A8282SLB [ALLEGRO]

LNB SUPPLY AND CONTROL-VOLTAGE REGULATORS; LNB电源和控制电压稳压器
A8282SLB
型号: A8282SLB
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

LNB SUPPLY AND CONTROL-VOLTAGE REGULATORS
LNB电源和控制电压稳压器

稳压器
文件: 总14页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8281 AND  
8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
Intended for analog and digital satellite receivers, these low-noise  
block converter regulators (LNBRs) are monolithic linear and switching  
voltage regulators specifically designed to provide the power and  
interface signals to the LNB down converter via the coaxial cable. If the  
device is in standby mode (EN terminal low), the regulator output is  
disabled, allowing the antenna down converters to be supplied or  
controlled by other satellite receivers sharing the same coaxial cable. In  
this mode, the device will limit the output reverse current.  
A8282SLB  
NC  
OLF  
1
2
3
4
5
6
7
8
24 EXTM  
VINT  
23  
22  
VBULK  
PUMPX  
NC  
NC  
21 VPUMP  
The A8281SLB output is set to 13 or 18-V by the VSEL terminal. It  
is supplied in a 16-lead SOIC power-tab package. The power tabs are at  
ground potential and need no electrical isolation.  
CPUMP  
GND  
20  
19  
GND  
GND  
18 GND  
ENT  
The A8282SLB output is set to 12, 13, 18, or 20-V by the VSEL  
terminals. Additionally, it is possible to increase the selected voltage by  
1-V to compensate for the voltage drop in the coaxial cable (LLC  
terminal high). It is supplied in a 24-lead SOIC power-tab package.  
The power tabs are at ground potential and need no electrical isolation.  
The A8282SLB is an improved version of the A8283SLB, without a  
bypass switch.  
SENSE  
17  
LNB 9
LX 10  
16 EN  
BUCK  
15 VSEL0  
11  
REG.  
VSEL1  
LLC  
VIN  
14  
13  
TCAP 12  
FEATURES  
Dwg. PP-072-2  
LNB selection and standby function  
Built-in tone oscillator factory trimmed to 22-kHz, facilitates  
DiSEqC™ (a trademark of EUTELSAT) encoding  
Tracking switch-mode power converter for lowest dissipation  
Externally adjustable short-circuit protection  
LNB short-circuit protection and diagnostics  
Auxiliary modulation input  
ABSOLUTE MAXIMUM RATINGS  
at TA = +25°C  
Supply Voltage, VIN ........................... 47-V  
Output Current, ILNB .... Internally Limited  
Output Voltage Range, VLNB .. -1-V to +22-V  
Internal over-temperature protection  
Reverse-current protection  
Logic Input Voltage Range,  
VI ................................... -0.3-V to +7-V  
Flag Output Voltage, VOLF ................... 7-V  
Operating Temperature Range,  
Cable length compensation (A8282SLB only)  
TA ................................. -20°C to +85°C  
Junction Temperature, TJ ................ +150°C  
Storage Temperature Range,  
These devices incorporate features that have patents pending.  
TS .............................. -55°C to +150°C  
Always order by complete part number, e.g., A8282SLB .  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
FUNCTIONAL BLOCK DIAGRAM  
and typical application  
100 µH  
RS 200 mΩ  
0.1 µF  
0.1 µF  
VIN  
47 V MAX  
+
+
100 µF  
100 µF  
VINT  
(A8282 ONLY)  
BOOST  
VOLTAGE  
VOLTAGE  
REG.  
+
BUCK  
CONV.  
CHARGE  
PUMP  
OVER-  
+
+
CURRENT  
7 V  
EN  
135 mV  
5 V  
VREF  
176 kHz  
DiSEqC TERMINATION  
352 kHz  
900 mV  
÷2  
15 Ω  
+
25 kΩ  
+
ENT  
180 µH  
0.22 µF  
LNB  
5 kΩ  
5 kΩ  
22 kHz TONE  
÷8  
&
WAVESHAPING  
EXTM  
TSD  
0.1 µF  
OLF  
OVER-  
CURRENT  
1 kΩ  
TCAP  
10 nF  
Dwg. FP-051-2  
A8281SLB Output Voltage Select Table  
A8281SLB  
VSEL1  
VLNB  
13 V  
18 V  
L
H
PUMPX  
VPUMP  
CPUMP  
GND  
1
2
3
4
5
6
16  
15  
14  
13  
12  
EXTM  
OLF  
VBULK  
A8282SLB Output Voltage Select Table  
GND  
VSEL0  
VSEL1  
LLC  
L
VLNB  
13 V  
14 V  
18 V  
19 V  
12 V  
13 V  
20 V  
21 V  
SENSE  
ENT  
L
L
L
L
L
H
H
L
L
H
H
H
L
H
L
H
L
H
LNB  
LX  
EN  
11  
10  
9
L
BUCK  
VSEL1  
TCAP  
7
8
H
H
H
H
VIN  
REG.  
Dwg. PP-072-3  
115 Northeast Cutoff, Box 15036  
2
Worcester, Massachusetts 01615-0036 (508) 853-5000  
Copyright © 2003 Allegro MicroSystems, Inc.  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ < 125°C, CLNB = 0.1 µF,  
4.5-V + VLNB < VIN < 47-V  
Limits  
Characteristic  
Symbol  
VIN  
Test Conditions  
Min.  
4.5+VLNB  
Typ. Max. Units  
Supply Voltage Range  
Operating  
0
47  
V
%
%
Output Voltage Error  
(reference Output Voltage  
Select table)  
EVLNB  
6 mA ILNB 750 mA, ENT = L  
±4.5  
±4.5  
12 mA ILNB 750 mA, ENT = H,  
average VLNB  
0
Output Reverse Current  
Buck Switch On Resist.  
IRLNB  
EN = L, VLNB = 22 V, VIN = 22 V or oating  
TJ = 25°C, ILNB = 750 mA  
1
1
5
mA  
rDS(on)  
0.57 0.67  
0.84 0.94  
TJ = 125°C, ILNB = 750 mA  
Buck Switch Current Limit  
Switching Frequency  
Linear Reg. Volt. Drop  
Logic Input Voltage  
IBSM  
fO  
2.5  
A
16 x ftone  
320  
700  
2
352  
384  
kHz  
mV  
V
VBUCK  
VIL  
VSENSE – VLNB, ENT = L, ILNB = 750 mA  
900 1100  
0.8  
10  
1
VIH  
V
Logic Input Current  
Supply Current  
IIH  
VIH = 5 V  
<1.0  
0.25  
6
µA  
mA  
mA  
IIN  
Outputs disabled (EN = L)  
EN = H, ILNB = 0  
10  
Tone Characteristics  
Tone Frequency  
ftone  
ENT = H  
20  
400  
40  
22  
650  
24  
900  
60  
kHz  
mV  
%
Tone Amplitude  
Vtone(PP)(ENT) ENT = H, 12 mA ILNB 750 mA  
Tone Duty Cycle  
dctone  
tr, tf  
ENT = H, 12 mA ILNB 750 mA  
ENT = H, 12 mA ILNB 750mA  
Tone Rise or Fall Time  
5
10  
15  
µs  
External Modulation  
Tone Amplitude  
Vtone(PP)(EXTM) f = 22 kHz square wave, ILOAD = 12 mA to  
450 mA, VIN = 100mV to 125 mV;  
VPP ac coupled  
400  
550  
800  
mV  
External Modulation Input  
Voltage Range  
VEXTM(PP)  
AC coupled  
100  
4
125  
10  
mV  
External Modulation Input  
Impedance  
ZEXTM  
f = 22 kHz  
kΩ  
continued next page  
NOTES: 1. Typical data is for design information only.  
2. Negative current is dened as coming out of (sourcing) the specied device terminal.  
www.allegromicro.com  
3
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ 125°C, CLNB = 0.1-µF,  
4.5-V + VLNB VIN 47-V.  
Limits  
Characteristic  
Symbol Test Conditions  
Min.  
Typ. Max. Units  
Protection Circuitry  
Current-Limiting Threshold  
Overload Flag Output Low  
Overload Flag Leakage Current  
Thermal Shutdown Temp.  
Thermal Shutdown Hysteresis  
VILNB(th) VBULK – VSENSE  
115  
135  
0.28  
<1.0  
165  
20  
155  
0.5  
10  
mV  
V
VOLF  
IOLF  
TJ  
IOLF = 8-mA  
VOLF = 5.5-V  
µA  
°C  
°C  
TJ  
NOTES: 1. Typical data is for design information only.  
2. Negative current is defined as coming out of (sourcing) the specified device terminal.  
115 Northeast Cutoff, Box 15036  
4
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
FUNCTIONAL DESCRIPTION  
Buck regulator. A current-mode buck converter  
provides the linear regulator a supply voltage that  
tracks the selected LNB output voltage. The buck  
converter operates at 16 times the internal tone fre-  
quency, nominally 352-kHz.  
mum dc plus ac (tone) load current required, internal  
VILNB(th) tolerance, and sense resistor accuracy. For  
750-mA applications, a precision 140-mresistor is  
recommended. For 500-mA applications, the resistor  
value can be raised to 200-m.  
The tracking regulator provides minimum power  
dissipation across the range of output voltages by  
adjusting the SENSE terminal voltage, nominally  
900-mV above the LNB output voltage. The tracking  
regulator also provides adequate headroom for tone  
injection.  
In operation, the short-circuit protection produces  
current limiting at the input due to the tracking con-  
verter. If the output is shorted, the linear regulator  
will limit the output current to ILNBM  
.
Fault output. Short-circuit or thermal shutdown  
will cause the OLF terminal, an open-drain diagnostic  
output flag, to go LOW.  
Linear regulator. The output linear regulator will  
sink or source current. This allows tone modulation  
into a capacitive load of 0.1-µF over the output  
current range of 12-mA to 750-mA.  
Internal tone modulation. The ENT (tone enable)  
terminal activates the internal tone signal, modulating  
the dc output with a 650-mV peak-to-peak trapezoidal  
waveform. The internal oscillator is factory trimmed  
to provide a tone of 22-kHz. No further adjustment is  
required. Burst coding of the tone can be accom-  
plished, due to the fast response of the ENT input and  
rapid tone response. This allows implementation of  
the DiSEqC™ protocols.  
Slew rate control. The programmed output volt-  
age rise and fall times can be set by an external  
capacitor (with an internal 25-kresistor) located on  
the TCAP terminal. The range of acceptable capaci-  
tor values is 4.7-nF to 47-nF. This feature only  
affects the turn-on and programmed voltage rise and  
fall times. Modulation is unaffected by the capacitor.  
If LNB output voltage rise and fall time limiting is  
not required, the TCAP terminal should use a 100-nF  
ceramic as a default value to minimize output noise.  
If a small value capacitor is used, the rise time will be  
limited by the time required to charge the VBULK  
capacitor.  
External tone modulation. To improve design  
flexibility and to allow implementation of proposed  
LNB remote control standards, an analog modulation  
input terminal is available (EXTM). An appropriate  
dc-blocking capacitor must be used to couple the  
modulating signal source to the EXTM terminal. The  
peak-to-peak input amplitude should stay within  
100-mV to 125-mV to ensure the DiSEqC amplitude  
specification over the output current range. If exter-  
nal modulation is not used, the EXTM terminal  
should be decoupled to ground with a 0.1-µF ceramic  
capacitor.  
Short-circuit limit regulator. The LNB output is  
current limited. The short-circuit protection threshold  
is set by the value of an external resistor, RS, in  
conjunction with an internal 135-mV reference  
voltage (VILNB(th)).  
RS = 0.135/ILNBM  
where ILNBM is the desired current-limit value. The  
sense resistor should be chosen based on the maxi-  
www.allegromicro.com  
5
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
APPLICATIONS INFORMATION  
Component selection:  
of the 22-kHz tone. Operating points above the line  
in the following graph will not have excessive over-  
shoot.  
Input capacitor, CIN. An electrolytic capacitor  
should be located as close to the device VIN terminal  
as possible. The input current is a square wave with  
fast rise and fall times so the capacitor must be able to  
handle the rms current without excessive temperature  
rise. The value of this capacitor is not as important as  
the ESR. The worst-case current is with maximum  
load current, minimum VIN, and maximum VLNB  
(highest switch duty cycle). Choose a capacitor with  
a ripple current rating greater than  
125  
100  
75  
MINIMAL OVERSHOOT  
50  
Icin = ILNB x 1.2 x VLNB(max)/VIN(min)  
EXCESSIVE OVERSHOOT  
Buck inductor, L1. A 100-µH power inductor is  
appropriate for all operating conditions. The rated  
saturation current of the inductor must be greater than  
1.3-A. To maximize efficiency, the dc resistance  
should be less than 350-m.  
25  
0
0.5  
1.0  
1.5  
0
OUTPUT CAPACITANCE IN µF  
Dwg. GP-074  
Layout notes:  
Clamp diode, D1. A Schottky diode is required at  
the switching node LX. This diode should be rated at  
1.5 times the maximum load current.  
1. The printed wiring board should use a heavy  
ground plane. A two-sided board with ground planes  
on both sides of the board is most desirable. Several  
copper vias under the device can be used to connect  
the ground planes and enhance thermal performance.  
Output capacitor, CBULK. A low-ESR (<200-m)  
electrolytic capacitor is recommended to minimize  
the ripple voltage. Less than 50-mV peak-to-peak is a  
reasonable goal.  
2. For optimum electrical and thermal performance,  
the device should be soldered directly onto the board.  
Vripple(PP) = ESR x Iripple(max)  
3. Keep the sense resistor traces as short and as wide  
as possible to lower trace resistance.  
where Iripple(max) = VBULK(min) x (1 – [VBULK(min)/VIN(max)]) /  
(L1 x 352-kHz).  
4. Connect the bypass capacitors as close to the  
device as possible. The lower value ceramic capaci-  
tors should be closer to the device than the  
electrolytics. The supply voltage, VIN, should be  
decoupled with an electrolytic capacitor placed as  
close to the device as possible.  
Output capacitor, CLNB. Increasing the output  
capacitance, CLNB, will attenuate noise. However,  
this is limited by the requirement for low cable  
capacitance for 22-kHz tone transmission.  
Also, because the linear regulator sink current is  
limited, high values of output capacitance combined  
with low levels of output current can cause overshoot  
5. Place the TCAP capacitor as close to the device as  
possible.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
6
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
APPLICATIONS INFORMATION (cont’d)  
Grounding. Use a star ground approach at the  
device ground terminals. This allows the analog and  
power grounds to be kept separate on the PWB up to  
the device.  
DirecTV®. With the A8282, it is possible to raise  
the LNB output voltage 440-mV from the nominal  
13-V setting to comply with DirecTV requirements.  
This is accomplished by connecting a 1-Mresistor  
between the VINT and TCAP terminals, sourcing  
approximately 2.76-µA into the TCAP node. The  
LNB output voltage is approximately six times the  
setting of the voltage-select DAC as shown in the  
figure.  
Noise immunity. LNB systems can have a 50-mV  
peak specification for noise on the coaxial cable.  
This is easily achievable with proper layout and  
following a few guidelines:  
1. Use a low-ESR capacitor for VBULK. A maximum  
of 200-mis recommended.  
VOLTAGE  
VINT  
REG.  
2. The LNB output is sensitive to the TCAP refer-  
ence terminal. Keep the PWB traces short and loca-  
tion of CTCAP close to the device. This terminal is a  
high-impedance node and noise can be induced from  
proximity to an unshielded inductor. If the inductor  
can not be placed far enough away to avoid noise  
pickup, it is important to ensure that the induced  
voltage is out of phase with the switching node LX.  
Rotating the inductor can change the phase of the  
induced voltage.  
TCAP  
X6  
+
25 k  
LNB  
VOLTAGE  
SELECT  
Dwg. EP-074  
DiSEqC™. The 22-kHz tone is specified to be  
compatible with EUTELSAT coaxial cable bus  
standards.  
3. Be sure to place a 1-µF to 10-µF capacitor on  
internal reference VINT (A8282 only).  
4. Bypass EXTM with a 0.1-µF ceramic capacitor to  
ground.  
The LNB output will be able to drive the DiSEqC  
termination network. The inductor must pass the dc  
current with minimal loss while the parallel resistor  
provides the recommended source impedance at  
22-kHz. Unidirectional communication systems such  
as DiSEqC 1.0 do not need this termination and the  
LNB can be directly connected to the coaxial cable.  
5. Increasing the output capacitance will attenuate  
noise. However, this must be traded off with the  
requiremnent for low cable capacitance for 22-kHz-  
tone transmission.  
13-V to 18-V transition. The LNB output can be  
rapidly switched between a high and a low setting as  
a method of receiver-to-LNB communication. The  
TCAP capacitor will control the slew rate based on  
the RC charging.  
tr or tf = 25 x 103 x CTCAP ln(VLNB(H)/VLNB(L)  
)
www.allegromicro.com  
7
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
APPLICATIONS INFORMATION (cont’d)  
Small values of TCAP are used when the desired  
transition time is less than a millisecond. In this case,  
the minimum rise time is limited by the charge time  
of the switching regulator output capacitor. This is  
dependent on the LNB load current, peak current limit  
in the buck switch, and the output amplitude change.  
where TT is the power tab temperature (leads 4 or 13  
for the A8281SLB or leads 6, 7, 18, or 19 for the  
A8282SLB) and RθJT is 6°C/W.  
Package thermal resistances, RθJA, measured on  
JEDEC standard “high-K” four layer board:  
A8281SLB..................................... 38°C/W  
A8282SLB..................................... 35°C/W  
tr = CBULK (VLNB(H) – VLNB(L))/I(AV)  
where I(AV) is the average current available to charge  
the output capacitor and can be estimated by I(AV)  
=
measured on two-sided PWB with 3 square inches  
(1935 mm2) copper ground area on each side:  
A8281SLB..................................... 48°C/W  
1.4 – ILNB. Note that this is only a limitation due to  
the ability to charge the output capacitor on a low-to-  
high change of the LNB voltage. For high-to-low  
transitions, the output voltage will be slew limited by  
TCAP.  
A8282SLB..................................... 45°C/W  
The minimum value for CTCAP is 4.7-nF.  
Power dissipation. The power dissipated, and  
operating junction temperature of the device, can be  
estimated to ensure that the device is operating within  
the desired thermal budget.  
The total device power dissipation (PD) is com-  
prised of three components:  
PD = PD(bias) + PD(lin) + PD(buck)  
where PD(bias) = VIN (IIN – 0.004),  
PD(lin) = VBUCK x ILNB  
,
PD(buck) = ILNB2 x rDS(on) x VBULK/VIN  
where VBULK = VBUCK + (ILNB x RS) + VLNB  
.
The device junction temperature can then be  
estimated as  
TJ = (PD x RθJA) + TA  
or  
TJ = (PD x RθJT) + TT  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
APPLICATIONS INFORMATION (cont’d)  
+5 V  
5 kΩ  
C1  
CINT  
1
2
3
4
5
24  
R1  
OLF  
+
TCAP  
VIN  
23  
22  
21  
20  
C2  
C3  
6
7
19  
18  
17  
16  
15  
14  
13  
ANALOG  
GROUND  
8
ENT  
9
10  
11  
ENB  
BUCK  
VSEL0  
D1  
REG.  
VSEL1  
LLC  
+
CIN  
12  
CTCAP  
0.22 µF  
15 Ω  
L2  
POWER  
GROUND +30 V  
VIN  
180 µH  
DiSEqC TERMINATION  
Dwg. EP-072  
Typical application  
www.allegromicro.com  
9
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
APPLICATIONS INFORMATION (cont’d)  
Parts list for typical application  
Description  
Representative Component  
C1, C2, C3,  
CBYP, CLNB  
0.1-µF/50-V ceramic X7R/X5R  
CIN  
100-µF/50-V low-ESR electrolytic  
100-µF/35-V low-ESR electrolytic  
4.7-µF/16-V tantalum electrolytic  
1-A/40-V Schottky diode  
Nichicon UHD1H101MPT  
Nichicon UHC1V101  
CBULK  
CINT  
D1  
Sanken EK04  
D2  
1.2-A/100-V fast-recovery diode  
100-µH (750-mA max. load)  
Sanken EU 2YX  
L1  
TDK TSL1112-101K1R4, or  
Coilcraft D03316P-104LW  
100-µH (500-mA max. load)  
180-µH (750-mA max. load)  
140-mto 200-m/0.25-W  
10-nF ceramic X7R/X5R  
TDK TSL0808-101KR80  
TDK TSL1112S-181K1R0-PF  
Meritek CR04RxxxF  
L2  
RS  
CTCAP  
R1  
1-M, ±5% (optional, see page 7)  
DiSEqC (Digital Satelite Equipment Control) is a trade-  
mark of EUTELSAT (European Telecommunications  
Satellite Corporation), Paris, France.  
DirecTV is a trademark of DirecTV, Inc., a unit of Hughes  
Electronics Corp., El Segundo, CA  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
10  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
Terminal List  
A8281SLB A8282SLB  
Terminal Terminal  
Terminal  
Number  
1
Name  
Number  
Terminal Description  
NC  
No (internal) connection  
OLF  
2
2
Overload flag output: low (fault) when ILNB > ILNBM or  
TJ > 165°C, high when ILNB < ILNBM and TJ < 130°C  
VBULK  
NC  
3
4
5
6
7
3
4, 5  
6, 7  
8
Tracking supply voltage to linear regulator  
No (internal) connection  
Ground and substrate  
GND  
SENSE  
LNB  
Current limit setup resistor  
Output voltage to LNB  
9
LX  
10  
Inductor drive point  
VIN  
8
9
11  
12  
Supply input voltage (minimum, VLNB + 2.5-V)  
TCAP  
Capacitor for setting the rise and fall time of the outputs for  
line-length compensation  
LLC  
VSEL1  
VSEL0  
EN  
10  
13  
14  
15  
16  
Logic input: output voltage select  
Logic input: output voltage select  
Logic input: output voltage select  
Logic input: when high, enables device  
11  
ENT  
GND  
12  
13  
14  
15  
16  
17  
18, 19  
20  
Logic input: when high, enables internal 22-kHz modulation  
Ground and substrate  
CPUMP  
VPUMP  
PUMPX  
VINT  
High side of charge-pump capacitor  
Gate-supply voltage for high-side drivers  
Charge-pump drive  
21  
22  
23  
Bypass capacitor for internal voltage reference  
External modulation input  
EXTM  
1
24  
www.allegromicro.com  
11  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
A8281SLB  
Dimensions in Inches  
(for reference only)  
16  
9
0.0125  
0.0091  
0.419  
0.394  
0.2992  
0.2914  
0.050  
0.016  
0.020  
0.013  
1
2
0.050  
BSC  
3
0° TO 8°  
0.4133  
0.3977  
0.0926  
0.1043  
Dwg. MA-008-16A in  
0.0040 MIN.  
Dimensions in Millimeters  
(controlling dimensions)  
16  
9
0.32  
0.23  
10.65  
10.00  
7.60  
7.40  
1.27  
0.40  
0.51  
0.33  
1
2
1.27  
BSC  
3
0° TO 8°  
10.50  
10.10  
2.65  
2.35  
Dwg. MA-008-16A mm  
0.10 MIN.  
NOTES: 1. Exact body and lead configuration at vendor’s option within limits shown.  
2. Lead spacing tolerance is non-cumulative.  
3. Leads 4 and 13 are internally one piece.  
4. Supplied in standard sticks/tubes of 47 devices or add “TR” to part number for tape and reel.  
115 Northeast Cutoff, Box 15036  
12  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
A8282SLB  
Dimensions in Inches  
(for reference only)  
13  
24  
0.0125  
0.0091  
0.419  
0.394  
0.2992  
0.2914  
0.050  
0.016  
0.020  
0.013  
1
2
3
0.050  
0.6141  
0.5985  
0° TO 8°  
BSC  
NOTE 1  
NOTE 3  
0.0926  
0.1043  
Dwg. MA-008-25A in  
0.0040 MIN.  
Dimensions in Millimeters  
(controlling dimensions)  
24  
0.32  
0.23  
10.65  
10.00  
7.60  
7.40  
1.27  
0.40  
0.51  
0.33  
1
2
1.27  
3
BSC  
15.60  
15.20  
0° TO 8°  
NOTE 1  
NOTE 3  
2.65  
2.35  
Dwg. MA-008-25A mm  
0.10 MIN.  
NOTES: 1. Exact body and lead configuration at vendor’s option within limits shown.  
2. Lead spacing tolerance is non-cumulative.  
3. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.  
4. Supplied in standard sticks/tubes of 31 devices or add “TR” to part number for tape and reel.  
www.allegromicro.com  
13  
8281 AND 8282  
LNB SUPPLY AND  
CONTROL-VOLTAGE REGULATORS  
The products described here are manufactured under one or more  
U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to  
time, such departures from the detail specifications as may be  
required to permit improvements in the performance, reliability, or  
manufacturability of its products. Before placing an order, the user is  
cautioned to verify that the information being relied upon is current.  
Allegro products are not authorized for use as critical components  
in life-support devices or systems without express written approval.  
The information included herein is believed to be accurate and  
reliable. However, Allegro MicroSystems, Inc. assumes no responsi-  
bility for its use; nor for any infringement of patents or other rights of  
third parties which may result from its use.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
14  

相关型号:

A8282SLB-T

Switching Regulator, Current-mode, 2.5A, 384kHz Switching Freq-Max, BICMOS, PDSO16, LEAD FREE, PLASTIC, SOIC-16
ALLEGRO

A8282SLBTR

LNB Supply and Control Voltage Regulator
ETC

A8282SLBTR-T

Switching Regulator, Current-mode, 2.5A, 384kHz Switching Freq-Max, PDSO24, LEAD FREE, SOIC-24
ALLEGRO

A8283

LNB Supply and Control Voltage Regulator
ETC

A8283(DIP)

Interface IC
ETC

A8283(SOIC)

Interface IC
ETC

A8283CB

暂无描述
SANKEN

A8283CLB

Switching Regulator, Current-mode, 1A, 384kHz Switching Freq-Max, PDSO22, POWER, SOIC-24
SANKEN

A8283SB

LNB SUPPLY AND CONTROL-VOLTAGE REGULATOR
ALLEGRO

A8283SB

Switching Regulator, Current-mode, 1A, 384kHz Switching Freq-Max, PDIP22, POWER, BATWING, PLASTIC, DIP-24
SANKEN

A8283SLB

LNB SUPPLY AND CONTROL-VOLTAGE REGULATOR
ALLEGRO

A8283SLBTR

Switching Regulator, Current-mode, 1A, 384kHz Switching Freq-Max, PDSO24, POWER, SOIC-24
ALLEGRO