPLY  
C
C
C
C
ST  
D1  
D2  
BRAKE  
RES  
15  
2
24  
4
11  
12  
V
DD  
BOOST  
CHARGE  
PUMP  
BRAKE  
LOAD  
SUPPLY  
1
5
8
9
V
BB  
OUT  
OUT  
OUT  
FCOM  
COMMUTATION  
DELAY  
A
B
C
OUT  
OUT  
A
B
START-UP  
OSC.  
BLANK  
OUT  
C
10  
CENTERTAP  
WATCHDOG  
C
3
WD  
TIMER  
SECTOR  
DATA  
14  
CURRENT  
CONTROL  
FREQUENCY-  
LOCKED LOOP  
CHARGE  
PUMP  
OSC 16  
R
S
6-7  
GROUND  
GROUND  
23  
DATA IN  
SERIAL PORT  
MUX  
TSD  
18-19  
20  
17  
22  
21  
13  
FILTER  
Dwg. FP-034  
2.5  
R
= 6°C/W  
θJT  
2.0  
1.5  
1.0  
0.5  
0
R
= 55°C/W  
θJA  
25  
50  
75  
100  
125  
150  
TEMPERATURE in °C  
Dwg. GP-019B  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
Copyright © 1992, 1995 Allegro MicroSystems, Inc.  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
ELECTRICAL CHARACTERISTICS at TA = +25°C, VDD = 5.0 V  
Limits  
Characteristic  
Symbol  
VDD  
Test Conditions  
Min.  
4.5  
Typ.  
Max.  
5.5  
10  
Units  
V
Logic Supply Voltage  
Logic Supply Current  
Operating  
Operating  
Sleep Mode  
Operating  
5.0  
7.5  
250  
IDD  
mA  
µA  
V
500  
14  
Load Supply Voltage  
Thermal Shutdown  
VBB  
TJ  
4.0  
165  
20  
°C  
Thermal Shutdown Hysteresis  
Output Drivers  
TJ  
°C  
Output Leakage Current  
IDSX  
VBB = 14 V, VOUT = 14 V  
BB = 14 V, VOUT = 0 V  
1.0  
-1.0  
1.0  
300  
-300  
1.4  
µA  
µA  
V
Total Output ON Resistance  
(Source + Sink + RS)  
rDS(on)  
IOUT = 600 mA  
Output Sustaining Voltage  
Clamp Diode Forward Voltage  
Control Logic  
VDS(sus)  
VF  
VBB = 14 V, IOUT = IOUT(MAX), L = 3 mH  
IF = 1.0 A  
14  
V
V
1.25  
1.5  
Logic Input Voltage  
VIN(0)  
VIN(1)  
IIN(0)  
SECTOR DATA, RESET, CLK,  
CHIP SELECT, OSC  
VIN = 0 V  
-0.3  
3.5  
1.5  
5.3  
-0.5  
1.0  
1.5  
V
V
Logic Input Current  
µA  
µA  
V
IIN(1)  
VIN = 5.0 V  
DATA Output Voltage  
VOUT(0)  
VOUT(1)  
ICST  
IOUT = 500 µA  
IOUT = -500 µA  
Charging  
3.5  
-9.0  
V
CST Current  
-10  
500  
2.5  
1.0  
-10  
10  
-11  
µA  
µA  
V
Discharging  
CST Threshold  
VCSTH  
VCSTL  
IFILTER  
2.25  
0.85  
-9.0  
9.0  
2.75  
1.15  
-11  
11  
V
Filter Current  
Charging  
µA  
µA  
nA  
V
Discharging  
Leakage, VFILTER = 2.5 V  
5.0  
2.13  
-22  
48  
Filter Threshold  
CD Current  
VFILTERTH  
ICD  
1.57  
-18  
32  
1.85  
-20  
40  
Charging  
µA  
µA  
V
(CD1 or CD2  
)
Discharging  
CD Current Matching  
CD Threshold  
ICD(DISCHRG)/ICD(CHRG)  
1.8  
2.25  
2.0  
2.5  
2.2  
2.75  
VCDTH  
Continued next page …  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
ELECTRICAL CHARACTERISTICS continued  
Limits  
Typ.  
Characteristic  
Symbol  
ICWD  
VTL  
Test Conditions  
Min.  
-9.0  
0.22  
2.25  
12  
Max.  
-11  
0.28  
2.75  
Units  
µA  
V
CWD Current  
Charging  
-10  
0.25  
2.5  
CWD Threshold Voltage  
VTH  
V
Max. FLL Oscillator Frequency  
OUT(MAX)  
fOSC  
VDD = 5.0 V, TA = 25°C  
D3 = 0, D4 = 0  
MHz  
A
I
1.0  
0.9  
0.5  
1.2  
1.0  
0.6  
250  
1.75  
20  
1.4  
1.1  
0.7  
D3 = 0, D4 = 1  
A
D3 = 1, D4 = 0  
A
D3 = 1, D4 = 1  
mA  
V
BRAKE Threshold  
VBRK  
IBRKL  
gm  
1.5  
2.0  
BRAKE Hysteresis Current  
Transconductance Gain  
Centertap Resistors  
VBRK = 750 mV  
µA  
A/V  
kΩ  
mV  
mV  
0.42  
5.0  
5.0  
-5.0  
0.50  
10  
0.58  
13  
RCT  
Back-EMF Hysteresis  
V
BEMF - VCTAP at  
20  
37  
FCOM Transition  
-20  
-37  
SERIAL PORT TIMING CONDITIONS  
CHIP SELECT  
E
A
B
D
CLOCK  
DATA  
C
D
C
Dwg. WP-019  
A. Minimum CHIP SELECT setup time before CLOCK rising edge.......... 100 ns  
B. Minimum CHIP SELECT hold time after CLOCK rising edge............... 150 ns  
C. Minimum DATA setup time before CLOCK rising edge........................ 150 ns  
D. Minimum DATA hold time after CLOCK rising edge............................. 150 ns  
E. Minimum CLOCK low time before CHIP SELECT.................................. 50 ns  
F. Maximum CLOCK frequency .............................................................. 3.3 MHz  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
TERMINAL FUNCTIONS  
Term.  
Terminal Name  
LOAD SUPPLY  
CD2  
Function  
1
2
VBB; the 5 V or 12 V motor supply.  
One of two capacitors used to generate the ideal commutation points from the  
back-EMF zero crossing points.  
3
CWD  
Timing capacitor used by the watchdog circuit to disable the back-EMF compara-  
tors during commutation transients, and to detect incorrect motor position.  
4
5
CST  
OUTA  
Startup oscillator timing capacitor.  
Power amplifier A output to motor.  
6-7  
8
GROUND  
OUTB  
Power and logic ground and thermal heat sink.  
Power amplifier B output to motor.  
9
OUTC  
Power amplifier C output to motor.  
10  
11  
CENTERTAP  
BRAKE  
Motor centertap connection for back-EMF detection circuitry.  
Active low turns ON all three sink drivers shorting the motor windings to ground.  
External capacitor and resistor at BRAKE provide brake delay. The brake function  
can also be controlled via the serial port.  
12  
13  
14  
CRES  
FILTER  
External reservoir capacitor used to hold charge to drive the source drivers’  
gates. Also provides power for brake circuit.  
Analog voltage input to control motor current. Also, compensation node for  
internal speed control loop.  
SECTOR DATA  
External tachometer input. Can use sector or index pulses from disk to provide  
precise motor speed feedback to internal frequency-locked loop.  
15  
16  
17  
LOGIC SUPPLY  
OSCILLATOR  
DATA OUT  
VDD; the 5 V logic supply.  
Clock input for the speed reference counter. Typical max. frequency is 10 MHz.  
Thermal shutdown indicator, FCOM, TACH, or SYNC signals available in real  
time, controlled by 2-bit multiplexer in serial port.  
18-19  
20  
GROUND  
RESET  
Power and logic ground and thermal heat sink.  
When pulled low forces the chip into sleep mode; clears all serial port bits.  
Strobe input (active low) for data word.  
21  
CHIP SELECT  
CLOCK  
22  
Clock input for serial port.  
23  
DATA IN  
CD1  
Sequential data input for the serial port.  
24  
One of two capacitors used to generate the ideal commutation points from the  
back-EMF zero crossing points.  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
FUNCTIONAL DESCRIPTION  
Power Outputs. The power outputs of  
the A8902CLBA are n-channel DMOS  
backward, or remain stationary (if in a null-torque position). If the motor  
moves, the back-EMF detection circuit waits for the correct polarity  
back-EMF zero crossing (output crossing through centertap). True  
back-EMF zero crossings are used by the adaptive commutation delay  
circuit to advance the state sequencer (commutate) at the proper time  
to synchronously run the motor. Back-EMF zero crossings are indi-  
cated by FCOM, an internal signal that toggles at every zero crossing.  
FCOM is available at the DATA OUT terminal via the programmable  
data out multiplexer.  
transistors with a total source plus sink rDS(on)  
of typically 1 . Internal charge pump boost  
circuitry provides voltage above supply for  
driving the high-side DMOS gates. Intrinsic  
ground clamp and flyback diodes provide  
protection when switching inductive loads and  
may be used to rectify motor back-EMF in  
power-down conditions. An external Schottky  
power diode or pass FET is required in series  
with the load supply to allow motor back-EMF  
rectification in power down conditions.  
V
OUTA  
Back-EMF Sensing Motor Startup and  
Running Algorithm. The A8902CLBA  
provides a complete self-contained back-EMF  
sensing startup and running commutation  
scheme. The three half-bridge outputs are  
controlled by a state machine. There are six  
possible combinations. In each state, one  
output is high (sourcing current), one low  
(sinking current), and one is OFF (high  
impedance or Z). Motor back EMF is sensed  
at the OFF output. The truth table for the  
output drivers sequencing is:  
V
OUTB  
SOURCE ON  
BACK-EMF VOLTAGE  
V
OUTC  
V
SINK ON  
CTAP  
FCOM TOGGLES AT  
BACK-EMF ZERO CROSSING  
FCOM  
Dwg. WP-016-1  
Sequencer  
State  
OUTA  
OUTB  
OUTC  
Startup Oscillator. If the motor does not move at the initial startup  
1
2
3
4
5
6
High  
Z
Low  
Low  
Z
Low  
Low  
Z
High  
High  
Z
Z
state, then it is in a null-torque position. In this case, the outputs are  
commutated automatically by the startup oscillator after a period set by  
the external capacitor at CST where  
High  
High  
Z
Low  
Low  
4(VCSTH - VCSTL) x CST  
tCST  
=
High  
IST(charge) + IST(discharge)  
At startup, the outputs are enabled in one  
of the sequencer states shown. The back  
EMF is examined at the OFF output by  
comparing the output voltage to the motor  
centertap voltage at CENTERTAP. The  
motor will then either step forward, step  
In the next state, the motor will move, back EMF will be detected,  
and the motor will accelerate synchronously. Once normal synchro-  
nous back-EMF commutation occurs, the startup oscillator is defeated  
by pulses of pulldown current at CST at each commutation, which  
prevents CST from reaching its upper threshold and thus completing a  
cycle and commutating.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
Adaptive Commutation Delay. The  
adaptive commutation delay circuit uses the  
back-EMF zero-crossing indicator signal  
(FCOM) to determine an optimal commuta-  
tion time for efficient synchronous operation.  
This circuit commutates the outputs, delayed  
from the last zero crossing, using two  
Blanking and Watchdog Timing Functions. The blanking and  
watchdog timing functions are derived from one timing capacitor, CWD  
VTL x CWD  
.
where  
tBLANK =  
ICWD  
VTH x CWD  
=
ICWD  
and  
tWD  
external timing capacitors, CD1 and CD2,  
The CWD capacitor begins charging at each commutation, initiating  
the BLANK signal. BLANK is an internal signal that inhibits the back-  
EMF comparators during the commutation transients, preventing errors  
due to inductive recovery and voltage settling transients.  
t
FCOM  
FCOM  
The watchdog timing function allows time to detect correct motor  
position by checking the back-EMF polarity after each commutation. If  
the correct polarity is not observed between tBLANK and tWD, then the  
watchdog timer commutates the outputs to the next state to synchro-  
nize the motor. This function is useful in preventing excessive reverse  
rotation, and helps in resynchronizing (or starting) with a moving  
spindle.  
V
CWD  
t
CD1  
V
CD1  
t
CD2  
V
TL  
V
CWD  
V
CD2  
t
BLANK  
BLANK  
Dwg. WP-016-2  
Dwg. WP-022  
to measure the time between crossings.  
ICD(charge)  
NORMAL COMMUTATION  
where  
tCD = tFCOM x  
ICD(discharge)  
CD1 charges up with a fixed current from  
its 2.5 V reference while FCOM is high.  
When FCOM goes low at the next zero  
crossing, CD1 is discharged at approximately  
twice the charging current. When CD1  
reaches the CD threshold, a commutation  
occurs. CD2 operates similarly except on the  
opposite phase of FCOM . Thus the com-  
mutations occur approximately halfway  
between zero crossings. The actual delay is  
slightly less than halfway to compensate for  
electrical delays in the motor, which im-  
proves efficiency.  
V
TH  
V
TL  
V
CWD  
t
BLANK  
BLANK  
t
WD  
Dwg. WP-021  
WATCHDOG-TRIGGERED  
COMMUTATION  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
Current Control. The A8902CLBA provides linear current control  
via the FILTER terminal, an analog voltage input. Maximum current  
limit is also provided, and is controlled in four steps via the serial port.  
Output current is sensed via an internal sense resistor (RS). The  
voltage across the sense resistor is compared to one-tenth the voltage  
at the FILTER terminal less the filter threshold voltage, or to the maxi-  
mum current limit reference, whichever is lower. This transcon-  
ductance function is IOUT = (VFILTER -VFILTERTH) / 10RS, where RS is  
nominally 0.2 and VFILTERTH is approximately 1.85 V.  
60 x fOSC  
desired  
total count  
=
desired motor speed (rpm)  
where the total count (number of oscillator  
cycles) is equal to the sum of the selected  
(programmed low) count numbers corre-  
sponding to bits D5 through D18.  
The speed error is detected as the  
difference in falling edges of TACH and  
REF. The speed error signals control the  
error-correcting charge pump on the FILTER  
terminal, which drive the external loop com-  
pensation components to correct the motor  
current.  
YANK  
POWER UP  
SEQUENTIAL  
LOGIC  
S
R
Q
ERROR FAST  
FROM FLL  
V
BB  
C
RES  
SPEED-CONTROL  
INITIALIZATION  
BOOST  
CHARGE  
PUMP  
V
DD  
V
DD  
OUT  
ERROR SLOW  
FROM FLL  
+
Sector Mode. An external tachometer  
signal, such as sector or index pulses, may  
be used to create the TACH signal, rather  
than the internally derived once around. To  
use this mode, the signal is input to the  
SECTOR terminal, and the sector mode must  
be enabled via the serial port. When Switch-  
ing from the once-around mode to sector  
mode, it is important to monitor the SYNC  
signal on DATA OUT, and switch modes only  
when SYNC is low. This ensures making the  
transition without disturbing the speed control  
loop. The speed reference counter should be  
reprogrammed at the same time.  
I
MUX  
÷10  
c
FILTER  
+
C
F1  
F1  
x1  
I
R
d
S
LINEAR  
+
CURRENT CONTROL  
1.85 V  
C
F2  
R
FROM  
SERIAL PORT  
REGISTER  
D3 AND D4  
CHARGE  
PUMP  
ERROR FAST  
FROM FLL  
MAX CURRENT LIMIT  
Dwg. EP-046  
Speed Control. The A8902CLBA includes a frequency-locked  
loop speed control system. This system monitors motor speed via  
internal or external digital tachometer signals, generates a precision  
speed reference, determines the digital speed error, and corrects the  
motor current via an internal charge pump and external filtering compo-  
nents on the FILTER terminal.  
Speed Loop Initialization (YANK). To  
improve the acquire time of the speed control  
loop, there is an automatic feature controlled  
by an internal YANK signal. The motor is  
started at the maximized programmed current  
by bypassing the FILTER terminal. The  
FILTER terminal is clamped to an internal  
reference (the filter threshold voltage),  
A once per revolution TACH signal can be generated by counting  
cycles of FCOM (the number of motor poles must be selected via the  
serial port). TACH is then a jitter-free signal that toggles once per  
motor revolution. The rising edge of TACH triggers REF, a precision  
speed reference derived by a programmable counter. The duration of  
REF is set by programming the counter to count the desired number of  
OSC cycles  
initializing it near the closed loop operating  
point. YANK is enabled at startup and stays  
high until the desired speed is reached. Once  
the first error-fast occurs, indicating the motor  
crossed through the desired speed, YANK  
goes low. This releases the clamp on the  
FILTER terminal and current control is  
returned to FILTER. This feature optimizes  
speed acquire and minimizes settling. The  
Current Control Block Diagram illustrates the  
YANK signal and its effects.  
SECTOR  
COUNT  
÷2  
MUX  
TACH  
FCOM  
(3 x MOTOR POLES)  
ONCE-AROUND  
PULSE  
D20 &  
D21  
D19  
REF  
TACH  
SERIAL PORT  
REGISTER  
ERROR  
SLOW  
D5D18  
REF  
4-BIT  
14-BIT  
TACH  
OSC  
FIXED  
COUNTER  
PROGRAMMABLE  
COUNTER  
REF  
ERROR  
FAST  
Dwg. EP-045  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
Serial Port. The serial port functions to write various operational  
and diagnostic modes to the A8902CLBA. The serial port DATA IN is  
enabled/disabled by the CHIP SELECT terminal. When CHIP SE-  
LECT is high the serial port is disabled and the chip is not affected by  
changes in data at the DATA IN or CLOCK terminals.  
Bit Number  
Count Number  
D5  
D6  
D7  
16  
32  
64  
D8  
128  
To write data to the serial port, the CLOCK terminal should be low  
prior to the CHIP SELECT terminal going low. Once CHIP SELECT  
goes low, information on the DATA IN terminal is read into the shift  
register on the positive-going transition of the CLOCK. There are 24  
bits in the serial input port.  
D9  
256  
512  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
1 024  
2 048  
4 096  
8 192  
16 384  
32 768  
65 536  
131 072  
Data written into the serial port is latched and becomes active  
upon the low-to-high transition of the CHIP SELECT terminal at the  
end of the write cycle. D0 will be the last bit written to the serial port.  
SERIAL PORT BIT DEFINITIONS  
D0- Sleep/Run Mode; LOW = Sleep, HIGH = Run  
D19-Speed-control mode switch;  
LOW = internal once-around speed signal,  
HIGH = external sector data.  
This bit allows the device to be powered down when not in use.  
D1- Step Mode; LOW = Normal Operation, HIGH = Step Only  
When in the step-only mode the back-EMF commutation circuitry  
is disabled and the power outputs are commutated by the start-  
up oscillator. This mode is intended for device and system  
testing.  
D20 and D21-These bits program the number  
of motor poles for the once-around FCOM  
counter:  
D2- Brake; LOW = Run, HIGH = Brake.  
D20  
D21  
Motor Poles  
D3 and D4 - These two bits set the output current limit:  
0
0
1
1
0
1
0
1
8
16  
12  
D3  
D4  
Current Limit  
0
0
1
1
0
1
0
1
1.2 A  
1 A  
600 mA  
250 mA  
D22 and D23-Controls the multiplexer for  
DATA OUT:  
D22  
D23  
DATA OUT  
D5 thru D18-This 14-bit word (active low) programs the REF time to set  
desired motor speed.  
0
0
1
1
0
1
0
1
TACH (once around or sector)  
Thermal Shutdown  
SYNC  
FCOM  
Reset. The RESET terminal when pulled  
low clears all serial port bits, including the D0  
latch, which puts the A8902CLBA in the sleep  
mode.  
8902–A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
brake is activated. Once the brake is acti-  
vated, due to the inherent capacitive input,  
the three sink drivers will remain active until  
the device is reset.  
V
V  
BRAKE  
ACTIVATED  
FAULT  
D
BRAKE  
FAULT  
C
B
V
R
BRK  
B
t
BRK  
VBRK  
VFAULT - VD  
Dwg. OP-004  
tBRK = RBCB 1 ln  
Centertap. The A8902CLBA internally  
simulates the centertap voltage of the motor.  
To obtain reliable start-up performance from  
motor to motor, the motor centertap should be  
connected to this terminal.  
Braking. A dynamic braking feature of the A8902CLBA shorts the  
three motor windings to ground. This is accomplished by turning the  
three source drivers OFF and the three sink drivers ON. Activation of  
the brake can be implemented through the BRAKE input or through  
the D2 bit in the serial port. The supply voltage for the brake circuitry  
is the CRES voltage, allowing the brake function to remain active after  
power failure. Power-down braking with delay can be implemented by  
using an external RC and other components to control the brake  
terminal, as shown. Brake delay can be set using the equation below  
to ensure that voice-coil head retract occurs before the spindle motor  
External Component Selection. Appli-  
cations information regarding the selection of  
external component values is available from  
the factory for external component selection,  
frequency-locked loop speed control, and  
commutation delay capacitor selection.  
TYPICAL APPLICATION  
V
BB  
BYPASS  
COMMUTATION  
24  
23  
22  
21  
1
2
V
V
C
RET  
BB  
D1  
DELAY  
DATA IN  
C
D2  
3
4
CLOCK  
C
WD  
CHIP SELECT  
C
ST  
20  
19  
18  
RESET  
5
6
7
8
BYPASS  
17  
16  
15  
DATA OUT  
MUX  
FLL  
9
OSC (REF)  
V
+5 V  
10  
DD  
C
R
F1  
F1  
BOOST  
CHARGE  
PUMP  
14  
13  
SECTOR  
DATA  
11  
12  
FAULT  
C
B
R
B
C
F2  
C
RES  
0.22 µF  
Dwg. EP-036C  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8902A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
Dimensions in Inches  
(for reference only)  
24  
13  
0.0125  
0.0091  
0.491  
0.394  
0.2992  
0.2914  
0.050  
0.016  
1
2
3
0.020  
0.013  
0.050  
0.6141  
0.5985  
0° TO 8°  
BSC  
NOTE 1  
NOTE 3  
0.0926  
0.1043  
Dwg. MA-008-25 in  
0.0040MIN  
.
Dimensions in Millimeters  
(controlling dimensions)  
24  
13  
0.32  
0.23  
10.65  
10.00  
7.60  
7.40  
1.27  
0.40  
1
2
3
0.51  
0.33  
1.27  
15.60  
15.20  
0° TO 8°  
BSC  
NOTE 1  
NOTE 3  
2.65  
2.35  
Dwg. MA-008-25A mm  
0.10 MIN  
.
NOTES: 1. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.  
2. Lead spacing tolerance is non-cumulative.  
3. Exact body and lead configuration at vendors option within limits shown.  
8902A  
3-PHASE BRUSHLESS DC  
MOTOR CONTROLLER/DRIVER  
Allegro MicroSystems, Inc. reserves the right to make, from time to  
time, such departures from the detail specifications as may be required  
to permit improvements in the design of its products.  
The information included herein is believed to be accurate and  
reliable. However, Allegro MicroSystems, Inc. assumes no responsibil-  
ity for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  

相关型号:

A8903SLB

DC Motor Controller/Driver
ETC

A8904

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904LB

Brushless DC Motor Controller, 1.4A, BCDMOS, PDSO24, 1.20 MM HEIGHT, LEAD FREE, MS-013AD, SOIC-24
ALLEGRO

A8904LP

Brushless DC Motor Controller, 1.4A, BCDMOS, PDSO28, LEAD FREE, MO-153AET, TSSOP-28
ALLEGRO

A8904SLB

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904SLB-T

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904SLB-TTR

Brushless DC Motor Controller, 1.4A, BCDMOS, PDSO24, LEAD FREE, BATWING, SOIC-24
ALLEGRO

A8904SLBTR

Brushless DC Motor Controller, 1.4A, BCDMOS, PDSO24, BATWING, SOIC-24
ALLEGRO

A8904SLBTR-T

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904SLP

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904SLP-T

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO

A8904SLPTR-T

3-PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER WITH BACK-EMF SENSING
ALLEGRO